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Abstract. In this paper, numerical and analytical studies
were performed to uncover the mechanisms controlling the
changes in ensemble spread of a low-order coupled model
with multiple atmospheric realizations. An interactive en-
semble approach was applied to a coupled dynamical system
based on two versions of the Lorenz 63 model designed in
order to imitate the behavior of a coupled system with dif-
ferent time scales. In the dynamic system used in this work
the spread of ensemble members is highly dependent on the
mean state corresponding to asymmetries in predictability.
The slowness of the slow model and the intensity of the
boundary forcing anomalies both contribute to the asymme-
try and phase locking of both subsystems. The mechanisms
controlling the fast model spread were uncovered revealing
uncertainty dynamics depending on the location of ensemble
members in the fast model phase space and implicitly on the
slowness and magnitude of the slow model anomalies.

1 Introduction

The atmospheric response or teleconnections associated with
the El Niño-Southern Oscillation (ENSO) is found in both
the tropics and extratropics. The predictability of the ENSO
teleconnections is typically described in terms of whether
the signal (usually measured by the ensemble mean) is large
enough to exceed the climate noise (usually measured by the
ensemble spread) due to internal dynamics. We simply argue
that there is predictability when the signal-to-noise ratio is
larger than one, e.g.Shukla et al.(2000), although it is pos-
sible to argue for predictability when the ratio is less than
one.

Nevertheless, the predictability depends on relative am-
plitudes of the signal and, for our purpose here, the noise.
If the amplitude of the noise is independent of the signal,
then we can simply focus on the amplitude of the signal.
Conversely, if the amplitude of the noise is affected by the

signal then this dependence needs to be understood in our
predictability assessments.Kirtman et al. (2005), for ex-
ample, use the interactive ensemble coupling strategy (Kirt-
man and Shukla, 2002) to show that atmospheric wind stress
uncertainty, i.e. spread, in their coupled general circulation
model (CGCM) is larger for warm ENSO events. This would
suggest that warm events are less predictable than cold events
which seemed to be born out with retrospective predictions
made with the same model.Wu and Kirtman(2006) also
examined signal dependent noise amplitude in the same in-
teractive ensemble simulation and found that cold events had
smaller rainfall spread, i.e. noise, than warm events. Our fo-
cus here is to understand the source of the signal dependent
noise amplitude from a dynamical systems perspective.

In this paper, numerical and analytical studies were per-
formed to uncover the mechanisms controlling the changes
in ensemble spread of a low-order coupled model with multi-
ple atmospheric realizations. Motivation for this study comes
from a related issue whether climate anomalies are more pre-
dictable in El-Nĩno years than in La-Niña years. If that turns
out to be the case, it promptly gives rise to another ques-
tioning: what mechanism could bring the asymmetry in pre-
dictability between the two states?

This question can be addressed in the context of en-
semble simulations of atmospheric general circulation mod-
els (AGCMs). In ensemble simulations the noise (atmo-
spheric internal variability) is measured by the ensemble
spread and the signal is represented by the ensemble mean.
If one assumes that the climate variability is described by a
linear damped dynamic system (Hasselman, 1976; Frankig-
noul and Hasselman, 1977), then the interannual variation in
the amplitude of noise cannot be related to that in the sig-
nal (state of the system). This is, perhaps, conceptually clear
given that the noise is externally prescribed in this concep-
tual model. There are indications in the literature that this
relationship does not hold.Kirtman et al.(2005) suggest that
the spread in the zonal wind stress is highly dependent on the
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ensemble mean with small spread for cold ENSO events and
large spread for warm ENSO events in the CGCM studied.
Wu and Kirtman(2006) analyses found that the predictability
for the equatorial central Pacific rainfall is much higher in La
Niña years than in El Niño years, whereas the predictability
for 500-hPa height in the western tropical Pacific-Australian
region is higher in El Nĩno years than in La Niña years. Thus,
the changes in predictability are expected to depend on the
model employed as well as on which variable is being an-
alyzed. Our focus here is to understand the source of the
signal dependent noise amplitude from a dynamical system
perspective.

Here we employed the same coupling strategy (Kirtman
and Shukla, 2002) that has been developed to examine the
relative importance of stochastic forcing and deterministic
coupling in generating climate variability in CGCMs. How-
ever, in this work we brought this strategy for the coupling
between two low-order models with different time scales.
Low-order models originally conceived as means of illustrat-
ing some of the effects of nonlinearity have proven useful
in investigating specific problems, some of which could not
readily be studied in complex systems like modern CGCMs.
We made use of numerical simulations and an analytic ap-
proach in order to reveal the uncertainty dynamics leading
to changes in ensemble spread and the mechanism for the
asymmetry in predictability between the two states.

