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Abstract. Volcanic and geothermal aspects both exist in
many geologically young areas. In these areas the heat trans-
fer process is of fundamental importance, so that the thermal
and fluid-dynamic processes characterizing a viscous fluid in
a porous medium are very important to understand the com-
plex dynamics of the these areas. The Campi Flegrei caldera,
located west of the city of Naples, within the central-southern
sector of the large graben of Campanian plain, is a region
where both volcanic and geothermal phenomena are present.
The upper part of the geothermal system can be considered
roughly as a succession of volcanic porous material (tuff)
saturated by a mixture formed mainly by water and carbon
dioxide. We have implemented a finite elements approach in
transient conditions to simulate water flow in a 2-D porous
medium to model the changes of temperature in the geother-
mal system due to magmatic fluid inflow, accounting for a
transient phase, not considered in the analytical solutions
and fluid compressibility. The thermal model is described by
means of conductive/convective equations, in which we pro-
pose a thermal source represented by a parabolic shape func-
tion to better simulate an increase of temperature in the cen-
tral part (magma chamber) of a box, simulating the Campi
Flegrei caldera and using more recent evaluations, from lit-
erature, for the medium’s parameters (specific heat capacity,
density, thermal conductivity, permeability). A best-fit ve-
locity for the permeant is evaluated by comparing the sim-
ulated temperatures with those measured in wells drilled by
Agip (Italian Oil Agency) in the 1980s in the framework of
geothermal exploration. A few tens of days are enough to
reach the thermal steady state, showing the quick response
of the system to heat injection. The increase in the pressure
due to the heat transport is then used to compute ground

deformation, in particular the vertical displacements charac-
teristics of the Campi Flegrei caldera behaviour. The verti-
cal displacements range from 1 cm to 10 cm in accordance
with the mini uplift, characterizing the recent behaviour of
the caldera. The time needed to move fluid particles from the
bottom to the upper layer (years) is compatible with the tim-
ing of the mini uplift.

1 Introduction

In an area where both volcanic activity and geothermal re-
sources are present, a complete understanding of the thermo-
fluid dynamic processes characterizing a viscous fluid in a
porous medium is required. Thus, the convective heat trans-
fer process becomes strongly relevant in the framework of
volcanic risk definition and geothermal exploration.

A region where both the phenomena are present is the
Campi Flegrei area (Fig. 1). Campi Flegrei is a caldera com-
plex located in the Campanian plain region of south-central
Italy, 15 km west of the city of Naples (Barberi et al., 1991).
The plain has been volcanically active for at least the last
50 000 yr with the activity concentrated in Campi Flegrei,
at Vesuvius and on the islands of Procida and Ischia. The
main caldera at Campi Flegrei has a diameter of 12–15 km
(Rosi and Sbrana, 1987; Lirer et al., 1987; Orsi et al., 1996),
and its rim is thought to have been formed during a catas-
trophic eruption, about 39 kyr ago ca. which produced a
deposit referred to as the Campanian Ignimbrite (Rosi and
Sbrana, 1987; De Vivo et al., 2001). The following eruption,
called Neapolitan Yellow Tuff, that occurred 12–15 kyr ago
(Civetta et al., 1997; Deino et al., 2004) produced a further
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Fig. 1. Sketch of Campi Flegrei caldera, located in Southern Italy,
inside Campania region. The red symbols indicate the areas where
the geothermal wells of Mofete, San Vito and Licola have been
drilled by Agip.

collapse of the inner part of the pre-existing caldera. The
last eruption, testifying the persistent activity of the mag-
matic system, occurred in 1538, giving rise to an about 130 m
spatter cone called Mt. Nuovo (Di Vito et al., 1987, 1999).
The magma chemistry suggests a current magma cham-
ber, which is currently very small, with a volume of per-
haps only 1 km3. The area is also an example of a system
dominated by phreatomagmatic eruptions, in which magma
interacts with surface water, primarily sea water or deep
aquifers beneath the caldera. A strong increase in knowledge
on the Campi Flegrei Caldera was reached after the SER-
APIS project (Zollo et al., 2003; Judhenerc and Zollo, 2004),
through an extensive marine active seismic survey carried out
in the Gulfs of Naples and Pozzuoli. Vanorio et al. (2005) de-
tected a region of low Poisson ratio, which implies the pres-
ence of fractured, over-pressured gas-bearing formations.

