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Abstract. Atmospheric response to a mid-latitude sea sur-
face temperature (SST) front is studied, while emphasiz-
ing low-frequency modes induced by the presence of such
a front. An idealized atmospheric quasi-geostrophic (QG)
model is forced by the SST field of an idealized oceanic QG
model. First, the equilibria of the oceanic model and the as-
sociated SST fronts are computed. Next, these equilibria are
used to force the atmospheric model and compute its equilib-
ria when varying the strength of the oceanic forcing.

Low-frequency modes of atmospheric variability are iden-
tified and associated with successive Hopf bifurcations. The
origin of these Hopf bifurcations is studied in detail, and con-
nected to barotropic instability. Finally, a link is established
between the model’s time integrations and the previously ob-
tained equilibria.

1 Introduction

Over the past decades, many studies have addressed the sta-
tistical and synoptic identification and description, as well
as the physical explanation of atmospheric weather regimes,
as characterized by recurrent and persistent circulation pat-
terns. Using statistical methods, it has been demonstrated
that the two opposite phases of the North Atlantic Oscilla-
tion – blocked and zonal, respectively – are the stablest and
thus most commonly accepted weather regimes in the At-
lantic sector (Cheng and Wallace, 1993; Kimoto and Ghil,
1993; Corti et al., 1999; Smyth et al., 1999; Cassou et al.,

2004). If, however, a prevailing consensus on the observed
weather regimes has been established, there is still a debate
on the explanation of their occurrence.

When looking at a map of atmospheric variability, we ob-
serve that its Northern Hemisphere maxima are located over
the Atlantic and Pacific Oceans, thus suggesting a possible
link between the sea surface temperature (SST) field and
the atmospheric variability. The response of the atmosphere
to mid-latitude SST anomalies has been a contentious is-
sue over the last few decades (Kushnir et al., 2002). Recent
work (Feliks et al., 2004, 2007; Minobe et al., 2008; Small
et al., 2008; Hogg et al., 2009; Chelton and Xie, 2010) has
shown that oceanic SST fronts play a key role in this re-
sponse.Sweet et al.(1981) andBusinger and Shaw(1984)
already noted that an SST front is responsible for the un-
equal heating of the atmosphere’s lower layers on either side
of the front. This differential heating is transmitted to the tro-
posphere via several processes (Lee and Kim, 2003; Naka-
mura et al., 2008; Deremble et al., 2012). As a result, the
growth of baroclinic eddies and the position of the jet stream
are strongly affected by the position and strength of an SST
front.

In order to explain the dynamic origin and maintenance
of multiple weather regimes,Charney and Devore(1979)
suggested to compute the steady states of an idealized at-
mospheric model. They found a clear link between blocked
and zonal weather regimes and the multiple equilibria of
their model. Similar results have been obtained with more
complex and realistic models (Reinhold and Pierrehumbert,
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1982; Legras and Ghil, 1985; Crommelin, 2003; Sempf et al.,
2007; Deremble et al., 2009). These studies mostly focused
on the steady states and low-frequency oscillatory modes of
spectrally truncated atmospheric models.

The mid-latitude oceanic circulation has also been stud-
ied by applying the methods of numerical bifurcation the-
ory, leading to the identification of multiple steady states, as
well as of low-frequency oscillatory modes. Indeed, it has
been shown that many aspects of the interannual variabil-
ity of the double-gyre circulation in the mid-latitude ocean
basins can be explained in terms of steady states and of ir-
regular, chaotic oscillations of the oceans’ evolution equa-
tions, forced by time-constant, climatological winds (seeDi-
jkstra, 2005 or Dijkstra and Ghil, 2005 for a review). The
gyre modes that arise in this kind of study provide a possible
explanation for oceanic low-frequency modes (Jiang et al.,
1995; Speich et al., 1995; Simonnet and Dijkstra, 2002).

The purpose of the present paper is to apply the fruitful
approach of successive bifurcations to the study of the atmo-
sphere’s intrinsic variability in the presence of oceanic SST
fronts. Both our model’s atmospheric and oceanic compo-
nents are modeled by the quasi-geostrophic (QG) barotropic
equation, in a periodicβ-channel and an idealized rectan-
gular basin, respectively. The SST is used here as the forc-
ing that drives the free troposphere via the vertical velocities
that are calculated analytically at the top of the marine at-
mospheric boundary layer (MABL). We examine first how
the atmosphere reacts to the SST associated with the distinct
oceanic equilibria. Next, we isolate the atmospheric modes
of low-frequency variability (LFV) to which different SST
fields give rise. To do so, we search for the Hopf bifurcations
resulting in these modes.

Our main focus is the atmosphere’s intrinsic variability,
and we leave the fully coupled model for future study. The
study of LFV in more or less idealized, fully coupled ocean-
atmosphere models (Kravtsov and Robertson, 2002; Berloff
et al., 2007a; Kravtsov et al., 2007a,b) has already started and
will not be discussed here any further.

We emphasize in our model of ocean-atmosphere interac-
tion the pressure gradient anomaly created by variations of
the air temperature in the MABL, known as the thermody-
namic pressure gradient, and do not take into account ex-
plicitly the effect of the vertical mixing on the height of the
boundary layer (e.g.,Wallace et al., 1989; O’Neill et al.,
2005; Samelson et al., 2006). Lindzen and Nigam(1987)
have parametrized this process in a tropical boundary layer,
and several studies (e.g.,Battisti et al., 1999; Bellon et al.,
2003; Chen et al., 2003) have applied their parametrization in
the tropics.Feliks et al.(2004) (FGS hereafter) bypassed the
Lindzen and Nigam(1987) calculation in the extratropics and
showed that the thermal component of the vertical velocity at
the top of the MABL is associated with the Laplacian of the
SST field. The FGS parametrization has been applied over
the North Atlantic basin (Feliks et al., 2011), where it repro-
duces correctly major aspects of the atmospheric circulation.

Brachet et al.(2012) have further verified this parametriza-
tion in a general circulation model (GCM) with zooming over
the Gulf Stream region and found it to represent the dominant
effects of ocean-atmosphere interaction there.

Of course, air-sea interactions involve much more com-
plex phenomena than the FGS parametrization chosen here
(seeSmall et al., 2008for an extensive review). The model
behavior is thus not expected to reproduce the observations
in great detail. Our intent is merely to extract from this ideal-
ized model the minimal ingredients that permit one to high-
light some generic features of ocean-atmosphere interaction.

The paper is organized as follows. In Sect.2, we give a
brief description of the model. In Sect.3, we compute the
ocean’s multiple equilibria as a function of the intensity of
the time-constant wind field. In Sect.4, we study the at-
mosphere’s multiple equilibria as a function of the intensity
of the SST front computed in the oceanic model; this study
is extended to time-dependent solutions of the atmospheric
model in Sect.5. The study of the fully coupled model is
left for a subsequent paper. Results are summarized and dis-
cussed in Sect.6.

2 Model description

We construct an ocean-atmosphere model with an MABL
that helps parametrize the momentum fluxes between the
ocean and atmosphere. The model’s atmospheric and oceanic
components are each governed by a barotropic QG equa-
tion. Our model’s free atmosphere and MABL follow FGS,
while the oceanic component followsSimonnet and Dijkstra
(2002) andSimonnet et al.(2005). We recall that the effects
of the atmosphere on the ocean, as well as those of the ocean
on the atmosphere, are studied independently. Full coupling
between the two is deferred for a further study.

A schematic model diagram is shown in Fig.1. There are
three layers: the oceanic layer of heightHoc, and the two at-
mospheric layers, of total heightHat, with an Ekman layer of
heightHE and the free troposphere of heightHat−HE. In this
figure, we plot the fluxes between the three layers and some
of the source terms of these fluxes. The term that forces the
atmospheric vorticity is composed of two parts: a classical
dissipation term,γ∇

2ψat, and a forcing term proportional to
the Laplacian of the SST field,α∇

2Toc. There is no external
forcing of the atmospheric layer, such as a differential pole-
to-equator heating.

