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Abstract. Most interpretive methods for potential field
(magnetic and gravity) measurements require data in a grid-
ded format. Many are also based on using fast Fourier trans-
forms to improve their computational efficiency. As such,
grids need to be full (no undefined values), rectangular and
periodic. Since potential field surveys do not usually provide
data sets in this form, grids must first be prepared to sat-
isfy these three requirements before any interpretive method
can be used. Here, we use a method for grid preparation
based on a fractal model for predicting field values where
necessary. Using fractal field values ensures that the statisti-
cal and spectral character of the measured data is preserved,
and that unwanted discontinuities at survey boundaries are
minimized. The fractal method compares well with standard
extrapolation methods using gridding and maximum entropy
filtering. The procedure is demonstrated on a portion of a re-
cently flown aeromagnetic survey over a volcanic terrane in
southern British Columbia, Canada.

1 Introduction

Magnetic and gravity data are often subject to a number of
processing or enhancement techniques designed to improve
their interpretive value. These procedures, such as calcu-
lating derivatives, downward continuation, reduction to the
pole, can all be efficiently carried out in the frequency do-
main using fast Fourier transforms (FFTs) (e.g., Kanasewich,
1981). FFT algorithms require that data exist at all points on
the grid (i.e., there are no undefined values) and that the data
are periodic with a period equal to the grid dimensions. Since
magnetic and gravity data sets do not usually satisfy either of
these requirements, they must be appropriately prepared be-
fore FFT-based grid processing algorithms are used (Cordell
and Grauch, 1982; Ricard and Blakely, 1988). FFT algo-

rithms can be based on powers of two or arbitrary factors. In
the following we assume that a power of two FFT is used.

The shape of a survey is driven by a number of factors
including the geology of the region being investigated, ac-
quisition cost, flightline orientation and the configuration of
the targeted geological feature, if known. As an example,
Fig. 1 shows a portion of an aeromagnetic survey carried out
in British Columbia. Standard gridding of this set of flight-
line data produces a complex shaped grid (blue line, Fig. 1)
that must then be expanded to a rectangular form (black rect-
angle, Fig. 1) so that there are no undefined values in the
grid. The undefined parts of the grid must be populated by
extrapolated values usually generated from the original grid-
ded data. This expanded and now fully defined rectangular
grid is, however, not yet in a form ready for applying FFT
algorithms. The assumption of grid periodicity assumed in
FFT algorithms must first be satisfied. In the simple case
of a survey covering a rectangular area, one can remove the
mean of the data, apply a tapering window to the data along
the edges and pad the grid with zero values. The width of the
tapering window should be about one tenth of the size of the
grid. Use of a tapering window results in loss of data along
the edges. Moreover, real surveys are seldom rectangular.

For non-rectangular data grids, periodicity can be achieved
in a variety of ways. Initially, some form of extrapolation is
used to add data along survey edges and avoid the loss of in-
formation that a tapering window applied inside the survey
limits would cause. Care must be taken with the extrapo-
lation in order to avoid problems with discontinuities in the
values at or near to the grid edges. Edge discontinuities will
cause ringing (Gibb’s phenomenon), when grids are filtered
or transformed in the course of standard potential field data
processing, such as continuation or calculating derivatives.
Because of the assumed periodicity of the data grid, ringing
will often “bleed” from one edge of the grid to the opposite
edge (wrap-around). To avoid this, extrapolated values must
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Fig. 1 Portion of the Bonaparte Lake aeromagnetic survey in British Columbia. Blue line 

is edge of gridded survey data. Black rectangle line is the outline of expanded rectangular 

grid. Coordinates in metres are UTM zone 21.  

 
 
 
 
 
 
 
 
 

Fig. 1. Portion of the Bonaparte Lake aeromagnetic survey in
British Columbia. Blue line is edge of gridded survey data. Black
rectangle line is the outline of expanded rectangular grid. Coordi-
nates in metres are UTM zone 21.

be tapered within a specified zone at the grid edges down
to some average grid value, which then exists at all points
around the grid perimeter. In practice the mean of the grid
and in some cases a first-order trend should be removed be-
fore processing. Linear trends are often present in data sets
and cause large differences in values at opposite edges of the
resulting grids; thus, the most expedient way to treat these ef-
fects is to simply fit a low-order surface to the input grid and
remove the trend. If necessary, this can be added back to the
data after further processing. The width of the tapered zone
must be large enough to smooth out any large magnitude dif-
ferences between values at opposite grid edges. Padding or
extrapolated regions at grid edges must have large widths,
especially when three-dimensional (3-D) inversions of the
data are done since fitting sources at depth will affect data
at large horizontal distances. An alternative to tapering is to
introduce extrapolated values that are already guaranteed to
match and be periodic at the grid edges and do not contain
large magnitude differences near to the grid perimeter. This
is the technique used in the fractal approach below.

