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Abstract. We study a model of fast magnetic reconnection
in the presence of weak turbulence proposed byLazarian
and Vishniac(1999) using three-dimensional direct numer-
ical simulations. The model has been already successfully
tested inKowal et al.(2009) confirming the dependencies of
the reconnection speedVrecon the turbulence injection power
Pinj and the injection scalelinj expressed by a constraint

Vrec∼ P
1/2
inj l

3/4
inj and no observed dependency on Ohmic re-

sistivity. In Kowal et al.(2009), in order to drive turbulence,
we injected velocity fluctuations in Fourier space with fre-
quencies concentrated aroundkinj = 1/linj , as described in
Alvelius (1999). In this paper, we extend our previous stud-
ies by comparing fast magnetic reconnection under differ-
ent mechanisms of turbulence injection by introducing a new
way of turbulence driving. The new method injects velocity
or magnetic eddies with a specified amplitude and scale in
random locations directly in real space. We provide exact re-
lations between the eddy parameters and turbulent power and
injection scale. We performed simulations with new forcing
in order to study turbulent power and injection scale depen-
dencies. The results show no discrepancy between models
with two different methods of turbulence driving exposing
the same scalings in both cases. This is in agreement with
the Lazarian and Vishniac (1999) predictions. In addition,
we performed a series of models with varying viscosityν.
Although Lazarian and Vishniac (1999) do not provide any
prediction for this dependence, we report a weak relation be-
tween the reconnection speed with viscosity,Vrec∼ ν−1/4.

1 Introduction

Magnetic fields are observed in many astrophysical objects
and usually play an important or even crucial role in their dy-
namics (see, e.g.Crutcher, 1999; Beck, 2002; Vallée, 1997,
1998). They are a key ingredient of astrophysical processes

such as magneto-rotational instability, magnetic dynamo,
transport and acceleration of cosmic rays, accretion disks,
turbulence, solar phenomena, gamma ray bursts, etc. (Balbus
and Hawley, 1998; Parker, 1992; Hanasz et al., 2009; Kulpa-
Dybeł et al., 2011; Schlickeiser and Lerche, 1985; Melrose,
2009; Elmegreen and Scalo, 2004; Kotera and Olinto, 2011).

Magnetic fields are solenoidal and evolve only through
changes in the curl of the electric field. In the limit of zero re-
sistivity the topology of the field lines is a constant of motion
and the magnetic flux threading any fluid element is constant.
Generating large scale magnetic fields requires some kind of
battery effect, like the Biermann battery (Khanna, 1998) and
generating strong large scale magnetic fields requires a dy-
namo (seeParker, 1992, for example). In the limit of very
small resistivity, which is typical for astrophysical objects,
the magnetic flux is “frozen in” and magnetic field lines will
resist passing through one another or changing their topol-
ogy (Moffat, 1978). Due to the presence of plasma motions,
in particular turbulence, this would result in a very complex
tangle of field lines in real objects, with negligible large scale
magnetic flux. However, observations indicate that the mean
and turbulent components of magnetic fields in many astro-
physical objects are of similar strengths (seeBeck, 2002,
for example). This implies the existence of a process which
can violate the frozen-in condition on dynamical time scales,
i.e., fast magnetic field reconnection.

The first analytic model for magnetic reconnection was
proposed independently byParker(1957) andSweet(1958).
Sweet-Parker reconnection has the virtue that it relies on a
robust and straightforward geometry. Two regions with uni-
form magnetic fields are separated by thin current sheet. The
speed of reconnection is given roughly by the resistivity di-
vided by the sheet thickness. However, the plasma in the
current sheet is constrained to move along the local field lines
and is ejected from the edge of the current sheet at the Alfvén
speed,VA . Since the width of the current sheet limits the flux
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of expelled plasma, the overall reconnection speed is reduced
from the Alfvén speed by the square root of the Lundquist
number,S ≡ LVA/η, whereη is the resistivity andL is the
length of the current sheet. In most astrophysical contexts
S is very large and the Sweet-Parker reconnection speed,
VSP≈ VAS−1/2, is negligible. Fast reconnection requires that
the dependence onη be erased. Given the simplicity of the
Sweet-Parker setup, this requires that the simple geometry of
the current sheet must be broken.

The realisation that Sweet-Parker reconnection is inade-
quate to explain magnetic reconnection in an astrophysical
context was immediately apparent and gave rise to decades of
research on models of fast reconnection (seeBiskamp, 2000;
Priest and Forbes, 2000, for reviews). The first proposal
was to replace the current sheet with an X-point configura-
tion, so that the “sheet” thickness and length are comparable.
This is the basis for Petschek’s model of fast reconnection
(Petschek, 1964). However, a dynamically self-consistent X-
point requires that the outflow prevent a general collapse into
a narrow current sheet. Otherwise we would expect that the
same bulk forces that brought the magnetic field lines to-
gether would lead to Sweet-Parker reconnection.Petschek
(1964) proposed that slow-mode shocks on either side of the
X-point would serve this purpose. Moreover, those shocks
are responsible for converting most of the magnetic energy
into the heat and kinetic energy. The X-point in this model
has an overall size which depends on resistivity, but since
the magnetic field decrease logarithmically when approach-
ing the current sheet (due to the assumption of the current-
free magnetic field in the inflow region), the resulting recon-
nection speed is some fraction ofVA . Numerical simulations
with uniform resistivity (Biskamp, 1996) have showed that in
the MHD limit the shocks fade away and the contact region
expands into a sheet. The only way to make the Petschek
configuration stable is by introducing the local non-uniform
resistivity (Ugai and Tsuda, 1977; Scholer, 1989; Ugai, 1992;
Yan et al., 1992; Forbes, 2000; Shibata and Magara, 2011).

This leaves the possibility that X-point reconnection is sta-
ble when the plasma is collisionless. Numerical simulations
(Shay et al., 1998, 2004) have been encouraging. However,
there are several important issues that remain unresolved.
First, it is not clear that this kind of fast reconnection per-
sists on scales greater than the ion inertial scale (seeBhat-
tacharjee et al., 2003). Several numerical studies (Wang et
al., 2001; Smith et al., 2004; Fitzpatrick, 2004) have found
large scale reconnection speeds which depend on resistivity,
i.e., are not fast. Second, in many circumstances the mag-
netic field geometry does not allow the formation of X-point
reconnection. For example, a saddle-shaped current sheet
cannot be spontaneously replaced by an X-point. The en-
ergy required to do so is comparable to the magnetic energy
liberated by reconnection and must be available beforehand.
Finally, the requirement for reconnection occurrance in a col-
lisionless plasma restricts this model to a small fraction of
astrophysical applications. For example, while reconnec-

tion in stellar coronae might be described in this way, stel-
lar chromospheres are not. More generallyYamada(2007)
estimated that the scale of the reconnection sheet should not
exceed about 40 times the electron mean-free path. This con-
dition is not satisfied in many environments which one might
naively consider to be collisionless, among them the inter-
stellar medium. The conclusion that stellar interiors and at-
mospheres, accretion disks, and the interstellar medium in
general does not allow fast reconnection is drastic and un-
palatable.

An alternative to the X-point geometry is to consider mag-
netic fields that are chaotic, even if only weakly so. Re-
quiring the plasma to flow along the local magnetic field im-
plies a powerful constraint on reconnection, only if the field
lines themselves are laminar.Lazarian and Vishniac(1999,
hereinafter LV99) proposed a model for fast reconnection
which depends on the presence of turbulence and its produc-
tion of weakly stochastic field lines (also briefly described in
Sect.2). Turbulence is a natural consequence of convection
in stars and of the magnetorotational instability in accretion
disks (for a review seeBalbus and Hawley, 1998). In addi-
tion, it is now generally accepted that the “Big Power Law
in the Sky” indicates the presence of turbulence on scales
from tens of parsecs to thousands of kilometres (Armstrong
et al., 1995; Chepurnov and Lazarian, 2010). Among other
sources, evidence for this comes from studies of atomic hy-
drogen spectra in molecular clouds and galaxies (seeLazar-
ian and Pogosyan, 2000; Stanimirovíc and Lazarian, 2001;
Padoan et al., 2006, 2009; Chepurnov et al., 2010, see also
review by Lazarian, 2009 and references therein), as well
as recent studies of emission lines and Faraday rotation (see
Burkhart et al., 2010; Gaensler et al., 2011). LV99’s model
uses the properties of turbulence to predict broad outflows
from extended current sheets. The diffusivity of magnetic
field line trajectories in a turbulent plasma implies that flows
can follow local magnetic field lines without being confined
to the current sheet. When the turbulent diffusivity is less
than the ohmic resistivity, this model reduces to the Sweet-
Parker reconnection model.

