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Abstract. Existing sampling techniques applied within
known orebodies, such as sampling along mining drifts, yield
element concentration values for larger blocks of ore if they
are extended into their surroundings. The resulting average
concentration values have relatively small “extension vari-
ance”. These techniques can be used for multifractal model-
ing as well as ore reserve estimation approaches. Geometric
probability theory can aid in local spatial covariance mod-
eling. It provides information about increase of variability
of element concentration over short distances exceeding mi-
croscopic scale. In general, the local clustering of ore crys-
tals results in small-scale variability known as the “nugget
effect”. Parameters to characterize spatial covariance esti-
mated from ore samples subjected to chemical analysis for
ore reserve estimation may not be valid at local scale because
of the nugget effect. The novel method of local singularity
mapping applied within orebodies provides new insights into
the nature of the nugget effect. Within the Pulacayo orebody,
Bolivia, local singularity for zinc is linearly related with log-
arithmically transformed concentration value. If there is a
nugget effect, moving averages resulting from covariance
models or estimated by other methods that have a smooth-
ing effect, such as kriging, can be improved by incorporat-
ing local singularities indicating local element enrichment or
depletion. Although there have been many successful appli-
cations of the multifractal binomial/p model, its application
within the Pulacayo orebody results in inconsistencies, indi-
cating some shortcomings of this relatively simple approach.
Local singularity analysis and universal multifractal model-
ing are two promising new approaches to improve upon re-
sults obtained by commonly used geostatistical techniques
and use of the binomial/p model. All methods in this pa-
per are illustrated using a single example (118 Pulacayo zinc
values), and several techniques are applied to other orebody

datasets (Whalesback copper deposit, Witwatersrand gold-
fields and Black Cargo titanium deposit). Additionally, it is
discussed that nugget effects exist in a binary series of alter-
nating mostly gneiss and metabasite previously derived from
KTB borehole velocity and lithology logs, and within a se-
ries of 2796 copper concentration values from this same drill-
hole.

1 Introduction

Most geological maps display bedrock as a mosaic of dis-
tinct rock units of different composition and age. Small rock
samples are taken and subjected to chemical analysis. Nor-
mally, the resulting chemical element concentration values
are used to help with rock identification and to describe the
physico-chemical processes that led to the patterns of rock
units on the geological map and its three-dimensional exten-
sions into depth. Although orebodies and hydrocarbon de-
posits generally occupy relatively small volumes within the
Earth’s crust, they are targets of intense exploration includ-
ing chemical determinations both before and after discovery.
These targets of economic interest often possess fractal char-
acteristics that cannot be fully explained without the use of
nonlinear concepts. This paper is concerned with spatial pat-
terns of chemical element concentration distribution that are
best described as multifractals, which are superimposed on
the multifaceted mosaic of the geological map.

During the past 40 yr, the fractal geometry of many natu-
ral features in Nature has become widely recognized (see e.g.
Mandelbrot, 1983; Barnsley, 1988; Turcotte, 1997). Fractals
in geology either represent the end products of numerous,
more or less independent processes (e.g. coastlines and to-
pography), or they result from nonlinear processes, that took
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24 F. P. Agterberg: Sampling and analysis of chemical element concentration distribution

place long ago within the Earth’s crust. Although a great
variety of fractals can be generated by relatively simple algo-
rithms, theory needed to explain fractals of the second kind
generally is not so simple, because previously neglected non-
linear terms have to be inserted into existing linear, deter-
ministic equations. Several types of patterns are best mod-
eled as multifractals, which are spatially intertwined fractals
(Stanley and Meakin, 1988). Most progress in multifractal
theory development has been made in geophysics to study
nonlinear processes including cloud formation and rainfall.
Lovejoy and Schertzer (2007), Lovejoy et al. (2008) and
Cheng (2008) show that scaling and multifractal fields also
exist within solid Earth.

In this paper special attention will be paid to sampling
problems which arise because chemical concentration val-
ues for small rock samples must be extrapolated over much
larger rock masses in order to describe the multifractal fields.
Such extrapolations remain subject to uncertainty. Use
will be made of geostatistical theory originally developed
by Matheron (1962), whose approach is also explained in
various geostatistical textbooks including Journel and Hui-
jbregts (1978) and Cressie (1991). Nearly all publications
by Matheron including his manual on the theory of re-
gional variables and its applications (Matheron, 1971) are
now freely available on a website maintained by the Ecole
Nationale Suṕerieure des Mines de Paris (http://cg.endmp.
fr.bibliotheque/cgi-bin/public/bibliindex.cgi). Matheron
(1962) initially based his geostatistical theory on the princi-
ple of “similitude” underlying the model of de Wijs (1951).
Later, Mandelbrot (1983) recognized that it can be said that
de Wijs (1951) developed the first multifractal now bet-
ter known as the binomial/p model (see e.g. Lovejoy and
Schertzer, 2007). Krige (1978) demonstrated that the model
of de Wijs could be applied to hundreds of thousands of gold
assays, at scales ranging from local sampling scale; from
Witwatersrand goldfields (see also Mandelbrot, 1995).