In contrast, the ocean is forced by a time-constant wind
stress termσF , which mimics the climatological surface
winds at midlatitudes, and subject to bottom friction with a
constant relaxation timeτek. In addition, the SST is relaxed
to an equilibrium profile chosen to resemble the temperature
profile of extratropical oceanic basins; this SST forcing term
is not shown in the figure. The z-axis points upward, while
the x- and y-axes point east- and northward, respectively.
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Fig. 1: Schematic model diagram. (a) Model cross-section; hereψat is the atmospheric stream

function,ψoc is the oceanic stream function, andToc is the sea surface temperature (SST) field. The

arrows mark a potential vorticity (PV) flux; see text for the definition of the other parameters. (b)

Top view of the model, in which the solid box represents the contours of the oceanic basin, while

the dashed box delimits the contours of the atmosphericβ-channel; this channel extends to the east

and west of the oceanic basin.
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Fig. 1. Schematic model diagram.(a) Model cross-section; here
ψat is the atmospheric stream function,ψoc is the oceanic stream
function, andToc is the sea surface temperature (SST) field. The
arrows mark a potential vorticity (PV) flux (see text for the defini-
tion of the other parameters).(b) Top view of the model, in which
the solid box represents the contours of the oceanic basin, while the
dashed box delimits the contours of the atmosphericβ-channel; this
channel extends to the east and west of the oceanic basin.

2.1 The free-atmosphere model

The evolution of the atmospheric potential vorticity (PV),
qat = ∇

2ψat, is formulated by using the QG approximation
on theβ-plane,β being the meridional gradient of the Cori-
olis parameter, andψat the atmospheric stream function (see
Fig.1). Note that the stream function is linked to the pressure
sinceP(HE)= ρ0f

0ψ at.
This PV equation is integrated for a single layer whose

height isHat−HE and with a rigid lid, i.e., with zero vertical
velocity at the top of the layer and an infinite deformation
radius. In non-dimensional variables, we obtain

∂qat

∂t
(1)

= −J (ψat,qat+βy)+R−1
at ∇

4ψat− γ∇
2ψat+α∇

2Toc,

with J (·, ·) the Jacobian operator andRat the atmospheric
Reynolds number;

Rat =
LrUr

νat
, (2)

whereLr andUr are a characteristic length and velocity, re-
spectively, andνat is the horizontal eddy viscosity.

The last two terms of Eq. (1) correspond to the friction
and the forcing, respectively (see also AppendixB). The sea-
air forcing parameterα and the relaxation constantγ corre-
spond to the non-dimensional proportionality coefficients in
Eq. (B8):

α =
1

2π
(1−

1

2π
)

gH 2
E

θ0(Hat−HE)U2
r

, (3a)

γ =
f oLr

Ur(Hat−HE)

HE

2π
. (3b)

To nondimensionalize the equation forγ , we used the
Froude numberFr = Ur/(gHE)

1/2.

2.2 The barotropic ocean model

Similarly, we write the evolution equation for the oceanic PV
in non-dimensional form:

∂qoc

∂t
= (4)

− J (ψoc,qoc+βy)+R−1
oc ∇

4ψoc−
1

τek
∇

2ψoc+ σF ,

with ψoc the oceanic stream function. The oceanic PVqoc is
computed while taking a free upper surface, instead of the
rigid lid taken for the atmospheric part:

qoc = ∇
2ψoc−

1

R2
d

ψoc, (5)

whereRd is the deformation radius of the barotropic ocean,
while the Reynolds numberRoc is defined using the eddy
viscosityνoc of the ocean. The third term on the right-hand
side of Eq. (4) is the bottom friction, with a time constant
that is equal toτek.

The forcingF corresponds to the non-dimensional wind
stress curl and it is written as

F = sin(2πy) , (6)

with y = 0 at the south wall of the basin andy = 1 at the
north wall, in non-dimensional units. This forcing corre-
sponds to polar and tropical easterlies near the ocean basin’s
northern and southern walls, and to westerlies near its mid-
latitude symmetry axis.
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Table 1.Model parameter values used in the standard case.

Parameter Symbol Value Value (nondim)

Coriolis parameter at 45◦ N f 0 10−4 s−1

Meridional gradient off β 1.6× 10−11s−1 km−1 64
Characteristic length Lr Ly 1
Characteristic speed Ur 1 m s−1 1
Characteristic temperature θ0 300 K 1
Zonal size of the oceanic basin Lx 1800 km
Meridional size of the channel Ly 1800 km
Atmospheric strip width Dx 2× 120 km
Atmospheric height Hat 10 000 m
Height of the MABL HE 300 m
Oceanic depth Hoc 500 m
Water density ρoc 1000 kg m−3

Air density ρat 1 kg m−3

Bottom friction τek 230 days 0.1
Strength of the front 1T 10 K
Sharpness of the front η 10
Thermal diffusivity kH 800 m2 s−1 4× 10−4

Oceanic deformation radius Rd 50 km
Atmospheric lateral friction νat 600 m2 s−1

Oceanic lateral friction νoc 400 m2 s−1

Atmospheric Reynolds number Rat 3.3× 103

Oceanic Reynolds number Roc 5× 103

Atmospheric friction γ 1.0
Thermal relaxation constant χ 200 days
Wind forcing σ 0.15 N m−2 0.6
Thermal forcing α 4.2× 10−2

2.3 The sea surface temperature (SST) field

The oceanic temperatureToc is relaxed towards an imposed
profile T , and also advected by the oceanic velocity field as
a passive tracer. Its full evolution equation is given by

∂Toc

∂t
= −J (ψoc,Toc)+ kH∇

2Toc−χ(Toc− T ) , (7)

with kH the thermal diffusivity, andχ an inverse time con-
stant for the thermal relaxation. The profileT = T (y) toward
which we relax the temperature is given by

T =1T tanh(ηy), (8)

with 1T the north-to-south temperature difference in the
basin andη a constant that calibrates the steepness of the
relaxation profile.

2.4 Parameter choices

We list all the parameters used for the basic, or standard,
model solution in Table1. Some parameters – likef 0, ρat,
ρoc – are kept fixed, while other parameters – such as the
eddy viscositiesνat andνoc or the bottom friction parameter

(1/τek) – affect the behavior of the fluid: depending on the
value chosen, the fluid will be more or less turbulent. The
standard values chosen here (cf. Table1) are dictated by the
horizontal resolution of 30 km. The thermal relaxation con-
stantχ is set so as to keep the relaxation term small with
respect to the advection term in the basin’s western part. We
will focus mainly on the wind intensityσ and the height of
the layersHE, H at, andHoc and use the non-dimensional
version of the parameters. As noted in the Introduction, these
heights can vary quite widely depending on the atmospheric
or sea surface conditions.

We explore here the parameter plane(σ,α), whereσ is the
strength of the climatological wind-stress forcing. By vary-
ing this parameter, we verify in Sect.3 the well-known re-
sults on multiple equilibria of the wind-driven ocean circula-
tion, and thus calibrate our model. In Sects.4 and5, we vary
the forcingα of the SST field on the atmosphere, in order to
see how the latter reacts to a change in the strength and zonal
extent of the SST front.

2.5 Numerical scheme and discretization

For the set of partial differential equations that govern our
model’s atmosphere, ocean, and SST field – namely Eqs. (1),
(5) and (7) – the boundary conditions are
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– periodic boundary conditions at the eastern and western
ends of theβ-channel, and free-slip conditions along its
northern and southern walls;

– free-slip conditions for the oceanic stream function on
all basin walls; and

– no-flux boundary conditions for the temperature, i.e., its
derivative is zero perpendicular to each boundary.

We discretize the variables on a A-grid (Arakawa, 1966)
with the horizontal mesh size fixed at 30 km for the oceans
as well as the atmosphere. This is an acceptable resolution to
observe phenomena associated with frontal dynamics in the
atmosphere (FGS;Minobe et al., 2008).

We use an LU factorization to invert the discrete Laplacian
operator that converts the stream functionψ into the PVq.
For this purpose, we use the UMFPACK library that provides
an iterative solver of LU type (Davis, 2004). For the time
integration, we use a third-order Adams-Bashforth scheme,
which has good stability properties when the integration step
is sufficiently small (Durran, 1999); we fix this step here to
15 minutes.