The first test of the LV99 model using three-dimensional
(3-D) MHD simulations was performed inKowal et al.
(2009). The main predictions of the model were confirmed.
In this paper, we provide additional numerical evidence of
magnetic reconnection in turbulent environments by testing
different mechanisms for injecting turbulence. In Sect.2, we
briefly review the LV99 model of reconnection and its the-
oretical predictions. In Sect.3, we describe, in detail, the
numerical model studied in this paper and the new method of
turbulence driving. Although the initial setup and boundary
conditions are similar to our previous studies and, described
in detail inKowal et al.(2009), we briefly describe them here
for completeness, as well. In Sect.4, we present an exten-
sive description of new results obtained from studying our
numeric model, which we discuss later in Sect.5. In Sect.6,
we present our main conclusions.

Nonlin. Processes Geophys., 19, 297–314, 2012 www.nonlin-processes-geophys.net/19/297/2012/



G. Kowal et al.: Reconnection under different turbulence 299

2 The Lazarian-Vishniac (1999) model

The notion that turbulence can influence reconnection rate is
not unprecedented. The ideas in this regard were discussed
long before LV99. However, they fell short of solving the
problem. For instance,Speiser(1970) considered the effects
of turbulence on microscopic resistivity,Jacobson and Moses
(1984) proposed that the current diffusivity should be modi-
fied to include the diffusion of electrons across the large scale
magnetic field due to the small scale field line stochastic-
ity. The consequent modifications to the ohmic resistivity
have only a marginal effect on the Sweet-Parker reconnec-
tion speeds.Matthaeus and Lamkin(1985, 1986) studied 2-D
magnetic reconnection in the presence of external turbulence
both theoretically and numerically. They pointed out var-
ious turbulence mechanisms that would enhance reconnec-
tion rates, including multiple X-points as reconnection sites.
However, this work did not include the effect of magnetic
field wandering, which is at the core of the LV99. They did
not provide analytical predictions of the reconnection speed
either1.

We begin by offering a brief summary of the differences
between the Sweet-Parker model of the laminar reconnec-
tion (Parker, 1957; Sweet, 1958) and the Lazarian-Vishniac
model which accounts for the effects of turbulence (Lazarian
and Vishniac, 1999). The latter can be seen as a generaliza-
tion of the Sweet-Parker model (see Fig.1) in the sense that
the two regions of differing magnetic directions are pressed
up against one another over a broad contact region. This is
a generic configuration, which should arise naturally when-
ever a magnetic field has a non-trivial configuration, whose
energy could be lowered through reconnection. The outflow
of plasma and reconnected flux will fluctuate as the turbu-
lence evolves and the field line connections change, but the
long-term average will reflect the turbulent diffusion of the
field lines. Consequently, the essential difference between
the Sweet-Parker model and the LV99 model is that the for-
mer outflow is limited by microphysical Ohmic diffusivity,
while in the LV99 model the large-scale magnetic field wan-
dering determines the thickness of outflow. For extremely
weak turbulence, when the range of magnetic field wander-
ing becomes smaller than the width of the Sweet-Parker layer
LS−1/2, the two models are indistinguishable. By weak tur-
bulence, following LV99, we understand a regime where the
correlation length is much greater than the distance by which
individual field lines deviate from a straight line.

LV99 considered a large scale, well-ordered magnetic
field, of the kind that is normally used as a starting point
for discussions of reconnection. In the presence of turbu-

1At the same time, after LV99 was published,Kim and Diamond
(2001) produced a study arguing that turbulence will not change
reconnection rates in the Sweet-Parker geometry. This study has
been criticized byLazarian et al.(2004) andEyink et al. (2011).
The present paper provides numerical evidence that the reconnec-
tion rates do increase in the presence of turbulence.

Fig. 1. Upper plot: The Sweet-Parker reconnection model. The
outflow is confined to a thin layer ofδ, which is set by Ohmic diffu-
sivity. The length of the current sheet is a macroscopic scaleL � δ.
Magnetic field lines are assumed to be laminar.Middle plot: Re-
connection in the presence of stochastic magnetic field lines. The
stochasticity introduced by turbulence is weak and the mean field
is clear direction. The outflow width is set by the diffusion of the
magnetic field lines, which is a macroscopic process, independent
of resistivity. Low plot: An individual small scale reconnection re-
gion. The reconnection over small patches of magnetic field deter-
mines the local reconnection rate. The global reconnection rate is
substantially larger as many independent patches reconnect simul-
taneously. Conservatively, the LV99 model assumes that the small
scale events happen at a slow Sweet-Parker rate. FollowingLazar-
ian et al.(2004) andKowal et al.(2009).

lence, the field has some small scale ‘wandering’. LV99 sug-
gested that the presence of a random magnetic field compo-
nent leads to fast reconnection. There are three phenomena
mainly responsible for this:

– only a small fraction of any magnetic field line is subject
to direct Ohmic annihilation, therefore, the fraction of
magnetic energy that goes directly into heating the fluid
drops down to zero as the fluid resistivity vanishes,

– the presence of turbulence enables many magnetic field
lines to enter the reconnection zone simultaneously,

– turbulence broadens the width of the ejection thickness
allowing for more efficient removal of the reconnected
flux.
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With theGoldreich and Sridhar(1995, henceforth GS95)
model of turbulence, LV99 obtained:

Vrec= VA

(
l

L

)1/2(
vl

VA

)2

, (1)

where l andvl are the energy injection scale and velocity.
This expression assumes that energy is injected isotropically
at the scalel smaller than the length of current sheetL, which
for sub-Alfvénic turbulence leads to the generation of weakly
interacting waves at that scale. The waves transfer energy to
modes with larger values ofk⊥ until strong turbulence sets
in. It is important to note that the strongly turbulent ed-
dies have a characteristic velocity ofvturb ≈ VA(vl/VA)2. In
other words, the reconnection speed is the large eddy strong
turbulent velocity times factors which depend on whether
the current sheet is smaller or larger than the large eddies
(whose length is approximately the injection scale). In this
sense, the reconnection speed should be fairly insensitive
to the exact mechanism for turbulent power injection. The
main purpose of this paper is test whether or not this is true
for a simple modification of the driving mechanism used in
Kowal et al.(2009).

It is important to note three features of Eq. (1). First, and
most important, it is independent of resistivity. This is, by
definition, fast reconnection. Second, we usually expect re-
connection to be close to the turbulent eddy speed, the geo-
metric ratios that enter the expression, i.e., the injection scale
l divided by the length of the reconnection layerL, are typ-
ically of the order of unity. Reconnection will occur on dy-
namical time scales. Finally, we note that, in particular situ-
ations when turbulence is extremely weak, the reconnection
speed can be much slower than the Alfvén speed.

More recently, Eq. (1) was derived using the ideas based
on the well-known concept of Richardson diffusion (Eyink et
al., 2011). From the theoretical perspective this new deriva-
tion avoids rather complex considerations of the cascade of
reconnection events that were presented in LV99 to justify
the model.Eyink et al.(2011) also shows that LV99 model
is closely connected to the recently developed idea of “spon-
taneous stochasticity” of magnetic fields in turbulent fluids.

In general, the situation in the reconnection community
now is very different from that of a decade ago. Currently,
possibilities of fast reconnection in MHD regime due to in-
stabilities of the reconnection layers are widely discussed
(Loureiro et al., 2009; Bhattacharjee et al., 2009). These
ideas can be traced back to the work ofShibata and Tanuma
(2001). The instabilities, like tearing instability, open up the
reconnection layer enabling a wide outflow. We expect such
an outflow to become turbulent for most of astrophysical con-
ditions. In this case, the process can be important for initiat-
ing reconnection in the particular situation when the level of
pre-existing turbulence is initially low to initiate sufficiently
fast reconnection. We feel that exploring the ways of initia-
tion of turbulent reconnection is very synergistic to the LV99

ideas, but in the current paper, we focus on the case of pre-
existing turbulence of sufficient level. This is the primary
domain for which LV99 provides predictions.

