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Abstract. Implicit particle fiI_te_ring is a sgquential Monte  n+1_ R(x", ")+ G(x", (") AW+, 1)
Carlo method for data assimilation, designed to keep the

number of particles manageable by focussing attention orvherex is anm-dimensional vector, called the staté,
regions of large probability. These regions are found by min-n =0,1,2,..., is asequence of timeg, is anm-dimensional
imizing, for each particle, a scalar functian of the state ~ vector function,G is anm x m matrix andAW is anm-
variables. Some previous implementations of the implicit fil- dimensional vector, whose elements are independent stan-
ter rely on finding the Hessians of these functions. The cal-dard normal variates. The random vectGiee”, ") AW"+1
culation of the Hessians can be cumbersome if the state direpresent the uncertainty in the system, however even for
mension is large or if the underlying physics are such thatG = 0 the statex” may be random for any because the
derivatives ofF are difficult to calculate, as happens in many initial statex? can be random. The data
ge_oph)_/sical_applic_ations, in particula_r in models_ with partial i _ h(xd®D 190y £ QxdD 11Dyl @)
noise, i.e. with a singular state covariance matrix. Examples

of models with partial noise include models where uncertainare collected at times?”, 1 =1,2,...; for simplicity, we
dynamic equations are supplemented by conservation lawdssume that the data are collected at a subset of the model
with zero uncertainty, or with higher order (in time) stochas- Steps. i.eq (/) =rl, withr > 1 being a constant. In the above

tic partial differential equations (PDE) or with PDEs driven €duation,z is a k-dimensional vectork(<m), h is a k-

by spatially smooth noise processes. We make the impncigimensional vector functionV is a k-dimensional vector
particle filter applicable to such situations by combining gra- Whose components are independent standard normal vari-
dient descent minimization with random maps and show tha@tes, an@ is ak x k matrix. Throughout this paper, we will

the filter is efficient, accurate and reliable because it operate¥rite x®” for the sequence of vectoss, ..., x".

in a subspace of the state space. As an example, we considerData assimilation is necessary in many areas of science
a system of nonlinear stochastic PDEs that is of importancénd engineering and is essential in geophysics, for exam-
in geomagnetic data assimilation. ple in oceanography, meteorology, geomagnetism or atmo-
spheric chemistry (see e.g. the reviéMifler et al., 1994 Ide
etal, 1997 Miller et al., 1999 van Leeuwen2009 Bocquet

et al, 201Q Fournier et al.2010. The assimilation of data in
geophysics is often difficult because of the complicated un-

The task in data assimilation is to use available data to updat8€1ying dynamics, which lead to a large state dimension
the forecast of a numerical model. The numerical model is2"d @ nonlinear functioR in Eq. (1).

typically given by a discretization of a stochastic differential _ 'f the model @) as well ash in Eq. () are linear inc and if,
equation (SDE) in addition, the matrice& andQ are independent of, and

AW™ and V! in Egs. () and @) are Gaussian and indepen-
dent, and if the initial state® is Gaussian, then the probabil-
ity density function (pdf) of the state” is Gaussian for any

1 Introduction
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366 M. Morzfeld and A. J. Chorin: Implicit particle filtering

and can be characterized in full by its mean and covariancep(x%4® | z1!), by SMC. The state estimate is a statistic (e.g.
The Kalman filter (KF) sequentially computes the mean ofthe mean, median, mode etc.) of this pdf. Most particle filters
the model ), conditioned on the observations and, thus, pro-rely on the recursive relation

vides the best linear unbiased estimate of the stédénan

196Q Kalman and Bucy1961 Gelh 1974 Stengel 1994). p(x
The ensemble Kalman filter (EnKF) is a Monte Carlo ap- x p(z' ™ | x40 p(xdOFLalHD | @)y (5)
proximation of the Kalman filter, and can be obtained by_ In the above equatiop(x®7(+D | z11+1) is the pdf of the

replacing the state covariance matrix by the sample covari ) : . .
placing y P state trajectory up to timeZ‘+D | given all available obser-

ance matrix in the Kalman formalism (sé&ensen2007). " 0 time?@+D and i led the target density:
The state covariance is the covariance matrix of the pdf of/atlons up o ime and 1S called the target density,

the current state conditioned on the previous state which Wé’(zl+l_| xq(l_+1)) is the probability density of the Curr_ent ob-
calculate from the modellj to be servation given the current state and can be obtained from

Ed. @

P+ X100y ~ A (1D, 110, B, (6)

0:q(14+1) | z1:1+1 l:l)

) o p(x% D | 2

p(x" T x") ~ N(R(x", "), G(x", 1")Gx", ™7,  (3)

whereN (n, £) denotes a Gaussian with mearand covari- )
ance matrixs. To streamline the notation we write for the With

state covariance: = Q. MO M. %
2 =G, MG, M7, (4) : , .
The pdf p(x?®O+La0+D | x40y s the density of the state
whereT denotes a transpose. In the EnKF, the sample covaritrajectory from the previous assimilation step to the current
ance matrix is computed from an “ensemble”, by running theobservation, conditioned on the state at the previous assimi-
model @) for different realizations of the noise proces#v. lation step, and is determined by the modgl (
The Monte Carlo approach avoids the computationally ex- A standard version of the sequential importance sampling
pensive step of updating the state covariance in the Kalmamith resampling (SIR) particle filter (also called bootstrap
formalism. Both KF and EnKF have extensions to nonlin- filter, see e.gDoucet et al. 2001 generates, at each step,
ear, non-Gaussian models, however they rely on linearity angamples fromp (x?O+140+D | x4y (the prior density) by
Gaussianity approximationdylier and Uhlmannl997). running the model. These samples (particles) are weighted
Variational methodsqupanskj 1997 Tremolet 2006 Ta- by the observations with weights « p(z/*1 | x?¢+D), to
lagrand 1997 Courtier, 1997 Courtier et al. 1994 Bennet  vyield a posterior density that approximates the target den-
et al, 1993 Talagrand and Courtiel987) aim at assimilat- ~ sity p(x%?¢+D | 1441 One then removes particles with a
ing the observations within a given time window by comput- small weight by “resampling” (see e.g§rulampalam et aJ.
ing the state trajectory of maximum probability. This state 2002 for resampling algorithms) and repeats the procedure
trajectory is computed by minimizing a suitable cost func- when the next observation becomes available. This SIR fil-
tion. In particular, 3-D-Var methods assimilate one obser-ter is straightforward to implement, however the catch is that
vation at a time Talagrand 1997). Strong constraint 4-D- many particles have small weights because the particles are
Var determines the most likely initial statg given the data  generated without using information from the data. If many
z1,22,--., 21, & “perfect” model, i.eG =0, and a Gaussian particles have a small weight, the approximation of the tar-
initial uncertainty, i.e.x® ~ N (u°, £% (Talagrand 1997 get density is poor and the number of particles required for
Courtier, 1997, Courtier et al, 1994 Talagrand and Courtier a good approximation of the target density can grow catas-
1987. Uncertain models withG £ 0 are tackled with a trophically with the dimension of the statSrfyder et al.
weak constraint 4-D-Var approacBupanskj 1997 Tremo- 2008 Bickel et al, 2008. Various methods, e.g. different
let, 2006 Bennet et a].1993. Many variational methods use prior densities and weighting schemes (see@ayicet et al.
an adjoint minimization method and are very efficient. To 2001 van Leeuwen201Q 2009 Weare 2009, have been in-
further speed up the computations, many practical implemenvented to ameliorate this problem, but a rigorous analysis of
tations of variational methods, e.g. incremental 4-D-Var, usehow the number of particles scales with the dimension of the
linearizations and Gaussian approximations. state space has not been reported for any of these methods.
For the remainder of this paper, we focus on sequential The basic idea of implicit particle filtersChorin and Tu
Monte Carlo (SMC) methods for data assimilation, called 2009 Chorin et al, 201Q Morzfeld et al, 2012 is to use
particle filters Doucet et al. 200L, Weare 2009 Moral, the available observations to find regions of high probability
1998 van Leeuwen201Q Moral, 2004 Arulampalam eta).  in the target density and look for samples within this region.
2002 Doucet et al.200Q Chorin and Tu2009 Chorin et al, This implicit sampling strategy generates a thin particle beam
201Q Gordon et al. 1993 Morzfeld et al, 2012). Particle  within the high probability domain and, thus, keeps the num-
filters do not rely upon linearity or Gaussianity assumptionsber of particles required manageable, even if the state dimen-
and approximate the pdf of the state given the observationssion is large. The focussing of particles is achieved by finding
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the regions of high probability through a particle-by-particle collection of M particlesX’j”), j=12,...,M, whose em-
minimization and then setting up an underdetermined algepirical distribution approximates the target density at time
braic equation that depends on the modglgs well as on  r?), whereg (/) = rl, and suppose that an observatibn! is