The Campi Flegrei area periodically experiences signif-
icant unrest episodes, which include ground deformations,
the so-called “bradisismo”. Several authors (i.e. Parascan-
dola, 1947; Dvorak and Mastrolorenzo, 1991; Morhange et
al., 1999) showed the general subsidence (rate of 1 cm yr−1)
characterizing the last two millennia, with superimposed fast
and intense uplift episodes, as before the 1538 eruption.
The main recent uplift episodes that occurred in 1970–1972
and 1982–1984 were very spectacular and dramatic, with a

cumulative vertical displacement of about 3.5 m at the town
of Pozzuoli (Osservatorio Vesuviano, 1985), partially recov-
ered successively (Barberi et al., 1984; De Natale et al.,
1991). Small uplift episodes took place in 1989, 1994, 2000,
2004, 2005, 2006 and 2009 (Gaeta et al., 2003; Lanari et al.,
2004; Troise et al., 2007, 2008) with durations of few months
and maximum amplitudes ranging from 3 to 11 cm.

During the early 1980s, Agip realized geophysical, ge-
ological and geochemical investigations in the Campi Fle-
grei area, in the framework of a geothermal exploitation
project (Agip report, 1987). The deep drillings performed in
the Mofete, San Vito and Licola areas (Fig. 1) showed the
existence of strong heat flows with maximum temperature
up to 400◦C at 3 km depth, as testified by the intense fu-
marolic/hydrothermal activity (Rosi and Sbrana, 1987). The
thermal waters mainly consist of water steam and carbon
dioxide, together with minor amounts of H2S, N2, CH4 and
rare gases (Chiodini et al., 2003). The relevance of the heat
and mass transport at Campi Flegrei is confirmed by gas dif-
fusivity measurements (Chiodini et al., 2001) that show the
high intensity of this phenomenon.

Mechanisms accounting for the understanding of both vol-
canic and geothermal phenomena including ground deforma-
tion have generally involved two hypotheses: one purely me-
chanic, the other of thermo-fluid dynamic nature. The first
is related to pressure generation exerted from the intrusion
of magma into a magma chamber (Bianchi et al., 1987); the
second is related to pressure generation in a geothermal reser-
voir, due to pore pressure variations and temperature, de-
pending of the presence of an aquifer (Oliveri del Castillo
and Quagliariello, 1969; Casertano et al., 1976). During the
last years, the idea of the fundamental role of the hydrother-
mal fluids in triggering the activity at Campi Flegrei is ris-
ing. Nevertheless, signatures indicating cap rock formations,
which are required to build up pore fluid pressure within
reservoirs, have not yet been detected. Thus, many questions
still remain unresolved and the mechanisms responsible for
the Campi Flegrei activity not well constrained (Vanorio et
al., 2006).

The high structural complexity of the Campi Flegrei area
joint with always more evidence of a strong interaction be-
tween the magmatic chamber and shallow water table, also in
quiescent periods, calls for a deep knowledge of the aquifers
and magmatic source locations together with a deep charac-
terization of the media’s geophysical parameters and of phys-
ical properties of the rocks, in particular at high pressure and
temperature conditions, as existing in the Campi Flegrei area.

