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Abstract. The sandy-clayey hydrocarbon reservoirs of the
Upper Paleocene and Lower Eocene located to the north of
Veracruz State, Mexico, present highly complex geological
and petrophysical characteristics. These reservoirs, which
consist of sandstone and shale bodies within a depth inter-
val ranging from 500 to 2000 m, were characterized statisti-
cally by means of fractal modeling and geostatistical tools.
For 14 wells within an area of study of approximately 6 km2,
various geophysical well logs were initially edited and fur-
ther analyzed to establish a correlation between logs and core
data. The fractal modeling based on the R/S (rescaled range)
methodology and the interpolation method by successive ran-
dom additions were used to generate pseudo-well logs be-
tween observed wells. The application of geostatistical tools,
sequential Gaussian simulation and exponential model var-
iograms contributed to estimate the spatial distribution of
petrophysical properties such as effective porosity (PHIE),
permeability (K) and shale volume (VSH). From the analy-
sis and correlation of the information generated in the present
study, it can be said, from a general point of view, that the
results not only are correlated with already reported infor-
mation but also provide significant characterization elements
that would be hardly obtained by means of conventional tech-
niques.

1 Introduction

In the last years (Mandelbrot, 1983; Korvin, 1992; Barton
and La Pointe, 1995), fractal geometry and its concepts have
been considered as essential tools in many areas of the nat-
ural sciences (Vicsek et al., 1994; Sornette, 2006) due to
the fact that the variation of the properties of many physical

systems displays a fractal character. The thickness of lacus-
trine sediments, geological sediment logs and annual flood
cycles in most rivers, for example, have exhibited long in-
terdependence periods (Daryin and Saarinen, 2006). Hence,
it is reasonable to expect a fractal character in the distribu-
tion of sediments because their statistics is determined by
the natural processes that created them. In recent years, the
concepts regarding fractal geometry have been applied for
modeling the heterogeneity of reservoirs (Hewett, 2001; Sri-
vastava and Sen, 2009). Applying fractal geometry to the
description and assessment of reservoirs has a solid basis
(Vivas, 1992; Yeten and G̈umrah, 2000; Srivastava and Sen,
2010) since the distribution of the properties in sedimentary
environments shows a fractal behavior with long-range cor-
relations. Thus, fractal simulations can be used to generate
distribution models of petrophysical and geological proper-
ties.

In the present research, sandy-clayey hydrocarbon reser-
voirs located to the north of Veracruz State, Mexico, with
highly complex geological and petrophysical characteristics,
and consisting of alternate sandstone and shale bodies (lu-
tites) from the Upper Paleocene and Lower Eocene within
a depth interval ranging from 500 to 2000 m, were studied
by means of fractal modeling and geostatistical tools. The
study area extends 123 km in length and 25 km in width (Ab-
baszadeh et al., 2003; Takahashi et al., 2006) and displays
a set of submarine fans and turbiditic sediment deposits in a
deep-water eroded canyon. These sediments show important
variations concerning their clay-shale content in addition to
altered secondary porosity due to diagenesis (Bermúdez et
al., 2006; Talwani, 2011). The most important challenges
that these reservoirs represent with respect to the improve-
ment of their statistical characterization are the modeling of
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Fig. 1. Shale volume traces used in the study.

petrophysical properties such as effective porosity (PHIE),
which is the pore space from which fluids can be produced,
permeability (K) and shale volume (VSH) at different well
locations. The average neutron porosity and density were
obtained and corrected by shale volume.

In order to fulfill this goal, based on both gamma-ray-
and porosity logs and well cores, a suitable lithologic model
has been obtained for the study of the fractal characteristics
and the determination of the petrophysical properties. The
analysis of processes and interpretation of geophysical logs
such as caliper (CALI), spontaneous potential (SP), gamma
ray (GR), resistivity (LLD, ILD, MSFL), density (RHOB),
neutron porosity (NPHI), sonic, and in some cases, water
saturation (Sw) and permeability (K) were carried out for
14 wells. As for the improvement of the modeling of prop-
erties between wells, where data is not available, cross sec-
tions based on pseudo-well logs were obtained through frac-
tal interpolation between neighboring well logs. The Hurst
coefficient, which is necessary to perform this interpolation,
was obtained by means of the rescaled range method (Hurst,
1951; Hurst et al., 1965) and applied to the geophysical
well logs. In the present work, the compilation and analysis