Where real and synthetic data meet (blue line, Fig. 1),
extrapolated values need to fit seamlessly to the measured
data and should preserve the statistical character of the input
data as closely as possible. This ensures that discontinuities
caused by a sudden change in wavelength and amplitude con-
tent are avoided and that spurious wavelength components
are not introduced into the extrapolated grid, which after fil-
tering could affect values within the survey limits.

Common methods that are used for the extrapolation in-
clude minimum curvature gridding (Briggs, 1974), mirror-
ing the input data (Baranov, 1975, p. 42) and linear predic-
tion filtering (Gibert and Galdeano, 1985). The two latter
approaches are 1-D in that they act on the grid rows and

columns independently. Mirroring the data will preserve
the frequency content of the original grid values, but when
the input grid edges are irregular, the extrapolated values
may require some smoothing to avoid large offsets between
adjacent rows or columns in areas where extrapolated data
are mirrored. Predicting data using maximum entropy pre-
serves the original frequency content of the data along the
columns and rows of the grid only up to how well the un-
derlying autoregressive data model fits the observations. Op-
erating on columns followed by rows or vice versa presents
the same problems as the mirroring approach. Extrapolation
using gridding has the advantage of being a 2-D approach.
Nonetheless, the extrapolated values become much smoother
than the input data as the distance from the survey grid edges
increases. This smoothing changes the frequency content of
the input data, which can have serious consequences on the
final processed data grid.

The aim of this paper is to introduce an approach to
grid preparation based on a fractal description of the data,
whether gravitational or magnetic. The parameters of the
fractal model are determined from the observed data and the
synthesized fractal field used to extrapolate grid values into
undefined regions where required.

2 Fractal description of potential fields

An alternative to existing approaches to grid preparation
discussed in the previous section is to use knowledge of
the character of the field so that any predicted values have
the same statistical behaviour and frequency content as the
known gridded values. Magnetic and gravitational fields
have been shown to be well-described as fractal (Gregotski
et al., 1991; Pilkington and Todoeschuck, 1993; 2004; Maus
and Dimri, 1994; Lovejoy and Schertzer, 2007). Specifi-
cally, the power spectrum of both fields is proportional to
fβ , where f is the spatial frequency andβ is the scaling expo-
nent (the slope of the spectrum in log-log space). For gravity
data, published values ofβ range from−4.5 to −5 based
on regional and continent-wide data compilations (Maus and
Dimri, 1996; Maus et al., 1998; Pilkington and Todoeschuck,
2004). Magnetic data show a wide range ofβ values be-
tween−1 and−4.8, based on sample areas with scales from
<10 km up to>1000 km (Gregotski et al., 1991; Pilking-
ton and Todoeschuck, 1993; Maus and Dimri, 1995; 1996;
Maus et al., 1997; Bouligand et al., 2009). Although not a
necessary requirement for the fractal (or scaling) potential
field description (Fedi et al., 1997; Quarta et al., 2000), the
spatial distribution of rock properties (density and magnetic
susceptibility) that cause these fields are also fractal with
behaviours summarized in Bouligand et al. (2009). These
particular rock properties have also been described in multi-
fractal terms (Lovejoy et al., 2001; Fedi, 2003; Gettings,
2005). Regardless of whether a simple fractal or multi-fractal
model is the better description of the potential field being
processed, the main outcome in practical terms from these
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studies is that a scaling or correlated type of description is
more realistic than the earlier, commonly used assumption
of an uncorrelated density/susceptibility distribution within
the Earth’s crust.

Fedi et al. (1997) and Quarta et al. (2000) showed that
magnetisation distributions other than a scaling one can also
produce a scaling magnetic field power spectrum. Their
models of uncorrelated distributions of blocks with constant
magnetisation are spectrally equivalent to a scaling medium.
A “blocky” distribution for magnetisation is not unrealistic
since the basic approach of mapping magnetic units from
magnetic field data involves assuming regions have similar
susceptibilities and are associated with a single lithology.
Nevertheless, susceptibility measurements from drill holes
and rock sample suites over a wide range of scales support
truly scaling properties of the underlying physical proper-
ties. Furthermore, evidence of scaling behaviour has been
provided through analyses using non-spectral methods. Sus-
ceptibility logs were analysed with the rescaled range method
and shown to be scaling by Leonardi and Kumpel (1996),
while Dolan et al. (1998) demonstrated broad-band fractal
scaling for several petrophysical logs based on four different
calculation methods.

