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Abstract. It has been shown that forced Lorenz models gen-
erally maintain their two-lobe structure, just giving rise to
changes in the occurrence of their regimes. Here, using the
richness of a unified formalism for Kolmogorov-Lorenz sys-
tems, we show that introducing oscillating forcings can lead
to the birth of new regimes and to a four-lobe attractor.
Analogies within a climate dynamics framework are men-
tioned.

1 Introduction

Some years ago, in a pioneering study about the influence of
external forcings on patterns of climate variability, Corti et
al. (1999) suggested that these forcings led to a change in the
frequency of occurrence of dominant regimes of the North-
ern Hemisphere atmospheric circulation in the second half of
the twentieth century. The authors also showed that this situ-
ation is consistent with the simple dynamical-system picture
obtained by the insertion of a constant forcing term in the
Lorenz system. In fact, even in the latter case, one observes
no creation of new regimes/lobes on the Lorenz attractor, but
a change in the frequency of residence of the state in the two
lobes is clearly detectable via calculation of the two associ-
ated values of the probability density function. Even increas-
ing the forcing value does not lead to new regimes but just
to the disappearing of chaos: after a certain threshold the at-
tractor becomes a fixed point (see, for instance, Pasini, 2008
and references therein).

Obviously, the constant forcing term introduced in the
Lorenz system is a rough analogue of the amount of sur-
plus greenhouse effect created by human activities, which is
almost monotonically increasing. But, what happens if the

Earth experiences an amplified oscillating forcing endowed
with a period much greater than climate variability? This cer-
tainly happened, for instance, when the tilt of Earth’s axis
was greater than today, leading to an enhanced annual oscil-
lation in the solar radiation at every point on the Earth sur-
face and to an increase of the thermal contrast between winter
and summer. Unfortunately, one does not possess data about
these ancient periods, which would permit analysing this im-
pact on circulation regimes.

In this framework, here we restrict ourselves to adopting a
simple dynamical system approach and low-dimensional toy
models for investigating the relationships between forcings
and the resulting regimes; in particular, we are led to study
the impact of oscillating forcings on regimes in the Lorenz
model, as detected on its attractor. In doing this simple ex-
ercise, we do not aim to explain what happened to the real
Earth system, but, as we will see, we supply the evidence
that new regimes are possible under oscillating forcings.

As a matter of fact, there is extensive literature on the topic
of small periodic perturbations, which often follows the Ru-
elle approach (Ruelle, 1998, 2009; Reick, 2002; Lucarini,
2009). In the present case, instead, we are dealing with large
oscillating forcings and the Ruelle approach cannot be ap-
plied.

Furthermore, we would like to point out that a geometrical
approach to Lorenz dynamics can be fruitful. In particular,
in the past the Lorenz system had been reformulated in some
elegant mathematical framework, as that of Nambu dynamics
(Nambu, 1973; Nevir and Blender, 1994), which introduces
a generalized Hamiltonian and adopts a n-fold product. In
our case, we use the Lie-Poisson structure of Lorenz system,
which corresponds to the simplest Nambu dynamics.
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Fig. 1.Standard Lorenz-63 model. Left: trajectories. Right: evolution of dissipation forcing potential8, Casimir(C) and energy(H). Internal
and external forcings are kept fixed,h3 = −σ,f3 = −β (ρ + σ) , whereβ = 8/3,ρ = 28,σ = 10.

In what follows, we adopt a unified formalism previ-
ously developed (Pasini et al., 1998; Pasini and Pelino, 2000;
Pelino and Pasini, 2001; Pasini et al., 2010; Gianfelice et
al., 2012) in order to clearly discuss the effect of different
forcings and test some general cases, finally reaching the ev-
idence of creation of new regimes and a four lobe Lorenz
attractor.