of data are presented, including the geological model (Tal-
wani, 2011), along with the interpretation of petrophysical
data used during the fractal characterization of the reservoirs
(Arizabalo et al., 2004; Oleschko et al., 2008). From the
analysis and correlation of the information generated in the
present study, it has been found that the results not only are
correlated with already reported information but also provide
significant characterization elements that would be hardly
obtained by conventional techniques. The local predictions
regarding the high porosity and permeability, and low shale
volume, represent a relatively high concentration of hydro-
carbons in the area of study.

2 Methodology

2.1 Statistical characterization of sandy-clayey
reservoirs applying fractal and geostatistics
modeling

By applying the R/S rescaled range methodology (Feder,
1988; Korvin, 1992; Srivastava and Sen, 2009) and the
method of successive random additions (Voss, 1985, 1988;
Saupe, 1988), a lateral interpolation was carried out to gen-
erate pseudo-well logs between observed well logs, show-
ing, in addition, the necessary steps to perform the statistical
characterization of a reservoir by fractal modeling.

The application of geostatistics and fractal geometry in-
volves the following steps: Selection of the reservoir, geo-
physical well logs and reservoir cores; assessment of the
geological frame and complementary geophysical informa-
tion; location and possible well connections; typical reservoir
variogram (spatial variability function); fractal interpolation
or well stochastic studies; pseudo-well petrophysical solu-
tion; vertical variation of well properties; cross sections of
the porosity and permeability variations; identification and
distribution of the reservoir flow units; representative vari-
ograms (flow units); areal distribution of the petrophysical
parameters (flow units); and charts of the variation of the
reservoir petrophysical parameters (Vivas, 1992).

In order to apply the methodology described above, it was
necessary to verify the fractal behavior of the well logs; in or-
der to do so, a test of the characteristics concerning the frac-
tional Gaussian noise of the well logs was considered. Fig-
ure 1 shows the shale volume traces for the 14 studied wells,
where superficial zones with high shale contents and deeper
zones, where the shale volume is lower and the presence of
hydrocarbons has been detected, can be seen. The VSH2
trace was chosen, which corresponds to the shale volume
of well 2, to perform the fractal behavior test (Fig. 2). By
means of the software BENOITTM , the aforementioned test
was carried out, which reflected an fGn type behavior (frac-
tional Gaussian noise). The Rescaled Range method (R/S),
Power Spectrum, Roughness-Length and Variogram were
applied to the normalized trace values, showing, all of them,
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Fig. 2. Analysis for finding the fractal behavior of the traces used in our study, which reflected a typical fractional Gaussian noise.(a) Shale
volume trace for well 2.(b) Histogram of the trace.(c) Rescaled Range analysis showing the characteristic fGn with Hurst coefficient
H = 0.828. (d) Power spectrum analysis indicating power law behavior.(e) Roughness-Length method withH = 0.842. (f) Variogram
analysis with Hurst coefficientH = 0.887, by using the BENOIT software.
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Fig. 3.  Fractal behavior for the VSH traces, applying Rescaled-Range and Roughness-Length methods. 
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Fig. 3. Fractal behavior for the VSH traces, applying Rescaled-
Range and Roughness-Length methods.

a power law behavior (fractal). This procedure was applied
to the 14 wells in the area of study. By comparing the H
values obtained with the Rescaled Range and Roughness-
Length methods, it was found that they are in good agree-
ment, 0.5<H<1.0, Fig. 3, the traces show a long memory
process, i.e., the local trend over the interval will be persis-
tent (Korvin, 1992).

 

 

 

 
 
 
 
 

Fig. 4.  Fractal interpolation process between two wells. 
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Fig. 4. Fractal interpolation process between two wells.

2.2 Method of successive random additions

The method of successive random additions (also known as
midpoint displacement method) is a stochastic interpolation
tool (for processes described by a fractional Brownian mo-
tion), which is used for generating approximately random
fractals between observed data (Voss, 1988; Saupe, 1988).