3 Multiple equilibria of the oceanic circulation

Many authors have studied multiple equilibria of the wind-
driven circulation using various models and diverse con-
figurations (e.g.,Veronis (1963), Cessi and Ierley(1995),
Jiang et al.(1995), Speich et al.(1995), Primeau(1998) and
Simonnet et al.(2005)). We present here the corresponding
results for our model as a basis for the rest of our study.
The barotropic ocean in this section is driven by the time-
constant, idealized wind profile of Eq. (6), and we study the
solutions as the intensityσ of the wind stress increases.

Figure2 shows the bifurcation diagram obtained by vary-
ing σ , all other parameters in Table1 being kept constant.
This figure has been obtained using the pseudo-arclength
continuation method ofKeller (1977), as introduced into
atmospheric studies byLegras and Ghil(1985) and into
oceanographic ones bySpeich et al.(1995) (seeDijkstra
(2005) for numerical details). We plot on the ordinate the en-
ergy difference1Eoc between the subtropical gyre and the
subpolar gyre:1E =

∑
ψ>0ψ

2
−

∑
ψ<0ψ

2. This diagram
is particularly robust, as it resembles the ones obtained in all
the above-mentioned studies of the double-gyre, wind-driven
circulation.

Among the robust elements – appearing in all the stud-
ies that use perfectly symmetric, QG models – we note the
presence of an antisymmetric solution for which the sub-
tropical and the subpolar gyre have the same strength, for
all σ -values. In shallow-water models, the mirror symmetry
with respect to the east-west axis of the basin is broken and
the pitchfork bifurcation takes the perturbed form shown by
Jiang et al.(1995). Still, for a wide range ofσ -values, one
finds a nearly antisymmetric flow pattern.
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Fig. 2. Bifurcation diagram of the oceanic circulation. The en-
ergy difference1Eoc between the subpolar and the subtropical
gyre is plotted as a function of the wind intensityσ in non-
dimensional units; all other model parameters equal their values in
Table1. The squareP1 marks a supercritical pitchfork bifurcation
and the squareP2 a subcritical pitchfork bifurcation, the equilib-
rium branch between the two being unstable. Given the large num-
ber of unstable branches in the atmospheric model (see Fig.5 in
Sect.4 below), we prefer for clarity’s sake not to use the customary
dashes for the unstable branches. The circlesH ′

1,H
′
2,H

′
3,H

′
4

andH ′′
1,H

′′
2,H

′′
3,H

′′
4 mark the position of successive super-

critical Hopf bifurcation points, at which either equilibrium branch
loses the stability of yet another complex conjugate eigenvalue (see
text for details).

For the value of the oceanic Reynolds numberRoc =

5× 103 in Table1, there are two successive pitchfork bifur-
cations, which give respectively two branches of asymmetric
equilibria, symmetric with respect to each other. The bifurca-
tion atP1 is supercritical, as the antisymmetric branch loses
its stability to the two asymmetric ones, while the one atP2
is subcritical, as the antisymmetric branch regains its stabil-
ity, while the two asymmetric ones that grow out of it are
unstable.

In Fig. 3, we plot an asymmetric solution for a value of
σ just below the first Hopf bifurcation,H ′

1 (1Eoc> 0). The
asymmetry of the solution in Fig. 3a is apparent from the fact
that the subtropical gyre is stronger than the subpolar one.
At the same time, the spatial extent of the subpolar gyre is
greater than that of the subtropical gyre; see alsoChang et al.
(2001).

Associated to the oceanic circulation in Fig. 3a, the SST
field in Fig. 3b shows that the front is distorted as it follows
the contours of the stream function and is thus deflected to-
ward the south. In the eastern part of the basin, the tempera-
ture profile closely resembles the imposed forcing, since the
ocean dynamics is not very active in the so-called Sverdrup
interior, away from the intense recirculation near the western
boundary.
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Fig. 3. (a, b)An asymmetric steady-state solution just below the first Hopf bifurcationH ′
1, with σ = 0.78. (a) Stream functionψ oc(x,y),

with contours every 2× 10−2; stream function contours in non-dimensional units, here and in similar figures.(b) SST field; contours every
2 K. (c) Antisymmetric SST field for the same value ofσ . Here and in the following, positive contours are solid, negative contours dashed.

On the asymmetric branches emerging from the first pitch-
fork bifurcation, we note the successive appearance of four
Hopf bifurcations; they correspond to oscillatory instabilities
with periodicities that equal, respectively, 800, 200, 300 and
1200 days. The spatio-temporal patterns of these instabilities
can be illustrated by plotting the real and imaginary parts of
the eigenvector associated with each of them, as shown in
Fig. 4 for the first of them, atH ′

1.
The two plots, in Fig. 4, correspond to two distinct

phases of the oscillatory mode. This mode is concentrated
in the basin’s western part and corresponds to an alternative
strengthening and weakening of each gyre; it has been la-
beled thegyre mode, and has been extensively studied (see
Simonnet and Dijkstra, 2002). This oscillatory mode also
corresponds to a displacement of the front around its equilib-
rium position; its period here is 800 days or roughly 2.2 yr.

Such modes are of great interest because they are likely to
be responsible for the low-frequency, sub- and interannual

variability of the mid-latitude ocean.Chang et al.(2001),
Nadiga and Luce(2001) andSimonnet et al.(2005) showed
that a homoclinic bifurcation appears at a slightly higher
value of σ . This global bifurcation in turn generates very
low-frequency, interdecadal oscillations. At this point, the
system is able to switch from one asymmetric circulation to
the opposite one.

Simonnet and Dijkstra(2002) were interested in describ-
ing more precisely the Hopf bifurcation associated with the
gyre mode. These authors found that the eigenvalue crossing
the imaginary axis, and responsible therefore for the insta-
bility, arises from the merging between the eigenvalue asso-
ciated with the first pitchfork bifurcation, atP1, and another
eigenvalue associated with a saddle-node bifurcation on the
main, antisymmetric branch at a larger value ofσ . The for-
mer has an asymmetric eigenfunction that causes the symme-
try breaking; the latter is a shear instability. At the merging
point, the imaginary part of the eigenvalue is small and the
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Fig. 4: Oscillatory mode associated with the first Hopf bifurcationH ′
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Fig. 4. Oscillatory mode associated with the first Hopf bifurcationH ′
1 in Fig. 2. (a) Real and (b) imaginary part of the oceanic stream

functionψoc; contours every 2× 10−4.

associated mode is of low-frequency type. Hence, the gyre
modes (i) have low frequency; and (ii) are quite distinct from
the classical basin Rossby modes ofSheremet et al.(1997).

As the domain or the basic-state flow is deformed, cas-
cades of symmetry-breaking transitions may occur. The be-
ginning of such a cascade is indeed observed here, and it is
described in AppendixA. For example, in the context of jet-
stream penetration into an oceanic basin, this cascade corre-
sponds to the occurrence of stationary Rossby waves with
increasing wavenumber and nontrivial dispersion relations
(see alsoPrimeau(1998)). More generally,Simonnet(2008)
has shown that the bifurcations associated with large-scale
patterns, as observed here, arise from the discrete spectral
behavior of the 2-D Euler equations. In particular, these bi-
furcations are not dependent on a particular eddy-viscosity
parametrization, as it is often claimed.

Simonnet(2005) argued that the link between the symme-
try breaking – and therefore the presence of multiple equi-
libria – and the emergence of low-frequency modes is part
of a natural and logical response to increasing PV flux from
the wind stress: the ocean circulation is first distorted from
its original symmetry so as to draw more PV from the forc-
ing in steady state. Next, the only way to react to a further
increase in PV input is by becoming unstable (see alsoGhil
et al.(2008) for a broad outlook on this interpretation of LFV
generation in geophysical flows). Our study of atmospheric
LFV in the next section shows that similar phenomena occur
there, too, and will help clarify the reasons for the instabil-
ity’s low frequency.

4 Multiple atmospheric equilibria

In this section, we vary the parameterα that governs the forc-
ing of the SST field on the free atmosphere. We start our
investigation with the multiple oceanic equilibria that have

been found in the previous section and study the associated
atmospheric equilibria as the parameterα varies.

According to Eq. (3), we see thatα is proportional to
the square of the heightH 2

E of the Ekman layer,α ∝H 2
E.

For reference purposes, a heightHE = 300 m corresponds to
α = 0.04 (see Table1), whileHE = 1000 m yields a value of
α = 0.5. The height of the boundary layer is also difficult to
estimate accurately over large areas, according to the studies
reviewed in the introduction.