2 Model, results and uncertainty dynamics

The predictability of a particular dynamical system can be
studied by investigating the evolution of finite uncertain-
ties over some prescribed interval of time or by perform-
ing ensemble simulations and monitoring the spread be-
tween ensemble members. In the context of ensemble sim-
ulations low-spread periods are essentially more predictable
than high-spread periods. In terms of dynamics of small un-
certainties the time interval used to define growth rate can
be of different durations ranging from infinitesimal to yield
an instantaneous growth rate, finite yielding an “effective”
growth rate, or infinite yielding global measures like max-
imum Lyapunov exponents (MLE). The predictability limit
of a particular system can be estimated in terms of these time
scales which indicates when the forecast uncertainty exceeds
some limit or when information of the initial condition is
lost. It is held that the predictability limit is eventually re-
lated to the inverse of the MLE (Boffetta et al., 1998). How-
ever, the inhomogeneity common in nonlinear chaotic sys-
tems limits the application of global measures like the MLE.
In this work, both uncertainty dynamics and ensemble simu-
lations are used to investigate the predictability fluctuations
of a low-order coupled model.

The Lorenz model (Lorenz, 1963) has been widely used as
a conceptual model for predictability studies (Tsonis, 1992;
Palmer, 1993) and provides a practical test case with in-

teresting qualitatively properties. Atmospheric behavior in-
volving barotropic and baroclinic instabilities is considered
somewhat analogous to Lorenz 63 model behavior because
of the exponential instability of the model’s trajectories and
its abrupt regime changes (Miller et al., 1994). However,
the predictability limit associated with timescales of evolving
uncertainties is a model intrinsic quantity, therefore general-
ization between different nonlinear systems can be difficult.

We first formulate a coupled dynamical system where two
versions of the Lorenz 63 model were coupled in order to
imitate the behavior of a coupled system with different time
scales (Boffetta et al., 1998; Pẽna and Kalnay, 2004). This
coupling scheme includes coupled feedbacks analogous to
the tropical atmosphere/ocean, although in this work the
model used is not physically-based, it does have the prop-
erty of two coupled systems with very different time scales.
To convert an ODE to a similar ODE that runs slower, we
start with the required form in a time variablet ′

dx
dt ′

= f(x,y) (1)

where the vector field includes dependency on variables of
a coupled system, and apply a time scalet ′ → τ t , τ < 1, to
obtain

1

τ

dx
dt

= f(x,y) (2)

hence:

dx
dt

= τ f(x,y). (3)

Consider a fairly general expression of the coupled Lorenz
63 system, where the slow subsystem variables(xo,yo,zo)

have a different intrinsic time scale. For the fast model

dxa

dt
= σ(ya −xa)−a1(xo +k1) (4)

dya

dt
= rxa −ya −xaza +a1(yo +k1) (5)

dza

dt
= xaya −bza +a1zo (6)

and for the slow model

dxo

dt
= τ [σ(yo −xo)−a2(xa +k2)] (7)

dyo

dt
= τ [rxo −τyo −τxozo +a2(ya +k2)] (8)

dzo

dt
= τ [xoyo −τbzo −a2za] (9)

whereσ = 10,b = 8/3, andr = 28 are the standard values of
the Lorenz 63 model parameters. The following parametriza-
tion is used in order for the coupled model qualitatively cap-
ture the ENSO time-scales

a1 = α, a2 =
α

τ
, k2 =

k1

τ
(10)

Nonlin. Processes Geophys., 19, 273–282, 2012 www.nonlin-processes-geophys.net/19/273/2012/



L. Siqueira and B. Kirtman: Predictability of a low-order interactive ensemble 275

Table 1. Model parameters in Eq. (4) to Eq. (9).

Parameter Value

σ 10
b 8/3
r 28
τ 0.1
α 0.8

k1 andk2 −10

whereα is the coupling strength, andk1 is an offset pa-
rameter taken to be−10. Whenα = 0 the original Lorenz
63 model is recovered. The different time scales are set
through a temporal scale factor whereτ = 0.1 implies that
the slow model is 10 times slower than the fast model. Ta-
ble 1 summarizes the parameters used in the fast-slow Lorenz
model in order for the model qualitatively capture the ENSO
time-scales.

The original Lorenz 63 model shows random reversals of
the streamfunction and horizontal temperature gradient. In
the absence of any imposed forcing, the probability density
functions (PDFs) associated with the two different regimes
(wings) of the original Lorenz 63 model are equal. The offset
parametersk1 andk2, only acting overx andy, play the role
of an imposed forcing to ensure that the system resides in the
“neutral-cold” state more frequently than the warm state.

In the toy model, the fast system streamfunctionxa > 0
(clockwise circulation) enhancesxo < 0 (counterclokwise)
for neutral-cold conditions, whilexa < 0 (counterclokwise)
enhancesxo > 0 (clockwise circulation) for warm conditions.
This is why there is a negative sign in the coupling. Despite
the negative sign in the coupling through thex variables, it
is actually a positive feedback since the opposite circulations
work to enhance each other. They variable is related to the
horizontal temperature gradient and also acts as a positive
feedback since the temperature gradient in one subsystem
enhances the temperature gradient in the same direction in
the other subsystem, therefore the positive sign.