The random interpolation recursive scheme allows the in-
sertion of linearly interpolated values at the midpoint of the

www.nonlin-processes-geophys.net/19/239/2012/ Nonlin. Processes Geophys., 19, 239–250, 2012



242 M. Lozada-Zumaeta et al.: Distribution of petrophysical properties for sandy-clayey

segment, separating the distinct points where data are given,
to which a random component is added with an initial vari-
ance that decreases in every iterative or recursive level.

The initial variance is obtained from the mean square
variation of the original data. This initial variance to the
estimation of the mean value of the scale variations within
the space gap interval between logs. The magnitude of the
variance is reduced in each recursive level according to a
power law determined by the Hurst coefficient (H), which
is obtained for every data set. When the data values do not
present a normal distribution, they are transformed into nor-
mally distributed variables before performing the interpola-
tion process, being subsequently transformed back into their
original distribution.

The random variablesZ(xi) defined at every pointxi of
the domain being modeled are variables that take some nu-
merical values according to some particular probability dis-
tribution. Their spatial correlation depends (in case of trans-
lation invariance) on the vectorl separating two pointsxi and
xi + l. The set of true valuesz(xi) of the variablez defining
the domain being modeled is interpreted as a particular real-
ization of the random functionZ(x).

The procedure to generate a fractal distribution by ap-
plying the successive random additions method (midpoint
displacement method) can be summarized by the following
steps: the fractal interpolation at a given depth and between
the data of two geophysical well logs is interpolated at depth
h (Fig. 4). The interpolation at the points between two wells
will be designed byZi,j wherei andj refer to the position
and iteration order, respectively. The initial log values are
Z1,0 for well 1, andZ2,0 for well 2. The initial variance
considered in this process is given by the initial variance,σ 2

0
which is obtained from the whole data set distributed at all
depths for each considered well. The process also uses the
intermittence coefficient or Hurst coefficient, which is com-
puted for each well by means of the R/S analysis technique
(Hurst, 1951; Hurst et al., 1965).

The interpolation method of successive random additions
is based on the fact that the incremental variance (variogram)
of a random self-affine fractal trace is given by:

2γ (l) = E
{

[Z(x + l)−Z(x)]2
}

= VH l2H (1)

whereγ (l) is the so-called semivariogram,VH represents the
variance (σ 2), E is the expected value of a random variable
andH is the Hurst or intermittence coefficient. The step by
step description of the stochastic interpolation process by the
fractional Brownian motion can be summarized as follows:

1. Computation of the average initial variance (σ 2
0 ) which

is characteristic of the variations between well logs.

2. Interpolation of the values in the midpoint interval
between wells by linear interpolation or kriging.

3. Addition of a random Gaussian number normalized
at the interpolated values (or random variation) and
obtained from a zero-mean normal distribution of
variance,σ 2

1 where:

σ 2
1 =

σ 2
0

22H
(2)

Considering the power law scaling:

γ (rl) = r2H γ (l) (3)

for the special case ofr = 1/2 we get:

γ (
1

2
l) =

γ (l)

22H
. (4)

4. The process is repeated recursively with all the interpo-
lated values until the desired level of resolution is ac-
quired.

In the n-th stage of the iteration process, the random itera-
tion that is added to each interpolated value has the variance
σ 2

n , where (Voss, 1988; Saupe, 1988):

σ 2
n =

σ 2
n−1

22H
=

σ 2
0

22nH
(5)

The following are the interpolation equations withRij des-
ignating a random number drawn from a normal distribution
with mean zero and unit variance.

I teration 1

σ 2
1 =

σ2
0

22H

Z1,1 = Z1,0+σ1R1,1
Z2,1 = Z2,0+σ1R2,1
Z3,1 =

[
(Z1,0+Z2,0)/2

]
+σ1R3,1

I teration 2

σ2 =
σ1
2H

Z1,2 = Z1,1+σ2R1,2
Z2,2 = Z2,1+σ2R2,2
Z3,2 = Z3,1+σ2R3,2
Z4,2 =

[
(Z1,1+Z3,1)/2

]
+σ2R4,2

Z5,2 =
[
(Z2,1+Z3,1)/2

]
+σ2R5,2

I teration 3

σ3 =
σ2
2H

Z1,3 = Z1,2+σ3R1,3
Z2,3 = Z2,2+σ3R2,3
Z3,3 = Z3,2+σ3R3,3
Z4,3 = Z4,2+σ3R4,3
Z5,3 = Z5,2+σ3R5,3
Z6,3 =