the data2), and whose solution generates a high probability available after steps at time?/+1 = "(+1 From Eq. b)
sample of the target density. We review the implicit filter in we find, by repeatedly using Bayes’ theorem, that, for each
the next section, and it will become evident that the construcarticle,

tion assumes that the state covariadrein Eq. @) is non-

singular. This condition is often not satisfied. If, for example, p(X?:Q(l+l) | 241 p(X?:q(l) |24 p x4

one wants to assimilate data into a stochastic partial differen-
tial equation (SPDE) driven by spatially smooth noise, then
the continuous-time noise process can be represented by a
series with rapidly decaying coefficients, leading to a sin-

I+1 1+1)—1 1+1)—1 1+1)—2
Xp(Xz("')\X_’fH') )p(thH—) |X?(+) )

gular or ill-conditioned state covarian&' in discrete time X p(X’;(I)Jrl | X;’-(I)). (8)
and space (see Sec®land4, as well ad ord and Rouge- o _ _ _ _ _
mont, 2004 Chueshoy200Q Jentzen and Kloeder2009. Implicit sampling is a recipe for computing high-

A second important class of models with partial noise areprobability samples from the above pdf. To draw a sample

uncertain dynamic equations supplemented by conservatiowe define, for each particle, a functiah by

laws (e.g. conservation of mass) with zero uncertainty. Such

models often appear in data assimilation for fluid dynamicsexp(—F (X ;)) = p(x4"* | x40 . px4O+ ) x90)

problems Kurapov et al. 2007). A similar situation occurs x p z+1|Xq_<1+1)) ©)

when second-order (in time) equations are formulated as sys- piz J

tems of first-order equations, e.g. in robotics. . ) (O4Lq (1)
The purpose of the present paper is two-fold. First, inWhereX; is shorthand for the state trajectaky/ :

Sect.2, we present a new implementation of the implicit par- SPecifically, we have

ticle filter. Most previous implementations of the implicit fil- 1 ; »

ter (Chorin etal, 2010 Morzfeld etal, 2019 rely inoneway  F;(X;) =5 (x4 —r1")" (219) " (x40~ ry?)

or anoth(_er on finding the Hess_lans of scalar functions of the L a2 g1\ (wa@+1\ "L va42 _ ga+l

state variables. For systems with very large state vectors and + 2( j K; ) (Ew’ ) (X.f R; )

considerable gaps between observations, memory constraints

may forbid a computation of these Hessians. Our new imple-

mentation combines gradient descent minimization with ran- + %( gy _ R3(1+1)—1)T (ngﬁmfl)-l (X7(1+1> B R4§(1+1)—1)

dom mapsorzfeld et al, 2012 to avoid the calculation of 1 <1+1)> T /-t ' D

Hessians, and thus reduces the memory requirements. + 5 (” (X‘f ) - ZM) (2:/ ) (” <X3 ) - ZHl)
The second objective is to consider models with a singular +Z (10)

or ill-conditioned state covariance! where previous imple-

mentations of the implicit filter, as described@horin and  \yhereR” is shorthand notation faR (X", ") and whereZ
Tu (2009; Chorin et al.(2010; Morzfeld et al.(2012, are s a positive number that can be computed from the normal-
not applicable. In Sec8, we make the implicit filter applica-  jzation constants of the various pdfs in the definition/f
ble to models with partial noise and show that our approachin Eq. (). Note that the variables of the functiong are
is then parncularl_y efflc.lent., becausg the filter operates ij _ Xq(1)+1:q(1+1)' i.e. the state trajectory of theth parti-
a space whose dimension is determined by the rank’of )+ 4 (D) _ .
rather than by the model dimension. We compare the nevfle from timer toz N The previous position of the
implicit filter to SIR, EnKF and variational methods. j-th particle at time“®, X(]I-( ), is merely a parameter (which
In Sect.4, we illustrate the theory with an application varies form particle to particle). The observatigr?® is the
in geomagnetic data assimilation and consider two coupledame for all particles. The functiorfs; are thus similar to
nonlinear SPDEs with partial noise. We observe that the im-one another. Moreover, eadfy is similar to the cost func-
plicit filter gives good results with very few (4-10) particles, tion of weak constraint 4-D-Var, however, the state at time
while EnKF and SIR require hundreds to thousands of parti-+7®) is “fixed” for eachF;, while it is a variable of the weak
cles for similar accuracy. constraint 4-D-Var cost function.
The high probability region of the target density corre-
sponds, by construction, to the neighborhood of the minima
2 Implicit sampling with random maps of the F;’s. We can thus identify the regions of high proba-
bility by minimizing F; for each particle. We then map the
We first follow Morzfeld et al.(2012 closely to review im-  high probability region of a reference variable, $ayo the
plicit sampling with random maps. Suppose we are given ahigh probability region of the target density. For a Gaussian
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reference variablé ~ A (0, 1), this can be done by solving in some applications because of a very large state dimension,

the algebraic equation or because the second derivatives are hard to calculate, as is
1 the case for models with partial noise (see S8ctTo avoid
Fi(X;)—¢; = ngrgj’ (11)  the calculation of Hessians, we propose to use a gradient de-

scent algorithm with line-search to minimize tifg’s (see
wheret ; is a realization of the reference variable and where €-9-Nocedal and Wright2008), along with simple random
maps. Of course other minimization techniques, in particular
¢; =minF;. (12) quasi-Newton methods (see elNpcedal and Wright2006
Fletcher 1987, can also be applied here. However, we de-
Note that a Gaussian reference variable does notimply lincided to use gradient descent to keep the minimization as
earity or Gaussianity assumptions and other choices are posimple as possible.
sible. What is important here is to realize that a likely sample  For simplicity, we assume th& andQ in Egs. ()—(2)
&, leads to a likelyX ;, because a sma#l; leads to aX; are constant matrices and calculate the gradier;drom
which is in the neighborhood of the minimum &% and,  Eq. (10):
thus, in the high probability region of the target pdf.

We find solutions of Eq.X1) by using the randommap ¢y _ (_9F IF IF IF (16)
9Xa+1’ gxa+2° """’ 9Xq9U+DH-1" gxqU+l) )~

Xj=pj+r;Lin;, (13) .
with
where) ; is a scalary ; is anrm-dimensional column vec- T
- - . - IF ~1(yk_ pk-1
tor which represents the location of the minimumrt i.e. i) = (X - R )
i j = argminF;, L ; is a deterministiem x rm matrix we can 0X

choose, and; = £;/,/€7&, is uniformly distributed on the — (E;—R ey 21 (X"Jrl - R") , (17)
unit rm-sphere. Upon substitution of EdL3) into Eq. (L), ¥

we can find a solution of Eq1Q) by solving a single alge- fork=q()+1q()+2,...,q(+1)—1, whereR" is short-
braic equation in the variable;. The weight of the particle hand forR(X",s"), and where

can be shown to be T
oF -1 ( yq(+D (+H-1
=3 (xﬂ — R4 )

Z!.—rm/Z dXq(+D

J

qU+D) - q() , , ~104;
w o w exp(—¢;) |detl ;| p I Iy

, . (14)

. T
+ <% \X:X4</+1,> »t (h(xq““)) —zH'l). (18)
wherep; = ’;'JT.‘;‘j and det. ; denotes the determinant of the

m'c_ltriij (seeMorzfeId et al.(2012 for de_tails_ of the calcu- Here, we dropped the index for the particles for nota-
lation). An expression for the scalar derivative;/dp; can  tional convenience. We initialize the minimization using the
be obtained by implicit differentiation of EqL{): result of a simplified implicit particle filter (see next subsec-

90 1 tion). Once the minimum is obtained, we substitute the ran-

= - (15)  dom map 13) with L; =1, wherel is the identity matrix,
dpj  2(VFj)Lin; into Eq. (L1) and solve the resulting scalar equation by New-
ton’s method. The scalar derivative we need for the New-
ton steps is computed numerically. We initialize this itera-
tion with A ; = 0. Finally, we compute the weights according

o Eqg. @4). If some weights are small, as indicated by a small
effective sample sizeAfulampalam et a).2002

whereV F; denotes the gradient df; (anrm-dimensional
row vector).