The positive feedback, by itself, would lead to an insta-
bility that would either “lock” the system into a permanent
cold or warm state much like the Bjerknes feedback. The
coupling terms involvingx andy variables are positive feed-
backs, therefore, if these were the only mechanisms at work
the system would never flip from one state to the other. To
include the damping that limits the growth of instabilities in
the slow system, the coupling through thez variable (verti-
cal temperature deviation) acts to increaseza when there is a
warm anomaly in the slow model, while a positive anomaly
in za acts to dampen the slow system (negative feedback).
Therefore, the coupling between the two subsystem is asym-
metric.

Fig. 1. Time series of slow modelxo(t) anomalies.

The oscillation between states in the toy model is only due
to the instability of the fixed points in the chaotic regime.
However, the model will prove to be a useful conceptual
tool. It will facilitate an investigation of some dynamical
features and can provide analogues for the behavior of more
complicated systems. Moreover, we can develop an analy-
sis tool that can be generalized to CGCMs. In certain ways
the model imitates a coupled CGCM: it is forced, dissipa-
tive, and chaotic. The “atmosphere” is more rapidly-evolving
than the “ocean”, and “air-sea” interactions produce variabil-
ity with multiple time scales in both components. The lower
boundary conditions provided by the slow model are slowly-
evolving (much like sea surface temperatures) and can lend
partial predictability to the fast model. The relative simplic-
ity of the low order coupled model is a suitable characteristic
to perform predictability analysis since it allows the use of a
large number of ensemble members with extended runs.

Equations were integrated using a fourth order Runge-
Kutta time scheme. The initial transient period is dis-
carded. Numerical integration indicate that trajectories
x(t) = (xa,ya,za,xo,yo,zo)

T of the coupled model remain
within a bounded region (attractor), but at the same time de-
pend sensitively on the initial state. Numerical simulations
with different coupling parameters were performed in order
to identify a suitable parameter range for this model. The
choice of parameters for the control run was made in order to
qualitative mimic the time series for NINO3.4 SST anoma-
lies (Fig.1). This is achieved when the coupling parameter
is set toα = 0.8 since with this coupling strength the model
qualitatively imitates the observed variability, and the long-
term behavior of the coupled dynamics shows an intricate
interaction between periodicity and randomness. Figure1
shows the slow modelxo(t) anomalies. The slow “ocean”
is fluctuating between a “neutral-cold” state which lasts typ-
ically 3 to 7 “years” and a warm state which lasts only one
“year”.

Lyapunov exponents and phase locking play an essential
role in the analysis of synchronization with coupled chaotic
systems (Duane and Tribbia, 2007) and are employed in this
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work. In this study the phase of both subsystems are ex-
tracted via Hilbert transform in order to determine phase
locking intervals and synchronization at different coupling
strengths. The phase of a time seriesx(t) can be determined
by using the analytic signal approach (Rosenblum et al.,
1996) where the analytic signal̃x(t) is a complex function
of time

Zx(t) = x(t)+ ix̃(t) = AH
x ei8H

x (t) (11)

andx̃(t) is theHilbert transformof x(t)

x̃(t) =
1

π
P.V.

∫
+∞

−∞

x(t ′)

t − t ′
dt ′ (12)

(P.V. means that the integral is taken in the sense of the
Cauchy principal value). The instantaneous Hilbert phase is
given by:

8H
x (t) = arctan

x̃(t)

x(t)
. (13)

For each of the two phase distributions a phase locking
index is computed. The index for measuring phase synchro-
nization is given by:

γ H
=

∣∣∣∣∣ 1

N

N∑
j=1

ei[8x (tj )−8y (tj )]

∣∣∣∣∣. (14)

For this model, the whole system is six dimensional with
two positive, two zero and two negative Lyapunov exponents.
As the coupling strength (α) is increased all the exponents
evolve revealing stages of synchronization, therefore the ex-
ponents for coupled chaotic systems are also a function of
coupling strength. Figure2 showsγ H (mean phase coher-
ence), and the two maximum Lyapunov exponents for each
component as functions of the coupling strength. For cou-
pling strengthsα & 0.9 the originally positive Lyapunov ex-
ponent of the fast model attains negative values, indicating
that generalized synchronization between the systems takes
place. For stronger couplingγ H rises to values closer to 1, fi-
nally leading to identical synchronization for higher coupling
strenghts.