[
(Z1,2+Z4,2)/2

]
+σ3R6,3

Z7,3 =
[
(Z4,2+Z3,2)/2

]
+σ3R7,3

Z8,3 =
[
(Z3,2+Z5,2)/2

]
+σ3R8,3

Z9,3 =
[
(Z5,2+Z2,2)/2

]
+σ3R9,3
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Fig. 5.  Result of a fractal interpolation of neutron porosity well log data between two wells. 
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Fig. 5. Result of a fractal interpolation of neutron porosity well log
data between two wells.

I teration 4

σ4 =
σ3
2H

Z1,4 = Z1,3+σ4R1,4
Z2,4 = Z2,3+σ4R2,4
Z3,4 = Z3,4+σ4R3,4
Z4,4 = Z4,4+σ4R4,4
Z5,4 = Z5,4+σ4R5,4
Z6,4 = Z6,4+σ4R6,4
Z7,4 = Z7,4+σ4R7,4
Z8,4 = Z8,3+σ4R8,4
Z9,4 = Z9,3+σ4R9,4
Z10,4 =

[
(Z1,3+Z6,3)/2

]
+σ4R10,4

Z11,4 =
[
(Z6,3+Z4,3)/2

]
+σ4R11,4

Z12,4 =
[
(Z4,3+Z7,3)/2

]
+σ4R12,4

Z13,4 =
[
(Z7,3+Z3,3)/2

]
+σ4R13,4

Z14,4 =
[
(Z3,3+Z8,3)/2

]
+σ4R14,4

Z15,4 =
[
(Z8,3+Z5,3)/2

]
+σ4R15,4

Z16,4 =
[
(Z5,3+Z9,3)/2

]
+σ4R16,4

Z17,4 =
[
(Z9,3+Z2,3)/2

]
+σ4R17,4

Figures 5 and 6 show an example of fractal interpolation
by the method of successive random additions for neutron
porosity well logs, resulting in 17 pseudo-well logs after the
fourth iteration.

A Hurst coefficient variation tracking of the shale vol-
ume trace (VSH) concerning the 17 pseudo-logs generated
during the fractal interpolation process was carried out. A
variation from low to high roughness between the two orig-
inal wells was observed. The applied method was Rescaled
Range (R/S) and the obtained results are: 0.874, 0.876,
0.876, 0.874, 0.874, 0.870, 0.866, 0.860, 0.851, 0.842, 0.834,
0.829, 0.827, 0.826, 0.827, 0.826, and 0.828. It is important
to notice that low H(R/S) values represent a higher roughness
of the trace.

We observed that the variation of the Hurst coefficients of
the VSH traces regarding the wells distributed throughout the
area of study ranged from 0.715 to 1.0 (Fig. 3), which falls
within the characteristic variation range of the fGn (fractional
Gaussian noise) magnitudes of the Hurst coefficient (H). For
H values within the 0.5<H<1 range, a “persistent behavior”

 
 

 
 
 
Fig. 6. Map showing positions of the 14wells and the distance between them (the shortest distance between pairs of wells 

is 400 m.) It also indicates the 15 pseudo-wells calculated between pairs of wells. 
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Fig. 6. Map showing positions of the 14 wells and the distance be-
tween them (the shortest distance between pairs of wells is 400 m.)
It also indicates the 15 pseudo-wells calculated between pairs of
wells.

(e.g., a positive autocorrelation) is described. For an increase
occurring from time stepti−1 to ti , an increase fromti to ti+1
is very likely to happen. The Hurst exponent is also directly
related to the “fractal dimension”, which gives a measure of
the roughness of a trace. The relationship between the fractal
dimension, D, and the Hurst exponent, H, isD = 2−H . As
this equation shows, the fractal dimension is directly related
to the Hurst exponent for a statistically self-similar data set.
A small Hurst exponent has a higher fractal dimension and a
rougher trace. A larger Hurst exponent has a smaller fractal
dimension and a smoother trace. As for the variation range
of the Hurst coefficient, its minimum relative values could
indicate high resistivity zones and probable distributions of
fluids.

