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Abstract. Implicit particle filtering is a sequential Monte
Carlo method for data assimilation, designed to keep the
number of particles manageable by focussing attention on
regions of large probability. These regions are found by min-
imizing, for each particle, a scalar functionF of the state
variables. Some previous implementations of the implicit fil-
ter rely on finding the Hessians of these functions. The cal-
culation of the Hessians can be cumbersome if the state di-
mension is large or if the underlying physics are such that
derivatives ofF are difficult to calculate, as happens in many
geophysical applications, in particular in models with partial
noise, i.e. with a singular state covariance matrix. Examples
of models with partial noise include models where uncertain
dynamic equations are supplemented by conservation laws
with zero uncertainty, or with higher order (in time) stochas-
tic partial differential equations (PDE) or with PDEs driven
by spatially smooth noise processes. We make the implicit
particle filter applicable to such situations by combining gra-
dient descent minimization with random maps and show that
the filter is efficient, accurate and reliable because it operates
in a subspace of the state space. As an example, we consider
a system of nonlinear stochastic PDEs that is of importance
in geomagnetic data assimilation.

1 Introduction

The task in data assimilation is to use available data to update
the forecast of a numerical model. The numerical model is
typically given by a discretization of a stochastic differential
equation (SDE)

xn+1
= R(xn, tn)+ G(xn, tn)1W n+1, (1)

where x is anm-dimensional vector, called the state,tn,
n= 0,1,2, . . . , is a sequence of times,R is anm-dimensional
vector function,G is anm×m matrix and1W is anm-
dimensional vector, whose elements are independent stan-
dard normal variates. The random vectorsG(xn, tn)1W n+1

represent the uncertainty in the system, however even for
G = 0 the statexn may be random for anyn because the
initial statex0 can be random. The data

zl = h(xq(l), tq(l))+ Q(xq(l), tq(l))V l (2)

are collected at timestq(l), l = 1,2, . . . ; for simplicity, we
assume that the data are collected at a subset of the model
steps, i.e.q(l)= rl, with r ≥ 1 being a constant. In the above
equation,z is a k-dimensional vector (k ≤m), h is a k-
dimensional vector function,V is a k-dimensional vector
whose components are independent standard normal vari-
ates, andQ is ak× k matrix. Throughout this paper, we will
write x0:n for the sequence of vectorsx0, . . . ,xn.

Data assimilation is necessary in many areas of science
and engineering and is essential in geophysics, for exam-
ple in oceanography, meteorology, geomagnetism or atmo-
spheric chemistry (see e.g. the reviewsMiller et al., 1994; Ide
et al., 1997; Miller et al., 1999; van Leeuwen, 2009; Bocquet
et al., 2010; Fournier et al., 2010). The assimilation of data in
geophysics is often difficult because of the complicated un-
derlying dynamics, which lead to a large state dimensionm

and a nonlinear functionR in Eq. (1).
If the model (1) as well ash in Eq. (2) are linear inx and if,

in addition, the matricesG andQ are independent ofx, and
1W n andV l in Eqs. (1) and (2) are Gaussian and indepen-
dent, and if the initial statex0 is Gaussian, then the probabil-
ity density function (pdf) of the statexn is Gaussian for anyn
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and can be characterized in full by its mean and covariance.
The Kalman filter (KF) sequentially computes the mean of
the model (1), conditioned on the observations and, thus, pro-
vides the best linear unbiased estimate of the state (Kalman,
1960; Kalman and Bucy, 1961; Gelb, 1974; Stengel, 1994).
The ensemble Kalman filter (EnKF) is a Monte Carlo ap-
proximation of the Kalman filter, and can be obtained by
replacing the state covariance matrix by the sample covari-
ance matrix in the Kalman formalism (seeEvensen, 2007).
The state covariance is the covariance matrix of the pdf of
the current state conditioned on the previous state which we
calculate from the model (1) to be

p(xn+1
| xn)∼N (R(xn, tn),G(xn, tn)G(xn, tn)T ), (3)

whereN (µ,6) denotes a Gaussian with meanµ and covari-
ance matrix6. To streamline the notation we write for the
state covariance:

6nx = G(xn, tn)G(xn, tn)T , (4)

whereT denotes a transpose. In the EnKF, the sample covari-
ance matrix is computed from an “ensemble”, by running the
model (1) for different realizations of the noise process1W .
The Monte Carlo approach avoids the computationally ex-
pensive step of updating the state covariance in the Kalman
formalism. Both KF and EnKF have extensions to nonlin-
ear, non-Gaussian models, however they rely on linearity and
Gaussianity approximations (Julier and Uhlmann, 1997).

Variational methods (Zupanski, 1997; Tremolet, 2006; Ta-
lagrand, 1997; Courtier, 1997; Courtier et al., 1994; Bennet
et al., 1993; Talagrand and Courtier, 1987) aim at assimilat-
ing the observations within a given time window by comput-
ing the state trajectory of maximum probability. This state
trajectory is computed by minimizing a suitable cost func-
tion. In particular, 3-D-Var methods assimilate one obser-
vation at a time (Talagrand, 1997). Strong constraint 4-D-
Var determines the most likely initial statex0 given the data
z1,z2, . . . ,zl , a “perfect” model, i.e.G = 0, and a Gaussian
initial uncertainty, i.e.x0

∼N (µ0,60) (Talagrand, 1997;
Courtier, 1997; Courtier et al., 1994; Talagrand and Courtier,
1987). Uncertain models withG 6= 0 are tackled with a
weak constraint 4-D-Var approach (Zupanski, 1997; Tremo-
let, 2006; Bennet et al., 1993). Many variational methods use
an adjoint minimization method and are very efficient. To
further speed up the computations, many practical implemen-
tations of variational methods, e.g. incremental 4-D-Var, use
linearizations and Gaussian approximations.

For the remainder of this paper, we focus on sequential
Monte Carlo (SMC) methods for data assimilation, called
particle filters (Doucet et al., 2001; Weare, 2009; Moral,
1998; van Leeuwen, 2010; Moral, 2004; Arulampalam et al.,
2002; Doucet et al., 2000; Chorin and Tu, 2009; Chorin et al.,
2010; Gordon et al., 1993; Morzfeld et al., 2012). Particle
filters do not rely upon linearity or Gaussianity assumptions
and approximate the pdf of the state given the observations,

p(x0:q(l)
| z1:l), by SMC. The state estimate is a statistic (e.g.

the mean, median, mode etc.) of this pdf. Most particle filters
rely on the recursive relation

p(x0:q(l+1)
| z1:l+1)∝ p(x0:q(l)

| z1:l)

×p(zl+1
| xq(l+1))p(xq(l)+1:q(l+1)

| xq(l)). (5)

In the above equationp(x0:q(l+1)
| z1:l+1) is the pdf of the

state trajectory up to timetq(l+1), given all available obser-
vations up to timetq(l+1) and is called the target density;
p(zl+1

| xq(l+1)) is the probability density of the current ob-
servation given the current state and can be obtained from
Eq. (2)

p(zl+1
| xq(l+1))∼N (h(xq(l), tq(l)),6nz ), (6)

with

6nz = Q(xn, tn)Q(xn, tn)T . (7)

The pdfp(xq(l)+1:q(l+1)
| xq(l)) is the density of the state

trajectory from the previous assimilation step to the current
observation, conditioned on the state at the previous assimi-
lation step, and is determined by the model (1).

A standard version of the sequential importance sampling
with resampling (SIR) particle filter (also called bootstrap
filter, see e.g.Doucet et al., 2001) generates, at each step,
samples fromp(xq(l)+1:q(l+1)

| xq(l)) (the prior density) by
running the model. These samples (particles) are weighted
by the observations with weightsw ∝ p(zl+1

| xq(l+1)), to
yield a posterior density that approximates the target den-
sity p(x0:q(l+1)

| z1:l+1). One then removes particles with a
small weight by “resampling” (see e.g.Arulampalam et al.,
2002 for resampling algorithms) and repeats the procedure
when the next observation becomes available. This SIR fil-
ter is straightforward to implement, however the catch is that
many particles have small weights because the particles are
generated without using information from the data. If many
particles have a small weight, the approximation of the tar-
get density is poor and the number of particles required for
a good approximation of the target density can grow catas-
trophically with the dimension of the state (Snyder et al.,
2008; Bickel et al., 2008). Various methods, e.g. different
prior densities and weighting schemes (see e.g.Doucet et al.,
2001; van Leeuwen, 2010, 2009; Weare, 2009), have been in-
vented to ameliorate this problem, but a rigorous analysis of
how the number of particles scales with the dimension of the
state space has not been reported for any of these methods.

The basic idea of implicit particle filters (Chorin and Tu,
2009; Chorin et al., 2010; Morzfeld et al., 2012) is to use
the available observations to find regions of high probability
in the target density and look for samples within this region.
This implicit sampling strategy generates a thin particle beam
within the high probability domain and, thus, keeps the num-
ber of particles required manageable, even if the state dimen-
sion is large. The focussing of particles is achieved by finding
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the regions of high probability through a particle-by-particle
minimization and then setting up an underdetermined alge-
braic equation that depends on the model (1) as well as on
the data (2), and whose solution generates a high probability
sample of the target density. We review the implicit filter in
the next section, and it will become evident that the construc-
tion assumes that the state covariance6nx in Eq. (4) is non-
singular. This condition is often not satisfied. If, for example,
one wants to assimilate data into a stochastic partial differen-
tial equation (SPDE) driven by spatially smooth noise, then
the continuous-time noise process can be represented by a
series with rapidly decaying coefficients, leading to a sin-
gular or ill-conditioned state covariance6nx in discrete time
and space (see Sects.3.1 and4, as well asLord and Rouge-
mont, 2004; Chueshov, 2000; Jentzen and Kloeden, 2009).
A second important class of models with partial noise are
uncertain dynamic equations supplemented by conservation
laws (e.g. conservation of mass) with zero uncertainty. Such
models often appear in data assimilation for fluid dynamics
problems (Kurapov et al., 2007). A similar situation occurs
when second-order (in time) equations are formulated as sys-
tems of first-order equations, e.g. in robotics.