4.1 Short SST front

For each antisymmetric equilibrium of the oceanic circula-
tion, we now vary the parameterα. We begin with an oceanic
front of modest longitudinal extent – about 300 km – which
is obtained forσ ' 0.6. This value corresponds to an SST
front similar to that plotted in Fig.3c. Referring to the bifur-
cation diagram in Fig.2, we see that such an antisymmetric
front is no longer stable at this parameter value. In fact, at
σ = 0.55, we are already past the first pitchfork bifurcation,
P1, that destabilizes the antisymmetric equilibrium.

For σ > 0.55 , there are two stable equilibria that corre-
spond both to asymmetric ocean circulations, and are mirror
images of each other. The strength of such an SST front is
roughly 3 K/10 km. This value is comparable to the observed
Gulf Stream or Kuroshio front – cf. FGS,Feliks et al.(2007),
Feliks et al.(2011) andBrachet et al.(2012) – although the
impact of eddies does affect this value in observed western
boundary currents.

The bifurcation diagram for the atmospheric equilibria
with respect toα is shown in Fig.5, for σ = 0.65. We plot,
as in Fig.2 for the oceanic case, the energy difference1Eat
between the cyclonic and the anticyclonic circulation. As
for the ocean’s double-gyre circulation, there exists an an-
tisymmetric equilibrium for allα-values. This antisymmet-
ric equilibrium is almost always unstable since, even at very
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Fig. 5. Bifurcation diagram for the atmospheric equilibria atσ =

0.65 . The asymmetry measure1Eat is computed in the same man-
ner as in Fig.2 for the ocean but as a function of the parameterα.
All branches, whether stable or not, are shown as solid lines, for
legibility. On the steady-state branches, we only plot – with circles
– the Hopf bifurcations for which the period exceeds 50 days.P1
is a supercritical pitchfork bifurcation, andP2 is a subcritical one.
The shape of the SST forcing used here is similar to Fig.3c.

smallα-values, there appear several Rossby-wave instabili-
ties, with a periodicity of about 7 days, along with the asso-
ciated harmonics. These high-frequency modes are not plot-
ted in Fig. 5, because we are only interested here in low-
frequency phenomena. Thus, in contrast to the oceanic equi-
libria of Fig.2, the atmospheric equilibria in Fig.5 are almost
always unstable.

Two pitchforks bifurcations, atα = 0.07 andα = 0.14,
arise next. It follows that multiple equilibria of the atmo-
spheric circulation are not only generated by its interaction
with actual, “mechanical” topography, as inCharney and De-
vore (1979) or Legras and Ghil(1985), but also with the
“thermal” topography of SST fronts, through the vertical ve-
locities and PV fluxes generated by the latter. These two bi-
furcations correspond to the same eigenvalue that becomes
positive between the two values ofα cited above.

Beyond the second pitchfork bifurcationP2, several asym-
metric equilibria exist, up to highα-values. These branches,
however, are not connected to the main branch via a pitch-
fork bifurcation; they are, therefore, quite difficult to detect
and locate. Their presence lets us suspect that the bifurcation
diagram in Fig.5 might be incomplete, since the continua-
tion method used herein does not allow one to find all the
disconnected branches.

As α increases, the asymmetric component of the steady-
state circulations grows, too, as is the case for the oceanic
equilibria, when increasingσ . According to Fig.5, there ex-
ist between one and four pairs of asymmetric equilibria for
α > 0.07.

In Fig. 6, we display the spatial pattern of an antisymmet-
ric and an asymmetric equilibrium forα = 0.12. The two so-
lutions have several common characteristics. They are both
dominated by a zonal or nearly zonal eastward jet, close to
the channel’s east–west axis of north–south antisymmetry.
Westerly winds prevail along both the northern and south-
ern walls of theβ-channel. In the asymmetric solution, the
jet is slightly wavy, and this undulation extends well past
the SST front, away from the western portion of the chan-
nel. In both cases, the maximum jet strength is 8 m s−1. This
anomaly is of reasonable size and must be compared to the
observed jet stream in the Atlantic, whose strength is 30–
50 m s−1 (Peixoto and Oort, 1992). Indeed, as emphasized
by FGS andFeliks et al.(2007), the jet that is due to the
oceanic SST front is merely superimposed on the one caused
by the classical eddy convergence ofLorenz(1967).

4.1.1 Characteristics of an unstable oscillatory mode

On the asymmetric branches originating fromP1 in Fig. 5,
we note the presence of two Hopf bifurcations:H ′

1 andH ′
2.

As α increases,H ′
1 is a transition from an unstable fixed

point – unstable, as previously mentioned, because of high-
frequency Rossby waves arising at lowerα – to a limit cycle;
H ′

2 is the reverse-type transition, with a limit cycle shrinking
to give a fixed point that is not stable either. In this sense,
both Hopf bifurcations are supercritical: the first one in the
conventional left-to-right direction of increasing bifurcation
parameter, and the second one in the reverse direction.

These two bifurcations are associated with a pair of com-
plex conjugate eigenvalues crossing the imaginary axis in
one direction (from negative to positive) and then in the op-
posite direction (from positive to negative). The period of the
limit cycles at the bifurcation point is of 145 days forH ′

1 and
of 78 days forH ′

2. We have not found any low-frequency
Hopf bifurcations on the secondary, disconnected branches.

Figure7 shows the spatio-temporal pattern associated with
these two Hopf bifurcations; using the real and imaginary
parts of the unstable eigenvector, one can build the different
phases of the oscillation. As seen from the figure, the insta-
bility corresponds, in both cases, to a standing oscillation,
in shape as well as intensity, of the atmospheric jet around
its equilibrium position. In both cases, this oscillation is as-
sociated with a wavenumber-1 pattern, which is highly lo-
calized near the channel’s symmetry axis. Therefore, we call
this instability thejet mode. The spatial pattern of the two
oscillatory instabilities is quite similar, which is not surpris-
ing, given the fact that the two are associated with the same
pair of eigenvalues that crosses the imaginary axis, first to the
right and then back to the left of it.

4.1.2 Origin of the instability

FollowingSimonnet and Dijkstra(2002) in their study of the
oceanic circulation’s gyre mode, we wonder next whether
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that it is indeed responsible for the Hopf bifurcation atα=0.09. The comparison of Fig. 9c with330

Fig. 7 is not conclusive. A clue that seems, however, to confirm this hypothesis is the smallness of

the imaginary part of this eigenvector, at each of the two Hopf bifurcations, in comparison to the

real part: see panels (b, d) vs. panels (a, c) in Fig. 7. Likewise, the imaginary part of the complex

conjugate pair that arises at the merging pointM1 is small, and the oscillatory mode to which it gives
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Fig. 7.Atmospheric stream function patterns spanning the oscillatory instability at the first two Hopf bifurcations. These patterns correspond
to the(a, c)real and (b, d) imaginary part, respectively, of the atmospheric component of the eigenvectors associated with(a, b)H ′′

1 and(c,
d) H ′′

2; H ′′
1 andH ′′

2 are marked with a circle in Fig.5. Contours as in Fig.6.
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there is not also a relationship between the occurrence of this
atmospheric jet mode and the pitchfork bifurcation that pre-
cedes it. To clarify this issue, we plot in Fig.8 the leading
real eigenvalueλ0 obtained when following one of the two
asymmetric branches, fromP1 on.

Trackingλ0 is relatively difficult because of the density of
complex conjugate eigenvalues whose real part is negative
and that are close to the imaginary axis. Figure8, however,
demonstrates that there is no ambiguity in the monitoring of
λ0: it becomes negative as soon asα passes its value atP1,
continues to decrease with increasingα, and finally merges
with another real eigenvalue (not shown) to form a complex
conjugate pair. The merging takes place at the pointM1 in
Fig. 8.

We plot in Fig.9 the evolution of the spatial pattern of the
eigenvector associated with this eigenvalue, from the pitch-
fork bifurcationP1 until the mergingM1. Figure9a shows
a purely symmetric eigenvector, associated in fact, at this
point, with the pitchfork bifurcation. Asα increases, the
asymmetric component of the eigenvector grows, too.