2.3 Estimation and simulation of
petrophysical properties

The geostatistical analysis of shale volume for several wells
in the study area is presented (Tables 1 to 5). Variograms
in different directions were constructed for the study of
anisotropy (Gringarten and Deutsch, 1999, 2001). A shale
estimate by means of a gamma ray log was performed in a
cube by the ordinary kriging method (Isaaks and Srivastava,
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Table 1. General variogram analysis.

Azimuth (◦) Dip (◦) Number of lags Separation of clases Tolerance classes Tolerance angle (◦) Bandwidth (m)

0 0
20 100 30 22.5 100045 0

90 0
135 0

Table 2. Principal directions (variogram analysis).

Azimuth (◦) Dip (◦) Number of lags Separation of classes Tolerance classes Tolerance angle (◦) Bandwidth (m)

45 0
20 100 30 22.5 100090 0

0 90

Table 3. Variogram model.

Azimuth Dip Range Model Sill Nugget
(◦) (◦) (m) effect

45 0 Maximum 520
Gaussian 0.035 0.005135 0 Middle 380

0 90 Minimum 120

Table 4. Mesh parameters.

Mesh x y z

Number of cells 100 100 59
Size of the cell (m) 100 100 10
Minimum point coordinates (m) 644 500 2 666 600−1925

1989). Several sequential Gaussian simulations for different
models of shale in the cube were done. From the calculations
of shale volume, geostatistical analysis can be performed to
find the corresponding spatial distribution parameters. Based
on these parameters, it is possible to generate estimates of its
distribution in a cube using the software PETRELTM(2010).

The sample variogram was constructed and an anisotropy
analysis in the four directions was done (Tables 1 to 5). The
sample variogram parameters are: number of classes (lags):
20; separation of classes: 100; tolerance classes: 30; num-
ber of directions: 4; azimuth: 0, 45, 90, 135◦, which were
measured clockwise with respect to the north; dip: 0, 0, 0,
0◦; tolerance angle: 22.5, 22.5, 22.5, 22.5◦; bandwidth (for
searching point pairs): 1000, 1000, 1000, 1000 m. From the
analysis of these four variograms, a slightly more continuous
behavior is observed at 45◦ and 135◦.

Afterwards, the variogram was examined in the two hor-
izontal directions at 45◦ and 135◦, and in the vertical direc-
tion. The parameters for the construction of the sample var-
iograms are: number of lags: 20; lag separation: 100; lag
tolerance: 30, number of directions: 3; for these three direc-
tions: azimuth: 45, 135, 45◦; dip: 0, 0, 90◦; tolerance angle:
22.5, 22.5, 22.5◦; bandwidth: 1000, 1000, 1000 m.

The variogram stabilizes at the sill 0.035, which is a value
close to the variance, 0.04. Another observation is that there
is more continuity in the vertical direction for most of the
data. The variogram model parameters are listed: nugget
effect: 0.005, number of structures: 1; sill: 0.03; type
of model: Gaussian, which was selected as a first smooth
approximation; the ellipsoid’s definition: maximum range:
520 m, midrange: 380 m, minimum range: 120 m; angles:
45, 0, 0

◦

(Tables 1 to 5).
A mesh was constructed to estimate the fractional volume

of shale in a parallelepiped. The parameters for generating
the mesh are the following: number of elements in the x, y,
z directions: 30, 14, 59; size of the cell in three directions:
100 m, 100 m, 10 m; minimum point coordinates: 644 500 m,
2 266 600 m,−1.925 m.

The estimate of VSH can be done by means of the ordi-
nary kriging method. The following parameters were used:
search ellipsoid ranges: 1200, 1200, 120 m; search ellipsoid
angles: 45, 0, 0◦; minimum number of data constraints: 2;
maximum number of data constraints: 12; adjustment vari-
ogram parameters: nugget: 0.005; number of structures: 1;
sill: 0.03; type: Gaussian; ellipsoid definition: maximum
range: 1040 m, midrange: 720 m, minimum range: 10 m; an-
gles: 45, 0, 0◦.

