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Abstract. In this paper, numerical and analytical studies signal then this dependence needs to be understood in our
were performed to uncover the mechanisms controlling thepredictability assessmentsKirtman et al. (2009, for ex-
changes in ensemble spread of a low-order coupled modedmple, use the interactive ensemble coupling stratigy- (
with multiple atmospheric realizations. An interactive en- man and Shukl&2002 to show that atmospheric wind stress
semble approach was applied to a coupled dynamical systemncertainty, i.e. spread, in their coupled general circulation
based on two versions of the Lorenz 63 model designed irmodel (CGCM) is larger for warm ENSO events. This would
order to imitate the behavior of a coupled system with dif- suggest that warm events are less predictable than cold events
ferent time scales. In the dynamic system used in this workwhich seemed to be born out with retrospective predictions
the spread of ensemble members is highly dependent on thmade with the same modeM/u and Kirtman(2006 also
mean state corresponding to asymmetries in predictabilityexamined signal dependent noise amplitude in the same in-
The slowness of the slow model and the intensity of theteractive ensemble simulation and found that cold events had
boundary forcing anomalies both contribute to the asymme-smaller rainfall spread, i.e. noise, than warm events. Our fo-
try and phase locking of both subsystems. The mechanismsus here is to understand the source of the signal dependent
controlling the fast model spread were uncovered revealingroise amplitude from a dynamical systems perspective.
uncertainty dynamics depending on the location of ensemble |n this paper, numerical and analytical studies were per-
members in the fast model phase space and implicitly on théormed to uncover the mechanisms controlling the changes
slowness and magnitude of the slow model anomalies. in ensemble spread of a low-order coupled model with multi-
ple atmospheric realizations. Motivation for this study comes
from a related issue whether climate anomalies are more pre-
1 Introduction dictable in EI-Nfio years than in La-Niia years. If that turns
out to be the case, it promptly gives rise to another ques-

The atmospheric response or teleconnections associated wittoning: what mechanism could bring the asymmetry in pre-
the El Nifo-Southern Oscillation (ENSO) is found in both dictability between the two states?
the tropics and extratropics. The predictability of the ENSO This question can be addressed in the context of en-
teleconnections is typically described in terms of whethersemble simulations of atmospheric general circulation mod-
the signal (usually measured by the ensemble mean) is largels (AGCMs). In ensemble simulations the noise (atmo-
enough to exceed the climate noise (usually measured by thepheric internal variability) is measured by the ensemble
ensemble spread) due to internal dynamics. We simply arguspread and the signal is represented by the ensemble mean.
that there is predictability when the signal-to-noise ratio isIf one assumes that the climate variability is described by a
larger than one, e.@hukla et al(2000, although it is pos- linear damped dynamic systeiddsselmanl1976 Frankig-
sible to argue for predictability when the ratio is less than noul and Hasselmai 977, then the interannual variation in
one. the amplitude of noise cannot be related to that in the sig-

Nevertheless, the predictability depends on relative am-nal (state of the system). This is, perhaps, conceptually clear
plitudes of the signal and, for our purpose here, the noisegiven that the noise is externally prescribed in this concep-
If the amplitude of the noise is independent of the signal,tual model. There are indications in the literature that this
then we can simply focus on the amplitude of the signal.relationship does not holdirtman et al.(2005 suggest that
Conversely, if the amplitude of the noise is affected by thethe spread in the zonal wind stress is highly dependent on the
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ensemble mean with small spread for cold ENSO events anteresting qualitatively properties. Atmospheric behavior in-
large spread for warm ENSO events in the CGCM studied.volving barotropic and baroclinic instabilities is considered
Wu and Kirtman(2006 analyses found that the predictability somewhat analogous to Lorenz 63 model behavior because
for the equatorial central Pacific rainfall is much higher in La of the exponential instability of the model’s trajectories and
Nifia years than in El Nio years, whereas the predictability its abrupt regime change#iller et al., 1994. However,
for 500-hPa height in the western tropical Pacific-Australianthe predictability limit associated with timescales of evolving
region is higher in EI Niio years than in La Nia years. Thus, uncertainties is a model intrinsic quantity, therefore general-
the changes in predictability are expected to depend on théation between different nonlinear systems can be difficult.
model employed as well as on which variable is being an- We first formulate a coupled dynamical system where two
alyzed. Our focus here is to understand the source of theersions of the Lorenz 63 model were coupled in order to
signal dependent noise amplitude from a dynamical systenimitate the behavior of a coupled system with different time
perspective. scales Boffetta et al, 1998 Peia and Kalnay2004). This
Here we employed the same coupling strategiytinan coupling scheme includes coupled feedbacks analogous to
and Shukla2002 that has been developed to examine thethe tropical atmosphere/ocean, although in this work the
relative importance of stochastic forcing and deterministicmodel used is not physically-based, it does have the prop-
coupling in generating climate variability in CGCMs. How- erty of two coupled systems with very different time scales.
ever, in this work we brought this strategy for the coupling To convert an ODE to a similar ODE that runs slower, we
between two low-order models with different time scales. start with the required form in a time variable
Low-order models originally conceived as means of illustrat- X
ing some of the effects of nonlinearity have proven useful —— =f(x,y) (1)
in investigating specific problems, some of which could not
readily be studied in complex systems like modern CGCMs.where the vector field includes dependency on variables of
We made use of numerical simulations and an analytic apa coupled system, and apply a time scale> 7¢, T <1, to
proach in order to reveal the uncertainty dynamics leadingobtain
to changes in ensemble spread and the mechanism for the ;.