The purpose of the present paper is two-fold. First, in
Sect.2, we present a new implementation of the implicit par-
ticle filter. Most previous implementations of the implicit fil-
ter (Chorin et al., 2010; Morzfeld et al., 2012) rely in one way
or another on finding the Hessians of scalar functions of the
state variables. For systems with very large state vectors and
considerable gaps between observations, memory constraints
may forbid a computation of these Hessians. Our new imple-
mentation combines gradient descent minimization with ran-
dom maps (Morzfeld et al., 2012) to avoid the calculation of
Hessians, and thus reduces the memory requirements.

The second objective is to consider models with a singular
or ill-conditioned state covariance6nx where previous imple-
mentations of the implicit filter, as described inChorin and
Tu (2009); Chorin et al.(2010); Morzfeld et al.(2012), are
not applicable. In Sect.3, we make the implicit filter applica-
ble to models with partial noise and show that our approach
is then particularly efficient, because the filter operates in
a space whose dimension is determined by the rank of6nx ,
rather than by the model dimension. We compare the new
implicit filter to SIR, EnKF and variational methods.

In Sect. 4, we illustrate the theory with an application
in geomagnetic data assimilation and consider two coupled
nonlinear SPDEs with partial noise. We observe that the im-
plicit filter gives good results with very few (4–10) particles,
while EnKF and SIR require hundreds to thousands of parti-
cles for similar accuracy.

2 Implicit sampling with random maps

We first follow Morzfeld et al.(2012) closely to review im-
plicit sampling with random maps. Suppose we are given a

collection ofM particlesXq(l)
j , j = 1,2, . . . ,M, whose em-

pirical distribution approximates the target density at time
tq(l), whereq(l)= rl, and suppose that an observationzl+1 is
available afterr steps at timetq(l+1)

= t r(l+1). From Eq. (5)
we find, by repeatedly using Bayes’ theorem, that, for each
particle,

p(X
0:q(l+1)
j | z1:l+1)∝ p(X

0:q(l)
j | z1:l)p(zl+1

| X
q(l+1)
j )

×p(X
q(l+1)
j | X

q(l+1)−1
j )p(X

q(l+1)−1
j | X

q(l+1)−2
j )

...

×p(X
q(l)+1
j | X

q(l)
j ). (8)

Implicit sampling is a recipe for computing high-
probability samples from the above pdf. To draw a sample
we define, for each particle, a functionFj by

exp(−F(Xj ))= p(X
q(l+1)
j | X

q(l+1)−1
j ) · · ·p(X

q(l)+1
j | X

q(l)
j )

×p(zl+1
|X

q(l+1)
j ) (9)

whereXj is shorthand for the state trajectoryX
q(l)+1:q(l+1)
j .

Specifically, we have

Fj (Xj )=
1

2

(
X
q(l)+1
j − R

q(l)
j

)T (
6
q(l)
x,j

)−1(
X
q(l)+1
j − R

q(l)
j

)
+

1

2

(
X
q(l)+2
j − R

q(l)+1
j

)T (
6
q(l)+1
x,j

)−1(
X
q(l)+2
j − R

q(l)+1
j

)
...

+
1

2

(
X
q(l+1)
j − R

q(l+1)−1
j

)T (
6
q(l+1)−1
x,j

)−1(
X
q(l+1)
j − R

q(l+1)−1
j

)
+

1

2

(
h
(
X
q(l+1)
j

)
− zl+1

)T (
6l+1
z,j

)−1(
h
(
X
q(l+1)
j

)
− zl+1

)
+Zj , (10)

whereRn
j is shorthand notation forR(Xn

j , t
n) and whereZj

is a positive number that can be computed from the normal-
ization constants of the various pdfs in the definition ofFj
in Eq. (9). Note that the variables of the functionsFj are

Xj = X
q(l)+1:q(l+1)
j , i.e. the state trajectory of thej -th parti-

cle from timetq(l)+1 to tq(l+1). The previous position of the
j -th particle at timetq(l), Xq(l)

j , is merely a parameter (which

varies form particle to particle). The observationzl+1 is the
same for all particles. The functionsFj are thus similar to
one another. Moreover, eachFj is similar to the cost func-
tion of weak constraint 4-D-Var, however, the state at time
tq(l) is “fixed” for eachFj , while it is a variable of the weak
constraint 4-D-Var cost function.

The high probability region of the target density corre-
sponds, by construction, to the neighborhood of the minima
of theFj ’s. We can thus identify the regions of high proba-
bility by minimizing Fj for each particle. We then map the
high probability region of a reference variable, sayξ , to the
high probability region of the target density. For a Gaussian
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reference variableξ ∼N (0, I), this can be done by solving
the algebraic equation

Fj (Xj )−φj =
1

2
ξTj ξ j , (11)

whereξ j is a realization of the reference variable and where

φj = minFj . (12)

Note that a Gaussian reference variable does not imply lin-
earity or Gaussianity assumptions and other choices are pos-
sible. What is important here is to realize that a likely sample
ξ j leads to a likelyXj , because a smallξ j leads to aXj

which is in the neighborhood of the minimum ofFj and,
thus, in the high probability region of the target pdf.

We find solutions of Eq. (11) by using the random map

Xj = µj + λjL jηj , (13)

whereλj is a scalar,µj is anrm-dimensional column vec-
tor which represents the location of the minimum ofFj , i.e.
µj = argminFj , L j is a deterministicrm×rmmatrix we can

choose, andηj = ξ j/
√

ξTj ξ j , is uniformly distributed on the

unit rm-sphere. Upon substitution of Eq. (13) into Eq. (11),
we can find a solution of Eq. (11) by solving a single alge-
braic equation in the variableλj . The weight of the particle
can be shown to be

w
q(l+1)
j ∝ w

q(l)
j exp(−φj )

∣∣detL j
∣∣ ρ1−rm/2

j

∣∣∣∣λrm−1
j

∂λj

∂ρj

∣∣∣∣ , (14)

whereρj = ξTj ξ j and detL j denotes the determinant of the
matrixLj (seeMorzfeld et al.(2012) for details of the calcu-
lation). An expression for the scalar derivative∂λj/∂ρj can
be obtained by implicit differentiation of Eq. (11):

∂λj

∂ρj
=

1

2
(
∇Fj

)
LTj ηj

, (15)

where∇Fj denotes the gradient ofFj (an rm-dimensional
row vector).

The weights are normalized so that their sum equals one.
The weighted positionsXj of the particles approximate the
target pdf. We compute the mean ofXj with weightswj as
the state estimate, and then proceed to assimilate the next
observation.

2.1 Implementation of an implicit particle filter with
gradient descent minimization and random maps

An algorithm for data assimilation with implicit sampling
and random maps was presented inMorzfeld et al.(2012).
This algorithm relies on the calculation of the Hessians of the
Fj ’s because these Hessians are used for minimizing theFj ’s
with Newton’s method and for setting up the random map.
The calculation of the Hessians, however, may not be easy

in some applications because of a very large state dimension,
or because the second derivatives are hard to calculate, as is
the case for models with partial noise (see Sect.3). To avoid
the calculation of Hessians, we propose to use a gradient de-
scent algorithm with line-search to minimize theFj ’s (see
e.g.Nocedal and Wright, 2006), along with simple random
maps. Of course other minimization techniques, in particular
quasi-Newton methods (see e.g.Nocedal and Wright, 2006;
Fletcher, 1987), can also be applied here. However, we de-
cided to use gradient descent to keep the minimization as
simple as possible.

For simplicity, we assume thatG and Q in Eqs. (1)–(2)
are constant matrices and calculate the gradient ofFj from
Eq. (10):

∇F =

(
∂F

∂Xq(l)+1
,

∂F

∂Xq(l)+2
, . . . ,

∂F

∂Xq(l+1)−1
,

∂F

∂Xq(l+1)

)
, (16)

with(
∂F

∂Xk

)T
= 6−1

x

(
Xk

− Rk−1
)

− (
∂R

∂x
|x=Xk )

T6−1
x

(
Xk+1

− Rk
)
, (17)

for k = q(l)+1,q(l)+2, . . . ,q(l+1)−1, whereRn is short-
hand forR(Xn, tn), and where(

∂F

∂Xq(l+1)

)T
= 6−1

x

(
Xq(l+1)

− Rq(l+1)−1
)

+

(
∂h

∂x
|x=Xq(l+1)

)T
6−1
z

(
h(Xq(l+1))− zl+1

)
. (18)

Here, we dropped the indexj for the particles for nota-
tional convenience. We initialize the minimization using the
result of a simplified implicit particle filter (see next subsec-
tion). Once the minimum is obtained, we substitute the ran-
dom map (13) with L j = I , whereI is the identity matrix,
into Eq. (11) and solve the resulting scalar equation by New-
ton’s method. The scalar derivative we need for the New-
ton steps is computed numerically. We initialize this itera-
tion with λj = 0. Finally, we compute the weights according
to Eq. (14). If some weights are small, as indicated by a small
effective sample size (Arulampalam et al., 2002)

MEff = 1/

(
M∑
j=1

(
w
q(l+1)
j

)2
)
, (19)

we resample using algorithm 2 inArulampalam et al.(2002).
The implicit filtering algorithm with gradient descent mini-
mization and random maps is summarized in pseudo-code in
algorithm1.