Another approach consists of generating Gaussian sim-
ulations. The parameters were as follows: number of
realizations: 3; kriging type: ordinary; maximum num-
ber of conditioning values: 12; search ellipsoid definition:

Nonlin. Processes Geophys., 19, 239–250, 2012 www.nonlin-processes-geophys.net/19/239/2012/
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Table 5. Kriging parameters.

Search ellipsoid Number of data constraints
Variogram model Sill Nugget effect

Ellipsoid definition

Ranges (m) Angles (◦) Minimum Maximum Range (m) Angles (◦)

x 1200 45
2 12 Gaussian 0.03 0.005

maximum 1040 45

y 1200 0 midrange 720 0

z 120 0 minimum 10 0

PHIE VSH K

ZONE 1

PHIE VSH K

ZONE 2

 
Fig. 7.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 1 and 2. 
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Fig. 8.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 3 and 4. 
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Fig. 7. Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 1 and 2.

maximum range: 1200 m, midrange: 1200 m, minimum
range: 20 m; angles: 45, 0, 0◦; without adjustment to his-
togram; variogram: nugget: 0.005; number of structures:
1; sill: 0.03; type of model: Gaussian; ellipsoid definition:
maximum range: 520 m, midrange: 380 m, minimum range:
120 m; angles: 45, 0, 0◦ (Tables 1 to 5).

The simulations represent different alternatives regarding
the shale volume behavior. These simulations show a behav-
ior that is more natural than the one obtained by means of
ordinary kriging estimates; accordingly, they are preferred
for being closer to reality.

These simulations show a correlation with the geologi-
cal information and complementary geophysics that is better
than the one obtained by the ordinary kriging geostatistical
method.

Porosity was estimated through a sequential Gaussian sim-
ulation with a Gaussian variogram model; however, at this
point, it is desirable to have a fractal approach and obtain

a sequential Gaussian simulation of the effective porosity in
order to reach a fractal modeling. To this end, it has to be
considered that the variogram or structure function is defined
by the function related to the covariance (Chilès and Delfiner,
1999). In fractal simulation, the power or fractal variogram
model is used (Hewett, 1986).

Finally, in this way, an exponential variogram model was
used to approach a fractal model. Then, the sequential Gaus-
sian simulation of effective porosity, shale and permeability
is carried out. As for permeability, both a porosity adjust-
ment with measured permeability values from cores, and a
sample variogram adjustment of the distribution of the per-
meability logarithm were used. The experimental equation,
obtained from the core analysis, that was used to relate per-
meability and effective porosity is:

www.nonlin-processes-geophys.net/19/239/2012/ Nonlin. Processes Geophys., 19, 239–250, 2012
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Fig. 7.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 1 and 2. 
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Fig. 8.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 3 and 4. 
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Fig. 8. Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 3 and 4.
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Fig. 9.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 5 and 6. 
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Fig. 10.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 7 and 8. 
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Fig. 9. Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 5 and 6.

K = eC1 logφe −C2∗φe +C3 (6)

Where C1, C2 and C3 are specific constants obtained for each
study case.

3 Description of the field

The reservoir formation of Lower Paleocene to Lower
Eocene age consists of turbiditic deposits grouped in three
bodies (Inferior, Medium and Superior). These are limited
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Fig. 9.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 5 and 6. 
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Fig. 10.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 7 and 8. 
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Fig. 11.  Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 9 and 10. 

 
 
 

 
 

Fig. 12. Fractal and normal interpolation methods for the effective porosity (PHIE) distributions in the region of study. 
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Fig. 11. Fractal distributions of effective porosity (PHIE), shale volume (VSH) and permeability (K) for zones 9 and 10.

at the base by a regional discordance that represents the base
of what is known as Reservoir Paleochannel. The sediments
analyzed in this study belong to the Medium and Superior
bodies.

Based on Tyler’s model (Ambrose et al., 1991), quoted
in Schlumberger (2005a, b), we considered 10 bodies par-
tially overlapping vertically in the field’s central region.
The schematic representation of the referenced bodies is
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Fig. 12. Fractal and normal interpolation methods for the effective porosity (PHIE) distributions in the region of study.

indicated in Fig. 7 (zone 1), where the identified discordances
between some of these bodies are also shown.