asymmetry in predictability between the two states. i =f(x,y) (2)
hence:

2 Model, results and uncertainty dynamics X
— =ty 3)

The predictability of a particular dynamical system can be
studied by investigating the evolution of finite uncertain- Consider a fairly general expression of the coupled Lorenz
ties over some prescribed interval of time or by perform- 63 system, where the slow subsystem varialilesy,, z,)

ing ensemble simulations and monitoring the spread behave a different intrinsic time scale. For the fast model
tween ensemble members. In the context of ensemble simg,

ulations low-spread periods are essentially more predmtabled— = 0 (Ya —*q) —a1(xo +k1) (4)
than high-spread periods. In terms of dynamics of small un-g4y,

certainties the time interval used to define growth rate can—— = rXa — Ya — XaZa +a1(yo +k1) (5)
be of different durations ranging from infinitesimal to yield

an instantaneous growth rate, finite yielding an “effective” —2 = xaya—bza+ a1z, (6)

growth rate, or infinite yielding global measures like max-

imum Lyapunov exponents (MLE). The predictability limit and for the slow model

of a particular system can be estimated in terms of these timey .|

scales which indicates when the forecast uncertainty exceeds[F = 1[0 (yo —%p) —a2(xq +k2)] (7)
some limit or when information of the initial condition is
lost. It is held that the predictability limit is eventually re-
lated to the inverse of the MLEBpffetta et al, 1998. How-
ever, the inhomogeneity common in nonlinear chaotic sys-——— = t[x,y, — Thzo — a224] 9)
tems limits the application of global measures like the MLE.

In this work, both uncertainty dynamics and ensemble simu-wheres = 10,5 =8/3, andr = 28 are the standard values of
lations are used to investigate the predictability fluctuationsthe Lorenz 63 model parameters. The following parametriza-

o

dt

=T[rxo —TYo — TX0Z0 +a2(ya +k2)] (8)

of a low-order coupled model. tion is used in order for the coupled model qualitatively cap-
The Lorenz modell{orenz 1963 has been widely used as ture the ENSO time-scales

a conceptual model for predictability studi@sbnis 1992 o k1

Palmer 1993 and provides a practical test case with in- a1=«a, a2= pp ko= = (10)
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Table 1. Model parameters in Eq. (4) to Eq. (9).

Parameter Value

o 10 8
21
b 8/3 g
r 28 2o .
T 0.1
« 0.8 !
k1 andk, —10 ol J
i%BO 1 9‘70 1 QéO 1 9‘90 2060 2010
Time(years)

where« is the coupling strength, ankh is an offset pa-
rameter taken to be-10. Whena = 0 the original Lorenz
63 model is recovered. The different time scales are set
through a tempgral sc'ale factor whare= 0.1 implies that The oscillation between states in the toy model is only due
the slow model is 10 times slower than the fast model. Ta-

. _ to the instability of the fixed points in the chaotic regime.
ble 1 summarizes the parameters used in the fast-slow Lorenlzlowever the model will prove to be a useful conceptual

?Odel |n|orderfor the model qualitatively capture the ENSOtool. It will facilitate an investigation of some dynamical
|mTeh-sca.e§. L 63 model sh d | ffeatures and can provide analogues for the behavior of more
€ original -orenz 53 Mode! Shows random reversais o complicated systems. Moreover, we can develop an analy-

the streamfunction and horizontal temperature gradient. | is tool that can be generalized to CGCMs. In certain ways
the absence of any imposed forcing, the probability OIenSiWthe model imitates a coupled CGCM: it is forced, dissipa-

fur)ctlonsf(tEDFs_) _as?oLuated g\:/;th tze ltWO dlfferler];hreglfrpeftive, and chaotic. The “atmosphere” is more rapidly-evolving
(wings) of the original Lorenz 63 model are equal. The offse than the “ocean”, and “air-sea” interactions produce variabil-

parameterkl andkg, only acting over andy, play th? rolg ity with multiple time scales in both components. The lower
of an imposed forcing to ensure that the system resides in th oundary conditions provided by the slow model are slowly-
nelzuttrr? I'iOId St?jtel n:ﬁreffretquenttly tha;n the fW arm statg. evolving (much like sea surface temperatures) and can lend
| n K € toy _mol et" € ahs Sys emos ream tuncltnlin; partial predictability to the fast model. The relative simplic-
(clockwise circulation) enhances, <0 (counterclokwise) ity of the low order coupled model is a suitable characteristic

for neutral-cold condmpns, .Wh”@“. <0 (counterclokv_v_lse) to perform predictability analysis since it allows the use of a
enhances, > 0 (clockwise circulation) for warm conditions. large number of ensemble members with extended runs