This implicit filtering algorithm shares with weak con-
straint 4-D-Var that a “cost function” (hereFj ) is minimized
by gradient descent. The two main differences between 4-
D-Var and algorithm1 are (i) weak constraint 4-D-Var does
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Algorithm 1 Implicit Particle Filter with Random Maps and
Gradient Descent Minimization

{Initialization, t = 0}

for j = 1, . . . ,M do
• sampleX0

j
∼ po(X)

end for

{Assimilate observationzl}
for j = 1, . . . ,M do

• Set up and minimizeFj using gradient descent to compute
φj andµj
• Sample reference densityξ j ∼N (0, I)
• Computeρj = ξT

j
ξ j andηj = ξ j /

√
ρj

• Solve (11) using the random map (13) with L j = I
• Compute weight of the particle using (14)
• Save particleXj and weightwj

end for

• Normalize the weights so that their sum equals 1
• Compute state estimate fromXj weighted withwj (e.g. the
mean)
• Resample ifMEff < c

• Assimilatezl+1

not update the state sequentially, but the implicit particle fil-
ter does and, thus, reduces memory requirements; (ii) weak
constraint 4-D-Var computes the most likely state, and this
state estimate can be biased; the implicit particle filter ap-
proximates the target density and, thus, can compute other
statistics as state estimates, in particular the conditional ex-
pectation which is, under wide conditions, the optimal state
estimate (see e.g.Chorin and Hald, 2009). A more detailed
exposition of the implicit filter and its connection to vari-
ational data assimilation is currently under review (Atkins
et al., 2012).

2.2 A simplified implicit particle filtering algorithm
with random maps and gradient descent
minimization

We wish to simplify the implicit particle filtering algorithm
by reducing the dimension of the functionFj . The idea is
to do an implicit sampling step only at timestq(l+1), i.e.
when an observation becomes available. The state trajectory
of each particle from timetq(l) (the last time an observation
became available) totq(l+1)−1 is generated using the model
Eq. (1). This approach reduces the dimension ofFj from rm

to m (the state dimension). The simplification is thus very
attractive if the number of steps between observations,r, is
large. However, difficulties can also be expected for larger:
the state trajectories up to timetq(l+1)−1 are generated by
the model alone and, thus, may not have a high probability
with respect to the observations at timetq(l+1). The focussing
effect of implicit sampling can be expected to be less empha-
sized and the number of particles required may grow as the

gap between observations becomes larger. Whether or not the
simplification we describe here can reduce the computational
cost is problem dependent and we will illustrate advantages
and disadvantages in the examples in Sect.4.

Suppose we are given a collection ofM particlesX
q(l)
j ,

j = 1,2, . . . ,M, whose empirical distribution approximates
the target density at timetq(l) and the next observa-
tion, zl+1, is available afterr steps at timetq(l+1). For
each particle, we run the model forr − 1 steps to obtain
X
q(l)+1
j , . . . ,X

q(l+1)−1
j . We then define, for each particle, a

functionFj by

Fj (Xj )=
1

2

(
X
q(l+1)
j − R

q(l+1)−1
j

)T (
6
q(l+1)−1
x,j

)−1

×

(
X
q(l+1)
j − R

q(l+1)−1
j

)
+

1

2

(
h
(
X
q(l+1)
j

)
− zl+1

)T (
6
q(l+1)
z,j

)−1

(
h
(
X
q(l+1)
j

)
− zl+1

)
+Zj , (20)

whose gradient is given by Eq. (18). The algorithm then pro-
ceeds as algorithm 1 in the previous section: we find the min-
imum of Fj using gradient descent and solve Eq. (11) with
the random map (13) with L j = I . The weights are calculated
by Eq. (14) with r = 1 and the mean ofXj weighted bywj
is the state estimate at timetq(l+1).

This simplified implicit filter simplifies further if the ob-
servation function is linear, i.e.h(x)= Hx, whereH is a
k×m matrix. One can show (seeMorzfeld et al., 2012) that
the minimim ofFj is

φj =
1

2
(zl+1

− HR
q(l+1)−1
j )TK−1

j (zl+1
− HR

q(l+1)−1
j ), (21)

with

K j = H6q(l+1)−1
x,j HT

+6l+1
z,j . (22)

The location of the minimum is

µj =6j

((
6
q(l+1)−1
x,j

)−1
R
q(l+1)−1
j + HT (6

q(l+1)
z,j )−1zl+1

)
,(23)

with

6−1
j =

(
6
q(l+1)−1
x,j

)−1
+ HT (6l+1

z,j )
−1H. (24)

A numerical approximation of the minimum is thus not
required (one can use the above formula), however an itera-
tive minimization may be necessary if the dimension of the
state space is so large that storage of the matrices involved in
Eqs. (21)–(24) causes difficulties.

To obtain a sample, we can solve Eq. (11) by computing
the Cholesky factorL j of 6j , and usingXj = µj + L j ξ j .
The weights in Eq. (14) then simplify to

wn+1
j ∝ wnj exp(−φj )

∣∣detL j
∣∣ . (25)
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For the special case of a linear observation function and
observations available at every model step (r = 1), the sim-
plified implicit filter is the full implicit filter and reduces to a
version of optimal importance sampling (Arulampalam et al.,
2002; Bocquet et al., 2010; Morzfeld et al., 2012; Chorin
et al., 2010).

3 Implicit particle filtering for equations with partial
noise

We consider the case of a singular state covariance matrix6x
in the context of implicit particle filtering. We start with an
example taken fromJentzen and Kloeden(2009), to demon-
strate how a singular state covariance appears naturally in the
context of SPDEs driven by spatially smooth noise. The ex-
ample serves as a motivation for more general developments
in later sections.

Another class of models with partial noise consists of dy-
namical equations supplemented by conservation laws. The
dynamics are often uncertain and thus driven by noise pro-
cesses, however there is typically zero uncertainty in the con-
servation laws (e.g. conservation of mass), so that the full
model (dynamics and conservation laws) is subject to par-
tial noise (Kurapov et al., 2007). This situation is similar
to that of handling second-order (in time) SDEs, for exam-
ple in robotics. The second-order equation is often converted
into a set of first-order equations, for which the additional
equations are trivial (e.g. du/dt = du/dt). It is unphysical
to inject noise into these augmenting equations, so that the
second-order model in a first-order formulation is subject to
partial noise.

3.1 Example of a model with partial noise: the
semi-linear heat equation driven by spatially
smooth noise

We consider the stochastic semi-linear heat equation on the
one-dimensional domainx ∈ [0,1] over the time intervalt ∈
[0,1]

∂u

∂t
=
∂2u

∂x2
+0(u)+

∂Wt

∂t
, (26)

where0 is a continuous function, andWt is a cylindrical
Brownian motion (BM) (Jentzen and Kloeden, 2009). The
derivative ∂Wt/∂t in Eq. (26) is formal only (it does not
exist in the usual sense). Equation (26) is supplemented by
homogeneous Dirichlet boundary conditions and the initial
valueu(x,0)= uo(x). We expand the cylindrical BMWt in
the eigenfunctions of the Laplace operator

Wt =

∞∑
k=1

√
2qk sin(kπx)βkt , (27)

whereβkt denote independent BMs and where the coeffi-
cientsqk ≥ 0 must be chosen such that, forγ ∈ (0,1),

∞∑
k=1

λ
2γ−1
k qk <∞, (28)

whereλk are the eigenvalues of the Laplace operator (Jentzen
and Kloeden, 2009). If the coefficientsqk decay fast enough,
then, by Eq. (27) and basic properties of Fourier series, the
noise is smooth in space and, in addition, the sum (28) re-
mains finite as is required. For example one may be inter-
ested in problems where

qk =

{
e−2k, if k ≤ c,

0, if k > c,
(29)

for somec > 0.
The continuous equation must be discretized for compu-

tations and here we consider the Galerkin projection of the
SPDE into anm-dimensional space spanned by the firstm

eigenfunctionsek of the Laplace operator

dUm
t = (AmUm

t + 0m(U
m
t ))dt + dW

m
t , (30)

whereUm
t , 0m and Wm

t arem-dimensional truncations of
the solution, the function0 and the cylindrical BMWt , re-
spectively, and whereAm is a discretization of the Laplace
operator. Specifically, from Eqs. (27) and (29), we obtain:

dWm
t =

c∑
k=1

√
2e−k sin(kπx)dβkt . (31)

After multiplying Eq. (30) with the basis functions and inte-
grating over the spatial domain, we are left with a set ofm

stochastic ordinary differential equations

dx = f (x)dt + gdW , (32)

wherex is anm-dimensional state vector,f is a nonlinear
vector function,W is a BM. In particular, we calculate from
(31):

g =
1

√
2

diag
((
e−1,e−2, . . . ,e−c,0,0, . . . ,0

))
, c < m,

(33)

where diag(a) is a diagonal matrix whose diagonal elements
are the components of the vectora. Upon time discretization
using, for example, a stochastic version of forward Euler with
time stepδ (Kloeden and Platen, 1999), we arrive at Eq. (1)
with

R(x)= xn+ δf (xn), G(x)=
√
δg. (34)
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It is now clear that the state covariance matrix6x = GGT

is singular forc < m.
A singular state covariance causes no problems for run-

ning the discrete time model (1) forward in time. However
problems do arise if we want to know the pdf of the cur-
rent state given the previous one. For example, the functions
Fj in the implicit particle filter algorithms (either those in
Sect.2, or those inChorin and Tu, 2009; Chorin et al., 2010;
Morzfeld et al., 2012) are not defined for singular6x . If
c ≥m, then6x is ill-conditioned and causes a number of
numerical issues in the implementation of these implicit par-
ticle filtering algorithms and, ultimately, the algorithms fail.