To illustrate application of his model, De Wijs (1951) used
a series of 118 zinc concentration values from samples taken
at a regular (2 m) interval along a horizontal drift in the Pu-
lacayo Mine, Bolivia (Fig. 1). This series was used exten-
sively for later study, as well by Matheron (1964), and sev-
eral other authors including, most recently, Chen et al. (2007)
and Lovejoy and Schertzer (2007). This example will again
be used in this paper. Geological background on the Pula-
cayo orebody will be provided and consideration paid to the
question of how representative is this example of ore deposits
in general. As explained in more detail elsewhere (e.g. Agter-
berg, 2007a, b), de Wijs assumed that, if a block of ore is di-
vided into halves, the ratio of average element concentration
values for the halves is equal to the same constant regardless
of the size of the block that is divided into halves. If greater
value is divided by lesser value, this ratio can be written as
η > 1. Matheron (1962) generalized the original model of
de Wijs by introducing the concept of “absolute dispersion”
written asα = (lnη)2/ln 16. This approach is equivalent to
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Fig. 1. Pulacayo Mine zinc concentration values for 118 channel
samples along horizontal drift. Sampling interval is 2 m. Original
data (blue diamonds) are from de Wijs (1951) and “signal” (red line)
retained after removal of “nugget effect” is from Agterberg (1974).

what is now better known as scale invariance. It leads to the
more general equationσ 2 (ln x) = α × lnV/v whereσ 2 (ln
x) represents logarithmic variance of element concentration
valuesx in smaller blocks with volumev contained within a
larger block of ore with volumeV .

Two geostatistical topics of practical interest are existence
of “sill” and “nugget effect” (see e.g. Journel and Huijbregts,
1968, or Cressie, 1991). Supposeγ (h) represents the semi-
variogram, which is half the variance of the difference be-
tween values separated by lag distanceh. Semivariogram
values normally increase whenh is increased until a sill
value is reached for large distances. If element concentra-
tion values are subject to second-order stationarity,γ (h) =

σ 2(1−ρh) whereσ 2 represents variance andρh is the auto-
correlation function. The sill is reached when there is no spa-
tial autocorrelation orγ (h) = σ 2. If regional trends can be
separately fitted to element concentration values, the residu-
als from the resulting regional, systematic variation may be-
come second-order stationary because the overall mean in the
study area then is artificially set equal to zero (see Sects. 4.3
and 4.4 for examples of this approach). Within most rock
types such as granite or sandstone, randomness of chemical
concentration is largely restricted to microscopic scale and
sills for compositional data are reached over very short dis-
tances. The nugget effect occurs when extrapolation ofγ (h)

towards the origin (h → 0) from observed element concentra-
tion values yields estimates withγ (h) > 0 (orρh < 1). Often
the nugget effect arises when there is strong local autocorre-
lation that cannot be detected because locations of samples
subjected to chemical analysis are too far apart to describe it
adequately.

If a segment of the Earth’s crust is sampled and element
concentration values are determined on the resulting rock
samples, the spatial variability of the chemical determina-
tions generally can be subdivided into a number of sepa-
rate components. In some applications the original data are
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stochastic in that they can be described by random functions.
However, often the main component of spatial variability is
deterministic, either because it is related to differences be-
tween rock units separated by discontinuities (contacts), or
because there are regional trends. The latter can be extracted
from the data by a variety of methods; e.g. by trend sur-
face analysis, calculation of moving averages with or without
weights that are powers of the inverse of distance, by various
methods of kriging, by using splines, or by means of other
methods of signal extraction. After extraction of a deter-
ministic component, the residuals generally are stochastic in
that they can be described by means of spatial random func-
tions. In the simplest case, these residuals are uncorrelated
and their correlogram is a Dirac delta function representing
white noise. Measurement errors would create white noise.
If extrapolation towards the origin by means of a function fit-
ted to the correlogram results in a variance that significantly
exceeds variance due to measurement errors, this indicates
existence of a nugget effect implying strong autocorrelation
over short distances. In this paper, special attention will be
paid to nugget effects, which probably are due to spatial clus-
tering of ore crystals.

Matheron (1989) has pointed out that in rock sampling
there are two possible infinities if number of samples is in-
creased indefinitely: either the sampling interval is kept con-
stant so that more rock is covered, or size of study area is
kept constant whereas sampling interval is decreased. These
two possible sampling schemes provide additional informa-
tion on sample neighbourhood, for sill and nugget effect, re-
spectively. In practice, the exact form of the nugget effect
usually remains unknown because extensive sampling would
be needed at a scale that exceeds microscopic scale but is less
than scale of sampling space commonly used for ore deposits
or other geological bodies. Nevertheless, there are now sev-
eral methods by means of which the nugget effect can be
studied. The de Wijs zinc data set is rather small (118 val-
ues). Because of this, larger data sets will be analyzed as
well. As an example taken from another geoscience field,
it will be discussed in the text that alternating, detrended
lithologies over a length of about 7 km in the KTB borehole
(Goff and Hollinger, 1999) show a small-scale nugget effect.
Additionally, a series of 2796 copper concentration values
for chip samples taken at 2-m intervals along the Main KTB
borehole show a persistent nugget effect that will be ana-
lyzed separately. Cheng (1999, 2005, 2006) has proposed
a new model for incorporating spatial association and sin-
gularity in interpolation of exploratory data. The first two
sections in this paper will mainly deal with geostatistics and
applications of geometrical probability theory to sampling. It
will be shown later in the paper that Cheng’s approach pro-
vides a novel way of incorporating the nugget effect. The
iterative algorithm proposed by Chen et al. (2007) for local
singularity mapping will be extended until full convergence
is reached. Local singularities obtained during this process
provide new information on the nature of the nugget effect.
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Fig. 2. Simplified cross section of Pulacayo dome with steeply dip-
ping Tajo Vein (after Pinto-V́asquez, 1993). Mining level depths
were measured downward from San León Tunnel.