When coupling strength is set toα & 1.2 all six conditional
Lyapunov exponents become negative and both subsystems
approach a limit cycle eventually reaching equilibirum state
for largerα. For coupling strengths 0.6. α . 1.2 the slow
modelλ+ suggests that it is mainly behaving as the driver
(λslow

+ > 0), while the fast model is behaving as the responder
since itsλfast

+ approaches zero for these coupling strengths.
These values correspond to long term averaged Lyapunov
exponents over the attractors which can be interpreted as an
almost “slave” fast model with small amplitude, and regime
changes modulated by the slow model. The coupling strength
for the control run (α = 0.8) was initially picked in order to
qualitatively mimic the observed NINO3.4 time series which
is located just beforeλfast

+ goes negative,λslow
+ still positive,

Fig. 2. Mean phase coherence (γ H ) in black and conditional Lya-
punov exponents (λfast

+
andλslow

+
) as a function of coupling strength

α. Fast model Lyapunov exponent in solid red and slow model lya-
punov exponent in dashed red.

Fig. 3. Lorenz coupled system phase portrait.(a) fast subsystem;
(b) slow subsystem.

and there is some degree of synchronization. This setting
bears some resemblance to the model ofZebiak and Cane
(1987), a model with a noise-free slave atmosphere.

The phase space of both subsystems is shown in Fig.3,
and the resulting attractor for both slow and fast components
are quite different, the latter being less organized than the
original Lorenz 63 model. Figure3b shows the slow “ocean”,
vacillating between a more frequent regime “neutral-cold”
and a less frequent warm state.

The coupling terms in each equation for the dynamics are
equivalent to a variable forcing. For the Lorenz 63 model
in the absence of forcing, both regimes of the attractor are
equally probable. In this particular model the phase space
position of the regime centroids does not change as the forc-
ing rotates and change in intensity. However, when forcing
is introduced in theX−Y plane the probability of the model
state lying in one of the regimes becomes greater than that
in the other regime. These changes are due to the projection
of the forcing along the dominant EOF of the system, which
points between the two regime centroids (Palmer, 1993).

For the reduced Rayleigh numberr > 24.75, the equi-
librium points C+(C−) which were unstable in the ab-
sence of forcing, can be made stable by sufficiently large
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Fig. 4. (a)Pdf for thexfastanomalies from the interactive ensemble
as a function of its standard deviation (STD) around the mean: en-
semble mean in red and conditional ensemble spread – whenxslow
is greater than one standard deviation (σ ) of the slow model anoma-
lies – in black;(b) Pdf for thexslow anomalies as a function of its
standard deviation (blue) and conditionalxslow – when spread of
xfast is less than one standard deviation (σ ) of the fast model spread
– in black.

positive (negative) forcing (Mittal et al., 2005). All these
complex effects are acting simultaneously as the forcing
changes with time in the coupled system.

The ensemble run performed in this study is different from
a traditional coupled model for which individual atmospheric
realizations are coupled to individual oceanic realizations.
In the interactive ensemble coupling, multiple realizations
of the fast model are coupled to one realization of the slow
model (Kirtman and Shukla, 2002). The fast model realiza-
tions only differ in terms of their initial conditions. Each fast
model realization experiences the same forcing produced by
the slow model. The slow model is subjected to the ensemble
average of fluxes from the fast model realizations. This is the
interactive ensemble (IE) approach first introduced byKirt-
man and Shukla(2002) applied to a simple coupled model.

In this IE coupling, the use of multiple fast model realiza-
tions allows the separation of the fast model variability due
to boundary forcing (signal) and that due to internal dynam-
ics. The ensemble mean for the fast model realizations is
regarded as a lower boundary condition forced signal and the
difference among the members (ensemble spread) is consid-
ered as noise generated by internal dynamics.

Extended runs with up to 100 ensemble members were
performed and the probability density function (PDF) for the
ensemble mean and ensemble spread are shown in Fig.4 as
a function of its standard deviation (STD) around the mean.
For the fast model both the ensemble mean state and condi-
tional ensemble spread – whenxslow is greater than one stan-
dard deviation (σ ) of the slow model anomalies – are skewed
in Fig. 4a. The conditional spread PDF indicates that when
there are strong positive anomalies in thexslow variable, the
spread is typically small (but not negative), i.e. the fast model
uncertainty is relatively small (black line in Fig.4a). This
is typically a strong nonlinear system. For completeness,

Fig. 5. Spread ofxa ensemble members with no offset forcing (k1 =

k2 = 0).

the conditionalxslow PDF – when the spread ofxfast is less
than one standard deviation (σ ) of the fast model spread –
is shown in Fig.4b in black, and in this case small spread
implies positive anomalies in the slow model. The asym-
metry in predictability comes from the fact that the ensemble
spread is strongly affected by a change in the state of the slow
model. The slow model PDF (Fig.4b) is skewed towards
negative anomalies (blue). Its worth noting that both the
xf ast andxslow variables are skewed due to forcing through
both the offset parameter and the coupling terms. The asym-
metry in predictability is not dependent on the existence of
the offset, as shown in Fig.5 where the offset parameter was
turned off.