2 A unified formalism for Kolmogorov-Lorenz systems

A typical equation describing dissipative forced dynamical
systems can be written in Einstein notation as

ẋi = {xi,H } − Dijxj + fi i = 1,2...,n. (1)

Equation (1) has been written by Kolmogorov, as reported
in Arnold (1991), in a fluid dynamical context, but they
are very common in simulating natural processes. Here, the
brackets represent the algebraic structure of the Hamiltonian
part of the systems, described by functionH and the cosym-
plectic matrixJ (Marsden and Ratiu, 1994):

{F,G} = Jik∂iF∂kG. (2)

The positive-definite diagonal matrixD represents the dis-
sipation and the last termf is the external forcing. Such
a formalism, as mentioned before, is particularly useful in
fluid dynamics (Morrison, 1998), where Navier-Stokes equa-
tions show interesting properties in their Hamiltonian part
(Euler equations). Furthermore, finite-dimensional systems
like Eq. (1) represent the proper reduction of fluid dynamical
equations (Pasini et al., 1998) in terms of conservation of the
symplectic structures in the infinite domain (Zeitlin, 2004).
This method, contrary to the classical truncation one, leads
to the study of dynamics on Lie algebra, also known as Lie-
Poisson equations, which is extremely interesting from the
physical viewpoint and has a mathematical aesthetical appeal
(Pelino and Pasini, 2001; Pelino and Maimone, 2007). Given
a groupG and a real-valued function (possibly time depen-
dent)H : T ∗

e G → R, which plays the role of Hamiltonian, in
the local co-ordinatesxi , the Lie-Poisson equations read as
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Fig. 2.Lorenz system forced by an internal periodic forcing. Left: trajectories. Right: evolution of dissipation forcing potential8, Casimir(C)

and energy(H). Bottom: forcingsh3 = −σ · sin(ωk t) ,f3 = −β (ρ + σ) , whereβ = 8/3,ρ = 28,σ = 10, andωk = 0.1.

ẋi = C
j
ikxj∂kH, (3)

where the tensorCj
ik represents the constants of the struc-

ture of the Lie algebrag and the cosymplectic matrix as-
sumes the formJik = C

j
ikxj . Here,T ∗

e G = g∗ is the dual of
the Lie algebrag in a fibre bundle formalism. It is straight-
forward to show that, in this formalism,g is endowed with
a Poisson bracket characterized by expression (2) for func-
tionsF,G ∈ C∞ (g∗). Casimir functionsC are given by the
kernel of bracket (2), i.e.{C,G} = 0,∀G ∈ C∞ (g∗). There-
fore, they represent constants of motion of the Hamiltonian
system,Ċ = {C,H } = 0; moreover, they define a foliation of
the phase space (Arnold and Khesin, 1988).

Here, we are interested inG = SO (3), Jik = ε
j
ikxj ; in the

case of a quadratic Hamiltonian function,

H0 =
1

2
�ikxixk. (4)

Equation (3) represents the Euler equations for the rigid
body, with CasimirC = xixi .

In a previous paper by Pasini and Pelino (2000), it
has been shown that also the famous Lorenz-63 sys-
tem (Lorenz, 1963), after a coordinate translation (x1 →

x1,x2 → x2,x3 → x3 + ρ + σ), can be written as ẋ1 = −σx1 + σx2
ẋ2 = −x1x3 − σx1 − x2
ẋ3 = x1x2 − βx3 − β (ρ + σ)

(5)

if, in the Kolmogorov formalism – Eq. (1) – we assume the
following gyrostat-like Hamiltonian:

H = H0 + hkxk, (6)

with � = diag(2,1,1) , dissipationD = diag(σ,1,β), an in-
ternal forcing given by an axisymmetric rotorh = (0,0,−σ)

and an external forcingf = (0,0,−β (ρ + σ)) (see Fig. 1). In
this formalism, it is worthwhile to note that Corti et al. (1999)
studied Eq. (1) for the casef1,f2 6= 0. In this paper, we just
modulate the intensity of the forcings already present inside
this formalism.

The presence of the second term in Eq. (6) is the source
of the much richer mathematical and physical properties of
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Fig. 3. Lorenz system forced by an external periodic forcing. As in Fig. 2, bottom: forcingsh3 = −σ,f3 = −β (ρ + σ) · sin
(
ωf t

)
, where

β = 8/3,ρ = 28,σ = 10, andωf = 0.1.