At the end of the paper, spectral analysis of element con-
centration values will be briefly discussed in connection with
probable existence of the nugget effect and in the context of
universal multifractal modeling results obtained by Lovejoy
and Schertzer (2007) for the Pulacayo Mine in Bolivia. The
purpose of the analyses described in this paper is to help con-
struct viable models that honor the observations and extrap-
olate from limited spatial sampling to smaller or larger vol-
umes of rocks including orebodies, so that unbiased and rel-
atively precise average element concentrations are obtained
for these volumes, which can have different shapes. If possi-
ble, each estimated average concentration value for a volume
of rock should be accompanied by realistic estimates of the
uncertainties associated with it.

2 Basic statistical analyses of mining assays

2.1 Geological setting of Pulacayo Mine

The geological setting of the Pulacayo Mine and genesis
of the sphalerite-quartz ore deposit are briefly described in
a scientific communication by Pinto-Vásquez (1993). The
118 zinc values of de Wijs (1951) are for channel samples
cut at 2-m intervals across the steeply dipping Tajo vein
along a horizontal mining drift on the 446-m level. This
level depth was measured downward from elevation of the
San Léon Tunnel (Fig. 2). The 2.7 km long Tajo vein was
discovered in 1883 and mined until 1956. According to
Ahlfield (1954), this “silver mine” had the largest annual zinc
and second largest annual silver production in Bolivia. On
average, the Tajo vein was 1.10 m thick with ore containing
14 % Zn and 0.1 % Ag. Relative sphalerite (zinc sulphide)
content increased downward in the orebody. According to
Turneaure (1971) the age of the Tajo vein was Neogene,
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Fig. 3. Micrograph of massive sulphide ore in Pulacayo Mine (from
Villalpando and Ueno, 1987). Ore minerals are sphalerite (sp),
tetrahedrite (tet), chalcopyrite (cp) and pyrite (py).

probably as young as Pliocene. Figure 3 shows ore miner-
als at microscopic scale. The silver was in the form of fine
grains associated with tetrahedrite. In a conference report by
Villalpando and Ueno (1987) it can be seen that zinc content
of sphalerite varied between 65.62 % and 66.03 %. This im-
plies that maximum possible zinc content of ore consisting
exclusively of sphalerite would be 66 % and this is above the
largest value of 39.3 % in our data set. However, because the
sampled material consisted not only of massive sulphide but
also out of mineralized wall rock, the largest possible value
is probably considerably less than 66 %. This upper limit
constrained maximum zinc enrichment.

On the 446-m level, average thickness of massive vein fill-
ing averaged only 0.50 m in width but wall rocks on both
sides contained disseminated sphalerite, partly occurring in
subparallel stringers. The channel samples were cut over a
standard length of 1.30 m, corresponding to expected stop-
ing width. Consequently, each assay value represents aver-
age weight percentage zinc for a rod-shaped channel sam-
ple of 1.30 m cut perpendicular to the vein (Fig. 4). The
method used for smoothing the 118 zinc values in Fig. 1 was
described in Agterberg (1974), who assumed that each zinc
value was the sum of a “signal” value and small-scale “noise”
with the autocorrelation functionρh = cexp(−ah), wherec

represents the small-scale noise variance and the parameter
a controls the decreasing influence of observed values on
their surroundings. The two parameters were estimated to
be c = 0.5157 anda = 0.1892. Signal+noise models of this
type are well-known in several branches of science (cf. Ya-
glom, 1962). Filtering out the noise component produced
the signal shown in Fig. 1. Various other statistical methods
such as simple moving averaging, kriging or inverse distance
weighting can be used to produce similar smoothed patterns.
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Fig. 4. Schematic representation of channel sampling in Pulacayo
Mine. Successive channel samples along horizontal mining drift on
446-m level were 1.3-m long and 2-m apart. The Tajo vein, which is
0.5-m wide on average, consists of massive sulphide (hatched pat-
tern) but wall rock on both sides of the vein contained disseminated
sulphide and stringers of sulphide ore. Anticipated stoping width
was 1.3-m but “effective” channel sample width (L) was set equal
to width of vein (= 0.5 m). Lag distance (h) is 2 m or multiple of
2 m.

Negative exponential autocorrelation functions are closely
related to Markov chain analysis and to scaling properties
of sequences of mineral grains in igneous rocks. For exam-
ple, Xu et al. (2007) demonstrated existence of small-scale
scaling in “ideal granite” grain sequences previously mod-
eled as Markov chains (Vistelius et al., 1983). Both con-
tinuous and discrete first-order Markov processes have neg-
ative exponential autocorrelation functions (Yaglom, 1962;
Agterberg, 1974, p. 332). Wang (2008) applied multifrac-
tal and Markov chain analysis to sphalerite banding at the
microscopic scale in the Jinding lead-zinc deposit, Yunnan
Province, China. Larger scale examples of this kind of mod-
eling as applied to lithological data and copper concentration
values observed in the KTB deep continental crust drill-hole
will be discussed later in this paper.