:_hrgsn'j Vz:z\);ethseiri '; atlhrl;egsﬂvﬁn&gtrrl\rlgjhﬁ f{;:g:'iggieze;p'te Equations were integrated using a fourth order Runge-
is actugll a ogitive feedbacrli si?me thego osite circuilationsKUtta time scheme. The initial transient period is dis-

yap . PP carded. Numerical integration indicate that trajectories
work to enhance each other. Thevariable is related to the

: i . X(t) = (X4, Ya,ZasXo, Yo, 20) ! Of the coupled model remain
horizontal temperature gradient and also acts as a pos't'vﬁl(it%in ;xgoylj’né‘é;‘;eg Uiozr;))(attractor) butpat the same time de-
feedback since the temperature gradient in one subsyste !

enhances the temperature aradient in the same direction irg):end sensitively on the initial state. Numerical simulations
P 9 - ) with different coupling parameters were performed in order
the other subsystem, therefore the positive sign.

o ) . to identify a suitable parameter range for this model. The
.?I'he positive fegdbac“k, b}f itself, WOUId. lead to an insta- choice of parameters for the control run was made in order to
bility that would either “lock” the system into a permanent

. . litative mimic the tim ries for NINO3.4 SST anoma-
cold or warm state much like the Bjerknes feedback. Thequa atve ¢ the fime Series 1o ©3.4 SST anoma

: : : . o lies (Fig.1). This is achieved when the coupling parameter
coupling terms involving: andy variables are positive feed- is set tooe = 0.8 since with this coupling strength the model

backs, therefore, if these were the only mechanisms at Worlé}ualitatively imitates the observed variability, and the long-
the system would never flip from one state to the other. To

include the damping that limits the growth of instabilities in term behavior of the coupled dynamics shows an intricate
: . . interaction between periodicity and randomness. Fidure
the slow system, the coupling through theariable (verti- P y qu

| temperature deviation) acts to incr hen there i shows the slow model,(r) anomalies. The slow “ocean”
cal temperature deviatio ) acts 1o inc casnenhereisa o fluctuating between a “neutral-cold” state which lasts typ-
warm anomaly in the slow model, while a positive anomaly

; . ically 3 to 7 “years” and a warm state which lasts only one

in z, acts to dampen the slow system (negative feedback),yea);,, 4 y

Therefore, the coupling between the two subsystem is asym- ) . .
Lyapunov exponents and phase locking play an essential

metric. role in the analysis of synchronization with coupled chaotic
systemsDuane and Tribbig2007) and are employed in this

Fig. 1. Time series of slow model, (r) anomalies.
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work. In this study the phase of both subsystems are ex
tracted via Hilbert transform in order to determine phase k
locking intervals and synchronization at different coupling °2
strengths. The phase of a time sen€g can be determined ¢
by using the analytic signal approacRdsenblum et al.
1996 where the analytic signal(z) is a complex function

—

}_fast model
v

o4 s 2, slow model

of time 2l S e .
Z,(t)=xt)+ix(t) =Afe"q’f"(’) (11) T e . | ”
~ . . -0'20 01 0‘2 0‘3 0‘4 0‘5 0‘6 07 ‘AOV‘B 0‘9 1‘ 1‘1 1‘2 13 14 1‘5
andx (¢) is theHilbert transformof x (¢) Coupling strength o
. 1 X
X = ;P'V'/_OO t—ﬂd[ (12) Fig. 2. Mean phase coherencgf) in black and conditional Lya-

) ) . punov exponenta(fStandxﬂom’) as a function of coupling strength
(P.V. means that the integral is taken in the sense of thg,. Fast model Lyapunov exponent in solid red and slow model lya-
Cauchy principal value). The instantaneous Hilbert phase igunov exponent in dashed red.

given by:

X (@) (b)
o (1) = arctan s (13)

x(1) 2

For each of the two phase distributions a phase locking
index is computed. The index for measuring phase synchro-
nization is given by: N0

1.
yH= NZel[%(l_;)—@y(t,‘)] ) (14)
j=1

For this model, the whole system is six dimensional with

two positive, two zero and two negative Lyapunov exponents rig. 3. Lorenz coupled system phase portrd@) fast subsystem;