The fractal model of magnetic and gravity field data has
already been exploited in a variety of uses including krig-
ing of aeromagnetic data using a fractal covariance model
(Pilkington et al., 1994), inversion for fractally magnetised
source distributions (Maus and Dimri, 1995), Curie depth
determination (Maus et al., 1997; Bouligand et al., 2009;
Bansal et al., 2011), deriving accurate covariance models for
satellite gravity data (Bansal and Dimri, 2005) and synthetic
model-making to determine filtering parameters (Pilkington
and Cowan, 2006). In the following, we outline a further use
of fractals in the preparation of gravity and magnetic data
grids prior to FFT-based processing and enhancement algo-
rithms.

3 Method

Since we have a reliable model for predicting the character
of crustal magnetic fields, we can use this knowledge to more
realistically “fill in” and extrapolate grids before they are pro-
cessed. The method we use is that of conditional simulation
(Journel and Huijbregts, 1978; Tubman and Crane, 1995).
This approach aims to produce synthesized values that have
a specified statistical character and that match real values
where known. For example, petroleum reservoir simulation
to predict fluid flow requires a synthetic porosity distribution
that matches those values measured in well-logs (Tubman
and Crane, 1995). For the magnetic and gravity cases, the
known values occur at all points within the survey area, but
the important or conditioning data only occur at the survey
edges, external or internal. The simulation approach needs
to satisfy two requirements: one is that the simulated field
has the same or very similar character to the measured field
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Fig. 2. Spectra of the fractal grid upward continued to 125 m (continuous line) and the 

measured magnetic data (dotted line). 

 
 
 
 

Fig. 2. Spectra of the fractal grid upward continued to 125 m (con-
tinuous line) and the measured magnetic data (dotted line).

and the other is that the simulated values match those at the
original survey grid boundaries.

To create a synthetic fractal field, we generate Gaussian
white noise (which has a flat power spectrum) with a spec-
ified mean (M) and standard deviation (σ ). These values
are Fourier transformed and multiplied by fβ/2 whereβ is
the required scaling exponent (Pilkington et al., 1994). To
account for the distance between the top of the source dis-
tribution (usually assumed to be ground level) and the mea-
surement altitude, the synthetic field values are upward con-
tinued in the frequency domain. The grid is also projected to
the same geomagnetic latitude as the observed data (Blakely,
1996). Finally, inverse Fourier transformation gives the de-
sired field. This synthetic grid is then scaled to the same
standard deviation as the measured grid.

4 Data example

Figure 1 shows a map of aeromagnetic data from the Bona-
parte Lake area of British Columbia, Canada. This area was
flown by helicopter in 2006 with a line spacing of 420 m
and a nominal mean terrain clearance of 125 m (Thomas and
Pilkington, 2008). The magnetic data were gridded with an
interval of 100 m, resulting in a grid with 200×200 cells. The
geology in this region is dominated by the Chilcotin Group
basaltic volcanics and the Kamloops Group calc-alkaline
volcanic rocks. Minor amounts of Nicola Group volcanic
rocks (andesitic to basaltic) occur in the western half of the
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Fig. 3. Synthetic fractal magnetic grid upward continued to a height of 125 m. Note the 

periodicity of the grid. Top and bottom edges are identical as well as left and right edges. 

Coordinates in metres are UTM zone 21.  

 
 
 
 
 

Fig. 3. Synthetic fractal magnetic grid upward continued to a height
of 125 m. Note the periodicity of the grid. Top and bottom edges
are identical as well as left and right edges. Coordinates in metres
are UTM zone 21.

area. The major northwest-southeast trending positive mag-
netic anomaly is interpreted to be caused by Nicola volcanics
buried beneath thin (<25 m), Chilcotin Group cover. Else-
where in the region, Nicola Group volcanics are commonly
associated with high-amplitude (commonly>1000 nT and
rarely >4000 nT) anomalies. Regions with Kamloops or
Chilcotin volcanic rocks generally exhibit a spotty magnetic
fabric, lacking any dominant coherent trends.

Figure 2 shows the power spectrum of the field in Fig. 1.
A fractal field with similar character to the measured field
was then determined based on the observed power spectrum.
The parameterβ can be estimated from the slope of the long
wavelength part of the measured spectrum. This slope will be
modified slightly when the fractal field is upward continued
to the average terrain clearance (125 m). Matching the power
level is easily done once a trial spectrum is plotted. A scaling
parameterβ = −2.5 was estimated from the observed data
spectrum and used for the generated fractal field shown in
Fig. 3. This grid has a 256× 256 cell dimension and is the
size of the final extrapolated grid. How much to extend the
measured data will be constrained by the shape of the orig-
inal grid, but should be large enough to allow for a smooth
transition from original data out to the edge of the extended
grid. In our experience, an extrapolation zone of width equal
to 10 % of the original grid dimensions appears to be suffi-
cient (cf., Fig. 1). The power spectrum of the synthetic data
grid (Fig. 3) is shown in Fig. 2, where a good match with
the observed spectrum is apparent. The observed spectrum
shows a fall-off in power at the longest wavelengths (> 20
km) compared to the synthetic values. This difference is of-
ten seen and is interpreted to be caused by the limited depth
extent of magnetic sources (Maus et al., 1997; Bouligand et
al., 2009).
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Fig. 4. Synthetic fractal grid extrapolated to rectangular edges after removal of fractal 

data located outside the survey area outline in blue in Fig. 1. Edges are zeros. Coordinates 

in metres are UTM zone 21.  