Given the limited dynamical range of numerical simula-
tions, we can only inject power on scales less thanL. The
most convenient numerical parameter is notvl , but the en-
ergy injection powerP . The power in the turbulent cascade
is P ∼ v2

turb(VA/l) or v4
l /(lVA). The amount of energy in-

jected during one Alfv́en time unittA ≡ L/VA , which is con-
stant in our models, istAP ∼ (L/VA)v4

l /(lVA). Therefore,
v2
l ∼ (l/L)1/2(P tA)1/2VA . Substitutingv2

l in Eq. (1) results
in

Vrec∼

(
l

L

)
(tAP)1/2

∝ lP 1/2, (2)

which is the prediction we will test here. In what follows,
we refer to the injection power and scale usingPinj andlinj ,
respectively.

3 Numerical setup

3.1 Governing equations

We use a high-order shock-capturing Godunov-type scheme
based on the monotonicity preserving (MP) spatial recon-
struction (see, e.g.Suresh and Huynh, 1997; He et al., 2011)
and Strong Stability Preserving Runge-Kutta (SSPRK) time
integration (seeGottlieb et al., 2009, and references therein)
to solve isothermal non-ideal MHD equations,

∂ρ

∂t
+∇ ·(ρv) = 0, (3)

∂ρv
∂t

+∇ ·

[
ρvv+

(
a2ρ +

B2

8π

)
I −

1

4π
BB

]
= f, (4)

∂A
∂t

+E = g, (5)

whereρ andv are plasma density and velocity, respectively,
A is the vector potential,E = −v×B+ηJ is the electric field,
B ≡ ∇×A is the magnetic field,J = ∇×B is the current den-
sity,a is the isothermal speed of sound,η is the resistivity co-
efficient, andf andg represent the turbulence driving terms
either in velocity or vector potential. We used a multi-state
Harten-Lax-van Leer (HLLD,Mignone, 2007) approximate
Riemann solver for solving the isothermal MHD equations.
The HLLD Riemann solver takes into account magnetic
fields and can follow Alfv́en waves with minimal numerical
dissipation. This is particularly important here, because our
simulations are in the quasi-incompressible regime, where
most of energy is transported by Alfvén waves. The∇·B = 0
is maintained by solving the induction equation (Eq.5) us-
ing the field interpolated constrained transport (CT) scheme
based on a staggered mesh (e.g.Londrillo and Del Zanna,
2000; Tóth, 2000).
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3.2 Model description and initial conditions

Our reconnection simulation setup is illustrated in Fig.2,
which is a 2-D cut through the problem setup, indicating the
location of the diffusion region. The top and bottom of the
computational domain contain equal and opposite field com-
ponents in thêx direction, as well as a shared component
Bz (see the left panel of Fig.2). Magnetic field lines enter
through the top and bottom and are bent by the inflowVin
as they move into the diffusion region. The diffusion region
has a length1 in the x̂ direction and a thicknessδ in the ŷ

direction (see the left panel of Fig.2). The box is periodic in
the ẑ direction and the diffusion region extends through the
entire domain. The projection of the magnetic topology on
the XZ plane shows that the lines in the upper region (solid
lines in the right panel of Fig.2) and in the lower region
(dashed lines) create an angleα determined by the strength
of the shared componentB0z. Once the incoming magnetic
lines enter the diffusion region, they are reconnected and the
product of this process is ejected along X direction with a
speedVout (the left panel of Fig.2).

We begin with a Harris current sheet of the form
Bx(x,y,z) = B0x tanh(y/θ) initialised using the magnetic
vector potentialAz(x,y,z) = ln|cosh(y/θ)|, and a uniform
guide fieldBz(x,y,z) = B0z = const. The initial setup is
completed by setting the density profile from the condi-
tion of the uniform total (thermal plus magnetic) pressure
ptot (t = 0,x,y,z) = const and setting the initial velocity to
zero.

Magnetic reconnection is initiated by a small perturbation
of the vector potentialδAz(x,y,z) = δB0x cos(2πx) to the
initial configuration ofAz(t = 0,x,y,z) whose strength is
given by the coefficientδB0x .

In all our simulations, the strength of the magnetic field
is expressed in terms of the Alfvén velocity defined by the
anti-parallel component of the unperturbed magnetic field.
Similarly the density is expressed in terms of the unper-
turbed densityρ0 = 1 and velocities are expressed as frac-
tions of the fiducial Alfv́en speed. The length of the box in
the x̂ direction defines the unit of distance and time is mea-
sured in units ofLx/VA . In the new set of models, we set
the initial strength of the anti-parallel magnetic field compo-
nentB0x = 1.0 and the guide fieldB0z = 0.1. We performed
modelling for two resistivity coefficientsηu = 5 · 10−4 and
ηu = 10−3 which are expressed in the dimensionless units.
The initial perturbation is set toδB0x = 0.024. In order to
avoid the complications of strong compressibility, we have
set the sound speed to 4.0.

3.3 Boundary conditions

Our computational box has a grid of 256×512×256 or for
higher resolution runs, 512×1024×512. In dimensionless
units its size isLx = Lz = 1 andLy = 2. We double the size
in the ŷ direction to keep the driven turbulence away from

the inflow boundary. There is no physical reason to do this,
but driving turbulence near the inflow boundary produces nu-
merical instabilities.

As mentioned earlier, we use three different types of
boundary conditions, depending on the direction of the
boundary: outflow boundary conditions along thex̂ direc-
tion, inflow boundary conditions along thêy direction and
(sometimes) periodic boundary conditions along theẑ direc-
tion.

The open boundary conditions are the same as those used
in our previous modelling. We refer toKowal et al.(2009)
for their detailed description. Briefly, we use simple “zero-
gradient” boundary conditions, setting the normal derivatives
of the fluid variables (density and momentum) to zero. In the
hydrodynamic limit this allows waves to leave the box with-
out significant boundary reflections. In turbulence simula-
tions this can lead to a slight drift in the fluid density. There is
no requirement that the boundary density is constant, and in-
flows and outflows can cause a small net gain or loss from the
system. Fortunately, changes in the total mass are small and
only fluctuate around the initial value (Kowal et al., 2009).
They do not influence our results significantly.

In order to incorporate the magnetic field into the open
boundary conditions, we set the transverse components of
the vector potentialA using first order extrapolation. The
normal derivative of the normal component is set to zero. In
this way the normal derivatives of the transverse components
of the magnetic field are zero, while the normal component
of the magnetic field is calculated from the zero-divergence
condition∇ ·B = 0. This approach avoids the generation of
non-zero magnetic divergence at the boundary. However, it
has the drawback that it creates a small jump in the momen-
tum flux across the boundary resulting from the presence of
non-zero terms

(
−Bx,By,Bz

)
∂xBx at the X outflow bound-

ary and
(
Bx,−By,Bz

)
∂yBy at the Y inflow boundary. We

have evaluated the velocity increment these terms produce
at each time step. In models with the strongest turbulence,
these terms were of the order of 10−6 and 10−8 at the X and
Y boundaries, respectively. In the presence of strong out-
flows and inflows, generally of the order of unity, they are
clearly negligible.

Simulations with explicit resistivity run into problems at
the boundaries. In order to avoid a non-continuous resistive
term and difficulties with the treatment of the current density
J we have introduced a zone of decaying resistivity near the
boundary. In a thin layer near the boundary, the value of
resistivity ηu decays down to a very small value chosen to
be close to the numerical resistivityηn of our code. In our
models, we adopt the value ofηn = 3·10−4. None of this has
an effect on the reconnection speeds. The validation of this
method was presented inKowal et al.(2009).
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(a) (b)

Fig. 2. A schematic of our magnetic field configuration projected on the XY(a) and XZ(b) planes.(a) XY projection of the magnetic field
lines. The gray area describes the diffusion region where the incoming field lines reconnect. The longitudinal and transverse scales of the
diffusion region are given by1 andδ, respectively. We use outflow and inflow boundary conditions in thex̂ andŷ directions, respectively.
(b) XZ projection of the magnetic field lines as seen from the top. Solid and dashed lines show the incoming field lines from the upper
and lower parts of the domain, respectively. We see that the oppositely directed field lines are not anti-parallel but are set as an angleα

determined by the strength of the shared componentBz. Theẑ boundary conditions can be open or periodic, depending on the model (from
Kowal et al., 2009).