As the coupling strengthf is increased all the exponents  (b) slow subsystem.

evolve revealing stages of synchronization, therefore the ex-

ponents for coupled chaotic systems are also a function of

coupling strength. Figurg showsy (mean phase coher- and there is some degree of synchronization. This setting
ence), and the two maximum Lyapunov exponents for eactbears some resemblance to the modeZebiak and Cane
component as functions of the coupling strength. For cou{1987, a model with a noise-free slave atmosphere.

pling strengthsy > 0.9 the originally positive Lyapunov ex- The phase space of both subsystems is shown inFig.
ponent of the fast model attains negative values, indicatingand the resulting attractor for both slow and fast components
that generalized synchronization between the systems takesre quite different, the latter being less organized than the
place. For stronger coupling'’ rises to values closer to 1, fi-  original Lorenz 63 model. Figurgb shows the slow “ocean”,
nally leading to identical synchronization for higher coupling vacillating between a more frequent regime “neutral-cold”
strenghts. and a less frequent warm state.

When coupling strength is setdo> 1.2 all six conditional The coupling terms in each equation for the dynamics are
Lyapunov exponents become negative and both subsystentgjuivalent to a variable forcing. For the Lorenz 63 model
approach a limit cycle eventually reaching equilibirum statein the absence of forcing, both regimes of the attractor are
for largera. For coupling strengths.0<« < 1.2 the slow  equally probable. In this particular model the phase space
model A suggests that it is mainly behaving as the driver position of the regime centroids does not change as the forc-
(Aﬂ°w> 0), while the fast model is behaving as the respondefing rotates and change in intensity. However, when forcing
since itsAﬁ'i‘St approaches zero for these coupling strengths.s introduced in theéX — Y plane the probability of the model
These values correspond to long term averaged Lyapunostate lying in one of the regimes becomes greater than that
exponents over the attractors which can be interpreted as ain the other regime. These changes are due to the projection
almost “slave” fast model with small amplitude, and regime of the forcing along the dominant EOF of the system, which
changes modulated by the slow model. The coupling strengtipoints between the two regime centroiéalmer 1993.
for the control run ¢ = 0.8) was initially picked in order to For the reduced Rayleigh number> 24.75, the equi-
qualitatively mimic the observed NINO3.4 time series which librium points C*(C~) which were unstable in the ab-
is located just beforaﬁ}s‘goes negative),?r'o"" still positive, sence of forcing, can be made stable by sufficiently large
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Fig. 5. Spread ofc, ensemble members with no offset forcirtg &

Fig. 4. (a)Pdf for thex¢ystanomalies from the interactive ensemble k2 =0).

as a function of its standard deviation (STD) around the mean: en-

semble mean in red and conditional ensemble spread — wfign

is greater than one standard deviatie) ¢f the slow model anoma- the conditionalksioy PDF — when the spread afas; is less

lies — in black;(b) Pdf for thexgiow anomalies as a function of its  than one standard deviation)(of the fast model spread —

standard deviation (blue) and conditiona|oy — when spread of s shown in Fig.4b in black, and in this case small spread

xfast S less than one standard deviatior) 0f the fast model spread  jmplies positive anomalies in the slow model. The asym-

—in black. metry in predictability comes from the fact that the ensemble
spread is strongly affected by a change in the state of the slow

. ve) forci ittal L 2005. All th model. The slow model PDF (Figlb) is skewed towards
positive (negative) forcingMittal et al, 5 these negative anomalies (blue). Its worth noting that both the

complex effects are acting simultaneously as the forcmgxf{m and.x,;,.,, variables are skewed due to forcing through