Fig. 4.3-D view of the four-lobe Lorenz structure and its projection
on different planes.

dynamical systems (1), which we call Kolmogorov-Lorenz
(K-L) systems. An important result of this formalism is that
there is no chaotic behaviour in the system forh = 0 (Pasini
and Pelino, 2000); moreover, there is much more information
on the dynamics of the system otherwise hidden in Eq. (5),
as for example shown in K-L application in the field of syn-
chronization of chaotic systems (d’Anjou et al., 2005). This
formalism has been also analyzed by means of the fruitful
concept of tangent bundles (Yajima and Nagahama, 2010).

Finally, introducing a dissipation forcing potential,

8 =
1

2
Dijxixj − fixi, (7)

Eq. (1) can be also written as (McLachlan et al., 1998)

ẋi = {xi,H } − ∂i8. (8)

3 Periodically driven K-L systems

Lorenz equations with an external periodic driving term have
been extensively considered in literature (Ahlers et al., 1984;
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Fig. 5. Lorenz system forced by both periodic forcings. Left: trajectories. Right: evolution of dissipation forcing potential8, Casimir(C)

and energy(H). Bottom: forcingsh3 = −σ · sin(ωk t) ,f3 = −β (ρ + σ) · cos
(
ωf t

)
, whereβ = 8/3,ρ = 28,σ = 10, andωk = ωf = 0.1.

Franz and Zhang, 1995; Broer et al., 2002). In the formalism
described above, it results in two types of different forcings
acting in the K-L system: aninternalspinning rotor given by
theh3 component and a forcingexternalto the system given
by f3. It is then natural to study the behaviour of Eq. (1)
under internal and/or external periodic driving forcing.

First, we consider the case of a periodic internal forcing,
starting with the study of the Hamiltonian function

H (xi, t) = H0 + h3x3 · sinωht (9)

associated with a constant external forcingf3 = −β (ρ + σ).
For (σ,β,ρ) = (10,8/3,28), the characteristic frequency

of the unforced Lorenz-63 system has been found to be
ω0 ≈ 8.3 (Park et al., 1999). Resonance to external forcing
for ω0 = 8.3 has been found also in Reick (2002) and Lu-
carini (2009). It is then interesting to choose the internal
forcing in cases of low and high frequencies with respect to
ω0. Within the rangeωh < ω0, by solving numerically (1)
we find chaos suppression when the forcing is in its positive
phase,h3 (t) > 0, with an associated constant Casimir and a
continuous energy trend, as shown in Fig. 2.

In the high frequency range,ωh � ω0, numerical studies
show that this intermittency is lost and chaos is completely
suppressed, giving rise to limit-cycle orbits or fixed points.
This fact can be shown also analytically using Kapitza’s
method, as done in Choe et al. (2005). In fact, when writing
xi (t) = x̄i + ξi as the sum of a “slow” and a “fast” compo-
nent, it is easy to show that the system of equations forx̄i is


˙̄x1 ∼= −σ x̄1 + σξ2sinωht
˙̄x2 ∼= −x̄1x̄3 − x̄2 − σξ1sinωht
˙̄x3 ∼= x̄1x̄2 − βx̄3

(10)

which, being sinωht cosωht = 0 over a period 2π/ωh,
reduces to a system of two coupled linear equations
plus an equation for the (uncoupled)x1. Here ξ1 (t) =

−
σ x̄2
ωh

cosωht andξ2 (t) =
σ x̄1
ωk

cosωht .
A similar behaviour has been found forh3 = −σ and the

case of a harmonic external driving force:

f3 (t) = −β (ρ + σ)sinωf t. (11)

www.nonlin-processes-geophys.net/19/315/2012/ Nonlin. Processes Geophys., 19, 315–322, 2012
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Fig. 6. Two different trajectories on the four-lobe Lorenz structure, differing byε = 0.001 in initial conditions:X (0) = (15,46,60), black;
X (0) = Y (0) + ε, gray. Bottom: Euclidean distance between the trajectories.
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Fig. 7.A chaotic four-lobe attractor.