From the fact that average zinc content on the 446-m level
differs from that reported for the entire Tajo vein, it can be
assumed that there exist “trends” in the Pulacayo orebody.
Agterberg (1961) estimated the amplitude of a sine function
fitted to the first 65 of the 118 zinc values, but his best-fitting
amplitude of 2.77 % Zn is not statistically significant. How-
ever, it remains possible that there are systematic geographic
variations in zinc content within the data set of Fig. 1. This
should be kept in mind when spectral analysis is performed
later in this paper (Sect. 5.3) because sinusoidal trends would
result in over-estimation of low-frequency power densities.

2.2 Effect of logarithmic transformation

Matheron (1968) applied geostatistical methods to logarith-
mically transformed assay values. This can have advantages
with respect to using untransformed element concentration
values. He assumed that “effective length” of each channel
sample could be set equal toL = 0.5 m, representing the
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average width of the Tajo vein on the 446-m level. Obvi-
ously, the 118 zinc values of Fig. 1 systematically underes-
timate true zinc content of the massive sulphide vein filling
because the original sample length was 1.30 m for the mas-
sive vein augmented by lower zinc grade wall rocks. Later
in this paper, the effective length is assumed to be a variable
parameter that can be estimated from observations. In the
absence of more complete information, it is not unreason-
able to assume, as Matheron did, that all massive sulphide
zinc concentration values were underestimated by the same
factor during the channel sampling. The logarithmic vari-
anceσ 2(lnx) is not affected if this bias factor is constant.
For our example,σ 2(lnx) is estimated to be 0.2851. One
relatively simple geostatistical sampling method can be il-
lustrated as follows. Suppose that the 118 values for channel
samples that are 2 m apart together provide an estimate of av-
erage zinc content (= 15.61 %) of an elongated rod-shaped
mining block with a length of 238 m. Dividing this num-
ber by L = 0.5 m and raising the quotient to the power 3
then yieldsV /v = 476. Combining this number with our esti-
mate of logarithmic variance and using Matheron’s equation
σ 2(lnx) = α ln{V/v} then yields the absolute dispersion es-
timateα = 0.015, which would apply to other block sizes as
well.

If the logarithmic variance of element concentration val-
ues is relatively large, it may not be easy to obtain reliable
estimates of statistics such as mean, variance, autocorrela-
tion function and power spectrum by using untransformed
element concentration values. However, lognormality of the
frequency distribution often can be assumed. This is the main
reason for using logarithmically transformed values instead
of original values. Suppose that element concentration values
can be described byXi andYi = lnXi has normal, Gaussian
frequency distribution with meanµ and varianceσ 2. Repre-
senting the autocorrelation functions forXi andYi asρx (h)

andρy(h), respectively, we have:

σ 2ρy(h) = ln[1+γ 2ρx(h)] (1)

where γ 2
= σ 2 (X)/µ2 (X) (cf. e.g. Agterberg, 1974,

Eq. 10.40). Ifγ 2 is sufficiently small,ρx (h) andρy (h) are
approximately equal. For our example, this condition is sat-
isfied as demonstrated in Fig. 5. Approximate equality of
results shown in Fig. 5 applies to both the estimated autocor-
relation coefficients and negative exponential functions fitted
by non-linear least squares to data points withh > 0. Conse-
quently, variograms of zinc values and logarithmically trans-
formed zinc values also are approximately the same. Later in
this paper the variogram of logarithmically transformed zinc
values will be used. Substituting fitted values from Fig. 5 into
γ (h) = σ 2(1−ρh) yields a variogram (Table 1, see later) that
is close to estimates originally obtained by Matheron (1964).

If µ represents mean of lognormally distributed values,
mean and variance of untransformed data satisfy the equa-
tions:
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Fig. 5. Estimated autocorrelation coefficients for original data
(blue diamonds) and logarithmically transformed zinc values (red
squares), shown together with best-fitting negative exponential au-
tocorrelation functions for original data (blue curve) and logarithmi-
cally transformed data (red curve), respectively. Patterns are similar
illustrating that logarithmic transformation of original data does not
significantly affect autocorrelation in this application to the Pula-
cayo zinc values.

µ(X) = eµ+
σ2
2 ;σ 2(X) = e2µ+2σ2

−e2µ+σ2
(2)

Estimates for our example areµ = 2.6137 andσ 2
=

0.2851. Estimates according to Eq. (2) then areµ (X) =

15.74 andσ 2 (X) = 81.74. The untransformed zinc values
have mean and variance equal to 15.61 and 64.13, respec-
tively. The larger variance estimate resulting from Eq. (2)
may indicate a slight departure from lognormality (large-
value tail slightly weaker than lognormal) possibly related
to the fact that the largest possible zinc value is significantly
less than 66 % (see before).