That can be further explored if we consider that although
both the offset and coupled feedbacks were intentionally set
to qualitatively mimic the observations, one could imagine
that for a linear model (linear propagator) the eigenvalues
have fixed values for all points in phase space, thus the
growth rate of uncertainties is the same no matter which is
the state of the system. However, for nonlinear determinis-
tic system or linear stochastically perturbed dynamics with
multiplicative noise, a characterization of predictability for
a system represented by a given marginal (that is, uncondi-
tional) PDF depends on the dynamics of the underlying sys-
tem and cannot be inferred solely from the non-Gaussianity
of the marginal PDF, as shown bySura et al.(2005). There-
fore, the inclusion of the offset in the toy model does not
produce any asymmetry in predictability by itself.

Figure 6 shows the reason for the asymmetry in pre-
dictability which is explained by the ensemble spread be-
ing strongly affected by a change in the state of the slow
model (ocean) from the “neutral-cold” state to warm state.
On the top panel of Fig.6 the ensemble spread is signifi-
cantly reduced when a positive anomaly occurs. This period
of increased predictability last until the slow model returns to
“neutral-cold” conditions and can even persist into the neu-
tral state for a period. This suggests that the slow “ocean” is
reducing the “atmospheric noise” during some periods where
there is higher predictability (reduced spread). What mech-
anism could be affecting the atmospheric spread in this cou-
pled model?
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Fig. 6. Top: xa anomalies of ensemble members (red) andxo

anomalies (black) time series. Bottom: Spread ofxa ensemble
members.

An analytic approach to this question, similar toWitten-
berg and Anderson(1998), is possible by formulating the
whole system as

dX
dt

= NXX (15)

whereNX is a nonlinear operator at the state vectorX. Since
Eq. (15) represents a coupled system with linear coupling,
thenNX consists of an uncoupled nonlinear part and an air-
sea interaction part

dX
dt

= (UX +C)X (16)

where

UX =

(
AX 0
0 OX

)
and C =

(
0 CO→A

CA→O 0

)
(17)

AX andOX are the atmosphere and ocean uncoupled nonlin-
ear operator,CO→A andCA→O are the sea-to-air interaction,
and the air-to-sea interaction respectively (see the Appendix).
We are interested in deriving an equation for the time evolu-
tion of the separation among ensemble members in the con-
text of the interactive ensemble approach. We are consider-
ing a perfect model approach where the uncertainties come
from small differences in the fast model initial conditions
among different ensemble members. This can be done by
defining the difference vector between two fast model states,
i-th ensemble memberXa

i and a reference trajectoryXa
j , so

that the fast model uncertaintyδa
i can be defined as devia-

tions from the reference trajectory:

δa
i = Xa

i −Xa
j ∴ Xa

i = Xa
j +δa

i . (18)

If the vector functionUXX is continuous and differentiable
everywhere, we can expand the solution around the reference

trajectoryXa
j in powers of the differenceδa (omitting thei-

th ensemble member notation from here on) which gives the
equation for ensemble memberXa

i

d(Xa
j +δa)

dt
=

dXa
i

dt
= AXa

j
Xa

j + A′

Xa
j
δa

+ O(δ2
a)+CO→AXo (19)

whereO(δ2
a) denotes nonlinear error terms obtained from

the power series expansion ofAXa
j
Xa

j , A′

Xa
j

is the Jacobian

of the vector functionAXa
j
Xa

j , andXo
= (xo,yo,zo)

T are the
slow model variables. It is worth noting that in the inter-
active ensemble approach all ensemble members experience
the same surface boundary conditions (linear coupling term)
CO→AXo coming from the slow model. Subtracting from
the equation forXa

i , i.e. Eq. (19), the following equation for
the reference trajectory

dXa
j

dt
= AXa

j
Xa

j +CO→AXo (20)

yields:

dδa

dt
= A′

Xa
j
δa +O(δa

2). (21)

The nonlinear error termsO(δ2
a) can be ignored when they

are small relatively toA′

Xa
j
δa . The dynamics of a small fast

model uncertainty is therefore governed by the linearization
of the flow and the last equation provides a dynamical system
for small uncertainties. It is worth noting that the coupling
term was cancelled as expected since the fast model inter-
nal variability is, by definition, separated from the coupled
signal.

However, in a nonlinear system the internal variability is
not independent of the fast model mean state which in turn
is affected by the slow model state, as previously shown in
the PDF analysis. This implies that the coupling is impor-
tant despite the absence of any coupling terms in Eq. (21).
The coupled signal is participating implicitly by affecting the
mean state of the fast model which in turn changesA′

Xa
j
δa ,

the Jacobian of the vector functionAXa
j
Xa

j . The vector func-
tion and its Jacobian depend on the time-evolving basic flow
(time dependent propagators) and assume different values as
the fast model visits different regions of the phase space. The
coupled signal and the internal dynamics are the mechanisms
governing the attractor’s behavior of both fast and slow mod-
els and indirectly affect the growth of uncertainties. There-
fore, the key to understand the uncertainty dynamics in this
model is in estimating the effects of local instabilities in re-
gions of the fast model phase space through which the en-
semble trajectories are likely to pass.