3.2 Implicit particle filtering of models with partial
noise, supplemented by densely available data

We start with deriving the implicit filter for models with par-
tial noise by considering the special case in which obser-
vations are available at every model step (r = 1). For sim-
plicity, we assume that the noise is additive, i.e.G(xn, tn) in
Eq. (1) is constant and thatQ in Eq. (2) is also a constant ma-
trix. Under these assumptions, we can use a linear coordinate
transformation to diagonalize the state covariance matrix and
rewrite the model (1) and the observations (2) as

xn+1
= f (xn,yn, tn)+1W n+1, 1W n+1

∼N (0, 6̂x),(35)

yn+1
= g(xn,yn, tn), (36)

zn+1
= h(xn+1y,n+1 )+ QV n+1, (37)

wherex is ap-dimensional column vector,p < m is the rank
of the state covariance matrix Eq. (4), and wheref is ap-
dimensional vector function,̂6x is a non-singular, diagonal
p×p matrix,y is a (m−p)-dimensional vector, andg is a
(m−p)-dimensional vector function. For ease of notation,
we drop the hat above the “new” state covariance matrix6̂x
in Eq. (35) and, for convenience, we refer to the set of vari-
ablesx andy as the “forced” and “unforced variables” re-
spectively.

The key to filtering this system is observing that the un-
forced variables at timetn+1, given the state at timetn, are
not random. To be sure,yn is random for anyn due to the
nonlinear couplingf (x,y) andg(x,y), but the conditional
pdfp(yn+1

| xn,yn) is the delta-distribution. For a given ini-
tial statex0, y0, the target density is

p(x0:n+1,y0:n+1
| z1:n+1)∝ p(x0:n,y0:n

| z1:n)

×p(zn+1
| xn+1,yn+1)

p(xn+1
| xn,yn). (38)

Suppose we are given a collection ofM particles,Xn
j ,Y

n
j ,

j = 1,2, . . . ,M, whose empirical distribution approximates
the target densityp(x0:n,y0:n

| z1:n) at time tn. The pdf for
each particle at timetn+1 is thus given by Eq. (38) with the
substitution ofXj for x andY j for y. In agreement with the
definition ofFj in previous implementations of the implicit

filter, we defineFj for models with partial noise by

exp(−Fj (X
n+1
j ))= p(zn+1

| Xn+1
j ,Y n+1

j )p(Xn+1
j | Xn

j ,Y
n
j ). (39)

More specifically,

Fj (X
n+1
j )=

1

2

(
Xn+1
j − f nj

)T
6−1
x

(
Xn+1
j − f nj

)
+

1

2

(
h
(
Xn+1
j ,Y n+1

j

)
− zn+1

)T
×6−1

z

(
h
(
Xn+1
j ,Y j

)
− zn+1

)
+Zj , (40)

wheref nj is shorthand notation forf (Xn
j ,Y

n
j , t

n). With this
Fj , we can use algorithm1 to construct the implicit filter. For
this algorithm we need the gradient ofFj :

(∇Fj )
T

=6−1
x

(
Xn+1
j − f nj

)
+

(
∂h

∂x
|
x=Xn+1

j

)T
×6−1

z

(
h(Xn+1

j ,Y n+1
j )− zn+1

)
. (41)

Note thatY n+1
j is fixed for each particle, if the previous

state,(Xn
j ,Y

n
j ), is known, so that the filter only updatesXn+1

j

when the observationszn+1 become available. The unforced
variables of the particles,Y n+1

j , are moved forward in time
using the model, as they should be, since there is no uncer-
tainty in yn+1 given xn,yn. The data are used in the state
estimation ofy indirectly through the weights and through
the nonlinear coupling between the forced and unforced vari-
ables of the model. If one observes only the unforced vari-
ables, i.e.h(x,y)= h(y), then the data is not used directly
when generating the forced variables,Xn+1

j , because the sec-
ond term in Eq. (40) is merely a constant. In this case, the im-
plicit filter is equivalent to a standard SIR filter, with weights
wn+1
j = wnj exp(−φj ).
The implicit filter is numerically effective for filtering sys-

tems with partial noise, because the filter operates in a space
of dimensionp (the rank of the state covariance matrix),
which is less than the state dimension (see the example in
Sect.4). The use of a gradient descent algorithm and ran-
dom maps further makes the often costly computation of the
Hessian ofFj unnecessary.

If the state covariance matrix is ill-conditioned, a direct
implementation of algorithm1 is not possible. We propose
to diagonalize the state covariance and set all eigenvalues be-
low a certain threshold to zero so that a model of the form
Eqs. (35)–(37) can be obtained. In our experience, such ap-
proximations are accurate and the filter of this section can be
used.
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3.3 Implicit particle filtering for models with partial
noise, supplemented by sparsely available data

We extend the results of Sect.3.2to the more general case of
observations that are sparse in time. Again, the key is to real-
ize thatyn+1 is fixed givenxn,yn. For simplicity, we assume
additive noise and a constantQ in Eq. (2). The target density
is

p(x0:q(l+1),y0:q(l+1)
| z1:l+1)∝ p(x0:q(l),y0:q(l)

| z1:l)

×p(zl+1
| xq(l+1),yq(l+1))

×p(xq(l+1)
| xq(l+1)−1,yq(l+1)−1)

×p(xq(l+1)−1
| xq(l+1)−2,yq(l+1)−2)

...

×p(xq(l)+1
| xq(l),yq(l)).

Given a collection of M particles, Xn
j ,Y

n
j , j =

1,2, . . . ,M, whose empirical distribution approximates the
target densityp(x0:q(l),y0:q(l)

| z1:l) at timetq(l), we define,
for each particle, the functionFj by

exp(−Fj (Xj )) = p(zl+1
| X

q(l+1)
j ,Y

q(l+1)
j )

× p(X
q(l+1)
j | X

q(l+1)−1
j ,Y

q(l+1)−1
j )

...

× p(X
q(l)+1
j | X

q(l)
j ,Y

q(l)
j ), (42)

whereXj is shorthand forXq(l)+1,...,q(l+1)
j , so that

Fj (Xj ) =
1

2

(
X
q(l)+1
j − f

q(l)
j

)T
6−1
x

(
X
q(l)+1
j − f

q(l)
j

)
(43)

+
1

2

(
X
q(l)+2
j − f

q(l)+1
j

)T
6−1
x

(
X
q(l)+2
j − f

q(l)+1
j

)
...

+
1

2

(
X
q(l+1)
j − f

q(l+1)−1
j

)T
6−1
x

(
X
q(l+1)
j − f

q(l+1)−1
j

)
+

1

2

(
h
(
X
q(l+1)
j ,Y

q(l+1)
j

)
− zl+1

)T
6−1
z

×

(
h
(
X
q(l+1)
j ,Y

q(l+1)
j

)
− zl+1

)
+Zj . (44)

At each model step, the unforced variables of each parti-
cle depend on the forced and unforced variables of the par-
ticle at the previous time step, so thatY

q(l+1)
j is a function

of X
q(l)
j ,X

q(l)+1
j , . . . ,X

q(l+1)−1
j andf

q(l+1)
j is a function of

X
q(l)+1
j ,X

q(l)+2
j , . . . ,X

q(l+1)
j . The functionFj thus depends

on the forced variables only. However, the appearances of the
unforced variables inFj make it rather difficult to compute
derivatives. The implicit filter with gradient descent mini-
mization and random maps (see algorithm1) is thus a good
filter for this problem, because it only requires computation
of the first derivatives ofFj , while previous implementations

(seeChorin et al., 2010; Morzfeld et al., 2012) require second
derivatives as well.

The gradient ofFj is given by therp-dimensional row
vector

∇Fj =

 ∂Fj

∂X
q(l)+1
j

,
∂Fj

∂X
q(l)+2
j

, . . . ,
∂Fj

∂X
q(l+1)
j

 . (45)

with

∂Fj

∂Xk
j

T

= 6−1
x

(
Xk
j − f k−1

j

)
+

(
∂f

∂x
|k

)T
6−1
x

(
Xk+1
j − f kj

)
+

(
∂f

∂y
|k+1

∂yk+1

∂Xk
j

)T
6−1
x

(
Xk+2
j − f k+1

j

)

+

(
∂f

∂y
|k+2

∂yk+2

∂Xk
j

)T
6−1
x

(
Xk+3
j − f k+2

j

)
...