We leave for further study the tracking of the complex con-
jugate pair that arises atM1, to verify that it is indeed respon-
sible for the Hopf bifurcation atα = 0.09. The comparison
of Fig. 9c with Fig. 7 is not conclusive. A clue that seems,
however, to confirm this hypothesis is the smallness of the
imaginary part of this eigenvector, at each of the two Hopf
bifurcations, in comparison to the real part: see panels b, d
vs. panels a, c in Fig.7. Likewise, the imaginary part of the
complex conjugate pair that arises at the merging pointM1
is small, and the oscillatory mode to which it gives birth will
thus have a large period, as argued bySimonnet and Dijkstra
(2002) for the oceanic gyre mode.

The same procedure (not shown) has been used forP2,
traveling now back along the asymmetric branch, withα de-
creasing. We found again that the eigenvalue associated with
the symmetry breaking merges with another eigenvalue to
form an oscillatory mode. The onset of a jet mode at the
pitchfork bifurcationP2 is therefore quite similar to that at
P1; the only difference is in the direction of changingα: de-
creasing atP2 vs. increasing atP1. In appendixA, we com-
pute the atmospheric equilibria for otherσ -values and we
highlight the presence of other bifurcations.

4.1.3 Physical interpretation

It is possible to explain theSimonnet and Dijkstra(2002)
scenario of LFV generation – with its succession of pitch-
fork → merging→ Hopf bifurcation – in more familiar,
physical terms: Asα increases, the jet that lies close to
the domain’s north-south symmetry axis intensifies. At the
first pitchfork bifurcationP1, the jet loses its stability and
is subject the barotropic instability. Indeed, computing the
Rayleigh criterion shows thatβ − uyy changes sign between
0 andP1, which is a necessary condition for barotropic insta-
bility to occur.
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Fig. 8. Leading real eigenvalueλ0 between the pitchfork bifurca-
tion P1 and the merging pointM1; point 2 is an intermediate point
referred to in Fig.9b. All three points are marked by solid triangles.

Increasingα further yields a PV surplus that can no longer
be used to strengthen the jet since the latter is now, in all like-
lihood, barotropically unstable. On the other hand, according
to the results of the bifurcation study, the jet can undulate
and remain stable along the branches of the pitchfork bifur-
cation. The maximum degree of undulation is given by the
basin size and PV forcing pattern. Asα increases further, the
jet cannot sustain its distortion anymore and has to undergo
another instability, which corresponds to the Hopf bifurca-
tion highlighted in the previous subsection.

In other words, the pitchfork→ merging→ Hopf scenario
found here for the first time as a generation mechanism of
atmospheric LFV is closely connected to classical barotropic
instability. It pursues, however, the further development of
this instability into a highly nonlinear, chaotic regime.

4.2 Position of the pitchfork bifurcations

The pitchfork bifurcations described so far – and plotted in
Fig.5 above and in Figs.11andA3 below – are however spe-
cial cases of the broader picture illustrated in the regime dia-
gram of Fig.10. We tracked the pitchfork bifurcations in the
(σ,α) plane of this figure by using – within a limited range
of parameter values – the continuation algorithm described in
Salinger et al.(2002). The number of curves in Fig.10 gives
an idea on the number of multiple equilibria for a given value
of σ andα; it is, however, only a lower bound on their total
number, due to the presence of isolated branches that have
been encountered in the bifurcation diagrams so far.

The first pitchfork bifurcation, asσ increases, occurs at
σ = 0.58. The higher the value ofσ – and hence the longitu-
dinal extent of the SST front – the more multiple equilibria
we find. This reduces the range ofσ -values of interest to that
for which the number of equilibria is still reasonable. The
number of pitchfork bifurcations at fixedσ does not appear to
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ing of two real eigenvalues into a complex conjugate pair atM1. Contours as in Fig.6.
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Fig. 10. Position of the pitchfork bifurcations in the(σ,α) plane.
The S-shaped curve is associated with the pitchfork bifurcations de-
scribed in the previous subsections.

vary monotonically or in some other simple way withα. By
plotting the model’s total energy as a function ofσ andα (not
shown), one can verify that the curves in Fig.10 never inter-
sect: each curve is associated with a different energy level.

4.3 Atmospheric equilibria over an asymmetric ocean

There is at least one atmospheric equilibrium associated
with each asymmetric equilibrium of the oceanic circula-
tion. For such an oceanic circulation, the model’s SST front
has several meanders near the western boundary of the basin
(cf. Fig.3b). This situation is familiar from the Gulf Stream’s
flow downstream of Cape Hatteras (see, for instance,Lee and
Cornillon, 1996or Dijkstra and Ghil, 2005).

When the wind forcingσ increases, the number and size
of the meanders increase, too. The corresponding atmo-
spheric equilibrium is roughly aligned above the meanders
of the SST front (not shown). When increasingα, we get
an increasing number of atmospheric equilibria. This in-
crease is due to the larger number of saddle-node bifurcations
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obtained when increasingσ , while using larger, but fixed val-
ues ofα (not shown).

5 Temporal evolution of the atmosphere

5.1 Forcing by an antisymmetric ocean

We carried out several model integrations forσ = 0.67 and
for differentα-values; the corresponding equilibria appear in
the bifurcation diagram of Fig.11. For all these integrations,
we chose to maintain a steady-state ocean circulation equal
to the (unstable) antisymmetric solution for thisσ -value, in
order to isolate the atmospheric response, as done forσ = 0.6
andσ = 0.65 in Sect. 4. As before, we use the asymmetry
measure1Eat to characterize the atmospheric state.

In Fig. 12, we plot the estimated probability density func-
tion (PDF) of1Eat for seven different values ofα, using in
each case a 50 000-day long simulation, after the initial tran-
sients have died out. None of these curves is exactly sym-
metric with respect to zero, but the asymmetry is merely a
sampling problem: a different choice of initial state can lead
to a PDF that is either right- or left-skewed – perfect sym-
metry would require even longer time series. We denote by
PDFα the estimated PDF associated with a given value ofα.

At α = 0.07, there is no asymmetric equilibrium for the at-
mospheric flow (see again Fig.11). The values of1Eat thus
remain close to zero, as we can see from the curve PDF0.07
in Fig. 12. A Fourier analysis of this time series (not shown)
yields mainly two peaks, at periods of 7 and 14 days: they
correspond to Rossby waves in the periodicβ-channel.

For slightly larger values ofα, the series takes on values
that are strongly bimodal. The presence of multiple equilib-
ria has a clear impact on the atmospheric model’s time evo-
lution: each peak of the PDF in Fig.12corresponds to a fixed
point found in the bifurcation diagram of Fig.11. We recover
here the idea that the weather regimes are influenced by the
existence of steady states, albeit unstable, of the evolution
equation (Legras and Ghil, 1985; Ghil and Robertson, 2002).
Indeed, the local maxima of the PDF are often interpreted
as signatures of distinct weather regimes (Kondrashov et al.,
2004).

As α increases, the range of the asymmetry1Eat in the
atmospheric flows increases. These flows become also more
irregular, and thus bimodality becomes less evident forα ≥

0.12. Still, the gradually larger spread between the modes of
PDFα asα increases in Fig.12 is consistent with the fanning
out of the asymmetric solution branches in Fig.11.
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that the asymmetric position of the SST front forces the atmospheric circulation in an asymmetric

way, and does not inject the same positive and negative PV fluxes into the atmosphere. When the SST420

front is deflected southward — which corresponds to∆Eoc> 0, a strengthening of the subtropical
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Fig. 11. Bifurcation diagram for the atmospheric equilibria at
σ = 0.67; to be compared with the one obtained atσ = 0.65 and
shown in Fig.5c. The small crosses mark the position of saddle-
node bifurcations;P1 andP3 are supercritical pitchfork bifurca-
tions, whileP2 andP4 are subcritical ones. The SST forcing is
similar to Fig.3c.