3.4 New Method of turbulence driving

In our previous work we drove turbulence using a method
described byAlvelius (1999), in which the driving term was
implemented in the spectral space with discrete Fourier com-
ponents concentrated around a wave vectorkinj correspond-
ing to the injection scalelinj = 1/kinj . We perturbed a num-
berNf of discrete Fourier components of velocity in a shell
extending fromkinj −1kinj to kinj +1kinj with a Gaussian
profile of the half widthkc and the peak amplitudẽvf at the
injection scale. The amplitude of driving is solely determined
by its powerPinj , the number of driven Fourier components
and the time step of driving1tf . The randomness in time
makes the force neutral in the sense that it does not directly
correlate with any of the time scales of the turbulent flow, and
it also determines the power input solely by the force-force
correlation.

On the right-hand side of Eq. (4), the forcing is repre-
sented by a functionf = ρu̇, whereρ is local density anḋu is
random acceleration calculated using the method described
above. In a similar way, we can drive turbulence in the vec-
tor potential or magnetic field, which is represented by term
g on the right-hand side of the induction equation (Eq.5).

In the new method of turbulence driving, we add individ-
ual eddies with random locations of their centres and random
orientations, either to velocity or magnetic field, at random
moments in time. This guarantees the randomness of new
forcing.

Each eddy is calculated from a kernel function described
by a directional vectora (with amplitude|a|) multiplied by a
Gaussian function

9(r) = aexp

(
−

|r − rc|
2

2δ2

)
, (6)

whererc is the location of the eddy centre andδ is the eddy
width. An actual eddy is generated from such a kernel func-
tion by taking its curl, i.e.,δf = ρ(∇ ×9)dt or δg= ∇×9dt

in the case of injection in velocity or magnetic field, respec-
tively. For example, if we assume that we inject one eddy
in the magnetic field atrc = (0,0,0), and that the perturbing
vector potential fluctuation has only the non-zero component,
i.e., 8 = (0,0,8z), the contribution to magnetic field is ex-
pressed by δgx

δgy

δgz

(x,y,z) =
|a|

δ2
exp

(
−

|r|2

2δ2

)−y

x

0

dt . (7)

This function describes an eddy injected in the XY plane with

the maximum amplitudeδgmax= |a|δ−1e−
1
2 at the distance

rmax = δ and injection scalelinj = δ. We know the energy
injected by one eddy, which is1Eeddy= π3/2

|a|
2δ/2, there-

fore, we can determine its amplitude|a| from the injection
powerPinj and the injection rateNinj , which is the number of
eddies injected in a time unit,

Pinj = Ninj1Eeddy → |a| =

√
2Pinj

π3/2Ninjδ
. (8)

These estimates are done for the 3-D case. In the 2-D case,
the eddy energy is1Eeddy= π |a|

2/2 and, therefore, the eddy
amplitude can be determined from|a| =

√
2Pinj/(πNinj).
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In the new method there is no direct treatment of the
velocity-force correlation, therefore, there is no guarantee
that this correlation is zero and the injected power is com-
pletely determined by the force-force correlation. A reason-
able solution to this problem would be to control the amount
of injected energy and modify the amplitude of injected ed-
dies or the injection rate at each time step in order to compen-
sate the differences in the energy injected in the domain. The
performed tests show, however, that although the velocity-
force correlation is not zero, it is in fact fluctuating in time
with a small amplitude and giving as a result a zero net con-
tribution.

The new method drives turbulence directly in the real
space, in contrast to the previous one, therefore, it can be
applied locally. We drive turbulence in a sub-volume of the
domain. The size of the sub-volume is determined by two
scales, the radiusrd on the XZ plane around the centre of
the domain and the heighthd describing the thickness of the
driving region from the midplane. In this way, we avoid driv-
ing turbulence at the boundary and reduce the influence of
driving on the inflow or outflow.

All models are evolved without turbulence for several dy-
namical times in order to allow the system to achieve sta-
tionary laminar reconnection. Then, at a given timetb we
start driving turbulence by increasing its amplitude to the de-
sired level, untilte. In this way, we let the system adjust to a
new state. From timete the turbulence is driven with the full
powerPinj .

3.5 Reconnection rate measure

In the next sections, we measure the reconnection rate using
the new method of reconnection rate measure introduced in
Kowal et al.(2009) and described by a formula

Vrec=
1

2|Bx,∞|Lz

[∮
sign(Bx)E ·d l −∂t

∫
|Bx |dA

]
(9)

whereBx is the strength of reconnecting magnetic compo-
nent,E is the electric field,dA is area element of an XZ plane
across which we perform integration,d l is the line element
separating two regions of the YZ plane defined by the sign of
Bx , |Bx,∞| is the asymptotic absolute value ofBx andLz is
the width of the box.

This method of the reconnection rate measure was derived
from the magnetic flux conservation9 and takes into ac-
count all processes contributing to the change of magnetic
flux. The electric fieldv×B−ηj can be further divided into
an advection termv×Bx x̂, a shear termv×

(
By ŷ +Bzẑ

)
, and

a resistive term−ηj. With this in mind the line integral can
be rewritten as∮

sign(Bx)E ·d l =
∮

|Bx |
(
v⊥ × x̂

)
·d l (10)

+

∮
sign(Bx)vx

(
x̂ ×B⊥

)
·d l −

∮
ηj ·d l.

Table 1. List of models.

Name B0z ηu [10−3] νu [10−3] Pinj 1kinj Driving Type

PD 0.1 1.0 0.0 0.1 8 old inV
0.1 1.0 0.0 0.2 8 old inV
0.1 1.0 0.0 0.5 8 old inV
0.1 1.0 0.0 1.0 8 old inV
0.1 1.0 0.0 2.0 8 old inV
1.0 1.0 0.0 0.1 8 old inV
1.0 1.0 0.0 0.2 8 old inV
1.0 1.0 0.0 0.5 8 old inV
1.0 1.0 0.0 1.0 8 old inV
1.0 1.0 0.0 2.0 8 old inV

→ 0.1 1.0 0.0 0.2 8 new inB
→ 0.1 1.0 0.0 0.5 8 new inB
→ 0.1 1.0 0.0 1.0 8 new inB
HR 0.1 0.5 0.0 1.0 8 new inV

SD 0.1 1.0 0.0 1.0 5 old inV
0.1 1.0 0.0 1.0 8 old inV
0.1 1.0 0.0 1.0 12 old inV
0.1 1.0 0.0 1.0 16 old inV
0.1 1.0 0.0 1.0 25 old inV
1.0 1.0 0.0 1.0 5 old inV
1.0 1.0 0.0 1.0 8 old inV
1.0 1.0 0.0 1.0 12 old inV
1.0 1.0 0.0 1.0 16 old inV
1.0 1.0 0.0 1.0 25 old inV

→ 0.1 1.0 0.0 1.0 8 new inB
→ 0.1 1.0 0.0 1.0 24 new inB
→ 0.1 1.0 0.0 1.0 32 new inB
HR 0.1 0.5 0.0 1.0 8 new inV

VD 0.1 1.0 0.2 1.0 8 old inV
0.1 1.0 0.5 1.0 8 old inV
0.1 1.0 1.0 1.0 8 old inV
0.1 1.0 2.0 1.0 8 old inV
0.1 1.0 3.0 1.0 8 old inV
0.1 1.0 4.0 1.0 8 old inV
0.1 1.0 5.0 1.0 8 old inV

This new reconnection measure contains the time deriva-
tive of the absolute value ofBx , and a number of bound-
ary terms, such as advection ofBx across the boundary and
the boundary integral of the resistive termηj. The additional
terms include all processes contributing the time change of
|Bx |. In particular, they can have non-zero values.