The weights are normalized so that their sum equals on
The weighted positionX ; of the particles approximate the
target pdf. We compute the mean Xf with weightsw; as
the state estimate, and then proceed to assimilate the next ( M

2
observation. Mex =1/ <w7(1+1)) ) : (19)
j=1
2.1 Implementation of an implicit particle filter with

gradient descent minimization and random maps we resample using algorithm 2 Arulampalam et al(2002).
The implicit filtering algorithm with gradient descent mini-

An algorithm for data assimilation with implicit sampling mization and random maps is summarized in pseudo-code in
and random maps was presentedMaorzfeld et al.(2012). algorithm1.

This algorithm relies on the calculation of the Hessians of the This implicit filtering algorithm shares with weak con-
F;’s because these Hessians are used for minimizing'tlse  straint 4-D-Var that a “cost function” (het®;) is minimized

with Newton’s method and for setting up the random map.by gradient descent. The two main differences between 4-
The calculation of the Hessians, however, may not be easp-Var and algorithnil are (i) weak constraint 4-D-Var does
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Algorithm 1 Implicit Particle Filter with Random Maps and  gap between observations becomes larger. Whether or not the
Gradient Descent Minimization simplification we describe here can reduce the computational
cost is problem dependent and we will illustrate advantages
and disadvantages in the examples in Séct.

{Initialization, = 0}
for j=1,...,M do

o samplex9 ~ p,(X) Suppose we are given a collection bf particles X,
end for J j=12,...,M, whose empirical distribution approximates
the target density at time??’ and the next observa-
{Assimilate observation'} tion, z/*t1, is available afterr steps at timer?‘*+1. For
for j=1,...,M do each particle, we run the model fer— 1 steps to obtain
« Set up and minimizé; using gradient descent to compute x40+ x9(+D=1 \wa then define, for each particle, a
¢j andp; _ function F; by
e Sample reference densigy ~ N(@©O, 1)
—gTg. _E. : T -1
e Computep; ij & andnj = ’3//@_ Fi(X;) = 1- (Xq(l+1) _ Rq.(l+1)_1> (Eq(l'+1)—1)
e Solve (1) using the random ma@d ) with L ; =1 T 2\ J *J
e Compute weight of the particle usingi4) « (Xq(1+1) _ Rq(l+l)—l>
e Save particleX ; and weightw ; J J
end for 1 T -1
qU+DY _ _1+1 q(+1)
+5 (n () =) (=57)
o Normalize the weig_hts so that their_sum equ_als 1 n (x20+D 11
e Compute state estimate froXi; weighted withw; (e.g. the j -
mean)
Zj 20
e Resample itMgg < ¢ tZi (20)
o Assimilatez/ 1 whose gradient is given by EdL). The algorithm then pro-

ceeds as algorithm 1 in the previous section: we find the min-
imum of F; using gradient descent and solve Ebl)(with
not update the state sequentially, but the implicit particle fil- the random mapi3) with L ; = . The weights are calculated
ter does and, thus, reduces memory requirements; (ii) weaky Eq. (14) with » = 1 and the mean ok ; weighted byw;
constraint 4-D-Var computes the most likely state, and thisjs the state estimate at tim&/*D .
state estimate can be biased; the implicit particle filter ap- This simplified implicit filter simplifies further if the ob-
proximates the target density and, thus, can compute otheservation function is linear, i.gk(x) = Hx, whereH is a
statistics as state estimates, in particular the conditional ext x m matrix. One can show (sédorzfeld et al, 2012 that
pectation which is, under wide conditions, the optimal statethe minimim of Fj is
estimate (see e.@horin and Hald2009. A more detailed

ex_position of the_ ir_npl_icit _filter and its connecti(_)n to vari- ¢; = %(Zl-!—l_ HR?(H—l)—l)TK;l(ZH—l_ HRj““)‘l), 1)
ational data assimilation is currently under reviefitkins
etal, 2012. with
L C . 1+1)-1
2.2 A simplified implicit particle filtering algorithm Kj= Hsz,(ﬁ T 4 Zij;-l- (22)
with random maps and gradient descent

The location of the minimum is

-1
I+1)-1 +1)-1 1+1), —
[Lj = E/ <<23f}+ ) ) R[]I( +D + HT(EZ,(jJr )) 1Z1+l> 5 (23)

minimization

We wish to simplify the implicit particle filtering algorithm
by reducing the dimension of the functidfy. The idea is
to do an implicit sampling step only at time$!*Y, i.e.

when an observation becomes available. The state trajector%_,l _ (Eq(;ﬂ)_l)—l HT ()T
of each particle from time?® (the last time an observation x.J zJ '

i (+D-1; i . . . - .
became available) t is generated using the model A nymerical approximation of the minimum is thus not

Eq. (1). This approach reduces the dimensiorFpfromrm  equired (one can use the above formula), however an itera-
to m (the state dimension). The simplification is thus very e minimization may be necessary if the dimension of the

attractive if the number of steps between observations,  giate space is so large that storage of the matrices involved in
large. However, difficulties can also be expected for large Egs. @1)—(24) causes difficulties.

the state trajectories up to timé‘*D—1 are generated by
the model alone and, thus, may not have a high probability, Cholesky factot. ; of ¥;, and usingX ; = u; +L & ;.
with respect to the observations at tiMi€+1 . The focussing The weights in Eq.f(Af) thenjs’implify to ! ! >
effect of implicit sampling can be expected to be less empha-

sized and the number of particles required may grow as thev;?+l x w;‘ exp(—¢;) |detL .,~| . (25)

with

(24)

To obtain a sample, we can solve EfjlY by computing
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For the special case of a linear observation function andvhere ﬂ[" denote independent BMs and where the coeffi-
observations available at every model steg=(1), the sim-  cientsg; > 0 must be chosen such that, fore (0, 1),
plified implicit filter is the full implicit filter and reduces to a

version of optimal importance samplingrilampalam et a). o, 2y—1

. A 2
2002 Bocquet et al.201Q Morzfeld et al, 2012 Chorin kzl koo =00 (28)
etal, 2010. a

where); are the eigenvalues of the Laplace operalentzen
and Kloeden2009. If the coefficientsy; decay fast enough,
then, by Eq. 27) and basic properties of Fourier series, the
noise is smooth in space and, in addition, the s@8) (e-
mains finite as is required. For example one may be inter-
ested in problems where

3 Implicit particle filtering for equations with partial
noise

We consider the case of a singular state covariance nigarix
in the context of implicit particle filtering. We start with an 2 if k<c
example taken frondentzen and Kloede2009), to demon- gk = { 0 ifk=c
strate how a singular state covariance appears naturally in the ’ ’
context of SPDEs driven by spatially smooth noise. The eX-for somec > 0.

ample serves as a motivation for more general developments The continuous equation must be discretized for compu-
in later sections. tations and here we consider the Galerkin projection of the

Another class of models with partial noise consists of dy- SPDE into ann-dimensional space spanned by the first
namical equations supplemented by conservation laws. Thejgenfunctiong; of the Laplace operator

dynamics are often uncertain and thus driven by noise pro-

cesses, however there is typically zero uncertainty in the condU}" = (A, U} + T, (UT))dt +dW}", (30)
servation laws (e.g. conservation of mass), so that the full

model (dynamics and conservation laws) is subject to parwhereUy", T';, and W' are m-dimensional truncations of
tial noise Kurapov et al, 2007). This situation is similar  the solution, the functiof” and the cylindrical BMW;, re-
to that of handling second-order (in time) SDEs, for exam-spectively, and wheré,,, is a discretization of the Laplace
ple in robotics. The second-order equation is often converted@perator. Specifically, from Eqs27) and @9), we obtain:
into a set of first-order equations, for which the additional .