+

(
∂f

∂y
|q(l)−1

∂yq(l)−1

∂Xk
j

)T
6−1
x

(
X
q(l+1)
j − f

q(l)−1
j

)

+

(
∂h

∂y
|k
∂yq(l)

∂Xk
j

|k−1

)T
×6−1

z

(
h
(
X
q(l+1)
j ,Y

q(l+1)
j

)
− zl+1

)
(46)

for k = q(l)+ 1, . . . ,q(l+ 1)− 1 and where(·) |k denotes
“evaluate at timetk.” The derivatives∂yi/∂Xk

j , i = k+

1, . . . ,q(l), can be computed recursively while constructing
the sum, starting with

∂yk+1

∂Xk
j

=
∂

∂Xk
j

(
g(Xk

j ,Y
k
j )
)

=
∂g

∂x
|k, (47)

and then using

∂yk+i

∂Xk
j

=
∂g

∂x
|i−1

∂yi−1

∂Xk
j

|i−1 , i = k+ 2, . . . ,q(l). (48)

The minimization ofFj for each particle is initialized with
a free model run forr steps, with initial conditions given by
the final position of thej -th particle at the previous assim-
ilation step. With this initial guess we compute the gradient
using Eqs. (45)–(48) and, after a line search and one step of
gradient descent, obtain a new set of forced variables. We
use this result to update the unforced variables by the model,
and proceed to the next iteration. Once the minimumφj and
its locationµj are found, we use the random map (13) with

L j = I to computeXq(l)+1
j , . . . ,X

q(l+1)
j for this particle and

then use these forced variables to computeY
q(l)+1,...,q(l+1)
j .
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We do this for all particles, and compute the weights from
Eq. (14) withm= p, then normalize the weights so that their
sum equals one and thereby obtain an approximation of the
target density. We resample if the effective sample sizeMEff
is below a threshold and move on to assimilate the next obser-
vation. The implicit filtering algorithm is summarized with
pseudo code in algorithm2.

Algorithm 2 Implicit Particle Filter with Random Maps
and Gradient Descent Minimization for Models with Partial
Noise

{Initialization, t = 0}

for j = 1, . . . ,M do
• sampleX0

j
∼ po(X)

end for

{Assimilate observationzl}
for j = 1, . . . ,M do

• Set up and minimizeFj using gradient descent:
Initialize minimization with a free model run
while Convergence criteria not satisfieddo

Compute gradient by (45)
Do a line search
Compute next iterate by gradient descent step
Use results to update unforced variables using the model
Check if convergence criteria are satisfied

end while
• Sample reference densityξ j ∼N (0, I)
• Computeρj = ξT

j
ξ j andηj = ξ j /

√
ρj

• Solve (11) using random map (13) with L j = I to compute
Xj
• Use thisXj and the model to compute correspondingY j
• Compute weight of the particle using (14)
• Save particle(Xj ,Y j ) and weightwj

end for

• Normalize the weights so that their sum equals 1
• Compute state estimate fromXj weighted withwj (e.g. the
mean)
• Resample ifMEff < c

• Assimilatezl+1

Note that all state variables are computed by using both the
data and the model, regardless of which set of variables (the
forced or unforced ones) is observed. The reason is that, for
sparse observations, theFj ’s depend on the observed and un-
observed variables due to the nonlinear couplingf andg in
Eqs. (35)–(37). It should also be noted that the functionFj is
a function ofrp variables (rather thanrm), because the filter
operates in the subspace of the forced variables. If the min-
imization is computationally too expensive, becausep or r
is extremely large, then one can easily adapt the “simplified”
implicit particle filter of Sect.2.2 to the situation of partial
noise using the methods we have just described. The simpli-
fied filter then requires a minimization of ap-dimensional
function for each particle.

3.4 Discussion

We wish to point out similarities and differences between the
implicit filter and three other data assimilation methods. In
particular, we discuss how data are used in the computation
of the state estimates.

It is clear that the implicit filter uses the available data as
well as the model to generate the state trajectories for each
particle, i.e. it makes use of the nonlinear coupling between
forced and unforced variables. The SIR and EnKF make less
direct use of the data. In SIR, the particle trajectories are gen-
erated using the model alone and only later weighted by the
observations. Data thus propagate to the SIR state estimates
indirectly through the weights. In EnKF, the state trajectories
are generated by the model and the states at timestq(l) (when
data are available) are updated by data. Thus, EnKF uses the
data only to update its state estimates at times for which data
are actually available.

A weak constraint 4-D-Var method is perhaps closest in
spirit to the implicit filter. In weak constraint 4-D-Var, a cost
function similar toFj is minimized (typically by gradient
descent) to find the state trajectory with maximum probabil-
ity given data and model. This cost function depends on the
model as well as the data, so that weak constraint 4-D-Var
makes use of the model and the data to generate the state tra-
jectories. In this sense, weak constraint 4-D-Var is similar to
the implicit filter (seeAtkins et al., 2012for more details).

4 Application to geomagnetism

Data assimilation has been recently applied to geomagnetic
applications and there is a need to find out which data assimi-
lation technique is most suitable (Fournier et al., 2010). Thus
far, a strong constraint 4-D-Var approach (Fournier et al.,
2007) and a Kalman filter approach (Sun et al., 2007; Aubert
and Fournier, 2011) have been considered. Here, we apply
the implicit particle filter to a test problem very similar to
the one first introduced by Fournier and his colleagues in
Fournier et al.(2007). The model is given by two SPDEs

∂tu+ u∂xu = b∂xb+ ν∂2
xu+ gu∂tWu(x, t), (49)

∂tb+ u∂xb = b∂xu+ ∂2
xb+ gb∂tWb(x, t), (50)

where,ν, gu,gb are scalars, and whereWu andWb are in-
dependent stochastic processes (the derivative here is formal
and may not exist in the usual sense). Physically,u represents
the velocity field andb represents the magnetic field. We con-
sider the above equations on the strip 0≤ t ≤ T , −1 ≤ x ≤ 1
and with boundary conditions

u(x, t)= 0, if x = ±1, u(x,0)= sin(πx)+ 2/5sin(5πx), (51)

b(x, t)= ±1, if x = ±1, b(x,0)= cos(πx)+ 2sin(π(x+ 1)/4). (52)
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The stochastic processes in Eqs. (49) and (50) are given by

Wu(x, t)=

∞∑
k=0

αuk sin(kπx)w1
k(t)+β

u
k cos(kπ/2x)w2

k(t), (53)

Wb(x, t)=

∞∑
k=0

αbk sin(kπx)w3
k(t)+β

b
k cos(kπ/2x)w4

k(t). (54)

wherew1
k ,w

2
k ,w

3
k ,w

4
k are independent BMs and where

αuk = βuk = αbk = βbk =

{
1, if k ≤ 10,
0, if k > 10,

(55)

i.e. the noise processes are independent, identically dis-
tributed, but differ in magnitude (on average) due to the fac-
torsgu andgb in Eqs. (49) and (50) (see below). The stochas-
tic process represents a spatially smooth noise which is zero
at the boundaries. Information about the spatial distribution
of the uncertainty can be incorporated by picking suitable
coefficientsαk andβk.

We study the above equations withν = 10−3 as in
Fournier et al.(2007), and withgu = 0.01,gb = 1. With this
choice of parameters, we observe that the random distur-
bance to the velocity fieldu is on the order of 10−5, and
that the disturbance to the magnetic fieldb is on the order
of 10−1. While the absolute value of the noise onu is quite
small, its effect is dramatic because the governing equation is
sensitive to perturbations, becauseν is small. An illustration
of the noise process and its effect on the solution is given in
Fig. 1. The upper left figure shows a realization of the noise
processW and illustrates that the noise is smooth in space.
The upper right part of Fig.1 shows two realizations of the
solution and, since the two realizations are very different, il-
lustrates the need for data assimilation. The lower two panels
of Fig.1 show a typical snapshot of the noise onu (right) and
b (left).

We chose the parametersgu andgb as large as possible and
the parameterν as small as possible without causing instabil-
ities in our discretization (see below). For larger values ofgu
and smaller values ofν, a more sophisticated discretization
is necessary. However, the model itself (independent of the
choice of parameters) is a dramatic simplification of more
realistic three-dimensional dynamo models, so that the value
of studying Eqs. (49) and (50) for largergb,gu or smaller
ν is limited. Our results should be interpreted as “proof of
concept,” that implicit sampling can be used to improve the
forecast and analysis of the hidden velocity fieldu by assim-
ilating observations of the magnetic fieldb.

4.1 Discretization of the dynamical equations

We follow Fournier et al.(2007) in the discretization of the
dynamical equations, however we present details here to ex-
plain how the noise processW comes into play.

For both fields, we use Legendre spectral elements of order
N (see e.g.Canuto et al., 2006; Deville et al., 2006), so that
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Figure 1: The noise process W (x, t) and its effects on the solution u and b.
Upper left: The noise process W (x, t) is plotted as a function of x and t.
Upper right: Two realizations of the solution at t = T = 0.2. Lower left: a
snapshot of the noise on u. Lower right: a snapshot of the noise on b.
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Fig. 1. The noise processW(x, t) and its effects on the solutionu
andb. Upper left: the noise processW(x, t) is plotted as a function
of x andt . Upper right: two realizations of the solution att = T =

0.2. Lower left: a snapshot of the noise onu. Lower right: a snapshot
of the noise onb.

u(x, t) =

N∑
j=0

ûj (t)ψj (x)=

N−1∑
j=1

ûj (t)ψj (x),

b(x, t) =

N∑
j=0

b̂j (t)ψj (x)= −ψ0(x)+ψN (x)

+

N−1∑
j=1

b̂j (t)ψj (x),

W(x, t) =

N∑
j=0

Ŵj (t)ψj (x)=

N−1∑
j=1

Ŵj (t)ψj (x),

whereψj are the characteristic Lagrange polynomials of or-
derN , centered at thej -th Gauss-Lobatto-Legendre (GLL)
nodeξj . We consider the weak form of Eqs. (49) and (50)
without integration by parts because the solutions are smooth
enough to do so. This weak form requires computation of the
second derivatives of the characteristic Lagrange polynomi-
als at the nodes, which can be done stably and accurately us-
ing recursion formulas. We substitute the series expansions
into the weak form of Eqs. (49) and (50) and evaluate the
integrals by Gauss-Lobatto-Legendre quadrature