To investigate the influence of the fluids at Campi Flegrei,
several authors (Gaeta et al., 1998, 2003; Castagnolo et al.,
2001; Troise et al., 2001; Todesco et al., 2003, 2004) pro-
posed thermo-fluid-dynamic 1-D and 2-D modelling, taking
into account the anomalous thermal field that can induce vari-
ations in the rock rheology and in the elastic parameters of
the propagation medium. The complex equilibria among the
porous matrix and its fluid permeants are influenced either
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by heat transfer or by the coupled fluid flow (Ascolese et al.,
1993a, b).

Gaeta et al. (1998) (studying the possibility that hydrother-
mal fluids play a fundamental role in triggering activity at
Campi Flegrei) proposed a model for a simplified analyt-
ical description of the transport equation within a Campi
Flegrei-like geothermal system, modelled as a water perme-
ated porous solid matrix, with temperature and pressure gra-
dients, solving the equation at the stationary state, neglecting
the transients following changes in the boundary conditions.
They showed that changes of water flow can be very impor-
tant in the genesis and evolution of unrest crises. Wohletz et
al. (1999) developed a series of 2-D conductive/convective
numerical models to evaluate the possible magma cham-
ber configurations that predict the present thermal regime at
Campi Flegrei, reproduced by the measured thermal gradi-
ents in boreholes at Licola, San Vito, and Mofete, reported by
Agip (1987). They used a 2-D finite difference code includ-
ing convective regimes showing that, for all reasonable mod-
els, a convective zone, developed above the magma cham-
bers after caldera collapse, is necessary to achieve the high
gradients observed by Agip (1987). Castagnolo et al. (2001)
showed the coupled effect of mechanic and thermal pertur-
bations induced in geothermal fluids, using a 1-D analytical
approach. Troise et al. (2001) presented a 2-D approach to
model fields of temperature and pressure in an aquifer, ap-
plying a finite difference scheme to solve the basic equation
for the steady state.

As mentioned before, a peculiar characteristic recently dis-
covered, with the help of the continuous monitoring net-
work (Troise et al., 2007), is that the general downlift, be-
ginning after the last uplift crisis, is interrupted by small up-
lift phenomena that seem to produce a reduction on the fol-
lowing downlift rate. With a thermal-fluid-dynamical model,
Gaeta et al. (2003) investigated the occurrence of mini up-
lift episodes, characterized by relatively small positive ver-
tical displacements. Gaeta et al. (2003) analyzed the joint
mass and heat transport under pressure and temperature
gradients, in a porous medium, generated by deep source
changes and/or its coupling with shallower layers, finding a
good agreement between the computed uplift and observed
data by assuming realistic changes of the Péclet parameter
(−5≥ Pe≥ −1), which corresponds to the actual situation in
the well, whereas Pe= −12 corresponds to an additional flux
from the bottom to justify the observed ground uplift. In our
modelling study we found Pe ranging in the interval from
−10 to−1.

Due to the nonlinearity of the balance equations and the
complexity of the solid-fluid interactions, all previous mod-
els consider simplifying assumptions depending on the ma-
jor factors controlling the processes under investigation. The
most common simplifications are the steady state, the domain
dimensions reduced from 3-D to 2-D or 1-D, the fluid incom-
pressibility, the low-Reynolds flow regime and the Boussi-
nesq approximation to neglect the compressibility effects.

Fig. 2. Schematic representation of the computational domain rep-
resenting an idealized two-dimensional geothermal system. Domain
sizes areLx = Ly = 3 km. Boundary conditions are specified.

To enhance the understanding of the phenomenology, we
propose a thermo-fluid dynamic modelling, based on a finite
element approach. Our model includes a transient phase, not
evaluated in the analytical solutions, steady-state condition,
a 2-D domain easily extensible to a 3-D domain, and fluid
compressibility. In addition, we select a more recent evalu-
ation of the medium’s parameters (e.g. Giberti et al., 2006;
Peluso and Arienzo, 2007), which represents a more reliable
and accurate model for the thermo-dynamical property dis-
tribution in the propagation medium.