qua_\tlons are _tr|V|aI (e.g.uddr = du_/dt). It is unphysical AW™ = Zﬁe‘ksin(knx)dﬂf. (31)
to inject noise into these augmenting equations, so that the =

second-order model in a first-order formulation is subject to

(29)

partial noise. After multiplying Eq. 30) with the basis functions and inte-
grating over the spatial domain, we are left with a set:of
3.1 Example of a model with partial noise: the stochastic ordinary differential equations

semi-linear heat equation driven by spatially

smooth noise dx = f(x)dt +gdW, (32)

. . - . wherex is anm-dimensional state vectoy, is a nonlinear
We consider the stochastic semi-linear heat equation on the ¥,

one-dimensional domain e [0, 1] over the time interval € vector function,W is a BM. In particular, we calculate from

[0.1] (31)
1
2 — —diag((e 1. e 2 ...,¢7°0,0.....0))., c<m,
3_”28_2_}_[*(”)4_8“/‘, (26) 9 V2 g(( ))
ot ox ot (33)

where " is a continuous function, anw; is a cylindrical  here diaga) is a diagonal matrix whose diagonal elements

Brownian motion (BM) entzen and Kloeder2009. The 50 the components of the vectorUpon time discretization

derivative 8W; /97 in Eq. 26) is formal only (it does not ;ging for example, a stochastic version of forward Euler with
exist in the usual sense). Equatid@6) is supplemented by 4o steps (Kloeden and PlaterL999, we arrive at Eq. 1)
homogeneous Dirichlet boundary conditions and the initial, i,

valueu(x,0) = u,(x). We expand the cylindrical BMV; in

the eigenfunctions of the Laplace operator R(x)=x"+68f(x"), G(x)=+/4g. (34)
o0

W, =Y /2qisinkmx) By, (27)
k=1
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It is now clear that the state covariance mafix= GG’ filter, we defineF; for models with partial noise by
is singular forc < m.

A singular state covariance causes no problems for run€xp(—F;(X7™h) = pz"* | XL v p(x i X%, v, (39)
ning the discrete time model) forward in time. However
problems do arise if we want to know the pdf of the cur-
rent state given the previous one. For example, the functions T
F; in the implicit particle filter algorithms (either those in F; (X"+1) = (X"+1 f’}) 2t (X'}H— f;’)

More specifically,

Sect 2, or those inChorin and Tu2009 Chorin et al, 201Q 1 T
Morzfeld et al, 2012 are not defined for singulaE,. If + = (h (X?*l, Y’”l) —z"+1>

¢ >m, then X, is ill-conditioned and causes a number of 2

numerical issues in the implementation of these implicit par- xxt (h (X"Jrl Y; ) "+1>

ticle filtering algorithms and, ultimately, the algorithms fail. vz (40)
3.2 Implicit particle filtering of models with partial

noise, supplemented by densely available data wheref is shorthand notation fof(X Y. With this

F;,we can use algorithrhto construct the |mpI|C|t filter. For

We start with deriving the implicit filter for models with par- th's algorithm we need the gradient Bj:

tial noise by considering the special case in which obser- r 1 ontl  en
vations are available at every model step=(1). For sim- (VE)" =X (Xj - fj)
plicity, we assume that the noise is additive, G¢x", ") in Ih T
Eq. ) is constant and th& in Eq. (2) is also a constant ma- (— |x_Xn+1)
trix. Under these assumptions, we can use a linear coordinate dx

transformation to diagonalize the state covariance matrix and xx1 (h(X;%“, Y;?H) - z"“) . (41)
rewrite the modelX) and the observation2)as

+1_ FOm Yy ") + AW AW < A0, S)) (35) Note thatY’J?Jrl is fixed for each particle, if the previous
9 b b b b . . +1
+1 g,y 1", (36) state (X", Y"), is known, so that the filter only updatﬂ’§
= gty Ly L Qv (37 when the observationg+1 become available. The unforced

variables of the particleg;”**, are moved forward in time
wherex is a p-dimensional column vectop, < m istherank  using the model, as they should be, since there is no uncer-
of the state covariance matrix Edl){and wheref is a p- tainty in y"*1 given x", y". The data are used in the state
dimensional vector functiors;, is a non-singular, diagonal estimation ofy indirectly through the weights and through
p X p matrix, y is a(m — p)-dimensional vector, ang isa  the nonlinear coupling between the forced and unforced vari-
(m — p)-dimensional vector function. For ease of notation, ables of the model. If one observes only the unforced vari-
we drop the hat above the “new” state covariance maigix  ables, i.ek(x, y) = h(y), then the data is not used directly
in Eq. 35) and, for convenience, we refer to the set of vari- when generating the forced variablé’éj‘,”, because the sec-
ablesx andy as the “forced” and “unforced variables” re- ondterm in Eq.40) is merely a constant. In this case, the im-

spectively. plicit filter is equivalent to a standard SIR filter, with weights
The key to filtering this system is observing that the un- w1 = w’; eXp(—¢;).
forced variables at timg**1, given the state at time’, are The implicit filter is numerically effective for filtering sys-

not random. To be surg is random for any: due to the  tems with partial noise, because the filter operates in a space
nonlinear couplingf (x, y) andg(x, y), but the conditional  of dimensionp (the rank of the state covariance matrix),
pdf p(y"*+1 | x", y*) is the delta-distribution. For a given ini- which is less than the state dimension (see the example in
tial statex?, y0, the target density is Sect.4). The use of a gradient descent algorithm and ran-
dom maps further makes the often costly computation of the

On+1 ,On+1, Llin41 0: 0: 1 .
PR YR 2 o p (™ yPT | 2 Hessian ofF; unnecessary.

x p(z"t1| L it If the state covariance matrix is ill-conditioned, a direct
implementation of algorithni is not possible. We propose
P X"y, (38) i i i i
Y to diagonalize the state covariance and set all eigenvalues be-

low a certain threshold to zero so that a model of the form
Egs. B5—(37) can be obtained. In our experience, such ap-
proximations are accurate and the filter of this section can be
used.

Suppose we are given a collectionMfparticles, X" Y"
j=1212,...,M, whose empirical distribution approxmates
the target densn)p(xo",yo" | z1") at time”. The pdf for
each particle at time**+1 is thus given by Eq.38) with the
substitution ofX ; for x andY ; for y. In agreement with the
definition of F; in previous implementations of the implicit
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3.3 Implicit particle filtering for models with partial (seeChorin et al,201Q Morzfeld et al, 2012 require second
noise, supplemented by sparsely available data derivatives as well.
The gradient ofF; is given by therp-dimensional row
We extend the results of Se8t2to the more general case of vector
observations that are sparse in time. Again, the key is to real-

ize thaty"*+1 is fixed giverw”, y". For simplicity, we assume IF; IF; IF;
additive noise and a consta@tin Eq. ). The target density VFj = 2O Toai2 ToadiD |- (45)
is 8Xj BXj an
p(xO:q(l-i-l)’ yO:q(H—l) | 2L o p(x0a® | 00 | 1) with
I+1) ,.q(+1) q(U+1) oF: T
e (1+|1T (lilv)—l )<1+1>—1 2 - E;l (X]; N fl;_l)
x p(x? | x .yl ) 8Xj
xp(xq(Hl)*l | xq([+l)72’ yq(1+l)72) af T
1kl gk
*(5 'k> = (x5 - 1)
. @ID+L | g1 ya)) of "\ e
x p(x x? ] ydy, + = 2—(X._.)
y lk+1 aX’; N i [
Given a collection of M particles, X", Y?, j= 5 a2\ T
1,2,...,M, whose empirical distribution approximates the +<f k42 J ; ) Dol (X’;”’—f’;*z)
target densityp (x99 y04® | 711y at timer4®, we define, y IX
for each particle, the functiof; by
I+1 141 T
exp(—Fj (X)) = p(z'*| X?( ), Y?( ) N (af | ay"(l)1> £oL (x4 _ pa-1
_ _ o lah-1 2 x ( j —Jj )
» p(X’j].(Hl) | X3(1+1) L Y3(1+1) 1 y ax"
(o, )
: — Ik k-1
dy © axk
x px 10 x90 y10), (42) j
Xzz—l (h (X(;<l+1)’ Y(jl‘(l+1)> _ zl+1> (46)

whereX ; is shorthand foﬂ(‘;(Z)H"”’q(Hl), so that
fork=q()+1,...,q(l+1)—1 and where(-) | denotes