2.3 Other applications of model of de Wijs to ore
deposits

We consider the question of how representative our relatively
small, historical data set of 118 zinc values is of ore deposits
in general. Matheron (1964) used several other mineral de-
posits exemplifying his extension of the model of the Wijs.
His primary examples were from the Mounana uranium de-
posit, Gabon, and the Mehengui bauxite deposit, Guyana.
These two deposits occurred relatively close to the Earth’s
surface and were explored by means of subvertical boreholes
drilled on regular grids. His other examples included the
Bou-Kiama, Montbelleux, Laouni, Mpassa, and Brugeaud
orebodies. In all these situations, the model of de Wijs
proved to be satisfactory. Some of these examples and others
also were discussed in later geostatistical textbooks including
David (1977) and Journel and Huijbregts (1978). Later, how-
ever, this type of modeling became de-emphasized, probably
because the model of de Wijs does not allow for sills that
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Table 1. Pulacayo Mine variogram model, Experimental values from Matheron (1962, p. 180); Lag distance (h) in m; Exponential values
from model of Fig. 6;f (q) as in Eq. (4);β(h) = Experimental value/f (q);σ2

h
= β ×f (q) is extension variance of 50 cm line segments;

Deviation is difference between colums 2 and 6. The small deviations indicate good fit of Matheron’s variogram model.

h, m. Experimental Exponential f (q) β(h) σ2
h

Deviation

2 0.303 0.325 2.891 0.105 0.286 0.017
4 0.402 0.367 3.580 0.112 0.354 0.048
6 0.436 0.401 3.985 0.109 0.394 0.042
8 0.465 0.429 4.273 0.109 0.422 0.043

10 0.408 0.452 4.496 0.091 0.444 −0.036
12 0.412 0.471 4.678 0.088 0.462 −0.050
14 0.464 0.486 4.832 0.096 0.477 −0.013
16 0.452 0.499 4.966 0.091 0.491 −0.039
18 0.472 0.510 5.083 0.093 0.502 −0.030
20 0.545 0.518 5.189 0.105 0.513 0.032

occur generally and problems associated with working with
logarithmically transformed concentration values instead of
original data. However, as pointed out by Matheron (1974),
lognormality is an issue that must be considered generally.
Multifractal modeling (e.g. use of multiplicative cascades)
confirms the validity of several aspects of Matheron’s orig-
inal approach. The multifractal autocorrelation function of
Cheng and Agterberg (1996) has a sill as well as a nugget ef-
fect with exceptionally strong autocorrelation over very short
distances (cf. Sect. 4.2).

Agterberg (1965) estimated autocorrelation coefficients
for the original de Wijs zinc data and obtained similar re-
sults for titanium data from adjoining borehole samples in
a magnetite deposit, Los Angeles County, California, origi-
nally described by Benson et al. (1962). Later in this paper,
this example will be used for comparison with spectral anal-
ysis results for the de Wijs zinc data. Figure 6a (modified
from Agterberg, 1974, Fig. 56) shows average autocorrela-
tion coefficients and best-fitting negative exponential func-
tion derived from logarithmically transformed element con-
centration values for copper from the Whalesback copper de-
posit, Newfoundland, and Fig. 6b and c are for two relatively
long series of gold assays from the Orange Free State Mine,
Witwatersrand goldfields, South Africa (data from Krige et
al., 1969). In these three examples, the negative exponential
function with significant noise component provides a good
fit. In each situation, there is finite variance (existence of
sill) and a de Wijsian variogram can only be fitted for the
copper and gold examples over relatively short distances (for
approximately the first six values from the origin in the three
examples of Fig. 6).

A typical sample of 1090 copper concentration values
from the Whalesback deposit (cf. Agterberg, 1974, p. 301)
had mean value of 1.57 % Cu and logarithmic variance of
1.21. Substitution of these values into Eq. (2) yieldsµ =

0.857 andσ 2 (X) = 43.84. The positive skewness of the cop-
per concentration is so large that it is not possible to obtain

reliable statistics from original data without use of a more
efficient estimation method involving logarithmic transfor-
mation (Aitchison and Brown, 1957; Sichel, 1966). The
logarithmic variance of the gold values in the other exam-
ple is approximately 1.03. Krige et al. (1960) do not re-
port the corresponding mean value but the following statis-
tics can be derived from a relatively small data set of 61
gold values in Krige and Ueckermann (1963):µ(X) = 906.6;
σ 2 (X) = 1 470 410;µ = 6.134; andσ 2

= 0.929. Substitu-
tion of the latter two estimates into Eq. (2) yields new es-
timates ofµ(X) = 879.1; σ 2 (X) = 1 183 972. In this ap-
plication, the new estimates are probably better than those
obtained from the original gold values without use of an ap-
propriate transformation.

The comparison of the Pulacayo zinc example with the
Whalesback copper and Witwatersrand gold examples illus-
trates that there are similarities in that the frequency distri-
butions of channel samples in all three examples are pos-
itively skewed and approximately lognormal. Also, in all
three cases, the autocorrelation function can be approximated
by a negative exponential function with value less than unity
at the origin indicating existence of a noise component su-
perimposed on the spatial random variable representing more
continuous variability at larger distances. In Fig. 1 the noise
component was filtered out to retain a “signal” with approxi-
mately unity autocorrelation function value at the origin (cf.
Agterberg, 1974). The nugget effect can be modeled as ran-
dom noise at lag distances greater than 2 m. However, as
originally realized by Matheron (1971), a nugget effect of
this type may reflect strong autocorrelation so close to the
origin that it cannot be seen in semivariograms or correl-
ograms because its spatial extent is less than the sampling
interval used in practice. The frequency distribution of the
Pulacayo zinc example has less positive skewness than those
of copper and gold in the other examples. Also, existence of
a sill is not obvious in the Pulacayo zinc example.
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Fig. 6. Estimated autocorrelation coefficients (blue diamonds) and best-fitting negative exponential autocorrelation functions (red curves)
derived from logarithmically transformed element concentration values:(a) Average of correlograms for 24 channel sample series from
drifts at various levels of Whalesback copper deposit, Newfoundland (after Agterberg, 1974);(b) Series of 462 gold assays from the Orange
Free State Mine, Witwatersrand goldfields, South Africa (modified from Krige et al., 1969);(c) Other series of 540 gold assays from same
gold mine. In each diagram the fitted exponential (red line) intersects the vertical axis at a point with autocorrelation coefficient less than 1
indicating the existence of a nugget effect.