The proposed model allows us to pursue the objective of
this study through the modelling of conductive/convective
heat transfer processes with the following aims: (1) to recon-
struct the thermal field and obtain information about the av-
erage advective fluid velocity by comparing the vertical tem-
perature profiles with the temperature measured in the wells
drilled by Agip; (2) to evaluate the elastic effect through ver-
tical ground deformation caused by the pressure variations
produced by hot fluid rising, as a possible cause of the bra-
disismo; (3) the timing of reaching the thermal steady-state
condition.

2 Heat transfer modelling

Previous approaches to model the thermo-fluid dynamics of
Campi Flegrei were generally based on simple analytic 1-D
or finite differences 2-D models, solved at stationary state. In
our case, trying to obtain a more robust basis for the develop-
ment of a thermo-fluid dynamical model of the caldera unrest
and the related geothermal field, the temperature distribution
has been evaluated in unsteady state conditions, with refer-
ence to an idealised, two-dimensional system, constituted by
a rectangular domain (Fig. 2) of porous rocks, permeated
by a liquid solution, assumed in mono-phase condition and
incompressible, heated from below and with heat exchange
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through the side walls. Regarding the porosity and the per-
meability, the porous medium is assumed to be isotropic.

We propose modelling using a thermal source repre-
sented by a parabolic shape function and using more real-
istic and up-to-date (than those previously used) values for
the medium parameters, inferred from the recent literature. In
particular, thermal conductivity and specific heat have been
evaluated by laboratory measurements performed by using
core samples from the geothermal wells (Zamora et al., 1994;
Yven, 2001; Vanorio et al., 2003) and for the absolute rock
density (Russo et al., 2012). We use a parabolic shape to bet-
ter represent a temperature increase applied at the central part
of the bottom, simulating the contact of a localised magma
chamber (generally approximated by a sub-spheric volume),
which transfers heat to the shallower aquifers. This temper-
ature profile allows to avoid the boundary effects produced
by boxcar sources generally used in the previous papers. Re-
cently, the knowledge of the rock’s physical properties in the
CF caldera has been considerably improved, at least in some
particular areas (Dello Iacono et al., 2008) as well as the loca-
tion of the possible thermal sources (Zollo et al., 2008). We
study also some elastic parameters with the objective of an
evaluation of ground displacement associated with convec-
tive heat transfer. These elastic parameters were computed
starting from a 3-D P- and S-wave velocity model obtained
from the SERAPIS project. In fact, a 3-D velocity model of
the Campi Flegrei caldera has been reconstructed by seismic
tomography using passive data collected during the last up-
lift crises (Vanorio et al., 2005) and active data collected dur-
ing SERAPIS project. The two obtained models were merged
(Satriano et al., 2006) to get a more detailed velocity model
for a volume of 16× 20× 8 km, centred at the Bay of Poz-
zuoli on a 250 m regular grid

A 2-D finite elements method (FEM) has been used to
solve the equations for transient and steady-state temper-
ature. In the Cartesian coordinate system (x = horizontal,
y = vertical), the unsteady thermal energy equation (Bird et
al., 2002) for a fluid at constant pressure (neglecting any con-
tribution of radioactive decay, chemical reaction and latent
heat of crystallization and fusion) can be written as (for sym-
bols notation see Table A1):

ρ∗c∗

∂T

∂t
= ∇ · (K∇T ) − ερlcl(v · ∇T ) (1)

whereT is the temperature,ε is the porosity,K is the equiv-
alent thermal conductivity (Castagnolo et al., 2001),ρ∗c∗ =

4.25× 106 J m−3 K is the volume-averaged thermal capac-
ity of the perfused rock (Yven, 2001), andρlcl = 3.15×

106 J m−3 K is the thermal capacity of the permeant (Castag-
nolo et al., 2001).

In Eq. (1)ρ∗c∗
∂T
∂t

represents the rate of increase of ther-
mal energy per unit volume,∇ ·(K∇T ) represents the rate of
conduction heat transport per unit volume,ερlcl(v ·∇T ) rep-
resents the rate of convective heat transport per unit volume,
wherevy = V0·(1− y)·2·