3.6 Table of simulated models

In Table1 we list parameters of all the models presented in
this paper including models fromKowal et al. (2009) and
models with new driving. As in the previous paper, we di-
vided them into several groups. In each group, we calculated
models in order to study the dependence of the reconnection
rate on a characteristic parameter of turbulence or resistiv-
ity. We have studied the dependence of reconnection on the
power of turbulence (models “PD”), injection scale (mod-
els “SD”) and viscosity (models “VD”). Models with new
driving are marked with a right arrow (→), and models with
new driving and higher resolution are marked with a symbol
“HR”.

Only the varying parameters are listed in the table, the
strength of guide fieldB0z, the uniform resistivityηu, the
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Fig. 3. Evolution of total massM and kinetic and magnetic energies
Ekin andEmag, respectively. Two dotted vertical lines bound the
period of gradually increasing turbulence. The resistivity in this
model is set toη = 10−3 and the shared component of magnetic
field B0z = 0.1. In this model, we inject turbulence in the magnetic
field.

uniform viscosityνu, the power of turbulencePinj and its in-
jection scalekinj , and the method of turbulence driving.

All models presented in this section were calculated with
the grid size1x ≈ 0.004 corresponding to the resolution
256× 512× 256, except the model marked with symbol
“HR”, which was simulated with the resolution 512×1024×
512 (1x ≈ 0.002).

4 Results

4.1 Time evolution of energies and reconnection rate

In Fig. 3, we present an example of the evolution of to-
tal mass and kinetic and magnetic energies in a model with
Pin = 1.0, kf = 8 andηu = 10−3. We inject turbulence into
the magnetic field using the new forcing method, gradually
increasing its strength fromt = 4 to t = 5. This period is
marked by two dotted vertical lines in Fig.3. We see an
increase of kinetic energy during this period due to the injec-
tion and saturation aftert = 5. The kinetic energy preserves
constant value during the turbulent stage very well. The mag-
netic energy increases during this stage, slowly saturating.
This increase is attributed to the injection of magnetic ed-
dies. On the contrary, the total mass in the system decays
slowly. We emphasize that since we use open boundary con-
ditions, not perfect conservation of mass and energies, it is
possible in the presence of turbulence.

In Fig. 4, we show the evolution of reconnection ratesVrec
for two models with the same set of initial conditions, but
in the first model we drove turbulence by injecting magnetic
eddies using the new method described in this paper (black
line), and in the second model we inject velocity fluctuations
using the old method described inKowal et al.(2009) (blue
line). In this plot, we recognise an increase of both rates

Fig. 4. Evolution of the reconnection rateVrec (black) for the same
model as in Fig.3. Blue line shows the evolution of reconnection
in a model with the same parameters in which the turbulence were
driven using the old method. In this plot, we present the measured
rates of the Sweet-Parker reconnectionVrec,SPand during the pres-
ence of turbulence,Vrec,LV . SymbolδVrec,LV is the time variance.
1Vrec,LV is the estimated uncertainty of the measure.

during the introduction of turbulence. After the transition
period betweent = 4 andt = 5, when the system adjusts to
a new state, both measures coincide and even though they
fluctuate, they reach a stationary state characterised by faster
reconnection. Both types of turbulence bring the reconnec-
tion rate to a similar level. A somewhat higher reconnection
rate in the model with new driving could be attributed to the
fact that this model was calculated using the 5th order spa-
tial reconstruction and the 3rd order integration in time, in
contrast to the old model where we used the second order
methods. Lower order, especially in the spatial interpolation,
introduces additional numerical diffusion decreasing the am-
plitudes of turbulent fluctuations at scales comparable to the
current sheet scale.

In Fig.4, we also show the way of measuring the reconnec-
tion rates, in the Sweet-Parker and LV99 stages,Vrec,SP and
Vrec,LV , respectively. Because the reconnection rates fluc-
tuate in the presence of turbulence, we also measure their
time varianceδVrec,LV using the standard deviation. In ad-
dition to the time variance ofVrec, we measure their errors
by splitting the averaging region into two subregions and af-
ter averaging the ratesV1rec andV2rec over each subregion
(see Fig.4), we take the absolute value of their difference
1Vrec= V1rec−V2rec. This difference corresponds to the er-
ror of Vrec, i.e., it is different from zero if the rate is not con-
stant in time. In all further analysis and presented plots, we
use values estimated in this way. These measures correspond
exactly to those presented inKowal et al.(2009).

4.2 Topology of magnetic field

In this section, we compare field topologies in two example
models run with the same set of parameters, but with dif-
ferent types of driving. Both models have been simulated
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with the uniform resistivityηu = 10−3 and the resolution
256x512x256. We injected turbulence with powerPinj = 1.0
at the injection scalekinj = 8. The only difference between
models is the way we injected turbulence. In the old model,
we inject velocity fluctuations with random phases in Fourier
space and then transform them to real space and shape by a
window in order to limit the injection to the specified region
near the current sheet. In the new model, we inject magnetic
loops with random locations and random orientations in the
3-D volume near the current sheet. The way of injecting tur-
bulence is essentially different in both cases.

In Fig. 5, we show examples of XY-cuts (upper row) and
XZ-cuts (lower row) through the box for the model with old
driving. In the left and middle columns, we show topologies
of the velocity and magnetic field, respectively, with the in-
tensities corresponding to the amplitude of components par-
allel to the plotted plane. In the right column, we show the
absolute value of current density with overplotted magnetic
vectors. Velocity has a very complex and mixed structure
near the midplane due to constant injection of fluctuations in
this region (see the left panel in Fig.5). The majority of the
velocity fluctuations is perpendicular to the mean magnetic
field. This is because we are in the nearly incompressible
regime of turbulence (large plasmaβ) and most of the fluctu-
ations propagate as Alfvén waves along the mean magnetic
field. Slow and fast waves, whose strengths are significantly
reduced, are allowed to propagate in directions perpendicu-
lar to the mean field as well. As a result, a big fraction of
the turbulent kinetic energy leaves the box along magnetic
lines. We observe, however, an efficient bending of magnetic
lines at the midplane where the field is weaker (see the up-
per middle plot in Fig.5). This is not the result of a driving,
but result of reconnection. In general the interface between
positively and negatively directed magnetic lines is much
more complex than in the case of Sweet-Parker reconnec-
tion. This complexity favours creation of enhanced current
density regions, where the local reconnection works faster
(see the right panel of Fig.5). Since we observe multiple
reconnection events happening at the same time, the global
reconnection rate should be significantly enhanced.

In Fig. 6, we show similar examples of XY-cuts (upper
row) and XZ-cuts (lower row) through the box, but for a
model with the new way of driving turbulence. Here, a
big number of individual eddies is injected in the magnetic
field with random locations and random orientations in do-
main. Comparing to plots in Fig.5, we see differences but
also some clear similarities. Among the similarities, we note
a highly turbulent region near the current sheet seen in all
XY-cuts, with the current sheet itself strongly deformed and
fragmented into many small scale current sheets (the right
column of Figs.5 and6). We see also some small increase
of magnetic field strength near the current sheet (middle top
panels) resulting from working turbulence in the injection
region. Among the differences we can list somewhat dif-
ferent distributions of the fragmented current sheets in the

new model with clear enhancements in the locations where
the magnetic eddies are injected at that moment. These en-
hancements are clearly seen in the magnetic topology and
current density plots (middle and right columns). In order
to decrease those strong disturbances of the magnetic lines,
we shall reproduce the same model with higher injection rate
and reduced amplitudes of individual eddies. Another dif-
ference is the strength of current densityJ. In the model
with old driving, we see more volume in which|J| reaches
high magnitude and its structure is elongated with the local
field. In the model with new driving, the current density with
high strength seems to be less correlated with the local field,
probably due to the presence of newly injected eddies. In the
intermediate strengths, the structure of|J| seems to be better
correlated with the local field.

We see from this comparison that models with different
driving of turbulence demonstrate different topologies of the
fields. In the next sections, we show that the averaged recon-
nection rates do not change significantly, confirming that the
way we inject turbulence is of less importance and only its
strength and injection scale have influence onVrec.