“evaluate at timer*.” The derivatives&yi/aX’;, i=k+

v = L pa01 a0\ e1(paOH1 )
FjXp) = 2 (XJ' —f; ) x (XJ' —f; ) (43) 1,....q(), can be computed recursively while constructing

1 T the sum, starting with
q()+2 g()+1 -1 (ypyq+2 q()+1 , g
5 (XF0 ) R (10 )
ayk-‘rl P Bg
w9 X‘,y.)z_ , 47
- ) X (scxirh) =220 (47)
q(+1) q(+1)—-1 1 q(1+1) q(+1)—-1
5 (X =) 2 (kg - g .
1 T and then using
+7(h (Xq(1+1) Yq_(l+1))_z1+1) -1
2 J T < ayk+i ag ayifl
(42 (I+1) —_— =1 —|iz1, i=k+2,...,9(0). (48
X(h(X? ’Y(J]' )—Z[+l)+Zj~ (44) aX];. ox li—1 3X];- li—1 q() ( )

At each model step, the unforced variables of each parti- The minimization ofF; for each particle is initialized with
cle depend on the forced and unforced variables of the pary free model run for stéps, with initial conditions given by
ticle at the previous time step, so thsf™" is a function  the final position of thej-th particle at the previous assim-
of x40 x 10+ x90+D=1 ang £79*D is a function of  ilation step. With this initial guess we compute the gradient

! using Egs. 45)—(48) and, after a line search and one step of

radient descent, obtain a new set of forced variables. We
se this result to update the unforced variables by the model,
and proceed to the next iteration. Once the miningynand
its locationu ; are found, we use the random méd3) with
Li=Ito computer(”H,...,X‘j(”l) for this particle and
q(+1)

x40 x40+2 | x1"*Y The functionF; thus depends
on the forced variables only. However, the appearances of th%
unforced variables iF; make it rather difficult to compute
derivatives. The implicit filter with gradient descent mini-
mization and random maps (see algorithjris thus a good
filter for this problem, because it only requires computation
of the first derivatives of';, while previous implementations then use these forced variables to commjg)+1 """
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We do this for all particles, and compute the weights from 3.4 Discussion

Eq. 14) with m = p, then normalize the weights so that their

sum equa]s one and thereby obtain an approximation of thaVe wish to point out similarities and differences between the
target density. We resample if the effective sample 8fzg implicit filter and three other data assimilation methods. In
is below a threshold and move on to assimilate the next obsearticular, we discuss how data are used in the computation

vation. The implicit filtering algorithm is summarized with Of the state estimates.
pseudo code in algorithi® It is clear that the implicit filter uses the available data as

well as the model to generate the state trajectories for each

Algorithm 2 Implicit Particle Filter with Random Maps Particle, i.e. it makes use of the nonlinear coupling between
and Gradient Descent Minimization for Models with Partial forced and unforced variables. The SIR and EnKF make less

Noise direct use of the data. In SIR, the particle trajectories are gen-
erated using the model alone and only later weighted by the
{Initialization, t = 0} observations. Data thus propagate to the SIR state estimates
for j=1,...,Mdo indirectly through the weights. In EnKF, the state trajectories
o samplex? ~ po(X) are generated by the model and the states at tifffégwhen
end for data are available) are updated by data. Thus, EnKF uses the

data only to update its state estimates at times for which data
are actually available.

A weak constraint 4-D-Var method is perhaps closest in
spirit to the implicit filter. In weak constraint 4-D-Var, a cost
function similar to F; is minimized (typically by gradient

{Assimilate observatiog}

for j=1,...,Mdo
e Set up and minimizé’; using gradient descent:
Initialize minimization with a free model run
while Convergence criteria not satisfidd

Compute gradient by46) descent) to find the state trajectory with maximum probabil-

Do a line search ity given data and model. This cost function depends on the

Compute next iterate by gradient descent step model as well as the data, so that weak constraint 4-D-Var

Use results to update unforced variables using the model makes use of the model and the data to generate the state tra-

Check if convergence criteria are satisfied jectories. In this sense, weak constraint 4-D-Var is similar to
end while the implicit filter (seeAtkins et al, 2012for more details).

« Sample reference densigy ~ N(0, 1)

o Computep; =§7&; andn; =&;/./p; icati i
« Solve (L1) using random mapl@) with L ; =1 to compute 4 Application to geomagnetism

X
. Ose thisX ; and the model to compute corresponding Data assimilation has been recently applied to geomagnetic
e Compute weight of the particle using4) applications and there is a need to find out which data assimi-
» Save particlgX ;.Y ;) and weightw ; lation technique is most suitablEdurnier et al.2010. Thus
end for far, a strong constraint 4-D-Var approadro(rnier et al.
2007 and a Kalman filter approacB(n et al.2007, Aubert
« Normalize the weights so that their sum equals 1 and Fournier2011) have been considered. Here, we apply

o Compute state estimate froi; weighted withw; (e.g. the
mean)

e Resample itMgf < ¢

o Assimilatez! 1

the implicit particle filter to a test problem very similar to
the one first introduced by Fournier and his colleagues in
Fournier et al(2007). The model is given by two SPDEs

Oru + udu =b8xb+u8§u+gua,Wu(x,t), (49)

Note that all state variables are computed by using both th%tb Fudb = bdu-+ afb + g3 Wo(x, 1), (50)
data and the model, regardless of which set of variables (the
forced or unforced ones) is observed. The reason is that, fowhere,v, g,, g, are scalars, and whei®, and W, are in-
sparse observations, tifg’s depend on the observed and un- dependent stochastic processes (the derivative here is formal
observed variables due to the nonlinear couplfhgndg in and may not exist in the usual sense). Physicaltgpresents
Egs. 85—(37). It should also be noted that the functibhis the velocity field and represents the magnetic field. We con-
a function ofrp variables (rather thann), because the filter  sider the above equationsonthe strig@<7,-1<x <1
operates in the subspace of the forced variables. If the minand with boundary conditions
imization is computationally too expensive, becapser r
is extremely large, then one can easily adapt the “simplified”# @) = 0. if x =1, u(x,0) =sin(rx) +2/5sin5m), (51)
implicit particle filter of Sect2.2to the situation of partial ~ b(x,1) ==£1, if x ==£1, b(x,0) = cos(rx) + 2sin(r(x +1)/4). (52)
noise using the methods we have just described. The simpli-
fied filter then requires a minimization of gdimensional
function for each particle.
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A realization of the noise process W(x,)

The stochastic processes in E¢k)(and 60) are given by

Outcome of two model runs
3

i

2
. 15
R 1 A
= =
J

Wu(x,t) =Y af sin(krx)wi(t) + By costkm /20)wi (1),  (53)
k=0

T)

Space

Wp(x, 1) =Y agsinkmx)wi(t) + B costkm /20 )wi(1).  (54)
k=0

05

wherew?, w?, w3, wt are independent BMs and where R A T

Time Space Space

» |1 ifk<10 x ;
= {o, if k > 10, (®5)

oise in u

i.e. the noise processes are independent, identically dis:
tributed, but differ in magnitude (on average) due to the fac-
torsg, andg, in Egs. @9) and 60) (see below). The stochas- .
tic process represents a spatially smooth noise whichiszer | .~ .. V. V. | )
at the boundaries. Information about the spatial distribution s T e
of the uncertainty can be incorporated by picking suitable
coefficientsy; andpgy.

N
Noise in b

El

Fig. 1. The noise proces¥ (x, t) and its effects on the solutian

. . _ 3 .