(
x − x2

)
is the fluid velocity along

the vertical axis andvx = V0 ·

(
−

2
3x3

+ x2
−

1
6

)
is the fluid

velocity along the horizontal axis.V0 is the half of the maxi-
mum velocity at the caldera centre for each level, except for
the top surface wherevy = 0. We hypothetised that for the
vertical component of the fluid velocity there is a parabolic
shape in the horizontal direction characterised by decreasing
values at shallower layers, according to the bottom tempera-
ture profile.

TheV0 value has been optimised by the best fit, with re-
spect to the temperature measured in the boreholes, perform-
ing each simulations with a differentV0 values, ranging in
the interval from 10−3 to 10−7 m s−1.

Porosity values have been provided by Ascolese et
al. (1993a, b) as inferred from laboratory measurements.
The basal temperature (647 K) has been deduced from bore-
hole temperature observations to simulate a possible magma
chamber heating the shallower aquifers, while the upper
temperature (293 K) is assumed from room conditions. The
model geometry reproduces the characteristics of a geother-
mal system fed by a sub-spherical magma chamber. The do-
main sizes areLx = Ly = 3 km, compatible with the geo-
physical information that shows no evidence of the presence
of magma reservoirs with a size>1 km3 at shallow depth
(<4 km). In fact, the simulated system consists of a porous
matrix heated by a small magma chamber refilled by a deeper
magmatic storage zone; a chamber as small as the one as-
sumed in this work would not be revealed by present-day
tomographies (Zollo et al., 2003). The magma chamber vol-
ume is similar to those that likely fed several Campi Flegrei
eruptions in the past, as well as to the small solidified magma
bodies identified off-shore of the Bay of Pozzuoli. In addi-
tion, the aquifer we describe is effectively localised within
the first 3 km of depth in Campi Flegrei where the critical
point of water is reached (Troise et al., 2001; Gaeta et al.,
2003). Thus, the region at which the permeant reaches the
critical temperature is considered external to our system.

For this reason, as an initial condition, a temperature pro-
file described by a parabolic function shape with respect to
the horizontal coordinate (x) and linear with respect to the
vertical one (y) has been selected:

T = 647×

[
2×

(
x − x2

)
+ 0.5

]
× (1− y) + 293× y ∀x, y

t = 0
(2)

As boundary conditions a heat flux at the lateral surface
has been assumed.{

x = 0 andt > 0 : −K ∂T
∂x

= hl × (T − To) ∀y

x = Lx andt > 0 : −K ∂T
∂x

= hl × (T − To) ∀y
(3)

wherehl is the heat transfer coefficient through the lateral
boundary, andTo is the room temperature.

At the bottom surface, a temperature profile with a
parabolic shape with respect to the horizontal axis has been
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considered, while a heat flux has been assumed through the
top surface:{

y = 0 andt > 0 T = 647×
[
2×

(
x − x2

)
+ 0.5

]
∀x

y = Ly and t> 0 − K ∂T
∂y

= ht × (T − To) ∀x

(4)

where ht is the heat transfer coefficient through the top
boundary.

The thermal conductivity has been evaluated, considering
saturated rocks, by the product of the thermal conductivities
of water and solid matrix (Yven, 2001):

Ksat(T ) = 0.64ε
×

[
Kε

water(T ) · K
(1−ε)
matrix(T )

]
.

Thermal conductivity varies with temperature. Using the
relation by Brigaud and Vasseur (1989) for the solid matrix
and by Ozbek and Phillips (1979) for the in situ fluid and
neglecting the dependence from the salinity, we can take into
account this dependence:

Kwater(T ) = Kwater(To)
[
1+ α (T − T0) + α′

× (T − T0)
2
]

Kmatrix(T ) = Kmatrix(To)

(
293

T

)
whereα = 2.38× 10−3 ◦C−1, α′

= 9.97× 10−6 ◦C−1 and
Kwater(To) = 0.6 W m−1 K−1 (Yven, 2001).