1∫
−1

p(x)dx ∼

N∑
j=0

p(ξj )wj ,

wherewj are the corresponding weights. Making use of the
orthogonality of the basis functions,ψj (ξk)= δj,k, we obtain
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the set of SDEs

M∂t û = M
(
b̂ ◦ Db̂ − û ◦ Dû + νD2û +9B

x b̂ + gu∂tŴ
)
,

M∂t b̂ = M
(
b̂ ◦ Dû − û ◦ Db̂ + D2b̂ −9B

x û + 9B
xx + gb∂tŴ

)
,

where ◦ denotes the Hadamard product ((û ◦ b̂)k =

ûk b̂k), û, b̂,Ŵ are (N − 2)-dimensional column vec-
tors whose components are the coefficients in the se-
ries expansions ofu,b,Wu and Wb, respectively, and
where9B

x = diag
(
(∂xψj (ξ1), . . . ,∂xψj (ξN−1))

)
and9B

xx =

(∂xxψ2(ξ1), . . . ,∂xxψN−1(ξN−1))
T is a diagonal(N − 2)×

(N − 2) matrix and an(N − 2)-dimensional column vector,
respectively, which make sure that our approximation sat-
isfies the boundary conditions. In the above equations, the
(N − 2)× (N − 2) matricesM , D andD2 are given by

M = diag((w1, . . . ,wN−1)) , Dj,k = ∂xψj (ξk),

D2
j,k = ∂xxψj (ξk).

We apply a first-order implicit-explicit method with time step
δ for time discretization and obtain the discrete-time and
discrete-space equations

(M − δνMD2)un+1
=

M
(
un+ δ

(
bn ◦ Dbn− un ◦ Dun+9B

x bn
))

+1W n
u,

(M − δMD2)bn+1
=

M
(
bn+ δ

(
bn ◦ Dun− un ◦ Dbn−9B

x un+ 9B
xx

))
+1W n

b,

where

1Wu ∼N (0,6u), 1W b ∼N (0,6b), (56)

and

6u = g2
uδM

(
FsCCT Fs

T
+ FcCCT Fc

T
)

MT , (57)

6b = g2
bδM

(
FsCCT Fs

T
+ FcCCT Fc

T
)

MT , (58)

C = diag((α1, . . . ,αn)), (59)

Fs = (sin(π),sin(2π), . . . ,sin(mπ))(ξ1,ξ2, . . . , ξm)
T , (60)

Fc = (cos(π/2),cos(3π/2), . . . ,

cos(mπ/2))(ξ1,ξ2, . . . , ξm)
T . (61)

For our choice ofαk,βk in Eq. (55), the state covariance
matrices6u and6b are singular ifN > 12. To diagonal-
ize the state covariances we solve the symmetric eigenvalue
problemsParlett(1998)

(M − δνMD2)vu =6uvuλ
u,

(M − δMD2)vb =6bvbλ
b,

and define the linear coordinate transformations

u = V u(xu,yu)
T , b = V b(xb,yb)

T , (62)

where the columns of the(N − 2)× (N − 2)-matricesVu
andVb are the eigenvectors ofvu, vb, respectively. The dis-
cretization using Legendre spectral elements works in our

where fu, fb are 10-dimensional vector functions, gu, gb are ((N − 2) − 10)-
dimensional vector functions and where

Ŵn
u ∼ N (0,diag ((λu1 , λ

u
2 , . . . , λ

u
10))) ,

Ŵn
b ∼ N

(
0, diag

((
λb1, λ

b
2, . . . , λ

b
10

)))
.

We test the convergence of our approximation as follows. To assess the
convergence in the number of grid-points in space, we define a reference
solution using N = 2000 grid-points and a time step of δ = 0.002. We
compute another approximation of the solution, using the same (discrete)
BM as in the reference solution, but with another number of grid-points,
say N = 500. We compute the error at t = T = 0.2,

ex = || (u500(x, T )T , b500(x, T )T )− (uRef (x, T )T , bRef (x, T )T ) || ,

where || · || denotes the Euclidean norm, and store it. We repeat this pro-
cedure 500 times and compute the mean of the error norms and scale the
result by the mean of the norm of the solution. The results are shown in the
left panel of figure 2. We observe a straight line, indicating super algebraic
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Figure 2: Convergence of discretization scheme for geomagnetic equations.
Left: Convergence in the number of spatial grid-points (log-linear scale).
Right: Convergence in the time step (log-log scale).

convergence of the scheme (as is expected from a spectral method).
Similarly, we check the convergence of the approximation in the time step

by computing a reference solution with NRef = 1000 and δRef = 2−12. Using
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Fig. 2.Convergence of discretization scheme for geomagnetic equa-
tions. Left: Convergence in the number of spatial grid-points (log-
linear scale). Right: Convergence in the time step (log-log scale).

favor here, because the matricesM and D2 are symmetric
so that we can diagonalize the left hand side simultaneously
with the state covariance matrix to obtain

xn+1
u = f u(x

n
u,y

n
u,x

n
b,y

n
b)+1Ŵ n

u,

yn+1
u = gu(x

n
u,y

n
u,x

n
b,y

n
b),

xn+1
b = f b(x

n
u,y

n
u,x

n
b,y

n
b)+1Ŵ n

b,

yn+1
b = gb(x

n
u,y

n
u,x

n
b,y

n
b),

wheref u,f b are 10-dimensional vector functions,gu,gb
are((N − 2)− 10)-dimensional vector functions and where

Ŵ n
u ∼ N

(
0,diag

((
λu1,λ

u
2, . . . ,λ

u
10

)))
,

Ŵ n
b ∼ N

(
0,diag

((
λb1,λ

b
2, . . . ,λ

b
10

)))
.

We test the convergence of our approximation as follows.
To assess the convergence in the number of grid-points in
space, we define a reference solution usingN = 2000 grid-
points and a time step ofδ = 0.002. We compute another ap-
proximation of the solution, using the same (discrete) BM as
in the reference solution, but with another number of grid-
points, sayN = 500. We compute the error att = T = 0.2,

ex = ||(u500(x,T )
T ,b500(x,T )

T )− (uRef(x,T )
T ,bRef(x,T )

T ) || ,

where|| · || denotes the Euclidean norm, and store it. We re-
peat this procedure 500 times and compute the mean of the
error norms and scale the result by the mean of the norm of
the solution. The results are shown in the left panel of Fig.2.

We observe a straight line, indicating super algebraic con-
vergence of the scheme (as is expected from a spectral
method).

Similarly, we check the convergence of the ap-
proximation in the time step by computing a refer-
ence solution withNRef = 1000 andδRef = 2−12. Using
the same BM as in the reference solution, we com-
pute an approximation with time stepδ and compute
the error at t = T = 0.2, et = ||(uδ(x,T )

T ,bδ(x,T )
T )−

www.nonlin-processes-geophys.net/19/365/2012/ Nonlin. Processes Geophys., 19, 365–382, 2012
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Figure 3: Uncertainty in the initial state. Left: u(x, 0) (unobserved). Right:
b(x, 0) (observed). Black: mean. Red: 10 realizations of the initial state.

we collect the magnetic field b at 20 equally spaced locations. The velocity
u is unobserved and it is of interest to study how the various data assimila-
tion techniques make use of the information in b to update the unobserved
variables u [19, 20].

To assess the performance of the filters, we ran 100 twin experiments.
A twin experiment amounts to: (i) drawing a sample from the initial state
and running the model forward in time until t = T = 0.2 (one fifth of a
magnetic diffusion time [19]) (ii) collecting the data from this free model
run; and (iii) using the data as the input to a filter and reconstructing the
state trajectory. Figure 4 shows the result of one twin experiment for r = 4.

For each twin experiment, we calculate and store the error at t = T = 0.2
in the velocity, eu = ||u(x, T ) − uFilter(x, T ) ||, and in the magnetic field,
eb = || b(x, T )− bFilter(x, T ) ||. After running the 100 twin experiments, we
calculate the mean of the error norms (not the mean error) and the variance
of the error norms (not the variance of the error) and scale the results by
the mean of the norm of u and b respectively. All filters we tested were
“untuned,” i.e. we have not adjusted or inserted any free parameters to
boost the performance of the filters.

Figure (5) shows the results for the implicit particle filter, the EnKF
as well as the SIR filter for 200 measurement locations and for r = 10.

28

Fig. 3. Uncertainty in the initial state. Left:u(x,0) (unobserved).
Right: b(x,0) (observed). Black: mean. Red: 10 realizations of the
initial state.

(uRef(x,T )
T ,bRef(x,T )

T ) || , and store it. We repeat this
procedure 500 times and then compute the mean of these er-
ror norms, divided by the mean of the norm of the solution.
The results are shown in the right panel of Fig.2. We ob-
serve a first order decay in the error for time steps larger than
δ = 0.02 as is expected. The error has converged for time
steps smaller thanδ = 0.002, so that a higher resolution in
time does not improve the accuracy of the approximation.

Here we are satisfied with an approximation withδ =

0.002 andN = 300 grid-points in space as inFournier et al.
(2007). The relatively small number of spatial grid-points
is sufficient because the noise is very smooth in space and
because the Legendre spectral elements accumulate nodes
close to the boundaries and, thus, represent the steep bound-
ary layer, characteristic of Eqs. (49)–(50), well even ifN is
small (see alsoFournier et al., 2007).