4.3 Dependence on turbulence strength

Models with the new method of turbulence driving are listed
in Table1. We run a few models with varying turbulent pow-
ers in order to verify if the new driving modifies our previous
results. In these models, we kept the same parameters as in
the previous ones which allowed us to confirm the depen-
dence of the reconnection rateVrec on the power of injected
turbulencePinj .

Figure7 shows the values of reconnection speedVrec in
models with turbulent powerPinj varying in the range of val-
ues by more than one order of magnitude, from 0.1 to 2.0,
for all previously shown models (black symbols) inKowal
et al. (2009) and for new models (blue and red symbols) in
which we drove turbulence using the new method. Because
the evolution ofVrec in new models reaches stationarity after
time t = 6, we averagedVrec from t = 6 to t = 10 in these
models. Figure4 shows that the reconnection rates oscillate
around their mean values. In Fig.7, we plot how the aver-
aged reconnection speed depends on the strength of turbu-
lence. Filled symbols represent the averaged reconnection
rate in the presence of turbulence. The dotted line corre-
sponds to the reconnection rate during the Sweet-Parker pro-
cess, i.e., without turbulence. The error bars show the time
variance ofVrec. The size of symbols indicates the uncer-
tainty in our estimate of the reconnection speed1Vrec,LV nor-
malized to the uncertainty in the reconnection speed during
the Sweet-Parker evolution1Vrec,SP. It is calculated from a
formula size = 2.0− ln1Vrec,LV/ln1Vrec,SP. If 1Vrec,LV is
of the order of1Vrec,SP their symbols have the same sizes.

The reconnection rates for models with new driving, which
is described in Sect.3.4, confirm the theoretical dependence
of Vrec on the injected power, which scales as∼ P

1/2
inj . There
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Fig. 5. Topology and strength of the velocity field (left panel) and magnetic field (middle panel) in the presence of fully developed turbulence
for an example model with old driving at timet = 12. In the right panel, we show distribution of the absolute value of current density|J |

overlapped with the magnetic vectors. The images show the XY-cut (upper row) and XZ-cut (lower row) of the domain at the midplane of
the computational box. Turbulence is injected with powerPinj = 1 at scalekinj = 8 into velocity. Magnetic field reversals observed are due
to magnetic reconnection rather than driving of turbulence, which is sub-Alfvénic.

is no significant difference between models in which turbu-
lence was driven in velocity and in magnetic field. This is
in agreement with the LV99 prediction, that the reconnection
rate does not depend on the type of turbulence.

4.4 Dependence on injection scale

The reconnection rateVrec in the presence of turbulence de-
pends only on the strength of turbulence and its injection
scalelinj , according to Eq.1, for a fixed magnitude of the
anti-parallel magnetic field component. In the previous sub-
section, we presented studies on the turbulent power depen-
dence. In this subsection, we aim to study the injection scale
dependence. For this purpose, we performed several mod-
els with the new way of driving turbulence as well, in order
to verify if they confirm the dependence of the reconnection
speedVrec on the scalelinj at which we inject turbulence. The

new models are listed in Table1. We inject turbulence at sev-
eral scales, fromkinj = 8 tokinj = 32. At the upper end of this
range, the turbulence barely broadens the Sweet-Parker cur-
rent sheet. At the lower end the turbulent eddies are barely
contained within the volume in which we excite turbulent
motions.

In Fig. 8, we present the reconnection speed dependence
on the injection scale. We plot the averagedVrec for old mod-
els (black symbols) completed by the values from new mod-
els with alternative driving (blue and red symbols). From
the plot we clearly see a strong dependence of the recon-
nection rate on the injection scale. The new models very
precisely follow the same dependence, confirming again that
the type of turbulent driving has no influence on the pro-
cess of reconnection, and only the power and injection scale
of this driving have strong importance. Similarly, as in the
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Fig. 6. Topology and strength of the velocity field (left panel) and magnetic field (middle panel) in the presence of fully developed turbulence
for an example model with new driving at timet = 10. In the right panel, we show distribution of the absolute value of current density|J |

overlapped with the magnetic vectors. The images show the XY-cut (upper row) and XZ-cut (lower row) of the domain at the midplane of
the computational box. Turbulence is injected with powerPinj = 1 at scalekinj = 8 directly in the magnetic field.

power dependence plot, the new models have slightly higher
reconnection speeds comparing to the old ones. This is due
to reduced numerical dissipation of velocity, since in the new
models we used higher order methods. Dissipation removes
energy at small scales. If it is smaller, due to higher order nu-
merical scheme, the turbulent fluctuations reach higher am-
plitudes at the current sheet scale. This influences the rate of
individual reconnection events improving slightly the global
reconnection rateVrec.

Figure 8 shows a bit weaker scaling with the injection
scale than that predicted by LV99 model, i.e.,Vrec ∼ linj .
We see several possible sources for the discrepancy. For in-
stance, the existence of a turbulent inverse cascade can mod-
ify the effectivelinj . In addition, reconnection can also mod-
ify the characteristics of turbulence, such as the power spec-
trum and anisotropy. We aim to study these problems in fu-
ture work.

4.5 Dependence on viscosity

In Kowal et al. (2009) we performed studies of the recon-
nection rate on the resistivity, both the uniform and anoma-
lous ones, and we obtained great agreement with the Sweet-
Parker scalingVrec ∼ η

1/2
u for the case without turbulence,

and no dependence on resistivity in the presence of turbu-
lence, as was predicted in LV99. In this section, we per-
formed additional studies of the reconnection rate depen-
dence on viscosity. The dissipation scale of turbulent cascade
is related to the magnitude of viscosity. If the dissipation
works at scales larger than the current sheet thickness, the
turbulence cascade stops before reaching the current sheet
and the global reconnection rate should be reduced. The
reconnection will still be enhanced by the broadened ejec-
tion region, allowing for more efficient removal of the recon-
nected magnetic flux.
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Fig. 7. The dependence of the reconnection speedVrec on Pinj up-
dated by symbols from new models. Blue symbols show models
with new driving in which the eddies where injected in magnetic
field instead of velocity, as in the previous models (black symbols).
The dotted line corresponds to the Sweet-Parker reconnection rate
for models withηu = 10−3. A unique red symbol shows the recon-
nection rates from model with new driving in velocity performed
with higher resolution (512x1024x512) and resistivity coefficient
reduced toηu = 5·10−4. Error bars represent the time variance of
Vrec. The size of symbols corresponds to the error ofVrec (the way
we calculate errors is described in Sect.4.1).

Fig. 8. The dependence of the reconnection speedVrec on linj with
additional models in which turbulence was driven in a new way,
as described in Sect.3.4. Similarly to Fig.7, blue symbols show
models with perturbed magnetic field, and red symbols correspond
to a high resolution model with reduced uniform resistivity in which
turbulence was driven in velocity. The dotted line corresponds to the
Sweet-Parker reconnection rate for models withηu = 10−3. Error
bars and the size of symbols have the same meaning as in Fig.7.

Fig. 9. The dependence of the reconnection speedVrec on the uni-
form viscosity coefficientν. As explained in the text, the reconnec-
tion speed is reduced with increasing value ofν. The dotted line
corresponds to the Sweet-Parker reconnection rate. Error bars and
the size of symbols have the same meaning as in Fig.7.

In Fig. 9, we show reconnection rates for models with
varying viscosity coefficient. Although there is not predic-
tion for this dependence in the LV99 model, we could test
it numerically. In the Fig.9, we see a weak dependence
Vrec∼ ν−1/4. This dependence might be also useful in under-
standing the reconnection speed differences between models
with the same set of parameters but different resolutions, or
solved with different orders of the numerical scheme. At low
resolutions or low order schemes, the numerical viscosity is
expected to be larger, thus we should observe reduced recon-
nection speeds in those cases. This is confirmed in Figs.7
and8 where we compare old models done with the second or-
der scheme, and new models done with higher order schemes
and higher resolutions. In those plots all new models demon-
strate slightly higher reconnection rates.