changes with time in the coupled system. both the offset parameter and the coupling terms. The asym-
The ensemble run performed in this study is different from metry in predictability is not dependent on the existence of
atraditional coupled model for which individual atmospheric the offset, as shown in Fig.where the offset parameter was
realizations are coupled to individual oceanic realizations.i;rmed off.
In the interactive ensemble coupling, mL_JItip_Ie realizations  That can be further explored if we consider that although
of the fast model are coupled to one realization of the slowpoty the offset and coupled feedbacks were intentionally set
model Kirtman and Shukla2003). The fast model realiza- {5 qualitatively mimic the observations, one could imagine
tions only differ in terms of their initial conditions. Each fast 4t for a linear model (linear propagator) the eigenvalues
model realization experiences the same forcing produced by,ave fixed values for all points in phase space, thus the
the slow model. The slow model is subjected to the ensemblgy owih rate of uncertainties is the same no matter which is
average of fluxes from the fast model realizations. This is thehe state of the system. However, for nonlinear determinis-
interactive ensemble (IE) approach first introduceday-  tjc system or linear stochastically perturbed dynamics with
man and Shukl§2002 applied to a simple coupled model.  jtiplicative noise, a characterization of predictability for
In this IE coupling, the use of multiple fast model realiza- a system represented by a given marginal (that is, uncondi-
tions allows the separation of the fast model variability duetional) PDF depends on the dynamics of the underlying sys-
to boundary forcing (signal) and that due to internal dynam-tem and cannot be inferred solely from the non-Gaussianity
ics. The ensemble mean for the fast model realizations isf the marginal PDF, as shown I8ura et al(2005. There-
regarded as a lower boundary condition forced signal and thgore, the inclusion of the offset in the toy model does not
difference among the members (ensemble spread) is consigsroduce any asymmetry in predictability by itself.
ered as noise generated by internal dynamics. Figure 6 shows the reason for the asymmetry in pre-
Extended runs with up to 100 ensemble members werdalictability which is explained by the ensemble spread be-
performed and the probability density function (PDF) for the ing strongly affected by a change in the state of the slow
ensemble mean and ensemble spread are shown id Bgy. model (ocean) from the “neutral-cold” state to warm state.
a function of its standard deviation (STD) around the mean.On the top panel of Figé the ensemble spread is signifi-
For the fast model both the ensemble mean state and condcantly reduced when a positive anomaly occurs. This period
tional ensemble spread — whety is greater than one stan- of increased predictability last until the slow model returns to
dard deviation¢) of the slow model anomalies — are skewed “neutral-cold” conditions and can even persist into the neu-
in Fig. 4a. The conditional spread PDF indicates that whentral state for a period. This suggests that the slow “ocean” is
there are strong positive anomalies in g, variable, the  reducing the “atmospheric noise” during some periods where
spread is typically small (but not negative), i.e. the fast modelthere is higher predictability (reduced spread). What mech-
uncertainty is relatively small (black line in Figa). This  anism could be affecting the atmospheric spread in this cou-
is typically a strong nonlinear system. For completenesspled model?

www.nonlin-processes-geophys.net/19/273/2012/ Nonlin. Processes Geophys., 1928232012
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3 ' ; ' v ; ' trajectoryX? in powers of the differencé’ (omitting thei-
i ; | : ' th ensemble member notation from here on) which gives the
equation for ensemble membef

d(X$+84)  dX¢
dt T dr

2 1 1 1 1 1 ]
1960 11965 1p70 1975; 1980 1985 %990 11995 2000 2005 2010 _’_0(83)+C0~>Ax0 (19)

= Aya X% + AL,
it j

where 0(83) denotes nonlinear error terms obtained from
, the power series expansion A;(?X?, A;(7 is the Jacobian
of the vector functiomxa X’;, andX? = (x,, vo.20)! are the
slow model variables. It is worth noting that in the inter-
active ensemble approach all ensemble members experience
ol | L ‘ i the same surface boundary conditions (linear coupling term)
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 O—Avo . .

Time(years) C X? coming from the slow model. Subtracting from

the equation foX{, i.e. Eq. (L9), the following equation for

Fig. 6. Top: x, anomalies of ensemble members (red) apd  the reference trajectory

Ensemble spread x1ast(t)

anomalies (black) time series. Bottom: Spreadigfensemble xa
members. J — Aya X% 4 CO=AXO (20)
dt i
yields:

An analytic approach to this question, similar\Wtten-
berg and Andersoi(1998, is possible by formulating the dé, 2
whole system as 7 = Axalat+ 0@a%). (21)
% — Ny X (15) The nonlinear error terrne(sg) can be ignored when they
— X are small relatively toA{.8,. The dynamics of a small fast

J
whereNy is a nonlinear operator at the state ve¢foiSince ~ model uncertainty is therefore governed by the linearization
Eqg. (15) represents a coupled system with linear coupling,of the flow and the last equation provides a dynamical system
then Ny consists of an uncoupled nonlinear part and an air-for small uncertainties. It is worth noting that the coupling

sea interaction part term was cancelled as expected since the fast model inter-

X nal variability is, by definition, separated from the coupled

— =(Ux+O)X (16)  signal.

dt However, in a nonlinear system the internal variability is

where not independent of the fast model mean state which in turn
Ax 0 0 (O0—4 is affected by th.e slow mode_l state, as previogsly_shown in

Ux = ( 0 0x> and C = (CA—’O 0 ) a7) the PDF analysis. This implies that the coupling is impor-

tant despite the absence of any coupling terms in Egj. (

Ax and Oy are the atmosphere and ocean uncoupled nonlinThe coupled signal is participating implicitly by affecting the
ear operatorg =4 andC4~© are the sea-to-air interaction, mean state of the fast model which in turn changéss,,

and the air-to-sea interaction respectively (see the Appendixkhe Jacobian of the vector functioty« X?. The vector func-