We proceed to analyze which mechanisms can produce
changes on the separation among ensemble members guided
by Smith et al. (1999), who stressed the importance of
the non-normality of the Jacobian matrix when computing
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growth rates. The instantaneous growth rater at timet of an
uncertainty is

r =
1

‖δ‖

d‖δ‖

dt

∣∣∣∣
t

=
1

‖δ‖

d

dt

√
δT δ

∣∣∣∣
t

=
1

2‖δ‖2

(
dδT

dt

∣∣∣∣
t

δ(t)+δ(t)T
dδ

dt

∣∣∣∣
t

)
(22)

where the superscriptT is the transpose operator and‖δ‖

is the Euclidean norm expressed as square root of the inner
product of the vector and itself. We can write the eigen-
value decomposition ofA′

Xa asA′

Xa = E3E−1 considering
that the matrices have distinct eigenvalues, the diagonal ma-
trix 3 contains the eigenvaluesλi of A′

X , andE its eigen-
vectors. The changes inδ will depend on: the eigenvalues
of the JacobianA′

Xa and implicitly the background state, the
projections of the uncertainty onto the eigenvectorsδT E, and
the decomposition ofδ into the eigenvectorE−1δ.

If we turn our attention towards the eigenvalues ofA′

Xa ,
the divergent directions along which the projection ofδa

grows equate to eigenvalues with positive real parts. Con-
versely, the convergent directions, along which the projec-
tion of δa shrinks, correspond to eigenvalues with negative
real parts. However, asSmith et al.(1999) pointed out, the
eigenvalues ofA′

Xa alone do not supply sufficient conditions
to determine the sign of the growth rate since, in general, the
eigen-basis is not orthogonal, i.e.A′

Xa is non-normal.
Combining equations for the time evolution of the uncer-

tainties Eq. (21) and the instantaneous growth rate Eq. (22)
yields:

r(δ,Xa,t)=
δT (A′

Xa +A
′T
Xa )δ

2δT δ
. (23)

For this coupled model:

(A′

Xa +A
′T
Xa ) =

 −2σ σ +r −za ya

σ +r −za −2 0
ya 0 −2b

. (24)

Since(A′

Xa +A
′T
Xa ) is a symmetric matrix, it has orthog-

onal eigenvectors and its eigenvalues are real. In particu-
lar, if all eigenvalues of(A′

Xa +A
′T
Xa ) are positive (negative),

r(δ,Xa,t) will be positive (negative) independent of the ori-
entation of the uncertainty. This symmetric matrix can be
negative definite for sufficient model states. However, there
is no stateXa

= (xa,ya,za)
T in the fast model phase space

where this matrix can be positive definite.
The eigenvalues analysis ofA′

Xa , (A′

Xa +A
′T
Xa ) and the im-

plicit participation of the coupling through the fast model
mean state provide the mechanisms controlling the growth
rate of uncertainties in this model. This provides a concep-
tual picture explaining the behavior of the ensemble mem-
bers. Whenever the ensemble members trajectories visit re-
gions of phase space where all directions are convergent, the

small uncertaintiesδa shrinks exponentially. Once back out-
side the convergent region, the uncertainties grow exponen-
tially along divergent directions leading to an increase in the
ensemble spread.

We proceed to locate regions in the fast model phase space
where all instantaneous growth rates are negative and there-
fore all uncertainties must decrease for as long as the ensem-
ble trajectories remain within those regions. Such regions
must display enhanced predictability for finite times and co-
incide with the reduced ensemble spread periods shown in
Fig. 6.

The eigenvalues ofA′

Xa and (A′

Xa + A
′T
Xa ) are obtained

through the roots of the characteristic polynomial of each of
these matrices evaluated at every point of the phase space.
Regions with enhanced predictability are comprised of points
with eigenvalues having negative real parts. There are impor-
tant criteria that give necessary and sufficient conditions for
all the roots of the characteristic polynomial with real coeffi-
cients having negative real parts which are known as Routh-
Hurwitz Criteria (see the Appendix). This helps delineate
the boundaries of the convergent subsets where all eigenval-
ues have negative real part. We follow the derivation of the
explicit formulas for the surfaces separating these regions as
in Smith et al.(1999) (see the Appendix).

We denoteV1 as a region where the JacobianA′

Xa , at
each point in phase space, have eigenvalues with negative
real parts. For non-normalA′

Xa , this is not sufficient to
rule out possible positive growth rates, yet such regions
are, at least numerically, dominated by decreasing uncertain-
ties with time. If, on the other hand, each eigenvalue of
(A′

Xa +A
′T
Xa ) is negative within a regionV2, then no instanta-

neous growth rate withinV2 is positive. Therefore, all uncer-
tainties will decrease with time for at least as long as the tra-
jectories remain withinV2 andV1. In general,V2 ∈ V1 ∈ Rm.