We.study the above eguanons with= 10 .as !n andb. Upper left: the noise proces$g(x, ¢) is plotted as a function
Fournier et al(2007), and withg, = 0.01, g, = 1. With this of x andz. Upper right: two realizations of the solutionrat T =
choice of parameters, we observe that the random disturg 2 | ower left: a snapshot of the noise eriower right: a snapshot

bance to the velocity field is on the order of 10°, and of the noise orb.
that the disturbance to the magnetic fiélds on the order

of 10~1. While the absolute value of the noise @ris quite

small, its effect is dramatic because the governing equation is

sensitive to perturbations, becausis small. An illustration N N-1
of the noise process and its effect on the solution is given in u(x, 1) = Y (¥, (x) = Y i;(0)¥;(x),
Fig. 1. The upper left figure shows a realization of the noise Jj=0 j=1

processW and illustrates that the noise is smooth in space. N
The upper right part of Figl shows two realizations of the  b(x,t) = ij Oy (x) =—vo(x) +¥n(x)
solution and, since the two realizations are very different, il- j=0
lustrates the need for data assimilation. The lower two panels
of Fig. 1 show a typical snapshot of the noisew(right) and
b (left).

We chose the parametegsandg; as large as possible and N-1
the parameter as small as possible without causing instabil- W (x, 1) = Z W;)yj(x) = Z W)y (x),
ities in our discretization (see below). For larger valueg,of j= j=1
and smaller values of, a more sophisticated discretization
is necessary. However, the model itself (independent of the
choice of parameters) is a dramatic simplification of more
realistic three-dimensional dynamo models, so that the value
of studying Eqgs. 49) and 60) for larger g, g, or smaller
v is limited. Our results should be interpreted as “proof of
concept,” that implicit sampling can be used to improve the
forecast and analysis of the hidden velocity fieldy assim-
ilating observations of the magnetic fieid

bty (x),

+
= I

wherey; are the characteristic Lagrange polynomials of or-
derN centered at thg-th Gauss-Lobatto-Legendre (GLL)
nodeé;. We consider the weak form of Eqstg) and 60)
Svithout integration by parts because the solutions are smooth
enough to do so. This weak form requires computation of the
second derivatives of the characteristic Lagrange polynomi-
als at the nodes, which can be done stably and accurately us-
ing recursion formulas. We substitute the series expansions
into the weak form of Eqs.4Q) and 60) and evaluate the

4.1 Discretization of the dynamical equations integrals by Gauss-Lobatto-Legendre quadrature

We follow Fournier et al(2007) in the discretization of the
dynamical equations, however we present details here to ex/ p(x)dx ~ Z(:)P(Sj)wj»

plain how the noise proced¥ comes into play. -1

For both fields, we use Legendre spectral elements Oford%herew . are the corresponding weights. Making use of the
N (see e.gCanuto et al.2006 Deville et al, 2006, so that /

orthogonality of the basis functiong, (¢,) = §; «, we obtain
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the set of SDEs
Ma,ii =M (ioDIS—ﬁoDﬁ+vD2ﬁ+\pEIS+gua,W),
Mab =M (BoDﬁ—ﬁoD13+D213—wEﬁ+wfx+gba,vi/),

where o denotes the Hadamard produc(ﬁ@I;)kz
ﬁkl;k), a.b,W are (N — 2)-dimensional column vec-
tors whose components are the coefficients in the se
ries expansions ofu,b, W, and W,, respectively, and
whereW? = diag((3,:v; (1), ..., 3 ¥ (En—1))) and w5
(OxxW2(£0), ... dex¥v—1(En—1)T is a diagonal N — 2) x
(N — 2) matrix and an(N — 2)-dimensional column vector,

375

0.14

°

Logarithm of mean of errors
Logarithm of mean of errors

0.04
200 400 600 800

Number of gridpoints

1000 10°
Logarithm of 1/imestep

Fig. 2. Convergence of discretization scheme for geomagnetic equa-

respectively, which make sure that our approximation sat-ions. Left: Convergence in the number of spatial grid-points (log-
isfies the boundary conditions. In the above equations, théinear scale). Right: Convergence in the time step (log-log scale).

(N —2) x (N — 2) matricesM, D andD? are given by
M = diag((wz, .. Dk = 0x¥; (&),
D%k = dexrj (B0).

We apply a first-order implicit-explicit method with time step
8 for time discretization and obtain the discrete-time and
discrete-space equations

(M —SvMD?)u" 1 =
M (u +s (b" oDb" —u" o Du" + wab"))

L WN-1)),

+ AW”

u’
(M —SMD?)p"+1 =
M (b" +5 (b" oDu" —u" o Db" — WBy" +\1:fx)) + AW,

where

AW, ~N(©O, %), AWy~ N(O, ), (56)

and

T, = g26M (FSCCT FT + FCCCTFCT> M7, (57)

) = g26M (FSCCT FT + FCCCTFCT> M7, (58)
C =diag((a1,...,a,)), (59)

F, = (Sin(n),sin(Zn),...,Sin(mn))(él,éfz,...,Em)T, (60)
F. = (co9n/2),c0937/2),...,
cosmm /2))(E1. €2, ... Em)" . (61)

For our choice ofy, B in Eq. 65), the state covariance
matricesX, and X, are singular ifN > 12. To diagonal-

ize the state covariances we solve the symmetric eigenvalug

problemsParlett(1999
(M —8vMD?)v, = =, v,",
(M —SMD?)v), = ZpvpAl,
and define the linear coordinate transformations
b=V,(xp yp)",

u= Vu(xu»J’u)Tv (62)

where the columns of théN — 2) x (N — 2)-matricesV,
andV, are the eigenvectors of,, vy, respectively. The dis-
cretization using Legendre spectral elements works in ou

www.nonlin-processes-geophys.net/19/365/2012/

favor here, because the matridésand D? are symmetric
so that we can diagonalize the left hand side simultaneously
with the state covariance matrix to obtain

n+l _ no.n o .n L n n
xu _fu(xuvyu9xbayb)+AWuv
n+1

Y= gu(xy. ¥ Xp. ¥p),

X = ety L Y+ AW,

yz+1

where f,, f» are 10-dimensional vector functions,, g,

are((N — 2) — 10)-dimensional vector functions and where
u

Wi ~ N (0.diag((21. 43 ... 1))
Wi ~ N (0.diag( (25,25, %)) ) -

We test the convergence of our approximation as follows.
To assess the convergence in the number of grid-points in
space, we define a reference solution usihg- 2000 grid-
points and a time step éf= 0.002. We compute another ap-
proximation of the solution, using the same (discrete) BM as
in the reference solution, but with another number of grid-
points, sayN = 500. We compute the error at=T = 0.2,

n n n n
= gb(xuvyusxbv yb)v

ex = | (usoo(x, T)T, bsoo(x, T)T) — (urei(x, T)7, brei(x, T)) |,

where|| - || denotes the Euclidean norm, and store it. We re-
eat this procedure 500 times and compute the mean of the
rror norms and scale the result by the mean of the norm of
the solution. The results are shown in the left panel of Eig.

We observe a straight line, indicating super algebraic con-
vergence of the scheme (as is expected from a spectral
method).

Similarly, we check the convergence of the ap-
proximation in the time step by computing a refer-
ence solution withNgef= 1000 andsget=2"12. Using
the same BM as in the reference solution, we com-
pute an approximation with time step and compute
the error atr =7 =0.2, ¢; = || (us(x, T)T, bs(x, T)T) —
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o
[

06 2
—~
7 -
L ? 25 \ L 04 =
s ! 2 = N ) 2 15
< o W =02 <
b g 2 S\ s =
> 05 s \\ Z o g
= > 15 AN K 3 L)
(5] el N -0.2 L
2 o 2 / \ g Z os
2 8 // g o4 2
o 7] / =l o
<} S 05 2 -06 0
£ -05 o <
5 e = )
= = 0 = 08 Ko
= (=) 1 = -05
2’ B Eoos -
a3 <0
= A -1.2 1
15 1 -1 0.5 o 05 1 1 0.5 0 0.5 1
= -0.5 [ 0.5 1 -1 -0.5 0 0.5 1 x x
X X

Fig. 4. Outcome of a twin experiment. Black: true stater, 0.2)
(left) andb(x, 0.2) (right). Red: reconstruction by implicit particle
filter with 4 particles.