3 Geometrical probability modeling for model of de
Wijs

Matheron (1962) showed that the semivariogramγ (h) in his
extension of the model of de Wijs satisfies:

γ (h) = 3α× lnh (3)

where, as before,α is absolute dispersion. In principle, this
model also can be applied to untransformed data. The fol-
lowing applications of geometrical probability are for loga-
rithmically transformed distance.

Suppose that AA′BB′ represents a rectangle with sides
AA ′

= BB′
= h, AB = A′B′

= L and tanθ = L/h (Fig. 7). If
the concentration value for a small volume at a point is taken
to be the concentration value of another volume of rock that
either contains the small volume or is located elsewhere, this
results in uncertainty expressed by means of the “extension
variance”. In Matheron (1962, Sect. 39) or Agterberg (1974,
Sect. 10.11) it is discussed in detail that the variogram value
of parallel line segments of lengthL that are distanceh apart

 

Fig. 7. Graphical illustration of relationship between θ , effective length (L), and lag distance (h). 
 

 
Fig. 8. Straight line (red) for Pulacayo zinc values fitted by constrained least squares to 10 variogram 
values taken from Matheron (1964). Horizontal axis is for f( θ). Line was forced through the point where 
f( θ) = 0 and h=0 (cf. Eq. 4). Its slope β = 0.0988 yields estimate of absolute dispersion α (= 0.0165). Best‐
fitting line without constraint (black), that is significantly different, is shown for comparison. 

35 

 

Fig. 7. Graphical illustration of relationship betweenθ , effective
length (L), and lag distance (h).

along a straight line can be interpreted as an extension vari-
anceσ 2

h = βf (θ) with β = 6α and:

f (θ) = −ln
L

√
L2+h2

+
2h

L
tan−1 L

h
+

h2

L2
ln

h
√

L2+h2
(4)

Table 1 shows the first 10 Pulacayo Mine variogram values as
estimated by Matheron (1962, p. 180) using Eq. (4) for log-
transformed (base e) zinc values. For comparison, theoretical
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Fig. 8. Straight line (red) for Pulacayo zinc values fitted by con-
strained least squares to 10 variogram values taken from Math-
eron (1964). Horizontal axis is forf (θ ). Line was forced through
the point wheref (θ ) = 0 andh = 0 (cf. Eq. 4). Its slopeβ = 0.0988
yields estimate of absolute dispersionα(= 0.0165). Best-fitting line
without constraint (black), that is significantly different, is shown
for comparison.

variogram values for the exponential model (derived from
autocorrelation model graphically shown in Fig. 5) are listed
as well, illustrating that this model with a sill also provides
a good fit. For other theoretical autocorrelation functions fit-
ted to the Pulacayo zinc values, see Sect. 4.2 and Chen et
al. (2007).

Equation (4) resulted in multiple estimates ofβ(h) for dif-
ferent lag distances (h) in Table 1. A better estimate is ob-
tained by using constrained least squares estimation as fol-
lows. The theoretical variogram values in the second last col-
umn of Table 1 are based on a single estimate (β = 0.0988)
representing the slope of a line of best fit (Fig. 8) forced
through the point wheref (θ) and h = 0. This additional
point receives relatively strong weight in the linear regression
because it is distant from the cluster of the other 10 points
used. The constraint can be used because, for decreasingh:

lim
h→0

f (θ) = − lim
h→0

{ln
L

√
L2+h2

}+ lim
h→0

{
2h

L
tan−1 L

h
}+

lim
h→0

{
h

√
L2+h2

} = 0 (5)

The new estimate of absolute dispersionα = β/6= 0.0165
not only produces theoretical variogram values, which are
nearly equal to the estimates based on the logarithmically
transformed zinc values, it also is nearly equal toα = 0.015
previously derived from the logarithmic variance in the previ-
ous section, confirming the applicability of Matheron’s orig-
inal method within a neighbourhood extending from about
2 m to 400 m.

Matheron’s geometrical approach can be used for several
other purposes. For example, in applications of multifrac-
tal modeling to the Pulacayo Mine (Cheng and Agterberg,
1996; Chen et al., 2007; Lovejoy and Schertzer, 2007), it is
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Fig. 9. Relationship between normalized extension variance (σ2
E)

andh/L.

assumed that the zinc concentration values can be converted
into measures of amounts of zinc in adjoining 2 m wide sam-
ples along a line parallel to the drift on the 446-level. It im-
plies that every zinc concentration value for a channel sample
at a point along this line is taken as representative for a width
of 2 m. Associated uncertainty then is given by the extension
varianceσ 2

E. Figure 9 shows that normalized extension vari-
anceσ 2

E/3α depends onh/L . From our estimateα = 0.0165,
it follows thatσ 2

E = 0.0622 forh = 2 m wide samples that are
L = 50 cm long. It probably significantly overestimates true
value because absolute dispersion is less than 0.0165 over
very short distances due to the nugget effect (see later). If
α < 0.0165, the normalized extension variance is greater than
σ 2

E = 0.0622 as derived for the same value ofh/L from the
curve in Fig. 9, that is forα = 0.0165.