The coupled Lorenz system has a nonempty regionV1 and
V2 within which all uncertainties decay. The numerical sim-
ulation using the interactive ensemble approach confirm that
these regions are dominated by decreasing uncertainty. Fig-
ure7 shows the relative position ofV1 (V2 not shown) to the
attractor and the fast model ensemble members trajectories
(yellow lines). The surface separates theV1 region located
above the blue side of the surface where all eigenvalues have
negative real parts (convergent) and the region below the red
side of the surface corresponds to the region where uncer-
tainties grow exponentially along divergent directions.

We may also visualize the crossing of ensemble members
trajectories into theV1 subset, the subsequent locking to the
ensemble mean, and synchronization with the ocean forcing
by plotting the phase pairs8slow (slow model) against8fast
(fast model) in Fig.8. In asynchronous states the phase pairs
(8fast,8slow) fill most homogeneously the sub-plane interval
and then make the phases statistically independent. Trajec-
tories in the middle of Fig.8 are in the divergent region (and
asynchronous state) where the uncertainties grow exponen-
tially (slow model is in neutral-cold state). In synchronized
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Fig. 7. Surface separating subsetV1 in phase space and its relative
position to the fast subsystem attractor. The surface separates theV1
region located above the blue side of the surface where all eigenval-
ues have negative real parts (convergent), and the region below the
red side of the surface corresponds to the region where uncertainties
grow exponentially along divergent directions. Yellow lines show
the trajectories of the fast model ensemble members and black the
ensemble mean.

Fig. 8. Phase8slow (slow model) against8fast (fast model). Blue
dots are ensemble members, black dots ensemble mean.

states the phase pairs are confined into strips in the sub-plane
interval since if the subsystems are phase locked then the
phase differencen8fast−m8slow ≈ const, therefore one of
the phases can be written as a linear function of the other
8slow = A + B8fast where A = −const/m and B = n/m.
Trajectories are phase locked in regions II and III in Fig.8.

One can better interpret the motion of the ensemble trajec-
tories on the attractor by combining Fig.7 and Fig.8. When
a warm event starts to develop in the slow model it forces
the ensemble members to cross the boundary into the con-

vergent region above the blue side of the surface on the top
right of Fig.7. This can also be seen in Fig.8 where the en-
semble members move to the top right of region I. Figure8 is
periodic on both axis. As the positive anomaly reaches ma-
turity, the ensemble members have already moved way into
the convergent region, above the blue side of the surface in
Fig. 7, where all eigenvalues are negative. Inside the conver-
gent region all uncertainties start to decay as shown by the
passage of ensemble members from region II to III (Fig.8)
and converging ensemble members “spiral” on the top right
of Fig. 7. The ensemble trajectories stay long enough inside
the convergent subset so that the ensemble becomes locked
to the ensemble mean, i.e. internal variability is reduced, so
that only the coupled signal is left (Fig.8 region III and yel-
low ensemble members “stream” at the center of Fig.7 flow-
ing from the right side to the left side of Fig.7). It is worth
noting that the time spent by the ensemble members inside
the convergent region is dependent on the slowness of the
ocean model. Once the ensemble is locked, then it can be
pulled away from the convergent region by consistent ocean
forcing (slow model moves towards neutral-cold state). The
ensemble members cross the boundary going outside the con-
vergent region, then uncertainties grow exponentially along
divergent directions (back to the center of Fig.8 and below
the red side of the surface in Fig.7).

The crossing of ensemble members into the convergent
region is not exclusive of warm events since the members
quickly cross the boundaries during other periods, as it can
be seen from the small fluctuations in spread when the slow
model is in “neutral-cold” state (Fig.6). Making the slow
model faster reduces the length of the high predictability pe-
riods. For instance, if the slow model time scale is set to
τ & 0.5 (five times slower than the fast model instead of ten)
it implies in the extinction of any high predictability period
with only small fluctuations in spread left. Changing the am-
plitude of the anomalies has a different effect and completely
modifies the shape and stability of both attractors.