In the range of low frequency,ωf < ω0, chaos is sup-
pressed forf3 (t) > 0, giving rise to periodic trend for
Casimir and energy staggered by chaotic shots, as shown in
Fig. 3.

A brief comment on Figs. 2 and 3 can be given relatively
to the system’s trajectories. For both types of forcings,x1 and

x2 are fixed points of the system in the phase of chaos sup-
pression. A different behaviour occurs forx3, where a peri-
odic motion takes place in the external forcing case. In the
chaotic phases the typical two-lobe structure reappears in all
the components of the system, giving rise to an intermittence
of predictable and unpredictable regimes.

4 A four-lobe Lorenz attractor

The behaviour illustrated in the last section is interesting for
predictability of chaotic systems. As a matter of fact, it has
been shown elsewhere (Crisanti et al., 1997) that, under a
periodic variation – with appropriate frequency – of a con-
trol parameter, a chaotic system undergoes into epochs of
large unpredictability alternated with periodic behaviour. It
is also known that the dynamics of many systems, such as
climate, is characterised by both forcings and internal vari-
ability, possibly coupled with each other. In the K-L for-
malism, it has been shown that actually the behaviour of
Lorenz attractor dynamics is related to two different forc-
ings; therefore, in this section we study Eq. (1), assuming

Nonlin. Processes Geophys., 19, 315–322, 2012 www.nonlin-processes-geophys.net/19/315/2012/
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Fig. 8. Trajectories and dynamics of the attractor, as shown in Fig. 7. Here, the forcings frequencies are not rationally dependent:ωk = 0.8
andωf = 1/

√
2.

both external and internal oscillating forcings. We fix our
attention on the case of forcings characterized by the same
frequency:ωh = ωf < ω0. Numerical simulations, assuming
ωh = ωf = 0.1, show a kind of homoclinic trajectory, whose
geometry is given by a double Lorenz structure (Fig. 4).

An analysis of the output illustrated in Fig. 5 shows a slow
periodic behaviour of energy, Casimir and dissipation forc-
ing potential. Inside this porting signal of slow modulation,
a faster oscillation pulse term is inserted, giving rise to an
unpredictable behaviour forx1 andx2 components. This is
found beforex3 approaches its maximum or minimum value.

Here, because of a saddle point, trajectory chaotically vis-
its the right or left lobe of the bottom or top Lorenz structure.
In this way, chaos appears every time the trajectory leaves
thex3 axis, as illustrated in Fig. 6.

Other numerical simulations show a four-lobe Lorenz at-
tractor in the range of many combinations of forcing param-
eters (see, for instance, Figs. 7 and 8).

As a further remark, it is interesting to see how the very
natural insertion of internal and external forcings in the K-L
formalism can be “translated” into the more usual classical
Lorenz formalism. In our case the system (5) becomes

 ẋ1 = −σx1 + σx2sinωht + x1x3 − x2x3
ẋ2 = −x1x3 − σx1sinωht − x2
ẋ3 = x1x2 − βx3 + β (ρ + σ)sinωf t.

(12)

In this context, these forcings seem ad hoc and we are no
longer able to appreciate the naturalness of our choice.

Finally, the analysis performed in this section is essentially
numerical. However, it would be very interesting to see how
the four-lobe attractor can emerge analytically from the geo-
metrical structure of the K-L system, for instance, by consid-
ering the trajectory as the intersection between Casimir and
energy time-varying ellipsoids. This will be done in a future
work.

5 Conclusions and prospects

The introduction of a forcing (either time dependent or not)
into a dynamical system can have a multiplicity of effects on
the underlying attractor. It can act to change the dynamics
within the attractor while leaving invariantly its form (Corti
et al., 1999), or it can change the form but not the topology,
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322 V. Pelino et al.: Oscillating forcings and new regimes in the Lorenz system

or, more radically, it can change topology. Furthermore, it
can induce changes in the stability of fixed points and then,
ultimately, in the chaotic character of the motion. Also, we
want to point out that nonlinear quadratic dynamical systems,
as Eq. (1), are dynamical cores of a large family of atmo-
spheric/oceanic circulation models (Majda and Wang, 2006).