Each body was characterized as arrays of facies, which
are characteristics of the turbiditic sedimentation sys-
tem. Five facies were distinguished: M: Mud, Basin
ground characteristic-Facies 1; SE: Serrate, Distal Lobe
characteristic-Facies 2; SRSE: Sand-rich Serrate, Distal
Lobe characteristic-Facies 2; UF: Upward Fining, Proximal
Lobe characteristic-Facies 3; UC: Upwards Coarsening, Dis-
tributary Channel characteristic-Facies 4; B: Blocky, Central
Channel characteristic-Facies 5.

Due to the fact that many of the units are complex, it is
common to find different combinations of each element of
this classification for a body in a given well. The definite
assignation (simplified) was done according to the preva-
lent facies. This model allowed the performance of the spa-
tial distribution of properties such as porosity and shaliness,
which has proved very useful for the bulk analysis of each
body according to the cutting values adopted for porosity and
shaliness. Figures 7–11 show the porosity, shale volume and
permeability distributions for each studied zone.

4 Results and discussion

Using the methodology detailed in the previous sections,
17 pseudo-well logs were interpolated between pairs of ob-
served wells (Fig. 6), generated by the software PETRELTM

(Petrel, 2010), obtaining three-dimensional simulations of
effective porosity (PHIE), shale volume (VSH) and perme-
ability (K) for zones 1 to 10 in the field (Figs. 7 to 11).

The properties that were used in this work for prospect-
ing the hydrocarbon potential in the wells mentioned above
were: effective porosity, shale volume and permeability. The
effective porosity model (Figs. 7–11) is a guide for predicting
the hydrocarbon-production capacity of the reservoir. Each
cell in the grid represents a value of the effective porosity
in the field. The areas with yellow and red colors, which
fall within 0.09–0.14, show a high level of effective porosity,

while the other part of the model indicates regions with low
effective porosity values.

The shale volume (Figs. 7–11) represents the distribution
of these petrophysical properties from the corrected version
of the well log data. The grid is calibrated into fractions,
which define the 3-D model in various depositional environ-
ments like the part that captures values within 20–40 % of
shale content, which represents the typical regional reservoir
rocks.

The permeability distribution gives another clue for the hy-
drocarbon potential of the field. The areas with high perme-
ability values (yellow and red colors) within 0.1–3.0 mD rep-
resent potential areas for hydrocarbon prospecting (Figs. 7–
11). The areas with low permeability levels allow little or no
flow of hydrocarbons.

It should be noted that the results are consistent with
each other, and that the regions with high effective porosity
showed relatively high permeability with low shale content.
In particular, zones 6, 7, 8 and 9 qualify for the presence of
hydrocarbons.

On the other hand, according to the interpolation results
shown in Fig. 12, it can be said that the fractal method is more
powerful than the normal interpolation method, for the effec-
tive porosity distribution obtained by fractal methods mod-
els accurately the values observed in the field, whereas the
distribution obtained by normal interpolation shows extreme
porosity values, too high in some layers of the lateral sections
and too low in the upper parts of the region under study.

5 Conclusions

From the results obtained in the present research, it can be
seen that the sandy-clayey reservoir presents a fractal behav-
ior as shown by the fractal analyses of the well logs. This
behavior favored the application of the fractal interpolation
method between neighboring wells in the field of study. This
technique is used for characterizing reservoirs by means of
the distribution of petrophysical properties based on well
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logs and core data. Through geostatistical and fractal ge-
ometry methods, predictions of the behavior of permeability,
shale volume and effective porosity were obtained.

From the obtained fractal distribution, it can be said that
the method of successive random additions, which was used
for this purpose, is a complementary tool for the statistical
characterization of reservoirs. The comparison between the
fractal and normal interpolation methods justifies the fact that
the fractal method is more accurate than the normal one.

The formation evaluation of the pseudo-logs obtained
by fractal interpolation, using Archie’s (1942) and Siman-
doux (1963) equations will allow the estimation of the spa-
tial distribution of water and hydrocarbon saturations, poros-
ity and permeability through a combination of geostatistical
techniques and fractal methods.
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