We are interested in deriving an equation for the time evolu~jon ang jts Jacobian depend on the tirjne-evolving basic flow
tion of the _separat_lon among ensemble members in the _Cort'time dependent propagators) and assume different values as
text of the interactive ensemble approach. We are considery,g 45t model visits different regions of the phase space. The
ing a perfect model approach where the uncertainties come, 514 signal and the internal dynamics are the mechanisms
from small differences in the fast model initial conditions governing the attractor's behavior of both fast and slow mod-

among different ensemble members. This can be done b5 ong indirectly affect the growth of uncertainties. There-
defining the difference vector between two fast model Statesfore, the key to understand the uncertainty dynamics in this

i-th ensemble membet; a”‘? a reference tr"f‘JeCtOW;’ SO0 model is in estimating the effects of local instabilities in re-

that the fast model uncertaingf can be defined as devia- gions of the fast model phase space through which the en-

tions from the reference trajectory: semble trajectories are likely to pass.

5% = X4 —X;? soXe =Xj€+5?. (18) We proceed to analy;e which mechanisms can produpe
changes on the separation among ensemble members guided

If the vector functionUx X is continuous and differentiable by Smith et al. (1999, who stressed the importance of

everywhere, we can expand the solution around the referenctie non-normality of the Jacobian matrix when computing

Nonlin. Processes Geophys., 19, 27382 2012 www.nonlin-processes-geophys.net/19/273/2012/
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1 48
oL dldl
I8~ dr

r ds
() +48() o

growth rates. The instantaneous growth rage timer of an small uncertainties, shrinks exponentially. Once back out-
uncertainty is side the convergent region, the uncertainties grow exponen-
tially along divergent directions leading to an increase in the
_ i i\/ﬂ ensemble spread.
. I8l dt . We proceed to locate regions in the fast model phase space
1 /dsT where all instantaneous growth rates are negative and there-
= 215112 (7 t t) (22) fore aII. unce_rtainties r.nust. dgcrease for as long as the ensem-
ble trajectories remain within those regions. Such regions
where the superscriff is the transpose operator afidl| must display enhanced predictability for finite times and co-
is the Euclidean norm expressed as square root of the inndhcide with the reduced ensemble spread periods shown in
product of the vector and itself. We can write the eigen- Fig. 6. ,
value decomposition oft}, as A, = EAE™! considering The eigenvalues oft}, and (A%, + Ay.) are obtained
that the matrices have distinct eigenvalues, the diagonal mathrough the roots of the characteristic polynomial of each of
trix A contains the eigenvalues of A/, andE its eigen-  these matrices evaluated at every point of the phase space.
vectors. The changes ihwill depend on: the eigenvalues Regions with enhanced predictability are comprised of points
of the Jacobiam, and implicitly the background state, the With eigenvalues having negative real parts. There are impor-
projections of the uncertainty onto the eigenvectdrg, and  tant criteria that give necessary and sufficient conditions for
the decomposition of into the eigenvectoE 5. all the roots of the characteristic polynomial with real coeffi-

If we turn our attention towards the eigenvaluesAdf,, cients having negative real parts which are known as Routh-
the divergent directions along which the projectionsgf ~ Hurwitz Criteria (see the Appendix). This helps delineate
grows equate to eigenva|ue5 with positive real parts_ Con.the boundaries of the Convergent subsets where all eigenval-
Verse|y’ the Convergent directions' a|ong Wh|Ch the projec_ues haVe negative I’eal pal’t. We fO”OW the derivation Of the
tion of 5, shrinks, correspond to eigenvalues with negative€xplicit formulas for the surfaces separating these regions as
real parts. However, a8mith et al.(1999 pointed out, the  in Smith et al (1999 (see the Appendix).
eigenvalues oft}, alone do not supply sufficient conditions ~ We denoteV; as a region where the Jacobiaf., at
to determine the sign of the growth rate since, in general, thé¢@ch point in phase space, have eigenvalues with negative
eigen-basis is not orthogonal, i 4. is non-normal. real parts. For non-normaly,, this is not sufficient to

Combining equations for the time evolution of the uncer- fulé out possible positive growth rates, yet such regions
tainties Eq. 21) and the instantaneous growth rate E2g)(  are, at least numerically, dominated by decreasing uncertain-

yields: ties with time. If, on the other hand, each eigenvalue of
(Alu -|—A’)£,) is negative within a regiofz, then no instanta-
5T (AL, +AT)S neous growth rate withif, is positive. Therefore, all uncer-
r(8, X%, 1) = ésTa X (23)  tainties will decrease with time for at least as long as the tra-
jectories remain withirV, andVy. In general Vo € V, € R™.
For this coupled model: The coupled Lorenz system has a nonempty regfioand
V2 within which all uncertainties decay. The numerical sim-
/ —20 o0+4r—2za Ya ulation using the interactive ensemble approach confirm that
Aat+Ag)=|0+r—z, -2 o | (24)  these regions are dominated by decreasing uncertainty. Fig-
Ya 0 -2b ure7 shows the relative position df; (V2 not shown) to the