Fig. 3. Uncertainty in the initial state. Lefti(x,0) (unobserved).
Right: b(x, 0) (observed). Black: mean. Red: 10 realizations of the
initial state.

(uret(x, T)T , bret(x, T)T) ||, and store it. We repeat this wheres = 0.001 and wheré{ is ak x m-matrix that maps the
procedure 500 times and then compute the mean of these enumerical approximatioh (defined at the GLL nodes) to the
ror norms, divided by the mean of the norm of the solution. locations where data is collected. We consider data that are
The results are shown in the right panel of Fig.We ob-  dense in time/(= 1) as well as sparse in time & 1). The
serve a first order decay in the error for time steps larger thamlata are sparse in space and we consider two cases: (i) we
8 =0.02 as is expected. The error has converged for timecollect the magnetic field at 200 equally spaced locations;
steps smaller thati= 0.002, so that a higher resolution in and (ii) we collect the magnetic fiekdat 20 equally spaced
time does not improve the accuracy of the approximation. locations. The velocity is unobserved and it is of interest to
Here we are satisfied with an approximation with= study how the various data assimilation techniques make use
0.002 andN = 300 grid-points in space as ournier et al.  of the information inb to update the unobserved variables
(2007. The relatively small number of spatial grid-points (Fournier et al.2007, 2010.
is sufficient because the noise is very smooth in space and To assess the performance of the filters, we ran 100 twin
because the Legendre spectral elements accumulate nodegperiments. A twin experiment amounts to (i) drawing a
close to the boundaries and, thus, represent the steep bounslample from the initial state and running the model forward
ary layer, characteristic of Eq19—(50), well even if N is in time untilr = T = 0.2 (one fifth of a magnetic diffusion

small (see als&ournier et al.2007). time Fournier et al.2007), (ii) collecting the data from this
o free model run, and (iii) using the data as the input to a fil-
4.2 Filtering results ter and reconstructing the state trajectory. Figusbows the

result of one twin experiment for= 4.

We apply the implicit particle filter with gradient descent For each twin experiment, we calculate and store the

the Simplifed mplei paricle itr (see Sec3 adapted S A1 =T =02 in the velociy, c, = luCx.T) -
to models with partial noise, a standard EnKF (without lo- uF,"ter(x’ DIl and in thg magnetic f|e|_dg,, - ”b-(x’ D=
calization or inflation), as well as a standard SIR filter to thebF”ter(x’ )1l After running the 100 twin experiments, we

' : L calculate the mean of the error norms (not the mean error)
test proplem Eqs_.4@)—(50). _The pumencal T“Ode' IS 9VEN  3nd the variance of the error norms (not the variance of the
by the dlsc_:r(.at_lzatlon descnbgd n the previous .s.ectlon W.'therror) and scale the results by the mean of the normarid
a randpm mmal state. The dlstrlbutlgn of the initial state is b, respectively. Al filters we tested were “untuned”, i.e. we
G_aussmn W'.th mean(x, 0).’ b(x,0) asin Eqs.51)—(52)_ and have not adjusted or inserted any free parameters to boost the
W'th a covariancey, x, given by E_q_s: $7-(58). InFig. 3, performance of the filters.
we illustrate the uncertainty in the initial state and plot 10 re- Figure5 shows the results for the implicit particle filter, the

alizations of the initial state (grey lines) along with its mean g a5 el as the SIR filter for 200 measurement locations
(black lines). We observg that the uncertainty:inis small and forr = 10.
compared to the uncertainty kg. ) The figure indicates that the implicit particle filter requires
The data are the vaIL_Jes ofthe magnetic fbalmeasureql at only very few particles £4-10) to yield accurate state es-
k equally spaced locations |1, 1] and corrupted by noise: timates with less than 1% error in the observed variables
and less than 15% error in the unobserved velogitirhe
SIR filter with 1000 particles gives significantly larger errors
(about 10% in the observed varialiieand 20 % in the un-
observed variable) and much larger variances in the errors.

2 =HpIO 5V, (63)
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the unobserved variable however, depends strongly on the
gap between observations and, for a large gap, is about 15 %.
The reconstructions of the observed variables by the sim-
plified implicit particle filter are rather insensitive to the
availability of data in time and, with 20 particles, the sim-
plified filter gives an error in the observed quantfitpf less
than 1%. The errors in the unobserved quangitgepend
strongly on the gap between the observations and can be as
large as 15%. The error statistics in F§have converged
and only minor improvements can be expected if the number
of particles is increased to more than 20.
The SIR filter required significantly more particles, than

I Implicit filter % EnKF @ SIR filter

0.25
0.11r

0.1r
0.091
0.2r 0.08 -
0.071
0.06
0.05r
0.15¢ 0.041

0.031

Error in u (unobserved variables)
Error in b (observed variables)

0.021

-a the implicit filter or simplified implicit filter. Independent of
ooft o x . . .
o | ‘ il ‘ ‘ the gap between observations, the errors and their variances
0 500 - 1000 0 500 1000 are larger than for the implicit and simplified implicit filter,
Number of Particles Number of Particles

even if the number of particles for SIR is set to 1000. The

i . . . . EnKF performs well and, for about 500 particles, gives re-
ig. 5. Filtering results for data collected at a high spatial resolution L . .
(200 measurement locations). The errors &t0.2 of the implicit sults that are Comp"",rab"? t‘? those of the implicit particle fil-
particle filter (red), EnKF (purple) and SIR filter (green) are plotted €- The ENKF may give similarly accurate results at a smaller
as a function of the number of particles. The error bars represent th@umber of particles if localization and inflation techniques
mean of the errors and mean of the standard deviations of the errorére implemented.

The errors in the reconstructions of the various filters are
not Gaussian, so that an assessment of the errors based on
the first two moments is incomplete. In the two panels on

The EnKF requires about 500 particles to achieve the accuthe right of Fig.7, we show histograms of the errors of the
racy of the implicit filter with only 4 particles. implicit filter (10 particles), simplified implicit filter (20 par-
In the experiments, we observed that the minimization inticles), EnKF (1000 particles) and SIR filter (1000 particles)
implicit particle filtering typically converged after 4—-10 steps for »r = 10 model steps between observations.
(depending orv, the gap in time between observations). We observe that the errors of the implicit filter, simplified
The convergence criterion was to stop the iteration when thémplicit filter and EnKF are centered to the left of the di-
change inF; was less than 10 %. A more accurate minimiza- agrams (at around 10 % in the unobserved quantignd
tion did not improve the results significantly, so that we were about 1 % for the observed quantity and show a consider-
satisfied with a relatively crude estimate of the minimum in ably smaller spread than the errors of the SIR filter, which are
exchange for a speed-up of the algorithm. We founbly centered at much larger errors (20 % in the unobserved quan-
solving Eq. (1) with Newton’s method using® = 0 as ini-  tity « and about 9% for the observed quantiy A closer
tial guess and observed that it converged after about eighibok at the distribution of the errors thus confirms our con-
steps. The convergence criterion was to stop the iteration itlusions we have drawn from an analysis based on the first
|F (L) —¢ — p| <103, because the accurate solution of this two moments.
scalar equation is numerically inexpensive. We resampled us- We further assess the performance of the filters by con-
ing algorithm 2 inArulampalam et al(2002), if the effective  sidering their effective sample siz&9), which measures the
sample sizeMgs in EqQ. (19) divided by the number of parti- quality of the particles ensemiBoucet et al(2001). A large
clesM is less than 90 % of the number of particles. effective sample size indicates a good ensemble, i.e. the sam-
To further investigate the performance of the filters, we ples are independent and each of them contributes signifi-
run more numerical experiments and vary the availability of cantly to the approximation of the conditional mean; a small
the data in time, as well as the number of particles. Figure effective sample size indicates a “bad ensemble”, i.e. most
shows the results for the implicit particle filter, the simplified of the samples carry only a small weight. We computed the
implicit particle filter, the EnKF and the SIR filter for 200 effective sample size for the implicit particle filter, the sim-
measurement locations and fo& 1, 2, 4, 10. plified implicit particle filter and the SIR filter after each as-
We observe from Fig6, that the error statistics of the im- similation, and compute the average after each of 100 twin
plicit particle filter have converged, so that there is no signif- experiments. In Tabl&, we show the average effective sam-
icant improvement when we increase the number of particleple size (averaged over all 100 twin experiments and scaled
to more than 10. In fact, the numerical experiments suggesby the number of particles) for a gap o= 10 model steps
that no more than 4 particles are required here. Independeritetween observations.
of the gap between the observations in time, we observe an We observe that the effective sample size of the implicit
error of less than 1 % in the observed variakl@he errorin  filter is about 10 times larger than the effective sample size
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Filtering Results for High Spatial Resolution of Data: @ r=1 @4 r=2}@{ =4 H@{ =10

Simplified Implicit Particle Filter Implicit Particle Filter
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Fig. 6. Filtering results for data collected at a high spatial resolution (200 measurement locations). The errofs2aof the simplified

implicit particle filter (upper left), implicit particle filter (upper right), SIR filter (lower left) and EnKF (lower right) are plotted as a function

of the number of particles and for different gaps between observations in time. The error bars represent the mean of the errors and mean o
the standard deviations of the errors.