3 Conclusions

The focus of this paper has been to demonstrate that the lin-
ear intuition which suggest that uncertainties will steadily in-
crease with lead time can be misleading if the uncertainty
dynamics depends strongly on its location in state space, and
on the non-normality of the Jacobian matrix. The skewness
in the state variables of both subsystems is originated by the
forcing through coupling terms projecting along the domi-
nant EOF of each subsystem. In the nonlinear system used
in this work the spread of ensemble members is highly de-
pendent on the mean state corresponding to asymmetries in
predictability.
The organization of predictability in the Lorenz 63 model
has previously been numerically quantified byNese(1989)
through two-dimensional maps showing variations in local
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average divergence rates at several locations on the attractor.
Smith et al.(1999) showed the existence of finite volumes of
state-space within all perturbations decrease with time for a
finite period, stressing the importance of the non-normality
of the Jacobian matrix.
For the coupled system here, both the slowness of the slow
model, and the intensity of the boundary forcing anomalies
contributes to the asymmetry and phase locking of both sub-
systems. The mechanisms controlling the fast model spread
were uncovered revealing uncertainty dynamics depending
on the location of ensemble members in the fast model phase
space.
One important aspect is that the low order coupled system
in this study is simple enough, making it easy to find “con-
vergent regions” of phase space. Within the convergent re-
gions, all eigenvalues of the Jacobian (time dependent prop-
agator) are negative, so that the ensemble members converge.
If the members stay long enough within the convergent sub-
sets, depending on the slowness of the slow model, they can
synchronize with the slow model forcing. Once both subsys-
tems are phase locked and the fast model internal variability
is reduced, the consistent slow model forcing (coupled sig-
nal) drives the ensemble out of the convergent subsets. These
results suggest that the slow model is indeed reducing the fast
model “noise” during some periods where there is higher pre-
dictability (reduced spread).
A direct comparison of the results from the simple model
employed here with the results fromKirtman et al.(2005)
andWu and Kirtman(2006) cannot be made since the model
employed here is distinctly too simple to describe the de-
tailed physics of a realistic climate system. Although the
generalization among different nonlinear systems is always
difficult since the predictability of evolving uncertainties is a
model intrinsic quantity, the results presented here should be
of use in predictability studies of more complex systems like
state-of-the-art CGCMs. A pertinent question for future di-
rections bears upon whether these findings are true for larger
and more complex systems and, in particular, for CGCMs,
or whether these results have solely uncovered properties of
a low-order coupled model.

Appendix A

Lorenz Coupled Fast-Slow operators

For the Coupled Lorenz 63 model the uncoupled nonlinear
operator

UX =


−σ σ 0
r −1 −xa 0
0 xa −b

−τσ τσ 0
0 τr −τ −τxo

0 τxo −τb

 (A1)

and the coupled linear operator:

C =


−α 0 0

0 0 α 0
0 0 α

−α 0 0
0 α 0 0
0 0 −α

. (A2)

The Jacobian of the uncoupled operator is given by:

U ′

X =


−σ σ 0

r −za −1 −xa 0
ya xa −b

−τσ τσ 0
0 τr −τxo −τ τxo

τyo τxo −τb

. (A3)

A1 Routh-Hurwitz Criteria and Convergent Subsets

The Routh-Hurwitz Criteria give necessary and sufficient
conditions for all the roots of the characteristic polynomial
with real coefficients to lie in the left half of the complex
plane. It states that, given a characteristic polynomial

P(λ) = λn
+a1λ

n−1
+ ...+an−1λ+an (A4)

where the coefficientsai are real constants, withi = 1,...,n,
define the Hurwitz matrices using the coefficientsai of the
characteristic polynomial

H1 = (a1), H2 =

∣∣∣∣a1 1
a3 a2

∣∣∣∣ and H3 =

∣∣∣∣∣∣
a1 1 0
a3 a2 a1
a5 a4 a3

∣∣∣∣∣∣ (A5)

and:

Hn =

∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 ... 0
a3 a2 a1 1 ... 0
a5 a4 a3 a2 ... 0
...

...
...

... ... 0
0 0 0 0 ... an

∣∣∣∣∣∣∣∣∣∣∣
. (A6)

All the roots ofP(λ) are negative or have negative real part
if and only if the determinants of all Hurwitz matrices are
positive:

det Hj > 0, j = 1,2,...,n. (A7)

Coupled Lorenz Model Convergent Subsets

For the coupled Lorenz model the coefficients of the charac-
teristic polynomial area1 = σ +1+b, a2 = σ(1+b− r +

za)+b+x2
a , anda3 = σ(1− rb+x2

a +bza +xaya). Given
the parametersσ,b,r > 0, thenH0 = 1 > 0 andH1 = a1 =

σ +1+b > 0. Therefore, we only need to find the conditions
for H2 = a1a2−a3 to be positive

{Xa
|H2 > 0} = {Xa

|za > z1(xa,ya)

= b1+b2x
2
a +b3xaya} (A8)
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where

b1 = σ2r +σr −σ 2
−σ 2b−2σb−b−σb2

−b2σ

b2 = −
1+b

σ 2+σ

b3 =
1

1+σ

{Xa
|a3 > 0} = {Xa

|za > z2(xa,ya)

= c1+c2x
2
a +c3xaya} (A9)

with c1 = r −1, andc2 = c3 = −
1
b

leading to:

V1 = {Xa
| H0,H1,H2,a3 > 0}

= {Xa
|za > z∗

= max(z1,z2)}. (A10)

The determinants of the three principal submatrices of
[−(A′

Xa +A
′T
Xa )] are:

D1 = 2σ

D2 = 4σ −(σ +r −za)
2

D3 = 2b[4σ −(σ +r −za)
2
]−2y2

a .

All states Xa within an elliptical tube build the subset of
states with negative eigenvalues of(A′

Xa +A
′T
Xa ):

V2 = {Xa
| D1,D2,D3 > 0}

= {Xa
|

(za −(r +σ))2

4σ
+

y2
a

4bσ
< 1}. (A11)
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