 
 
 
 

Fig. 4. Synthetic fractal grid extrapolated to rectangular edges after
removal of fractal data located outside the survey area outline in
blue in Fig. 1. Edges are zeros. Coordinates in metres are UTM
zone 21.

Using an FFT approach to compute the fractal field en-
sures the periodicity requirement at the extended grid edges
is met. In order to fill in the region between the original grid
(Fig. 1) and the final grid edges with fractal values, there
must be no discontinuities along the original grid perime-
ter. Therefore, using only those fractal field values coincident
with the observed field grid (Fig. 1), values are extrapolated
outwards using minimum curvature. To ensure the edges of
the expanded grid match opposite edges (guaranteeing pe-
riodicity), zero values are assigned to the boundary of the
expanded grid (black line in Fig. 1). This extrapolated grid,
shown in Fig. 4, is then subtracted from the synthetic frac-
tal field grid, resulting in a conditioned field grid that is now
zero at the observed field grid edges (Fig. 5). This condi-
tioned field has the desired statistical character within the ex-
trapolated regions. In order for this conditioned field to fit the
observed grid at the latter’s edges, the observed field is ex-
trapolated outwards using minimum curvature, in the same
way as the fractal grid (Fig. 6). Now the conditioned field
and expanded observed field are added to give the final ex-
trapolated grid (Fig. 7). The results show that (1) there are
no discontinuities at the original grid edges, (2) extrapolated
values have the same character as the initial gridded data
and (3) this character persists even at large distances from
the original grid edges. The original grid in Fig. 1 contains
33162 defined values, while the extrapolated grid in Fig. 7 is
256× 256, so just less than 50 % of the grid consists of ex-
trapolated values. This level of extrapolation is not extreme,
but still shows that fractal extrapolation is an efficient way
to preserve the frequency content of the measured data while
ensuring periodicity. A flow chart of the complete procedure
for fractal grid preparation is given in Fig. 8.
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Fig. 5. Conditioned field given by the field in Fig. 4 subtracted from the field in Fig. 3. 

This conditioned grid is zero at the observed field grid edges (blue line, Fig. 1) and within 

the survey area. Coordinates in metres are UTM zone 21.  

 
 
 
 

Fig. 5. Conditioned field given by the field in Fig. 4 subtracted from
the field in Fig. 3. This conditioned grid is zero at the observed field
grid edges (blue line, Fig. 1) and within the survey area. Coordi-
nates in metres are UTM zone 21.
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Fig. 6. Magnetic data after extrapolation to a rectangular area. Measured data remain 

unchanged. Edges are zero. Coordinates in metres are UTM zone 21.  

 
 
 
 
 
 
 

Fig. 6. Magnetic data after extrapolation to a rectangular area. Mea-
sured data remain unchanged. Edges are zero. Coordinates in me-
tres are UTM zone 21.

5 Conclusions

Fractal extrapolation is an alternative to commonly used grid
extrapolation techniques. In these techniques, periodicity is
obtained by padding the grid with zeros after extrapolation,
based on maximum entropy prediction or extrapolation of the
grid using minimum curvature or inverse distance gridding.
In the case of non-rectangular grids with irregular edges,
this can lead to complex algorithms. Mirroring rectangular
grids is rather simple, but can be very complex for irregu-
larly shaped grids. The proposed technique is obtained from
a series of simple steps that are easy to implement. The tech-
nique is independent of the shape of the survey. As seen in
the real data example, the extrapolated grid does not show
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Fig. 7. Final grid after fractal extrapolation. The grid is now periodic. Coordinates in 

metres are UTM zone 21.  

 
 
 
 
 

Fig. 7. Final grid after fractal extrapolation. The grid is now peri-
odic. Coordinates in metres are UTM zone 21.
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Fig. 8. Flow chart summarizing the steps required for fractal grid extrapolation. Where 

quantities have been plotted, the appropriate figure number is indicated. The expressions 

used for different quantities (e.g., Fobs) are not used in the text but used here for brevity. 

 

Fig. 8. Flow chart summarizing the steps required for fractal grid
extrapolation. Where quantities have been plotted, the appropriate
figure number is indicated. The expressions used for different quan-
tities (e.g., Fobs) are not used in the text but used here for brevity.

any discontinuities along the edges of the survey; for other
extrapolation techniques this can only be obtained by signif-
icant programming effort. The main advantage of the fractal
method is that the extrapolated grid has the same frequency
content as the original grid.
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