Matheron (1964) has shown that the average ofn adjoin-
ing channel sample concentration values has variance equal
to σ 2

E/n. This is another important result because, in Sec-
tion 5, average values withn equal to 3, 5, 7, and 9 will be
used extensively. The extension varianceσ 2

E = 0.0622 is for
logarithmically transformed zinc concentration values. As
discussed in Sect. 2.2, it can be assumed that the zinc val-
ues (Xi with i = 1,...,118) for the original channel samples
systematically underestimate zinc values for the massive sul-
phide (Fig. 4). By settingσ 2

= σ 2
E andµ(X) = Xi in Eq. (2),

it is possible to estimate the variancesσ 2(Xi) of the original
zinc values. These variances can then be used to calculate
approximate 95 % confidence limits for zinc concentration
values of 1.3 m× 2 m plates formed by extending the 1.3 m
long channel samples by 1 m on both sides. Table 2 shows
±1.96σ(Xi) error bars for 11 original zinc values and for
averages of adjacent values for wider plates at the same lo-
cations. These sets of overlapping plates, that are 20 m apart,
were selected for example so that both low and high zinc
concentrations are represented. The error bars in Table 2
for plates wider than 2 m are relatively narrow. Uncertainty
is greatest for the 1.3 m× 2 m plates but this is probably
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becauseα = 0.0165 is underestimated over very short dis-
tances resulting in error bars that are too wide (see previ-
ous paragraph). The problem of overestimation of extension
variances of average element concentration values for small
plates due to local strong autocorrelation was previously con-
sidered by Matheron (1989, p. 73–75) as follows. Ten profes-
sional geostatisticians were provided with a set of variogram
values with unit of lag distance equal to 180 m. Indepen-
dently the participants in this experiment were asked to (a) fit
a variogram, and (b) calculate the corresponding extension
variance for a square plate measuring 180 m on a side. Each
variogram fitted by a participant had a nugget effect, with, in
addition, an exponential or (third-order polynomial) “spheri-
cal” variogram curve. The corresponding average of ten es-
timated extension variances was 0.4019± 0.0127 indicating
excellent agreement between participants. Next, the same
10 people were provided with additional variogram values
for shorter unit lag distance interval of 20 m. Again they were
asked (a) fit a variogram, and (b) calculate the corresponding
extension of the 180 m× 180 m square plate. The variogram
models used during the second stage of the experiment were
“richer” becoming either: nugget + spherical + spherical, or
nugget + exponential + spherical, or nugget + exponential +
exponential. A few other answers were given as well. The
revised average extension variance became 0.3686± 0.0062.
Clearly this revised estimate of the extension variance is less
than the first estimate and outside the 95 % confidence of the
first estimate. Similar results were obtained during a third
stage of this experiment using an even shorter unit lag dis-
tance.

The preceding experiment illustrates (a) different vari-
ogram models applied to the same data sets can produce sim-
ilar estimates of extension variances; and (b) extension vari-
ance estimates are too large if there is a “nugget effect” incor-
porating strong autocorrelation over very short distances. In
the remainder of this paper it will be attempted to model this
type of nugget effect by (a) extrapolation from the original
variogram values, (b) multifractal modeling, and (c) spectral
analysis. The Pulacayo zinc example will be re-analyzed.
Because this series is based on 118 values only, the estimated
autocorrelation (or variogram) values have limited precision
as previously shown by Agterberg (1965, 1967). For this rea-
son, autocorrelation for a very large data set was studied as
well. II will be shown that there is a nugget effect in cop-
per concentration values from along the deep KTB borehole
with short-distance extent that is similar in consecutive series
of 1000, 1000 and 796 values, respectively.

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

Effective Channel Sample Length (L ), m

M
at

he
ro

n 
A

lp
ha

Fig. 10. Constrained least squares estimation ofβ for L = 0.5 m
(see Fig. 8) repeated for effective channel sample lengths less than
0.5 m. Variogram and autocorrelation functions fitted for distances
h > 2 m, where absolute dispersion isα = 0.0165, lose validity over
shorter distances due to the nugget effect, that results in a decrease
in Matheron’sα, especially whenL < 0.03 m. At the microscopic
scale (h < 0.003 m, cf. Fig. 3),α can be expected to increase rapidly
again.