4.2 Filtering results

We apply the implicit particle filter with gradient descent
minimization and random maps (see algorithm2 in Sect.3),
the simplified implicit particle filter (see Sect.2.2) adapted
to models with partial noise, a standard EnKF (without lo-
calization or inflation), as well as a standard SIR filter to the
test problem Eqs. (49)–(50). The numerical model is given
by the discretization described in the previous section with
a random initial state. The distribution of the initial state is
Gaussian with meanu(x,0),b(x,0) as in Eqs. (51)–(52) and
with a covariance6u,6b given by Eqs. (57)–(58). In Fig. 3,
we illustrate the uncertainty in the initial state and plot 10 re-
alizations of the initial state (grey lines) along with its mean
(black lines). We observe that the uncertainty inu0 is small
compared to the uncertainty inb0.

The data are the values of the magnetic fieldb, measured at
k equally spaced locations in[−1,1] and corrupted by noise:

zl = Hbq(l)+ sV l, (63)
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Figure 4: Outcome of a twin experiment. Black: true state u(x, 0.2) (left)
and b(x, 0.2) (right). Red: reconstruction by implicit particle filter with 4
particles.

The figure indicates that the implicit particle filter requires only very few
particles (∼ 4 − 10) to yield accurate state estimates with less than 1%
error in the observed variables b and less than 15% error in the unobserved
velocity u. The SIR filter with 1000 particles gives significantly larger errors
(about 10% in the observed variable b and 20% in the unobserved variable
u) and much larger variances in the errors. The EnKF requires about 500
particles to achieve the accuracy of the implicit filter with only 4 particles.

In the experiments, we observed that the minimization in implicit par-
ticle filtering typically converged after 4-10 steps (depending on r, the gap
in time between observations). The convergence criterion was to stop the
iteration when the change in Fj was less than 10%. A more accurate mini-
mization did not improve the results significantly, so that we were satisfied
with a relatively crude estimate of the minimum in exchange for a speed-up
of the algorithm. We found λ by solving (11) with Newton’s method using
λ0 = 0 as initial guess and observed that it converged after about eight steps.
The convergence criterion was to stop the iteration if |F (λ)− φ− ρ| ≤ 10−3,
because the accurate solution of this scalar equation is numerically inexpen-
sive. We resampled using algorithm 2 in [1] if the effective sample size MEff

in (19) divided by the number of particles M , is less than 90% of the number
of particles.

To further investigate the performance of the filters, we run more nu-
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Fig. 4. Outcome of a twin experiment. Black: true stateu(x,0.2)
(left) andb(x,0.2) (right). Red: reconstruction by implicit particle
filter with 4 particles.

wheres = 0.001 and whereH is ak×m-matrix that maps the
numerical approximationb (defined at the GLL nodes) to the
locations where data is collected. We consider data that are
dense in time (r = 1) as well as sparse in time (r > 1). The
data are sparse in space and we consider two cases: (i) we
collect the magnetic fieldb at 200 equally spaced locations;
and (ii) we collect the magnetic fieldb at 20 equally spaced
locations. The velocityu is unobserved and it is of interest to
study how the various data assimilation techniques make use
of the information inb to update the unobserved variablesu
(Fournier et al., 2007, 2010).

To assess the performance of the filters, we ran 100 twin
experiments. A twin experiment amounts to (i) drawing a
sample from the initial state and running the model forward
in time until t = T = 0.2 (one fifth of a magnetic diffusion
time Fournier et al., 2007), (ii) collecting the data from this
free model run, and (iii) using the data as the input to a fil-
ter and reconstructing the state trajectory. Figure4 shows the
result of one twin experiment forr = 4.

For each twin experiment, we calculate and store the
error at t = T = 0.2 in the velocity, eu = ||u(x,T )−

uFilter(x,T ) ||, and in the magnetic field,eb = ||b(x,T )−

bFilter(x,T ) ||. After running the 100 twin experiments, we
calculate the mean of the error norms (not the mean error)
and the variance of the error norms (not the variance of the
error) and scale the results by the mean of the norm ofu and
b, respectively. All filters we tested were “untuned”, i.e. we
have not adjusted or inserted any free parameters to boost the
performance of the filters.

Figure5shows the results for the implicit particle filter, the
EnKF as well as the SIR filter for 200 measurement locations
and forr = 10.

The figure indicates that the implicit particle filter requires
only very few particles (∼4–10) to yield accurate state es-
timates with less than 1 % error in the observed variablesb

and less than 15 % error in the unobserved velocityu. The
SIR filter with 1000 particles gives significantly larger errors
(about 10 % in the observed variableb and 20 % in the un-
observed variableu) and much larger variances in the errors.
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Figure 5: Filtering results for data collected at a high spatial resolution (200
measurement locations). The errors at t = 0.2 of the implicit particle filter
(red), EnKF (purple) and SIR filter (green) are plotted as a function of the
number of particles. The error bars represent the mean of the errors and
mean of the standard deviations of the errors.

merical experiments and vary the availability of the data in time, as well as
the number of particles. Figure 6 shows the results for the implicit particle
filter, the simplified implicit particle filter, the EnKF and the SIR filter for
200 measurement locations and for r = 1, 2, 4, 10.

We observe from figure 6, that the error statistics of the implicit particle
filter have converged, so that there is no significant improvement when we
increase the number of particles to more than 10. In fact, the numerical
experiments suggest that no more than 4 particles are required here. Inde-
pendent of the gap between the observations in time, we observe an error
of less than 1% in the observed variable b. The error in the unobserved
variable u however depends strongly on the gap between observations and,
for a large gap, is about 15%.

The reconstructions of the observed variables by the simplified implicit
particle filter are rather insensitive to the availability of data in time and,
with 20 particles, the simplified filter gives an error in the observed quantity
b of less than 1%. The errors in the unobserved quantity u depend strongly
on the gap between the observations and can be as large as 15%. The error
statistics in figure 6 have converged and only minor improvements can be
expected if the number of particles is increased to more than 20.
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Fig. 5.Filtering results for data collected at a high spatial resolution
(200 measurement locations). The errors att = 0.2 of the implicit
particle filter (red), EnKF (purple) and SIR filter (green) are plotted
as a function of the number of particles. The error bars represent the
mean of the errors and mean of the standard deviations of the errors.

The EnKF requires about 500 particles to achieve the accu-
racy of the implicit filter with only 4 particles.

In the experiments, we observed that the minimization in
implicit particle filtering typically converged after 4–10 steps
(depending onr, the gap in time between observations).
The convergence criterion was to stop the iteration when the
change inFj was less than 10 %. A more accurate minimiza-
tion did not improve the results significantly, so that we were
satisfied with a relatively crude estimate of the minimum in
exchange for a speed-up of the algorithm. We foundλ by
solving Eq. (11) with Newton’s method usingλ0

= 0 as ini-
tial guess and observed that it converged after about eight
steps. The convergence criterion was to stop the iteration if
|F(λ)−φ− ρ| ≤ 10−3, because the accurate solution of this
scalar equation is numerically inexpensive. We resampled us-
ing algorithm 2 inArulampalam et al.(2002), if the effective
sample sizeMEff in Eq. (19) divided by the number of parti-
clesM is less than 90 % of the number of particles.

To further investigate the performance of the filters, we
run more numerical experiments and vary the availability of
the data in time, as well as the number of particles. Figure6
shows the results for the implicit particle filter, the simplified
implicit particle filter, the EnKF and the SIR filter for 200
measurement locations and forr = 1,2,4,10.

We observe from Fig.6, that the error statistics of the im-
plicit particle filter have converged, so that there is no signif-
icant improvement when we increase the number of particles
to more than 10. In fact, the numerical experiments suggest
that no more than 4 particles are required here. Independent
of the gap between the observations in time, we observe an
error of less than 1 % in the observed variableb. The error in

the unobserved variableu, however, depends strongly on the
gap between observations and, for a large gap, is about 15 %.

The reconstructions of the observed variables by the sim-
plified implicit particle filter are rather insensitive to the
availability of data in time and, with 20 particles, the sim-
plified filter gives an error in the observed quantityb of less
than 1 %. The errors in the unobserved quantityu depend
strongly on the gap between the observations and can be as
large as 15 %. The error statistics in Fig.6 have converged
and only minor improvements can be expected if the number
of particles is increased to more than 20.

The SIR filter required significantly more particles, than
the implicit filter or simplified implicit filter. Independent of
the gap between observations, the errors and their variances
are larger than for the implicit and simplified implicit filter,
even if the number of particles for SIR is set to 1000. The
EnKF performs well and, for about 500 particles, gives re-
sults that are comparable to those of the implicit particle fil-
ter. The EnKF may give similarly accurate results at a smaller
number of particles if localization and inflation techniques
are implemented.

The errors in the reconstructions of the various filters are
not Gaussian, so that an assessment of the errors based on
the first two moments is incomplete. In the two panels on
the right of Fig.7, we show histograms of the errors of the
implicit filter (10 particles), simplified implicit filter (20 par-
ticles), EnKF (1000 particles) and SIR filter (1000 particles)
for r = 10 model steps between observations.

We observe that the errors of the implicit filter, simplified
implicit filter and EnKF are centered to the left of the di-
agrams (at around 10 % in the unobserved quantityu and
about 1 % for the observed quantityb) and show a consider-
ably smaller spread than the errors of the SIR filter, which are
centered at much larger errors (20 % in the unobserved quan-
tity u and about 9 % for the observed quantityb). A closer
look at the distribution of the errors thus confirms our con-
clusions we have drawn from an analysis based on the first
two moments.