5.2 Forcing by an asymmetric ocean

We choose now to maintain a steady-state ocean circulation
pattern that corresponds to a (likewise unstable) asymmet-
ric solution. When integrating the atmospheric model forced
by the SST front of this oceanic solution, the climatological
state of the atmospheric circulation is also shifted towards an
asymmetric pattern, in which the average1Eat is no longer
zero. This shift is explained by the fact that the asymmet-
ric position of the SST front forces the atmospheric circu-
lation in an asymmetric way, and does not inject the same
positive and negative PV fluxes into the atmosphere. When
the SST front is deflected southward – which corresponds
to 1Eoc> 0, a strengthening of the subtropical gyre and a
larger subpolar gyre – then the atmosphere’s cyclonic cir-
culation on the northern, cold side of the oceanic front is
strengthened, while its anticyclonic circulation on the south-
ern, warm side is weakened. The situation is reversed when
the oceanic SST front is deflected northward. Indeed, the net
PV input is positive when considering the mean PV flux over
the entire basin.

The equivalent of Fig.12, but for an asymmetric SST, is
plotted in Fig.13. The time series are obtained using the
same set of parameters as in the previous set of runs but with
the underlying SST shown in Fig.3b. The PDFs are strik-
ingly more peaked than those in Fig.12. Indeed, this SST
field maintains the atmosphere in an asymmetric state. The
mean of the PDFs varies with the parameterα: as the forcing
increases, the ocean imprints its asymmetric pattern on the
atmosphere.

The climatological mean of a simulation of this type is
different from the atmospheric equilibrium computed for the
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Fig. 12: Estimated normalized probability density functions (PDFs) of∆Eat obtained forσ=0.67

and for seven times series with the followingα-values: 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, and 0.13.

The sharpest, most peaked PDF is for the smallestα-value,α=0.07, the flattest is for the largest

value,α= 0.13. The inserts are the mean states computed with (∆Eat < 0; α= 0.1) on the left;

(∆Eat =0; α=0.07) for the peak of the PDF in the middle; and (∆Eat> 0; α=0.1) on the right.

gyre and a larger subpolar gyre — then the atmosphere’s cyclonic circulation on the northern, cold
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Fig. 12. Estimated normalized probability density functions (PDFs) of1Eat obtained forσ = 0.67 and for seven times series with the
following α-values: 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, and 0.13. The sharpest, most peaked PDF is for the smallestα-value,α = 0.07; the
flattest is for the largest value,α = 0.13. The inserts are the mean states computed with (1Eat< 0; α = 0.1) on the left; (α = 0.07) for the
peak of the PDF in the middle; and (1Eat> 0; α = 0.1) on the right.

corresponding oceanic pattern. Indeed, the atmospheric jet’s
meanders do not match those of the oceanic jet. The differ-
ence in size and intensity between the cyclonic and the anti-
cyclonic features is larger than in the steady state computed
using the continuation method (not shown). Linking this PDF
with the atmospheric steady states in the asymmetric case is a
nontrivial task and would provide material for another paper.

In Fig. 14, we plot the difference between the SST field
of the asymmetric state for which1Eoc> 0 and that of the
antisymmetric state obtained for the sameσ -value. This dif-
ference presents a tripole pattern that closely resembles the
gyre-mode patterns, as shown in Fig.4. The similarity re-
sults from the fact that the difference field in Fig.14 is just
a nonlinearly saturated version of the instability mode at the
origin of the successive pitchfork bifurcations in Sect.3. Fur-
thermore, the SST fields, whose difference is shown here,
are essentially imposed by the corresponding stream func-
tion fields of the antisymmetric and asymmetric solutions.
For this sign of the asymmetry, we observe a strengthening
of the atmospheric cyclonic circulation north of the jet.

6 Conclusions

6.1 Summary

We used an oceanic and an atmospheric model with quasi-
geostrophic (QG), equivalent-barotropic dynamics in both
fluids to search for multiple equilibria and low-frequency
oscillations of the atmospheric and oceanic circulation. We
studied separately the effects of the atmosphere on the ocean,
as well as those of the ocean on the atmosphere. Doing
so allowed us to focus on the atmosphere’s intrinsic low-
frequency variability (LFV) when subject to forcing by the
SST field. The originality of our ocean-atmosphere model
lies in the parametrization of the Ekman boundary layer in
the model’s atmospheric component (cf.Feliks et al., 2004,
cited as FGS in the main text).

With this parametrization – and using a horizontal res-
olution of 30 km in both the atmosphere and the ocean –
we found that an oceanic sea surface temperature (SST)
front does have a substantial influence on the dynamics of
the free troposphere over and beyond the entire basin. This
crucial observation provides a new framework for studying
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Fig. 14: Difference between the SST field of an asymmetric state for which∆Eoc> 0 and that of

the antisymmetric state, both obtained forσ=0.9. Contours every 2 K; to be compared with Fig. 4.
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Fig. 14. Difference between the SST field of an asymmetric state
for which1Eoc> 0 and that of the antisymmetric state, both ob-
tained forσ = 0.9. Contours every 2 K; to be compared with Fig.4.

the effects of mid-latitude SST anomalies on the mean at-
mospheric circulation and on its intraseasonal variability
(Kushnir et al., 2002).

As a first step along this promising road, we studied the in-
fluence of changes in the mid-latitude oceanic, wind-driven
circulation on the atmosphere. In the present, highly ideal-
ized setting, this study focused on the effects of varying two

model parameters: the strengthσ of the climatological wind
forcing on the ocean, and the strengthα of the ocean’s SST
forcing on the atmosphere. The parameterα is related to the
height of the MABL by Eq. (3), while σ is prescribed in
Eq. (4). The effects of varying each of these parameters were
covered in Sect.3 for σ , and in Sects.4 and5 for α.

Given the climatological wind’s idealized profile, the
oceanic circulation in our rectangular basin organizes itself
in the well-known double-gyre pattern. When varyingσ ,
we find multiple equilibria in the oceanic circulation that
arise from pitchfork bifurcations (Fig.2), as previously found
across a broad hierarchy of wind-driven ocean models (Cessi
and Ierley, 1995; Jiang et al., 1995; Speich et al., 1995;
Primeau, 1998; Chang et al., 2001; Dijkstra, 2005; Dijkstra
and Ghil, 2005; Simonnet et al., 2005).

The asymmetric branches are characterized – as in all sim-
ilar QG, perfectly symmetric models – by a pairwise mir-
ror symmetry. On these branches, several oscillatory modes
destabilize the recirculation gyres near the merger of the
boundary currents. The periodicity of the unstable modes
is about 200 days for the fastest and 4 yr for the slowest,
within the parameter range explored herein. Among the slow-
est modes is the interannual gyre mode first described by
Jiang et al.(1995), which clearly differs in physical origin
and spatial pattern from a classical, neutrally stable Rossby
wave. In agreement with the careful diagnosis ofSimonnet
and Dijkstra(2002), this mode (Fig.4) arises from the merg-
ing of two real eigenvalues, followed after a smallσ -interval
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by a Hopf bifurcation; it is the smallness of the imaginary
part of the resulting complex-conjugate mode, relative to its
real part, that leads to the gyre mode’s small, interannual fre-
quency.

The asymmetric equilibria exhibit an oceanic SST front
(Fig. 3b) of variable strength and extent, both of which de-
pend on the intensityσ of the wind forcing. Sections4 and5
focused on the influence of such an SST pattern on the atmo-
sphere.

In Sect.4 and AppendixA, we plotted the bifurcation dia-
grams of the atmospheric circulation asα varies, for several
σ -values (Figs.5, 11 andA3), while all other model param-
eters are equal to their values in Table1.

As in the ocean, an antisymmetric state that is dominated
by a westerly jet is present for all parameter ranges explored
herein, but becomes unstable at fairly lowσ - andα-values
(Fig. 10). The asymmetric states that coexist with it are still
pairwise mirror-symmetric, as for the ocean, but do not al-
ways arise from it via a pitchfork bifurcation, which makes
their identification more difficult.

Focusing on the branch that originates from the first pitch-
fork bifurcation, atP1 in Fig. 5, we found that – like in the
oceanic case above – low-frequency instabilities arise from
the merging of two real eigenvalues (Fig.8). As before, one
of these two is the one whose change of sign is responsible
for the pitchfork bifurcation. The subsequent Hopf bifurca-
tion, H ′

1 in Fig. 5, gives rise to an oscillation of the atmo-
spheric jet on either side of its equilibrium position (Fig.7).
Therefore, we called these oscillatory modes – which are oth-
erwise analogous to the gyre modes of the oceanic, double-
gyre problem – thejet modes.