5 Discussion

5.1 LV99 in collisional and collisionless plasma

The LV99 model was introduced for both collisional and col-
lisionless media and it claimed that the microphysics of colli-
sionless reconnection events does not change the resulting re-
connection rates. This point was subjected to further scrutiny
in Eyink et al.(2011) who provided a thorough investigation
of the problem and concluded that for most of astrophysi-
cal collisionless plasmas the LV99 model should be applica-
ble, provided that plasma is turbulent. With turbulence being
ubiquitous in astrophysical conditions, this hardly constraints
the applicability of the LV99 model.
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The LV99 model of reconnection is applicable to the colli-
sional medium, such as the ISM, which is both turbulent and
magnetized, and where the Hall-MHD reconnection does not
work (Yamada, 2007). For instance, for Hall-MHD recon-
nection to be applicable, it is required that the Sweet-Parker
current sheetδSP width is smaller than the ion inertial length
di . Thus, the “reconnection criterion for media to be col-
lisionless” is(L/di)

1/2/(ωcτe) < 1, which presents a more
severe constraint on the possible rate of collisions. As a re-
sult, magnetic reconnection happens to be mediated by the
Hall-MHD only if the extend of the contact regionL (see
Fig. 1) does not exceed 1012 cm. Magnetic fields in the ISM
should interact over much larger scales.

The LV99 model works in astrophysical environments to
which the Hall-MHD reconnection is applicable, as well, like
Solar corona, interplanetary medium, if the level of turbu-
lence is high enough. The reconnection on microscales can
happen fast, i.e., in the Hall-MHD fashion. This may not
change, however, the global reconnection rate. The LV99
model shows that even with relatively slow Sweet-Parker re-
connection at microscales the global reconnection is limited
not by Ohmic resistivity, but by the rate of magnetic field
wondering. We believe that the Hall-MHDlocal reconnec-
tion of magnetic fields is taking place in the interplanetary
medium, which is being tested by local in situ measurements,
while theglobal reconnection rates are determined by mag-
netic field wandering as prescribed in LV99.

5.2 Limitations of 2-D reconnection

In the absence of a quantitative model to be tested, simu-
lations aimed at studying the reconnection speed have been
done in 2-D, both for collisional and collisionless regimes.
This allowed achieving higher resolutions (compared to
those contemporary available in 3-D), but substantially con-
strained magnetic field dynamics. For instance, the closest
study to ours was done byMatthaeus and Lamkin(1985)
(see alsoMatthaeus and Lamkin, 1986). The authors stud-
ied 2-D magnetic reconnection in the presence of external
turbulence. An enhancement of the reconnection rate was re-
ported, but the numerical setup precluded the calculation of
a long-term average reconnection rate. A more recent study
along the approach ofMatthaeus and Lamkin(1985) is one
in Watson et al.(2007), where the effects of small scale tur-
bulence on 2-D reconnection were studied and no significant
effects of turbulence on reconnection were reported for the
setup chosen by the authors. Later,Servidio et al.(2010)
redid the modelling of 2-D turbulent reconnection following
Matthaeus and Lamkin(1985) with much higher resolutions.
They used an advanced technique to detect precisely all X-
points in the domain and then performed statistical studies
confirming the Sweet-Parker relation for the reconnection
rate as a function of X-point geometry. The development of
different techniques to study magnetic reconnection is very

important. Even though their modelling was limited to one
type of highly super-Alfv́enic decaying turbulence (the ini-
tial uniform magnetic field was zero), they reported recon-
nection rates with normalized values 0.1−0.3 and confirmed
the importance of turbulence for modifying the character of
magnetic reconnection and specifies heating and transport as
the effect of particular significance, as well as formation of
Petschek-type “X-points” in 2-D turbulence. Due to the lack
of large scale magnetic field configuration, their model repre-
sents a specific case, far from the generic situation observed
in the astrophysical objects where the mean and turbulent
components of magnetic fields have comparable strengths.
Therefore, these studies cannot predict the global reconnec-
tion rate, as well. Moreover,Servidio et al.(2010) interpreted
successful numerical confirmation of the LV99 model as a
result of strong turbulence, althoughKowal et al.(2009) ad-
dressed this problem carefully showing that the amplitudes of
velocity fluctuations, both injected and obtained from spec-
tra of developed and stationary turbulence, are fractions of
Alfv én speed.

The fact that our study is in 3-D is essential, as the LV99
model is intrinsically three dimensional. The general pic-
ture is of tangled field lines with reconnection taking place
via a series of “Y-points” or modified Sweet-Parker sheets
distributed in some fractal way throughout the turbulence.
A large scale Sweet-Parker sheet will be replaced by a more
fractured surface, but the current sheets will occupy a vanish-
ingly small fraction of the total volume and the field reversal
will remain relatively well localized. The model predicts that
the reconnection speed would be approximately equal to the
strong turbulent velocity with a modest dependence on the
ratio of the eddy length to the current sheet length. There
should be no dependence on resistivity. The major results
contained in our figures showing the dependence of the re-
connection speed on resistivity, input power and input scale
agree with the quantitative predictions of the LV99 model.
We are not aware of any competing models to compare our
simulations with.

The major differences from the present study stem from
the fact that we test a 3-D model of reconnection, as the LV99
depends on effects, like field wandering, that happen only in
3-D. In order to show how different 2-D and 3-D worlds are,
we performed similar studies to those presented inKowal et
al. (2009), but limiting the domain to two dimensions (see
Kulpa-Dybeł et al., 2010). In Kulpa-Dybeł et al.(2010), we
demonstrated that 2-D magnetic reconnection in the presence
of turbulence depends on the Ohmic resistivity, therefore, it
is not fast. Also, the dependencies on the turbulent power and
injection scales were significantly weaker than in the LV99.
This dependence of 2-D reconnection rate on Ohmic resis-
tivity in the presence of turbulence, although weaker than the
Sweet-Parker relationVrec∼ η−1/2, has been independently
confirmed byLoureiro et al.(2009) studies, performed with
a very different approach. These differences call for delib-
eration with a simple extension of conclusions coming from
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the 2-D modelling to a natural for magnetic field fully three
dimensional world.

5.3 Applications of the LV99 model

Reconnection is one of the most fundamental processes in-
volving magnetic fields in conducting fluids or plasmas.
Therefore, the identification of a robust process responsible
for reconnection has many astrophysically important conse-
quences. Below we list a few selected implications of the
successful validation of the LV99 model.

Numerical studies on Fermi acceleration in turbulent re-
connection have a long history (e.g.Matthaeus et al., 1984;
Goldstein et al., 1986; Ambrosiano et al., 1988; Drake et
al., 2006; Hoshino, 2012). In the Sweet-Parker model, it
has been shown that particles can accelerate due to the in-
duced electric field in the reconnection zone (Litvinenko,
2003). This one − shot acceleration process, however, is
constrained by the narrow thickness of the acceleration zone
which has to be larger than the particle Larmor radius and
by the strength of the magnetic field. Therefore, the effi-
ciency of this process is rather limited. Besides, it also does
not predict a power-law spectrum, as generally observed for
cosmic rays. Observations have always been suggestive that
magnetic reconnection can happen at high speed in some cir-
cumstances, in spite of the theoretical difficulties in explain-
ing it. For instance, the phenomenon of solar flares suggests
that magnetic reconnection should be first slow in order to
ensure the accumulation of magnetic flux and then suddenly
become fast in order to explain the observed fast release of
energy. The LV99 model can naturally explain this and other
observational manifestations of magnetic reconnection. Con-
sider a particle entrained on a reconnected magnetic field line
(see Fig.1). This particle may bounce back and forth be-
tween magnetic mirrors formed by oppositely directed mag-
netic fluxes moving towards each other with the velocityVrec.
Each bounce will increase the energy of a particle in a way
consistent with the requirements of the first-order Fermi pro-
cess2 (de Gouveia Dal Pino and Lazarian, 2001, 2003; de
Gouveia dal Pino and Lazarian, 2005; Lazarian, 2006). This
is in contrast to the second-order Fermi acceleration that is
frequently discussed in terms of accelerating particles by tur-
bulence generated by reconnection (La Rosa et al., 2006).
The numerical studies of the particle acceleration supporting
these ideas have been already started (Kowal et al., 2011a,b).
An interesting property of this acceleration mechanism is
that it is also potentially testable observationally, since the
resulting spectrum of accelerated particles is different from

2Another way of understanding the acceleration of energetic
particles in the reconnection process above is to take into account
that the length of magnetic field lines is decreasing during recon-
nection. As a result, the physical volume of the energetic particles
entrained on the field lines is shrinking. Thus, due to Liouville’s
theorem, their momentum should increase to preserve the constancy
of the phase volume.

that arising from a shock.de Gouveia Dal Pino and Lazar-
ian (2001); de Gouveia dal Pino and Lazarian(2005) used
this mechanism of particle acceleration to explain the syn-
chrotron power-law spectrum arising from the flares of the
microquasar GRS 1915+105.