Finally, the product between density and specific heat
(4.25× 106 J m−3 K) has been suggested by Yven (2001).

3 Numerical simulations

The finite element method has been applied to simulate
unsteady and steady-state temperature distributions of an
aquifer subject to a temperature imbalance, due to a possible
magma intrusion at a depth able to transfer heat to the aquifer
from its top. The FEM approach tries to model the temper-
ature in a geothermal system due to magmatic fluids inflow.
Several tests have been performed by varying the parameters
inside realistic ranges. In particular, the vertical fluid veloc-
ity has been varied in the interval [10−3, 10−7 m s−1], trying
to find the best value by inversion of the steady-state vertical
gradient of temperature with respect to the temperature data
measured in the borehole by Agip (1987).

One of the most important modelling issues is the assess-
ment of the appropriate mesh density. Using a coarse mesh
can generate inaccurate results. On the other hand, using a
fine mesh leads to an increase of run times. To avoid such
problems, in our work a sensitivity analysis of the appropri-
ate mesh density was performed. After this analysis the do-
main was discretized into 32 620 elements of uniform sizes
with a density of about 3624 elements per km2.

As an example of the results, the temperature field at dif-
ferent times (t = 0, 2, 4, 6, 10 days) and in steady-state con-
ditions is shown in Fig. 3, for a velocityV0=1×10−5 m s−1.
It is evident that few tens of days are enough to reach the ther-
mal stationary conditions. This relatively short time needed
to reach steady-state conditions is clearly due to the rele-
vant contribution to the heat transfer carried by the convec-
tive term. Figures 4a and b show the conductive and con-
vective heat flow at steady state, where the convective term
is the main contribution in the lower half of the model box,
while the conductive term becomes predominant at shallower
depth.

We compare the simulated vertical temperature with those
measured in the wells. The best-fit model parameterVo was
obtained by exhaustively searching for the minimum value of
the variance between simulated and observed temperature.

In Fig. 5 the actual temperatures measured in wells in
areas drilled by Agip at Mofete and San Vito are super-
imposed to the simulated steady state temperature distribu-
tions, having as curve parameter the distance from the cen-
tre of symmetry (x/Lx = 0.5) of the model box in steps of
0.1. The simulation was performed usingV0=8×10−6 m s−1

(Fig. 5a), while Figs. 5b, c, d, e and f show, as exam-
ples, the simulations obtained usingV0=9× 10−6 m s−1,
V0=1×10−5 m s−1, V0=2×10−5 m s−1, V0=3×10−5 m s−1

andV0=4×10−5 m s−1, respectively, with the increase of the
convective term of the heat transfer. The comparison between
observed and simulated temperature is able to determine that
a fluid velocityV0 ∼= 1× 10−5 m s−1 produces temperatures
with the best fit to the real data on average. The Péclet num-
ber ranges between−1 and−10, in a good agreement with
the values evaluated by Gaeta et al. (2003).

The simulated temperatures provide evidence of the re-
spective rates of advective transport of the different sites,
showing the influence of the relative abundance of the per-
meant fed into the system: abundant at Mofete 1 and 2, poor
at San Vito 1, as reported in the log data of the Agip reports.
The convective heat transport is able to justify the charac-
teristic temperature gradients existing in the upper parts of
the aquifer more steeply than within the caldera. In more de-
tail, the data at San Vito are best fitted by a simulation with
a lower advective fluid velocity in comparison with Mofete.
This characteristic could be related to the abundance of fluid
locally fed into the system and/or to the different degree
of the local rock fracturing, both phenomena improving the
mass transport.