These jet modes do not always become unstable in the pa-
rameter range explored but, if they do, have a periodicity of
about 70 days. Their physical nature and spatial structure,
however, appear to be quite robust in all the model config-
urations explored herein. This instability is one possible ex-
planation for LFV in the atmosphere.

Another type of temporal variability in our model’s atmo-
spheric component was studied in Sect.5: it corresponds to
irregular jumps between the neighborhood of one or the other
branch of asymmetric solutions, within a mirror-symmetric
pair. The bimodal PDFs associated with this behavior were
plotted in Fig.12.

These two mechanisms – the jet mode and the bimodality
associated with the coexistence of two unstable steady states
– may help explain the dual character, episodic and oscilla-
tory of atmospheric LFV, as highlighted byGhil and Robert-
son(2002). On the one hand, the jet mode is responsible for
low-frequency oscillations about the jet’s equilibrium posi-
tion. On the other hand, the steady states are responsible for
the multimodal PDF that is often used to statistically diag-
nose weather regimes (Michelangeli and Vautard, 1998).

6.2 Discussion

Based on the results summarized above, we conclude that
there is substantial similarity in the organization of the mid-
latitudes’ oceanic and atmospheric circulation into multiple
equilibria and oscillatory modes. In both cases, there is a
strong link between symmetry breaking of the simplest, ide-
alized flow pattern and the presence of a low-frequency insta-
bility: the gyre mode in the ocean and the jet mode in the at-
mosphere. A possible explanation of this similarity involves,
of course, the fact that we consider very similar equations, as
generally accepted in the theory of large-scale rotating flows
(Gill , 1982; Ghil and Childress, 1987; Pedlosky, 1987). Still,
the boundary conditions and the forcing are quite different,
as they are for much more detailed models of atmospheric
and oceanic flows.

Among the possible extensions to this study, we would like
to understand how the atmospheric equilibria and oscillatory
modes evolve when varying the configuration of the oceanic
basin, so as to introduce realistic coastlines, or when consid-
ering baroclinic models for both the atmosphere and ocean.
How the results might be affected by varying other param-
eters in Table1 – in particular the oceanic and atmospheric
Reynolds numbersRoc andRat – is likewise of consider-
able interest. Previous studies mentioned the impact of the
Reynolds number on the oceanic and atmospheric circula-
tion, and this aspect must be carefully investigated (see, for
instance,Berloff et al., 2007a,b).

Another natural extension of this study would be to modify
the MABL parametrization. As mentioned in the Introduc-
tion, one might want to take into account the vertical mix-
ing, in order to parametrize the boundary layer height as a
function of the underlying SST field, rather than accounting
only for SST effects through the vertical velocity at the top
of the MABL. Whether such changes in MABL height would
noticeably affect the atmosphere’s low-frequency variability
(LFV) is an open question.

In a broader perspective, there are still several steps to
be taken before being able to make a definitive connec-
tion between the instabilities identified in this study and
the observed LFV over the Northern Hemisphere’s ocean
basins. The key step is to proceed to fully coupled, ocean-
atmosphere studies along the lines of the present study and
of its predecessors.

Appendix A

Further insights into atmospheric equilibria

A1 Additional pitchfork bifurcations

In the oceanic double-gyre problem with time-constant wind
forcing, it is known that further pitchfork bifurcations arise as
the wind stressσ increases (Primeau, 1998; Simonnet, 2005).
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We wonder whether this might not be also the case for the
atmospheric problem under study here, as the oceanic SST
front intensifies.

We thus consider again the atmospheric bifurcation dia-
gram obtained atσ = 0.67, a slightly higher value than those
explored in Sect.4, 0.6 ≤ σ ≤ 0.65; this diagram was shown
in Fig. 11. The SST front at thisσ -value is not very differ-
ent from that at the value ofσ = 0.65, used in Figs.5–9 (see
again Fig.3). The bifurcation diagram in Fig.11, though, is
quite different from the one in Fig.5.

Up to and including the range 0.07< α < 0.15, the two
atmospheric bifurcation diagrams are fairly similar. We note,
however, that the Hopf bifurcationsH ′

1 andH ′′
1 have mi-

grated towards the pitchfork bifurcationP1, andH ′
2 and

H ′′
2 even further towardsP2. In addition, there are two new

pitchfork bifurcations:P3 andP4, atα = 0.24 andα = 0.33,
respectively. Each of these is associated with an additional
real eigenvalue that becomes positive upon crossing the cor-
respondingα-value.

In the same way as in Fig.8 of Sect.4, we track here
in Fig. A1 the evolution of the eigenvalue associated with
the pitchfork bifurcation atP3 along an asymmetric branch.
Once more, we see that this eigenvalue merges with another
real eigenvalue to form a complex conjugate pair – and thus
an oscillating mode. From the pitchfork bifurcation atP3 to
the first saddle-node bifurcation atS′

1, the eigenvalue is neg-
ative. Between the two saddle-node bifurcationsS′

1 andS′

2,
the eigenvalue is positive and the equilibrium is unstable. Be-
yondS′

2, the eigenvalue is negative again, only to merge, after
a smallα-interval, with another eigenvalue atM1. Note that
all these transitions occur in a very narrow range of param-
eter values, 0.224< α < 0.242. Furthermore, the bifurcation
diagram in Fig.11shows that – unlike on the previous asym-
metric branch that originates atP2 – this mode does not be-
come unstable for the range ofα-values under scrutiny.

On the first pair of new asymmetric branches – the ones
that originate atP3 – we note the presence of two saddle-
node bifurcations:S′

1 andS′

2, andS′′

1 andS′′

2 , respectively.
The spatial patterns of the eigenvectors associated withP3
are plotted in Fig.A2. On none of the new branches in
Fig. 11, though, does there appear to be a low-frequency
Hopf bifurcation.

The eigenvector associated with the pitchfork bifurcation
at P3 appears in Fig.A2a, while those associated with the
saddle-node bifurcationsS′

1 andS′

2 are shown in Fig.A2b
and c, and those just before the merging pointM1 in
Fig.A2d. In all four panels of FigA2, the symmetric compo-
nent of the eigenvector is dominant. The strong resemblance
between Fig.A2b and c tends to prove that all pitchfork bi-
furcations in the atmospheric model arise due to the same
eigenvector.

The eigenvector in Fig.A2a here, however, is less con-
centrated near the jet axis, and its stream function anoma-
lies remain slightly larger even far from the jet axis. AtM1,
though, the eigenvector differs from the flow pattern obtained
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all pitchfork bifurcations in the atmospheric model arise due to the same eigenvector.

The eigenvector in Fig. 16a here, however, is less concentrated near the jet axis, and its stream

function anomalies remain slightly larger even far from thejet axis. AtM1, though, the eigenvector

differs from the flow pattern obtained in Fig 9c: wavenumber 1, in particular, is much stronger than

in the previous case. Still, the largest amplitudes of the stream function are concentrated near the jet580

axis and maintain an oscillation of the latter around its equilibrium position.

Just after the merging, and like in Fig. 8, it is again very difficult to follow the complex conjugate

pair for larger values ofα. At the merging pointM1, the magnitude of the imaginary part is still

very small with respect to the real part, although no low-frequency mode is generated. Moreover,

the merging does not alter the spatial pattern of the eigenvector’s real part.585
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Fig. A1. Evolution of the leading real eigenvalueλ0 along the
branch that arises from the pitchfork bifurcationP3 in Fig. 11 and
on to the merging pointM1; same conventions as in Fig.8. The
higher density of the points along certain segments of the curve in
this figure reflects the continuation algorithm’s slower convergence
near thoseα-values.

in Fig. 9c: wavenumber 1, in particular, is much stronger
than in the previous case. Still, the largest amplitudes of the
stream function are concentrated near the jet axis and main-
tain an oscillation of the latter around its equilibrium posi-
tion.

Just after the merging, and like in Fig.8, it is again very
difficult to follow the complex conjugate pair for larger val-
ues ofα. At the merging pointM1, the magnitude of the
imaginary part is still very small with respect to the real part,
although no low-frequency mode is generated. Moreover, the
merging does not alter the spatial pattern of the eigenvector’s
real part.