Further applications can be found in solar physics. Fol-
lowing Zweibel and Yamada(2009), we note that solar flares
inspired much of the earlier research on reconnection (see
Pneuman, 1981; Bastian et al., 1998). As the plasma involved
is substantially rarefied, the restrictive conditions for the col-
lisionless reconnection are satisfied in this particular environ-
ment.Cassak et al.(2005) stated that bistable Hall reconnec-
tion can be important in this case. Stochastic reconnection
provides an alternative explanation. Indeed, an important
prediction of the LV99 model is related to thereconnection
instabilitythat arises in the situation when the initial structure
of the flux prior to reconnection is laminar. Reconnection
at the Sweet-Parker rate is negligible. This allows magnetic
flux to accumulate. However, when the degree of stochastic-
ity exceeds a threshold value, the reconnection itself should
excite more turbulence, creating a positive feedback resulting
in a flare (seeLazarian and Vishniac, 2009). The instability
is a generic property of laminar field reconnection in both
collisionless and collisional environments. Referring to the
Sun, one may speculate that the difference between gradual
and eruptive flares arises from the original state of magnetic
field prior to the flare, at least in some specific situations. In
the case when the magnetic field is sufficiently turbulent the
accumulation of magnetic flux does not happen and the flare
is gradual. Similarly, the observed spatial spread of energy
release during solar flares may be due to the spread of the re-
gion of turbulent fields once reconnection is initiated at one
place. Recent observations demonstrate that gradual flares
occur rather in regions with large scale and weak magnetic
fields for which Alfvén times are large (Shibata and Magara,
2011). In light of that, the difference in Alfv́en times may
explain different time scales in gradual and impulsive flares.
Further research is necessary for establishing the role of tur-
bulence in changing the time scale of flare evolution.

The LV99 model can find its application in the removal
of magnetic flux from the star formation regions.Shu et
al. (2006) showed that magnetic field is removed from the
star forming core cluster faster than it is allowed by the stan-
dard ambipolar diffusion scenario (Tassis and Mouschovias,
2005a,b). Shu et al.(2007) proposed a mechanism using effi-
cient reconnection through “hyper-resistivity”.Santos-Lima
et al.(2010) performed numerical studies of such a concept,
replacing the “hyper-resistivity” with efficient stochastic re-
connection. They reported removal of strong anticorrelations
of magnetic field through “reconnection diffusion”, which
can mimic the effect of enhanced Ohmic resistivity.

LV99 showed that fast reconnection of stochastic mag-
netic field makes the models of strong MHD turbulence self-
consistent, because the critical balance in the GS95 model
requires the existence of eddy-type motions perpendicular to
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the magnetic field. In the absence of reconnection this would
result in unresolved knots that should drain energy from the
cascade. The estimates in LV99 showed that the rates of re-
connection predicted by the model are sufficient to resolve
magnetic knots within one period.

5.4 Reasons for slow adaptation of the LV99 model

The LV99 model of magnetic reconnection in the presence of
weakly stochastic magnetic fields was proposed byLazarian
and Vishniacin 1999. However, due to a few objective fac-
tors it met with less enthusiasm in the community than, for
example, the X-point collisionless reconnection. We believe
that there were three major factors responsible for this.

1. The collisionless X-point reconnection was initiated and
supported by numerical simulations, while LV99 was a
theory. Its numerical testing became possible only re-
cently. The reconnection subject had a history of failed
theories and models, which without direct numerical
support were taken with a grain of salt.

2. The acceptance of the idea of astrophysical fluids gener-
ically being in turbulent state had much less observa-
tional support at that time compared to the present day.
By now we have much more evidence which allows us
to claim that models not taking the pre-existent turbu-
lence has little relevance to astrophysics.

3. The analytical solutions of LV99 were based on the use
of GS95 model of turbulence. The GS95 model of tur-
bulence, in fact, was extended LV99 by introducing the
concept of local reference frame for turbulent eddies
and by extending the GS95 scalings to the sub-Alfvénic
case. The GS95 theory was far from being generally
accepted at the time of the LV99 publishing.

The situation has changed substantially by now. First
of all, GS95 was successfully tested numerically (Cho and
Vishniac, 2000; Maron and Goldreich, 2001; Cho et al.,
2002) and their ideas have been extended to describing the
Alfv énic cascade in compressible MHD turbulence (seeCho
and Lazarian, 2002, 2003; Kowal and Lazarian, 2010)3.
The so-called “Big Power Law in the Sky” indicating the
presence of turbulence on scales from tens of parsecs to
thousands of kilometres has been extended (Chepurnov and
Lazarian, 2010), and the observations of gas and synchrotron
emission provided an extended number of direct turbulence

3There are attempts to modify GS95 theory by supplementing it
with additional effects, like dynamical alignment (Boldyrev, 2005,
2006), polarization (Beresnyak and Lazarian, 2006), non-locality
Gogoberidze(2007). All these attempts, however, do not change
the very nature of the GS95 model. Moreover, some recent studies
Beresnyak and Lazarian(2009, 2010); Beresnyak(2011) indicate
that the numerical motivation for introducing these attempts may be
due to the insufficient inertial range of the simulations involved.

measurements confirming their presence (seeBurkhart et
al., 2010; Gaensler et al., 2011). Finally, the situation has
changed with the numerical testing of the LV99 model. The
3-D MHD simulations inKowal et al.(2009) supported the
predictions in the LV99 paper and our present work goes fur-
ther in testing this model, by including different types of en-
ergy injection.

It is worth noting also, that there is some implicit obser-
vational evidence in the favour of the LV99 model, like ob-
servations of the thick reconnection current outflow regions
observed in the Solar flares (Ciaravella and Raymond, 2008).
Sych et al.(2009), explaining quasi-periodic pulsations in
observed flaring energy releases at an active region above
the sunspot, proposed that the wave packets arising from the
sunspots can trigger such pulsations. They established a phe-
nomenological relation between oscillations in a sunspot and
pulsations in flaring energy releases. This phenomenon can
be naturally explained by the LV99 model.

6 Conclusions

In this article, we performed additional testing of the LV99
model of fast reconnection under different types of turbu-
lent driving using 3-D numerical simulations. We have intro-
duced a new method of driving turbulence by direct injection
of the velocity or magnetic eddies with random locations in
the domain. We analysed the dependence of the reconnec-
tion speed on the turbulence injection power, on the injection
scale, as well as on the viscosity. We found that:

– We observe similar changes of the topology of the mag-
netic field near the interface of oppositely directed mag-
netic field lines in models with two different turbulence
injection mechanisms. These changes include the frag-
mentation of the current sheet, favouring multiple si-
multaneous reconnection events, as well as a substantial
increase in the thickness of the outflow of reconnected
magnetic flux and matter.

– The relation between the reconnection rateVrec and tur-
bulent powerPinj remains unchanged under two differ-
ent mechanisms of energy injection and is confirmed by
new models to beVrec∼ P

1/2
inj ∼ V 2

l , in agreement with
the LV99 prediction. Moreover, the injection in mag-
netic field produces similar effects on the reconnection
as injection in velocity, remaining the dependence unal-
tered.

– The reconnection rate grows with the size of the in-
jected eddies, which can be directly related to the turbu-
lence injection scale. The rate of growth, for the models
with old and new driving mechanism, is approximated
by Vrec∼ l

3/4
inj scaling which agrees with the previously

obtained scaling. Somewhat steeper LV99 prediction,
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Vrec∼ linj , could results from limitations in the dynamic
range available for study.

– Reconnection in the presence of weak turbulence is
only weakly sensitive to viscosityν. From performed
simulations we obtained a dependenceVrec∼ ν−1/4 for
one set of parameters:Pinj = 1.0, kinj = 8, ηu = 10−3,
B0z = 0.1.
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