Due to the relevance of ground deformation in the Campi
Flegrei area, it is interesting to evaluate the effect that fluid
circulation can have on the strain conditions of the porous
medium, involved in the mass transport produced by a tem-
perature gradient. In porous media, thermal and hydrody-
namical characteristics have strong influence on the pore
pressure. In fact, a pressure variation at the base of the
geothermal system progressively migrates by water circula-
tion to shallower depths, with a characteristic time depending
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Fig. 3.Temperature field att = 0, 2 days, 4 days, 6 days, 10 days and at steady state.

on the velocity of the water flux and on the hydraulic pa-
rameters of the rocks. Pore pressure contrasts the lithostatic
pressure due to the overburden rocks at different depths and
causes elastic deformation of the rocks. The fluid circulation
enhances the pore pressure (1p), determining a volume in-
crease (1V ),

1V

V
= −µ1p ,

whereµ is the compressibility coefficient.

The linear deformation can then be approximated by

1L

L
∼=

1

3

1V

V
= −

µ

3
1p.

The compressibility coefficient has been evaluated using the
relationship:
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Fig. 4. Conductive heat flow at steady state(A), convective heat
flow at steady state(B). Vectors represent intensity and direction of
heat flow.

µ =
1

ρ
(
γ 2 −

4
3 β2

) ,

whereγ is the P-wave velocity,β is the S-wave velocity and
ρ is the density. The bulk modulus has been evaluated using
the seismic velocity as inferred from the seismic tomogra-
phy realized during the SERAPIS project (Zollo et al., 2003),
and the density has been evaluated from gravity inversion in-
ferred by Russo et al. (2012).

The increase in pore pressure, produced by the fluid circu-
lation and enhanced by the increased temperature at depth,
can be evaluated by (Castagnolo et al., 2001)

1p =
H ε < η >

k
Vy,

whereH = Ly is the total thickness of the domain,k is the
hydraulic permeability, while< η > is the average dynamic

viscosity of the liquid, andVy is the vertical fluid veloc-
ity. Using appropriate values for the parameters, we deter-
mine a vertical displacement in the range between 1 cm and
10 cm. This range for the vertical displacement agrees very
well with the mini uplift characterising the recent behaviour
of the Campi Flegrei caldera (Troise et al., 2007, 2008).

4 Discussion and conclusion

The objective of this study was the improvement of the de-
scription of the temperature profile within the Campi Flegrei
caldera due to conductive/convective heat transfer processes,
from both volcanological and geothermal points of view. The
caldera has been modelled as a rectangular box formed by a
water-permeated, porous, solid matrix. The geometry of the
aquifer has been chosen to reproduce the main features of
a geothermal system, overlying a localised magma source.
To get a description of the geothermal system, including the
transient following the changes in the boundary conditions,
the unsteady thermal energy equation has been resolved by a
2-D FEM approach. Because of the high permeability of the
rocks, advective heat transport exceeds conduction through
the porous matrix, justifying the observed temperature gradi-
ents. The vertical temperature profiles have been compared
with the temperature measured in wells (Mofete and San
Vito) drilled by Agip in the framework of a geothermal ex-
ploration. From this comparison a best-fit value for the aver-
age velocity of the advective fluid generated by the temper-
ature gradient has been evaluated asV0 ∼= 1× 10−5 m s−1.
This velocity was found lower in the San Vito area in com-
parison with the Mofete area, in accordance with the abun-
dance of fluid locally fed into the system, as inferred dur-
ing the drilling. In fact, analyzing the well logs, Chelini and
Sbrana (1987) demonstrated the relatively high abundance
of permeant fed into the system at Mofete 1 and 2 and the
poor presence of fluid at San Vito 1. This behaviour can be
related to the presence of a more developed aquifer in the
Mofete area. Alternatively, the different velocities found be-
tween the Mofete and San Vito wells can be related to the
spatial distribution of the rocks’ permeability, due to the dif-
ferent degree of rock fracturing. This suggests that the use of
a 3-D numerical model, instead of a 2-D axisymmetric struc-
ture, should be preferred at Campi Flegrei (D’Auria et al.,
2010). Our model and parameterisation are easily extensible
to a 3-D domain.