attractor and the fast model ensemble members trajectories

Since (Ay, +A;(Tu) is a symmetric matrix, it has orthog- (yellow lines). The surface separates fiteregion located
onal eigenvectors and its eigenvalues are real. In particuabove the blue side of the surface where all eigenvalues have
lar, if all eigenvalues ofA%. + A),) are positive (negative), negative real parts (convergent) and the region below the red
r(8,X%,r) will be positive (negative) independent of the ori- side of the surface corresponds to the region where uncer-
entation of the uncertainty. This symmetric matrix can betainties grow exponentially along divergent directions.
negative definite for sufficient model states. However, there We may also visualize the crossing of ensemble members
is no stateX® = (x4, y4,24)" in the fast model phase space trajectories into thé/; subset, the subsequent locking to the
where this matrix can be positive definite. ensemble mean, and synchronization with the ocean forcing

The eigenvalues analysis af ., (A%, +A;(7;) and theim- by plotting the phase pai®gjow (Slow model) agains®sast
plicit participation of the coupling through the fast model (fast model) in Fig8. In asynchronous states the phase pairs
mean state provide the mechanisms controlling the growth(®sast, Psiow) fill most homogeneously the sub-plane interval
rate of uncertainties in this model. This provides a concep-and then make the phases statistically independent. Trajec-
tual picture explaining the behavior of the ensemble mem-tories in the middle of Fig8 are in the divergent region (and
bers. Whenever the ensemble members trajectories visit reasynchronous state) where the uncertainties grow exponen-
gions of phase space where all directions are convergent, thigally (slow model is in neutral-cold state). In synchronized
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vergent region above the blue side of the surface on the top
right of Fig. 7. This can also be seen in Figgwhere the en-
semble members move to the top right of region |. Fidliise
periodic on both axis. As the positive anomaly reaches ma-
turity, the ensemble members have already moved way into
the convergent region, above the blue side of the surface in
Fig. 7, where all eigenvalues are negative. Inside the conver-
gent region all uncertainties start to decay as shown by the
passage of ensemble members from region Il to IlI (Bjg.
and converging ensemble members “spiral” on the top right
of Fig. 7. The ensemble trajectories stay long enough inside
the convergent subset so that the ensemble becomes locked

R to the ensemble mean, i.e. internal variability is reduced, so
20 *2/0 1.0 a that only the coupled signal is left (Fi§.region Ill and yel-

low ensemble members “stream” at the center of Figpw-
Fig. 7. Surface separating subsét in phase space and its relative INg from the right side to the left side of Fig). It is worth
position to the fast subsystem attractor. The surface separatés the Noting that the time spent by the ensemble members inside
region located above the blue side of the surface where all eigenvalthe convergent region is dependent on the slowness of the
ues have negative real parts (convergent), and the region below thecean model. Once the ensemble is locked, then it can be
red side of the surface corresponds to the region where uncertaintigsulled away from the convergent region by consistent ocean
grow exponentially along divergent directions. Yellow lines show forcing (slow model moves towards neutral-cold state). The
the trajectories of the fast model ensemble members and black thensemble members cross the boundary going outside the con-
ensemble mean. vergent region, then uncertainties grow exponentially along
divergent directions (back to the center of Régand below
the red side of the surface in Fig).

The crossing of ensemble members into the convergent
region is not exclusive of warm events since the members
quickly cross the boundaries during other periods, as it can
be seen from the small fluctuations in spread when the slow
model is in “neutral-cold” state (Fig). Making the slow
model faster reduces the length of the high predictability pe-
riods. For instance, if the slow model time scale is set to
7 2 0.5 (five times slower than the fast model instead of ten)
it implies in the extinction of any high predictability period
with only small fluctuations in spread left. Changing the am-
plitude of the anomalies has a different effect and completely
modifies the shape and stability of both attractors.

3 Conclusions

Fig. 8. Phasedgjow (slow model) againsbrast (fast model). Blue  The focus of this paper has been to demonstrate that the lin-

dots are ensemble members, black dots ensemble mean. ear intuition which suggest that uncertainties will steadily in-
crease with lead time can be misleading if the uncertainty
dynamics depends strongly on its location in state space, and

states the phase pairs are confined into strips in the sub-plangh the non-normality of the Jacobian matrix. The skewness

interval since if the subsystems are phase locked then thg, the state variables of both subsystems is originated by the

phase difference ®rast— m Psiow ~ const, therefore one of  forcing through coupling terms projecting along the domi-

the phases can be written as a linear function of the othehant EOF of each subsystem. In the nonlinear system used

Psjow = A + BPrast Wwhere A = —consym and B =n/m. in this work the spread of ensemble members is highly de-

Trajectories are phase locked in regions Il and lllin Bg.  pendent on the mean state corresponding to asymmetries in