We further assess the performance of the filters by con-
sidering their effective sample size (19), which measures the
quality of the particles ensembleDoucet et al.(2001). A large
effective sample size indicates a good ensemble, i.e. the sam-
ples are independent and each of them contributes signifi-
cantly to the approximation of the conditional mean; a small
effective sample size indicates a “bad ensemble”, i.e. most
of the samples carry only a small weight. We computed the
effective sample size for the implicit particle filter, the sim-
plified implicit particle filter and the SIR filter after each as-
similation, and compute the average after each of 100 twin
experiments. In Table1, we show the average effective sam-
ple size (averaged over all 100 twin experiments and scaled
by the number of particles) for a gap ofr = 10 model steps
between observations.

We observe that the effective sample size of the implicit
filter is about 10 times larger than the effective sample size

www.nonlin-processes-geophys.net/19/365/2012/ Nonlin. Processes Geophys., 19, 365–382, 2012
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Figure 6: Filtering results for data collected at a high spatial resolution (200
measurement locations). The errors at t = 0.2 of the simplified implicit
particle filter (upper left), implicit particle filter (upper right), SIR filter
(lower left) and EnKF (lower right) are plotted as a function of the number
of particles and for different gaps between observations in time. The error
bars represent the mean of the errors and mean of the standard deviations
of the errors.
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Fig. 6. Filtering results for data collected at a high spatial resolution (200 measurement locations). The errors att = 0.2 of the simplified
implicit particle filter (upper left), implicit particle filter (upper right), SIR filter (lower left) and EnKF (lower right) are plotted as a function
of the number of particles and for different gaps between observations in time. The error bars represent the mean of the errors and mean of
the standard deviations of the errors.

Table 1. Effective sample size of the simplified implicit filter, the
implicit filter and the SIR filter.

Simplified Implicit SIR
implicit filter filter filter

MEff/M 0.20 0.19 0.02

of the SIR filter. This result indicates that the particles of the
implicit filter are indeed focussed towards the high probabil-
ity region of the target pdf.

Next, we decrease the spatial resolution of the data to 20
measurement locations and show filtering results from 100
twin experiments in Fig.8.

The results are qualitatively similar to those obtained at
a high spatial resolution of 200 data points per observation.
The two panels on the right of Fig.7, show histograms of
the errors of the implicit filter (10 particles), simplified im-
plicit filter (20 particles), EnKF (1000 particles) and SIR

filter (1000 particles) forr = 10 model steps between ob-
servations. Again, the results are qualitatively similar to the
results we obtained at a higher spatial resolution of the data.

We observe for the implicit particle filter that the errors in
the unobserved quantity are insensitive to the spatial resolu-
tion of the data, while the errors in the observed quantity are
determined by the spatial resolution of the data and are rather
insensitive to the temporal resolution of the data. These ob-
servations are in line with those reported in connection with a
strong 4-D-Var algorithm inFournier et al.(2007). All other
filters we have tried show a dependence of the errors in the
observed quantity on the temporal resolution of the data.

The reason for the accurate state estimates of the implicit
particle filter, obtained at a low number of particles, is its
direct use of the data: the implicit particle filter uses the
information from the model, as well as from the data to
search for the high probability region of the target pdf. This
search is performed by the particle-by-particle minimization
of the functionsFj . The implicit filter then generates samples
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spatial resolution (200 measurement locations) and every r = 10 model
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locations) and every r = 10 model steps.
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Fig. 7.Histogram of errors att = 0.2 of the implicit filter, simplified
implicit filter, EnKF and SIR filter. Left: data are available at a high
spatial resolution (200 measurement locations) and everyr = 10
model steps. Right: data are available at a low spatial resolution
(20 measurement locations) and everyr = 10 model steps.

within the high probability region by solving Eq. (11). Be-
cause the implicit filter focusses attention on regions of high
probability, only a few samples are required for a good accu-
racy of the state estimate (the conditional mean). The infor-
mation in the observations of the magnetic fieldb propagates
to the filtered updates of the unobserved velocityu via the
nonlinear coupling in Eqs. (49)–(50).

The EnKF on the other hand uses the data only at times
when an observation is available. The state estimates at all
other times are generated by the model alone. Moreover, the
nonlinearity, and thus the coupling of observed and unob-
served quantities, is represented only in the approximation
of the state covariance matrix, so that the information in the
data propagates slowly to the unobserved variables. The sit-
uation is very similar for the simplified implicit filter.

The SIR filter requires far more particles than the implicit
filter because it samples the low probability region of the tar-
get pdf with a high probability. The reason is that the overlap
of the pdf generated by the model alone and the target pdf be-
comes smaller and smaller as the data becomes sparser and
sparser in time. For that reason, the SIR filter must generate
far more samples to at least produce a few samples that are
likely with respect to the observations. Moreover, the data is
only used to weigh samples that are generated by the model
alone; it does not use the nonlinear coupling between ob-
served and unobserved quantities, so that the information in

the data propagates very slowly from the observed to the un-
observed quantities.

In summary, we observe that the implicit particle filter
yields the lowest errors with a small number of particles for
all examples we considered, and performs well and reliably
in this application. The SIR and simplified implicit particle
filters can reach the accuracy of the implicit particle filter, at
the expense that the number of particles is increased signifi-
cantly. The very small number of particles required for a very
high accuracy make the implicit filter the most efficient fil-
ter for this problem. Note that the partial noise works in our
favor here, because the dimension of the space the implicit
filter operates in is 20, rather than the state dimension 600.

Finally, we wish to compare our results with those in
Fournier et al.(2007), where a strong constraint 4-D-Var al-
gorithm was applied to the deterministic version of the test
problem. Fournier and his colleagues used “perfect data,”
i.e. the observations were not corrupted by noise, and ap-
plied a conjugate-gradient algorithm to minimize the 4-D-
Var cost function. The iterative minimization was stopped af-
ter 5000 iterations. With 20 observations in space and a gap
of r = 5 model steps between observations, an error of about
1.2 % inu and 4.7 % inb was achieved. With the implicit fil-
ter, we can get to a similar accuracy at the same spatial reso-
lution of the data, but with a larger gap ofr = 10 model steps
between observations. However, the 4-D-Var approach can
handle larger uncertainties and errors in the velocity field.
The reason is that the initial conditions are assumed to be
known (at least roughly) when we assimilate data sequen-
tially. This assumption is of course not valid in “real” geo-
magnetic data assimilation (the velocity field is unknown),
however a strong 4-D-Var calculation can be used to obtain
approximate and uncertain initial conditions to then start as-
similating new data with a filter. The implicit particle filter
then reduces the memory requirements because it operates
in the 20-dimensional subspace of the forced variables and
assimilates the data sequentially. Each minimization is thus
not as costly as a 600-dimensional strong constraint 4-D-Var
minimization. Alternatively, one could extend the implicit
particle filter presented here to include the initial conditions
as variables of theFjs. This set up would allow for larger
uncertainties in the initial conditions than what we presented
here.

5 Conclusions

We have considered implicit particle filters for data assimi-
lation. Previous implementations of the implicit particle fil-
ter rely on finding the Hessians of functionsFj of the state
variables. Finding these Hessians can be expensive if the
state dimension is large and can be cumbersome if the sec-
ond derivatives of theFjs are hard to calculate. We pre-
sented a new implementation of the implicit filter combin-
ing gradient descent minimization with random maps. This
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Table 1: Effective sample size of the simplified implicit filter, the implicit
filter and the SIR filter.

Simplified implicit filter Implicit filter SIR filter
MEff/M 0.20 0.19 0.02
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Figure 8: Filtering results for data collected at a low spatial resolution (20
measurement locations). The errors at T = 0.2 of the simplified implicit
particle filter (upper left), implicit particle filter (upper right), SIR filter
(lower left) and EnKF (lower right) are plotted as a function of the number
of particles and for different gaps between observations in time. The error
bars represent the mean of the errors and mean of the standard deviations
of the errors.
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Fig. 8. Filtering results for data collected at a low spatial resolution (20 measurement locations). The errors atT = 0.2 of the simplified
implicit particle filter (upper left), implicit particle filter (upper right), SIR filter (lower left) and EnKF (lower right) are plotted as a function
of the number of particles and for different gaps between observations in time. The error bars represent the mean of the errors and mean of
the standard deviations of the errors.

new implementation avoids the often costly calculation of the
Hessians and, thus, reduces the memory requirements com-
pared to earlier implementations of the filter.

We have considered models for which the state covariance
matrix is singular or ill-conditioned. This happens often, for
example, in geophysical applications in which the noise is
smooth in space or if the model includes conservation laws
with zero uncertainty. Previous implementations of the im-
plicit filter are not applicable here and we have shown how
to use our new implementation in this situation. The implicit
filter is found to be more efficient than competing methods
because it operates in a space whose dimension is given by
the rank of the state covariance matrix rather than the dimen-
sion of the state space.

We applied the implicit filter in its new implementation to
a test problem in geomagnetic data assimilation. The implicit
filter performed well in comparison to other data assimila-
tion methods (SIR, EnKF and 4-D-Var) and gave accurate
state estimates with a small number of particles and at a low
computational cost. We have studied how the various data as-
similation techniques use the available data to propagate in-

formation from observed to unobserved quantities and found
that the implicit particle filter uses the data in a direct way,
propagating information to unobserved quantities faster than
competing methods. The direct use of the data is the reason
for the small errors in reconstructions of the state.
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