The pressure variations generated by the hot fluid rising
determine an elastic effect through ground deformation (ver-
tical displacement) that was computed ranging between 1 cm
and 10 cm. This range for the vertical displacement is well
in agreement with the mini uplift characterizing the recent
behaviour of the Campi Flegrei caldera.

Because we assume a depth of about 3 km for the bottom
of the geothermal system, the inferred velocity of advection
implies about 9.5 yr for deep fluids to reach the surface. In

www.nonlin-processes-geophys.net/19/323/2012/ Nonlin. Processes Geophys., 19, 323–333, 2012



330 V. Romano et al.: A 2-D FEM thermal model to simulate water flow in a porous media

Fig. 5. Vertical cross section of the temperature profile. The curve parameter is the position along the horizontal axis: from the centre
(x/Lx = 0.5, on the extreme right) to the lateral boundary (x/Lx = 1.0, on the extreme left) of the model box in steps by 0.1. The points
superimposed to the calculated curves correspond to the actualT (z) measured in the wells drilled by AGIP (1987), in the case of Mofete
1 (circle), Mofete 2 (cross), San Vito 1 (diamond) and San Vito 3 (square). Coordinates of these points are also expressed in the non-
dimensional units system. Each simulation is performed using different fluid velocity:V0 = 8× 10−6 m s−1 (a), V0 = 9× 10−6 m s−1 (b),
V0 = 1× 10−5 m s−1 (c), V0 = 2× 10−5 m s−1 (d), V0 = 3× 10−5 m s−1 (e), V0 = 4× 10−5 (f).

terms of its order of magnitude, this time scale is comparable
with the duration of the last crisis (about 2–3 yr), confirming
that thermo-fluid dynamical effects can contribute strongly
to the mechanical behaviour of the Campi Flegrei caldera.

The relatively short time needed to reach thermal steady-
state conditions (few tens of days) could generate a strong

onset of the elastic deformation able to produce sharp verti-
cal displacements. Therefore, the transient of a strong gra-
dient in the ground deformation could be difficult to ob-
serve with a daily rate of measurements of ground deforma-
tion. This consideration highlights the problem of calibrating
the time scales between phenomena (ground deformation)
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Table A1. Definition of symbols.

T = temperature (K)
K = thermal conductivity (W m−1 K−1)
ρ = density (kg m−3)
c = specific heat (J kg−1 K−1)
Vy = velocity alongy (m s−1)
Vx = velocity alongx (m s−1)
Vo = initial value of velocity
ε = rock porosity
h = heat transfer coefficient (W m−2 K−1)
To = room temperature (K)
η = dynamic viscosity (Pa s)
k = permeability (m2)
t = time (s)
Ksat= thermal conductivity of saturated rocks (W m−1 K−1)
Kwater= thermal conductivity of water (W m−1 K−1)
Kmatrix= thermal conductivity of solid matrix (W m−1 K−1)
1V = volume increase (m3)
1p = pore pressure (Pa)
µ = compressibility coefficient (Pa−1)
γ = P-wave velocity (m s−1)
β = S-wave velocity (m s−1)
H = total thickness of the domain (m)

and observation (monitoring), which could be correctly ad-
dressed for a more effective geodetic surveillance and moni-
toring at volcanic areas.

Finally, we consider that our proposed 2-D model could be
now further improved by (1) the addition of the momentum
balance in unsteady state, (2) the introduction of the tempera-
ture dependence of the physical parameters (beyond the con-
ductivity) used to describe the thermal behaviour of a porous
medium, (3) the description of a two-phase fluid behaviour
considering the presence of water vapour and CO2, (4) an
extension to a 3-D domain.
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