One can better interpret the motion of the ensemble trajecpredictability.

tories on the attractor by combining Figand Fig.8. When  The organization of predictability in the Lorenz 63 model

a warm event starts to develop in the slow model it forceshas previously been numerically quantified ldgse(1989

the ensemble members to cross the boundary into the corthrough two-dimensional maps showing variations in local

Nonlin. Processes Geophys., 19, 27382 2012 www.nonlin-processes-geophys.net/19/273/2012/



L. Siqueira and B. Kirtman: Predictability of a low-order interactive ensemble 281

average divergence rates at several locations on the attractand the coupled linear operator:

Smith et al (1999 showed the existence of finite volumes of 200

state-space within all perturbations decrease with time for a 0 OO‘ w0

finite period, stressing the importance of the non-normality 0 Ou

of the Jacobian matrix. C= . (A2)
For the coupled system here, both the slowness of the slow _0“ 0 8 0

model, and the intensity of the boundary forcing anomalies 0 ‘é

contributes to the asymmetry and phase locking of both sub- ¢

systems. The mechanisms controlling the fast model spreatfhe Jacobian of the uncoupled operator is given by:
were uncovered revealing uncertainty dynamics depending

on the location of ensemble members in the fast model phase —0 o 0
space. r—za=1-x 0
One important aspect is that the low order coupled systeny; = Ya  Xa —b (A3)

—t0 10 O
0 Tr—Tx, —T TX,
Ty TXx, —Th

in this study is simple enough, making it easy to find “con-
vergent regions” of phase space. Within the convergent re-
gions, all eigenvalues of the Jacobian (time dependent prop-
agator) are negative, so that the ensemble members CONVErgRy  Routh-Hurwitz Criteria and Convergent Subsets

If the members stay long enough within the convergent sub-

sets, depending on the slowness of the slow model, they cafthe Routh-Hurwitz Criteria give necessary and sufficient
synchronize with the slow model forcing. Once both subsys-conditions for all the roots of the characteristic polynomial
tems are phase locked and the fast model internal variabilityyith real coefficients to lie in the left half of the complex

is reduced, the consistent slow model forcing (coupled sigp|ane. It states that, given a characteristic polynomial
nal) drives the ensemble out of the convergent subsets. These

results suggest that the slow model is indeed reducing the fagt () =" +a12" *+... +a, 17 +a, (A4)
model “noise” during some periods where there is higher pre
dictability (reduced spread).

A direct comparison of the results from the simple model
employed here with the results froKirtman et al.(2005

‘where the coefficients; are real constants, with=1,...,n,
define the Hurwitz matrices using the coefficientsof the
characteristic polynomial

andWu and Kirtman(2006 cannot be made since the model a1 air 1 0

employed here is distinctly too simple to describe the de-H1=(a1), Ho= al 4 and Hz3=|az az a1 (A5)

tailed physics of a realistic climate system. Although the 34z as as a3

generalization among different nonlinear systems is always

difficult since the predictability of evolving uncertainties is a

model intrinsic quantity, the results presented here should be a1 00..0

of use in predictability studies of more complex systems like azazar 1 ... 0

state-of-the-art CGCMs. A pertinent question for future di- g, — | a5 a4 az az ... 0 (A6)

rections bears upon whether these findings are true for larger S

and more complex systems and, in particular, for CGCMs, 0000..a,

or whether these results have solely uncovered properties of

a low-order coupled model. All the roots of P()) are negative or have negative real part
if and only if the determinants of all Hurwitz matrices are
positive:

Appendix A det H;>0, j=12....n. (A7)

Lorenz Coupled Fast-Slow operators Coupled Lorenz Model Convergent Subsets

For the Coupled Lorenz 63 model the uncoupled nonlinear~or the coupled Lorenz model the coefficients of the charac-

operator teristic polynomial areiy =0 +1+b, az=0c(Q+b—r+
Za)+b —i—xg, andaz=o(1—rb +x5 +bzy+x4y4). Given
-0 o O the parameters,b,r > 0, thenHp=1> 0 andHy = a1 =
r —1—x, 0 o +1+4b > 0. Therefore, we only need to find the conditions
Uy = 0 x, —b I (A1) for Hp = a1a — a3 to be positive
0 r —T —1TX, {Xa|H2>O}:{Xa|Za > Zl(xaayaz)
0 tx, —tb = b1+box/+b3xaya} (A8)
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where

b1 = 02r+0r—az—azb—Zab—b—obz—bzo

by = — 1+b
o240
1

e

{Xa|a3 >0} = {xa |za > z2(xa,Ya)

= c1+czx§+C3xaya} (A9)
with c; =7 —1, ande = c3 = — 1 leading to:
Vi={X | Ho,H1,H,a3>0}
= X%z, > 7 =max(z1,22)}. (A10)
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