A2 Codimension-2 bifurcations

At σ ' 0.68, the connectivity of the asymmetric branches
changes abruptly, as shown in Fig.A3: the branch that
links the two pitchfork bifurcations,P1 and P2, is sev-
ered, while the previously isolated branches in Figs.5
and 11 become connected to the main antisymmetric
branch. This type of sharp transition in branch connectiv-
ity is the signature of a Bogdanov-Takens (BT) bifurcation
(Guckenheimer and Holmes, 1983).

For σ > 0.68, there is a range ofσ -values for which we
lost the two local equilibria (see also the description of the
BT bifurcation inKuznetsov(2004)). Several other features
associated with the normal form of the BT bifurcation are
present. These features include the merging and the splitting
of two pairs of complex conjugate eigenvalues; the points
where this occurs are marked by diamonds in Fig.A3b.

The gap between the two now separated branches in-
creases when considering more intense SST fronts (not
shown). We also conclude that, on this new branch, there
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Fig. 16: Real eigenvectors corresponding to the points identified in Fig. 15: (a) pitchfork bifurcation

P3; (b,c) saddle-node bifurcationsS′

1 andS′

2; and (d) just before the merging pointM1. Contours

every 0.1, like in Fig. 9.

A2 Codimension-2 bifurcations

At σ ≃ 0.68, the connectivity of the asymmetric branches changes abruptly, as shown in Fig. 17:

The branch that links the two pitchfork bifurcations,P1 andP2, is severed, while the previously

isolated branches in Figs. 5 and 11 become connected to the main antisymmetric branch. This type

of sharp transition in branch connectivity is the signatureof a Bogdanov-Takens (BT) bifurcation590

(Guckenheimer and Holmes, 1983).

Forσ > 0.68, there is a range ofσ-values for which we lost the two local equilibria; see also the

description of the BT bifurcation in Kuznetsov (2004). Several other features associated with the

normal form of the BT bifurcation are present. These features include the merging and the splitting

29

Fig. A2. Real eigenvectors corresponding to the points identified in Fig.A1: (a) pitchfork bifurcationP3; (b, c) saddle-node bifurcationsS′
1

andS′
2; and(d) just before the merging pointM1. Contours every 0.1, like in Fig.9.
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Fig. 17: Bifurcation diagram forσ=0.68: panel (b) is a blow-up of panel (a). The filled diamonds

represent a splitting of a complex conjugate pair into two real eigenvalues, whereas the open dia-

monds mark the opposite situation.

of two pairs of complex conjugate eigenvalues; the points where this occurs are marked by diamonds595

in Fig. 17b.

The gap between the two now separated branches increases when considering more intense SST

fronts (not shown). We also conclude that, on this new branch, there exists an instability that is very

similar to the jet mode patterns that were described in Section 4a.

On the branch emanating fromP3, the jet modes appear atσ=0.70, and become unstable asσ600

increases further (not shown). Atσ=0.70, this oscillatory mode has a period of 51 days. Its spatial

pattern (not shown) is very similar to those already plottedin Fig. 7.

Appendix B

The marine atmospheric boundary layer (MABL)605

We use an analytical Ekman layer identical to that of FGS. Themain approximation involved in their

parametrization is to assume that the temperature in this layer is equal to the SST; this assumption

corresponds to neutral conditions. The potential temperatureθ in this layer is given by:

θ=T

(

P0

P

)κ

with κ=1−
cv
cp

; (B1)

hereT is the temperature,P the pressure,cv andcp the heat capacity of the air at constant volume

and constant pressure, respectively, while the subscript(·)0 indicates the reference state. Using the610

equation of state of an ideal gas, one has:

30

Fig. A3. Bifurcation diagram forσ = 0.68: (b) is a blow-up of (a). The filled diamonds represent a splitting of a complex conjugate pair into
two real eigenvalues, whereas the open diamonds mark the opposite situation.
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exists an instability that is very similar to the jet mode pat-
terns that were described in Sect.4.

On the branch emanating fromP3, the jet modes appear
atσ = 0.70, and become unstable asσ increases further (not
shown). Atσ = 0.70, this oscillatory mode has a period of
51 days. Its spatial pattern (not shown) is very similar to
those already plotted in Fig.7.

Appendix B

The marine atmospheric boundary layer (MABL)

We use an analytical Ekman layer identical to that of FGS.
The main approximation involved in their parametrization is
to assume that the temperature in this layer is equal to the
SST; this assumption corresponds to neutral conditions. The
potential temperatureθ in this layer is given by

θ = T

(
P0

P

)κ
with κ = 1−

cv

cp
, (B1)

whereT is the temperature,P the pressure,cv andcp the heat
capacity of the air at constant volume and constant pressure,
respectively, while the subscript(·)0 indicates the reference
state. Using the equation of state of an ideal gas, one has

lnθ = − lnρ+ (1− κ) lnP − lnR+ κ lnP0 , (B2)

with R the gas constant for the air andρ its density.
When differentiating this equation in the Boussinesq ap-

proximation, we find

θ ′

θ0
' −

ρ′

ρ0
, (B3)

with the prime(·)′ indicating a perturbed state with respect to
the reference state(·)0. Using the Boussinesq approximation
again, the hydrostatic equation is given by

1

ρ0

∂P ′

∂z
= −g

ρ′

ρ0
= g

θ ′

θ0
. (B4)

By integrating this hydrostatic equation over the heightHE
of the boundary layer, we find the expression of the pressure
anomalyP ′ at the heightz:

P ′(z)= P ′(HE)+ gρ0(z−HE)
θ ′

θ0
, (B5)

where θ ′(x,y)= T ′
oc(x,y) is the potential temperature

anomaly in the MABL, which is equal to the SST anomaly
at the same latitude and longitude. In the following, we omit
the prime, since we concentrate on the anomalies only.

The zonal and meridional winds,u andv, in the MABL
solve the equations:

k0
∂2u

∂z2
+ f 0v−

1

ρ0

∂P

∂x
= 0, (B6a)

k0
∂2v

∂z2
− f 0u−

1

ρ0

∂P

∂y
= 0, (B6b)

with f 0 the Coriolis parameter at 45◦ N andk0 the eddy vis-
cosity. This coefficient is connected to the height of the layer
by HE = π(2k0/f

0)1/2. By substituting the pressure from
Eq. (B5) into these two equations, we can integrate them inz.
The only term that differs from the classical Ekman formu-
lation is the temperature term in Eq. (B5) that expresses the
thermodynamic pressure variation. The boundary conditions
are that the horizontal velocity(u,v) vanishes at the ground
and equals the geostrophic velocity(uG,vG) at the top of the
boundary layer:

u(z= 0)=v(z= 0)= 0, (B7a)

u(z=HE)= uG = −
1

ρ0f 0

∂P (HE)

∂y
, (B7b)

v(z=HE)= vG =
1

ρ0f 0

∂P (HE)

∂x
. (B7c)

Using the continuity conditions at the top of the Ekman
layer, we can integrate the Eqs. (B6) in the vertical so as
to obtain an analytical expression of horizontal velocity in
the boundary layer. Then, using the incompressibility equa-
tion that is integrated between the bottom and the top of the
MABL, we obtain the vertical velocityw at its top,z=HE:

w(HE)= (B8)

HE

2π

(
∂vG

∂x
−
∂uG

∂y
−
gHE

f 0θ0
(1−

1

2π
)∇2Toc

)
.

The vertical velocityw(HE) has two main components:
one is the curl of the geostrophic wind speed and it is the tra-
ditional term associated with dissipation in the Ekman layer.
The second term is proportional to the Laplacian of the tem-
perature field in the MABL, and the coefficient of propor-
tionality varies with the square of the height of the boundary
layer,HE

2. Thus, the choice of the value ofHE is particularly
important in determining the atmospheric dynamics and so
we shall check this assumption in the main part of our study.

Minobe et al.(2010) estimate the upward velocity above
the Gulf Stream to be of the order of 0.05 Pa s−1 in winter
and 0.01 Pa s−1 in summer. This order of magnitude is con-
firmed byBrachet et al.(2012). The correlation between the
Laplacian of the SST field and the wind convergence has also
been mentioned byFrankignoul et al.(2011) and byShimada
and Minobe(2011). According toTakatama et al.(2012), this
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mechanism explains, almost by itself, the entire vertical wind
structure above the Gulf Stream.
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