In particular, here we supply the evidence that, differently
to constant forcings, oscillating ones can lead to the birth
of new regimes/lobes in the Lorenz system. Doubtless, we
are considering this behaviour just as a test case in Lorenz
dynamics, without strict reference to precise implications in
real physical systems. However, complex systems, such as
climate, are subject to different kinds of forcings and inter-
nal feedbacks, so that the richness – shown here – displayed
by Kolmogorov-Lorenz equations at different variations of
internal and external forcings can be considered as a proto-
type framework, in which to simply analyze the dynamical
features of changes in regimes.

Finally, an interesting prospect of future investigations re-
gards the study of the transitions between two- and four-lobe
attractors with the increase of amplitude in oscillating forc-
ings.
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Broer, H., Siḿo, C., and Vitolo, R.: Bifurcations and strange at-
tractors in the Lorenz-84 climate model with seasonal forcing,
Nonlinearity, 15, 1205–1267, 2002.

Choe, C.-U., Hohne, K., Benner, H., and Kivshar, Y.-S.: Chaos sup-
pression in the parametrically driven Lorenz system, Phys. Rev.
E, 72, 036206,doi:10.1103/PhysRevE.72.036206, 2005.

Corti, S., Molteni, F., and Palmer, T. N.: Signature of recent climate
change in frequencies of natural atmospheric circulation, Nature,
398, 799–802, 1999.

Crisanti, A., Falcioni, M., Lacorata, G., Purini, R., and Vulpiani,
A.: Characterization of a periodically driven chaotic dynamical
system, J. Phys. A. Math. Gen., 30, 371–383, 1997.

d’Anjou, A., Sarasola, C., and Torrealdea, F. J.: On the characteriza-
tion of different synchronization stages by energy considerations,
J. Phys., 23, 238–251, 2005.

Franz, M. and Zhang, M.: Suppression and creation of chaos in a
periodically forced Lorenz system, Phys. Rev. E, 52, 3558–3565,
1995.

Gianfelice, M., Maimone, F., Pelino, V., and Vaienti, S.: On the
recurrence and robust properties of Lorenz’63 model, Comm.
Math. Phys., online first,doi:10.1007/s00220-012-1438-7, 2012.

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20,
130–141, 1963.

Lucarini, V.: Evidence of dispersion relations for the nonlinear re-
sponse of the Lorenz 63 system, J. Stat. Phys., 134, 381–400,
2009.

Majda, A. J. and Wang, X.: Nonlinear dynamics and statistical the-
ories for basic geophysical flows, Cambridge University Press,
Cambridge, UK, 2006.

Marsden, J. E. and Ratiu, T.: Introduction to mechanics and sym-
metry, Springer, Berlin, Germany, 1994.

McLachlan, R. I., Quispel, G. R. W., and Robidoux, N.: Unified ap-
proach to Hamiltonian systems, Poisson systems, gradient sys-
tems, and systems with Lyapunov functions or first integrals,
Phys. Rev. Lett., 81, 2399–2403, 1998.

Morrison, P. J.: Hamiltonian description of the ideal fluid, Rev.
Mod. Phys., 70, 467–521, 1998.

Nambu, Y.: Generalized Hamiltonian dynamics, Phys. Rev. D, 7,
2405–2412, 1973.

Nevir, P. and Blender, R.: Hamiltonian and Nambu representation
of the non-dissipative Lorenz equations, Beitr. Phys. Atmosph.,
67, 133–140, 1994.

Park, E.-H., Zaks, M.-A., and Kurths, J.: Phase synchronization in
the forced Lorenz system, Phys. Rev. E, 60, 6627–6638, 1999.

Pasini, A.: External forcings and predictability in Lorenz model:
An analysis via neural network modelling, Nuovo Cimento C,
31, 357–370, 2008.

Pasini, A. and Pelino, V.: A unified view of Kolmogorov and Lorenz
systems, Phys. Lett. A, 275, 435–446, 2000.

Pasini, A., Pelino, V., and Potestà, S.: Torsion and attractors in the
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