Table 1. Effective sample size of the simplified implicit filter, the filter (1000 particles) forr = 10 model steps between ob-

implicit filter and the SIR filter. servations. Again, the results are qualitatively similar to the
results we obtained at a higher spatial resolution of the data.
~Simplified  Implicit ~ SIR We observe for the implicit particle filter that the errors in
implicit filter ~ filter filter the unobserved quantity are insensitive to the spatial resolu-
Meg/M 0.20 0.19 0.02 tion of the data, while the errors in the observed quantity are

determined by the spatial resolution of the data and are rather
insensitive to the temporal resolution of the data. These ob-
servations are in line with those reported in connection with a
of the SIR filter. This result indicates that the particles of the strong 4-D-Var algorithm ifFournier et al(2007). All other
implicit filter are indeed focussed towards the high probabil-filters we have tried show a dependence of the errors in the
ity region of the target pdf. observed quantity on the temporal resolution of the data.
Next, we decrease the spatial resolution of the data to 20 The reason for the accurate state estimates of the implicit
measurement locations and show filtering results from 10Qvarticle filter, obtained at a low number of particles, is its
twin experiments in Fig8. direct use of the data: the implicit particle filter uses the
The results are qualitatively similar to those obtained atinformation from the model, as well as from the data to
a high spatial resolution of 200 data points per observationsearch for the high probability region of the target pdf. This
The two panels on the right of Fig, show histograms of  search is performed by the particle-by-particle minimization

the errors of the implicit filter (10 particles), simplified im-  of the functions;. The implicit filter then generates samples
plicit filter (20 particles), EnKF (1000 particles) and SIR
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High Spatial Resolution of Data Low Spatial Resolution of Data the data propagates very slowly from the observed to the un-
100 80 observed quantities.
80 60 In summary, we observe that the implicit particle filter
2 60 yields the lowest errors with a small number of particles for
::); 0 40 all examples we considered, and performs well and reliably
i 20 in this application. The SIR and simplified implicit particle
20 H H H H ﬂ filters can reach the accuracy of the .implic_:it.particle fiIte.r, a_t_
% 005 04 o015 o2 % o005 01 o015 o2 the expense that the number of particles is increased signifi-
Error in b (observed variables) Error in b (observed variables) cantly. The very small number of particles required for a very
40 80 high accuracy make the implicit filter the most efficient fil-
ter for this problem. Note that the partial noise works in our
g ¥ % favor here, because the dimension of the space the implicit
2 ’
§ 20 40 filter operates in is 20, rather than the state dimension 600.
= 0 0 Fina}lly, we wish to compare our results' with those in
ﬂ ; I|I Iﬂ J 14 Fou_rnler et aI(ZOQ'/), where a strong _co_nstraln_t 4-D-Var al-
%01 02 o os % o1 05 05 o4 gorithm was applied to the deterministic version of the test
Error in u (unobserved variables) Error in u (unobserved variables) prOb'em. Fournier and his Colleagues used “perfect data,”
i.e. the observations were not corrupted by noise, and ap-
et fltr it 0 paricles o aman e i 100 s plied a conjugate-gradient algorithm to minimize the 4-D-
[ simptteaimpici i it 20 parices [] stk i it 1000 arictes Var cost function. The iterative minimization was stopped af-

ter 5000 iterations. With 20 observations in space and a gap
of r = 5 model steps between observations, an error of about
Fig. 7.Histogram of errors at= 0.2 of the implicit filter, simplified 1.2 % inu and 4.7 % inb was achieved. With the implicit fil-
implicit filter, EnKF and SIR filter. Left: data are available at a high ter, we can get to a similar accuracy at the same spatial reso-
spatial resolution (200 measurement locations) and ewefyl0 lution of the data, but with a larger gapof 10 model steps
model steps. Right: da_ta are available at a low spatial resolutiometween observations. However, the 4-D-Var approach can
(20 measurement locations) and every 10 model steps. handle larger uncertainties and errors in the velocity field.
The reason is that the initial conditions are assumed to be
known (at least roughly) when we assimilate data sequen-
within the high probability region by solving EqlY). Be- tially. This assumption is of course not valid in “real” geo-
cause the implicit filter focusses attention on regions of highmagnetic data assimilation (the velocity field is unknown),
probability, only a few samples are required for a good accu-however a strong 4-D-Var calculation can be used to obtain
racy of the state estimate (the conditional mean). The infor-approximate and uncertain initial conditions to then start as-
mation in the observations of the magnetic fieldropagates  similating new data with a filter. The implicit particle filter
to the filtered updates of the unobserved velogityia the  then reduces the memory requirements because it operates
nonlinear coupling in Eqs40)—(50). in the 20-dimensional subspace of the forced variables and
The EnKF on the other hand uses the data only at timesassimilates the data sequentially. Each minimization is thus
when an observation is available. The state estimates at atiot as costly as a 600-dimensional strong constraint 4-D-Var
other times are generated by the model alone. Moreover, theninimization. Alternatively, one could extend the implicit
nonlinearity, and thus the coupling of observed and unob-particle filter presented here to include the initial conditions
served quantities, is represented only in the approximatioras variables of thé;s. This set up would allow for larger
of the state covariance matrix, so that the information in theuncertainties in the initial conditions than what we presented
data propagates slowly to the unobserved variables. The sifere.
uation is very similar for the simplified implicit filter.
The SIR filter requires far more particles than the implicit
filter because it samples the low probability region of the tar-5 Conclusions
get pdf with a high probability. The reason is that the overlap
of the pdf generated by the model alone and the target pdf be¥We have considered implicit particle filters for data assimi-
comes smaller and smaller as the data becomes sparser aladion. Previous implementations of the implicit particle fil-
sparser in time. For that reason, the SIR filter must generateer rely on finding the Hessians of functios$ of the state
far more samples to at least produce a few samples that areariables. Finding these Hessians can be expensive if the
likely with respect to the observations. Moreover, the data isstate dimension is large and can be cumbersome if the sec-
only used to weigh samples that are generated by the modeind derivatives of theF;s are hard to calculate. We pre-
alone; it does not use the nonlinear coupling between obsented a new implementation of the implicit filter combin-
served and unobserved quantities, so that the information ifng gradient descent minimization with random maps. This
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Fig. 8. Filtering results for data collected at a low spatial resolution (20 measurement locations). The efret0& of the simplified

implicit particle filter (upper left), implicit particle filter (upper right), SIR filter (lower left) and EnKF (lower right) are plotted as a function

of the number of particles and for different gaps between observations in time. The error bars represent the mean of the errors and mean o
the standard deviations of the errors.

new implementation avoids the often costly calculation of theformation from observed to unobserved quantities and found

Hessians and, thus, reduces the memory requirements corthat the implicit particle filter uses the data in a direct way,

pared to earlier implementations of the filter. propagating information to unobserved quantities faster than
We have considered models for which the state covarianceompeting methods. The direct use of the data is the reason

matrix is singular or ill-conditioned. This happens often, for for the small errors in reconstructions of the state.

example, in geophysical applications in which the noise is

smooth in space or if the model includes conservation laws
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