4 Nugget effect and local singularity analysis

4.1 Strong autocorrelation and decorrelation over very
short distances

In Sect. 2, it was pointed out that there is uncertainty as-
sociated with the definition of effective lengthL = 0.5 m of
the channel samples in the Pulacayo Mine. This is because
these samples were taken across entire width (= 1.30 m) of
drift whereas Tajo vein has (horizontally measured) thick-
ness of 0.50 m on the 446-m level. This thickness value was
used by Matheron and earlier in this paper as a best esti-
mate ofL. It has been shown that the choice ofL = 0.5
results in estimates ofα that are satisfactory for lag distances
greater than 2 m (up to 400 m). For shorter lag distances,
however, it is useful to generalize Matheron’s concept of ab-
solute dispersion by definingα(L), which depends on the
value of L. Consequently,α = α(0.5) for the applications
described in Sect. 3. Theoretically, the method used to es-
timate β(0.5) = 6α(0.5) in Fig. 8 can be used to optimize
our choice ofL. Figure 10 shows estimates ofα(L) that
would be obtained for effective channel sample lengths less
than 0.5 m. ForL > 3 cm,α(L) increases slightly from about
0.01 to 0.0165 atL = 0.5 m; forL < 0.03 m, there is rapid
decrease toα(L) = 0. Figure 11 shows sum of squared de-
viations from lines of best fit for different values ofL. The
optimum solution (α(L) = 0.021) is obtained atL = 13 cm.
The de Wijsian variogram model that best fits the 10 ob-
served values of Table 1 is for linear samples that are not only
shorter than the channel samples on which zinc concentration
was measured (L = 1.3 m) but also shorter than the thickness
of the Tajo vein (L = 0.5 m). This results probably reflects
small-scale clustering of the chalcopyrite crystals. It should
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Table 2. Zinc concentration values (in %) with 95 % confidence intervals for thin plates elongated in the direction of themining drift with
channel samples at their centers. Results are shown for every 10th value in the original seriesof 118 Pulacayo zinc values. Error bars for
1.3 m× 2 m are too wide because small-scale spatial correlationis not being considered.

Plate size 1.3 m× 2 m 1.3 m× 6 m 1.3 m× 10 m 1.3 m× 14 m 1.3 m× 18 m

#10 24.1± 12.2 19.9± 5.6 19.4± 4.2 17.5± 3.2 17.0± 2.8
#20 15.1± 7.7 13.8± 3.9 14.0± 3.1 13.3± 2.4 13.2± 2.1
#30 9.5± 4.8 12.1± 3.4 15.2± 3.3 13.2± 2.4 14.7± 2.4
#40 10.6± 5.4 15.6± 4.4 17.0± 3.7 15.5± 2.9 14.2± 2.3
#50 27.4± 13.9 18.6± 5.3 17.4± 3.8 17.4± 3.2 17.2± 2.8
#60 4.7± 2.4 9.0± 2.5 8.7± 1.9 8.1± 1.5 9.0± 1.5
#70 9.7± 4.9 9.2± 2.6 10.5± 2.3 10.3± 1.9 10.2± 1.6
#80 10.6± 5.4 11.1± 3.2 10.8± 2.3 9.3± 1.7 9.6± 1.6
#90 30.8± 15.6 31.6± 9.0 30.8± 6.7 30.7± 5.7 29.2± 4.7

#100 22.6± 11.5 16.4± 4.6 18.6± 4.1 20.8± 3.8 21.4± 3.5
#110 7.9± 4.0 17.8± 5.0 17.2± 3.8 15.9± 2.9 14.6± 2.4

be kept in mind that this conclusion remains subject to uncer-
tainty because of limited precision of the variogram values
of Table 1. Also, anisotropy may have played a role because
zinc concentration value variability perpendicular to the Tajo
vein could well differ from variability parallel to the vein.
However, the best explanation is that over short lag distances
h (e.g. within the domain 0.003 m< h < 2 m) there exists a
strong nugget effect that is not readily detectable at distances
of h ≥ 2 m. At the microscopic level we would expectα to
increase rapidly again, because of measurement errors and
the fact that the zinc occurs in sphalerite crystals only (cf.
Fig. 3). The crystal boundary effect may have become negli-
gibly small in our application because channel sample length
greatly exceeded crystal dimensions.

The preceding considerations imply that the negative ex-
ponential autocorrelation function previously used (see e.g.
Fig. 5) is too simple for short distances (h < 2 m). The true
pattern is probably close to that shown in Fig. 12, which dif-
fers from the earlier model in that strong autocorrelation is
assumed to exist over very short distances. It is probably
caused by clustering of ore crystals, although at the micro-
scopic scale there remains rapid decorrelation related to mea-
surement errors and crystal shapes. The graph in Fig. 12a
satisfies the equation:

p(h) = c1e
−a1h +c2e

−a2h (6)

The coefficients in the first term arec1 = 0.5157 and
a1 = 0.1892 as in Fig. 5. The second term represents the
strong autocorrelation due to clustering over very short dis-
tances. The decorrelation at microscopic scale is represented
by a small white noise component with variance equal to
c0 = 0.0208 as will be determined in Sect. 4.4. The coeffi-
cientc2 in the second term on the right side of Eq. (6) satisfies
c2 = 1−c0−c1 = 0.4635. Because of lack of more detailed
information on autocorrelation over very short distances, it is
difficult to choose a good value for the coefficienta2. We can
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Fig. 11. Sum of squared deviations from lines of best fit as a func-
tion of Matheron’sα and linear sample lengthL. The rapid in-
crease of this function nearL = 0 probably reflects randomness at
the microscopic scale plus white noise due to measurement errors.
Optimum effective channel sample width (L = 0.13 m) is based on
variogram values with limited precision for the 2 to 20 m neigh-
bourhood. Because of this, this estimate is subject to uncertainty. It
could reflect the fact that the Tajo vein was formed by crystallization
of ore minerals outward from a narrow fissure in the surrounding
sandstone and conglomerates (cf. Fig. 2).

assume that, approximately,a2 = 2. The choice of this value
for a2 provides a good fit over the entire observed correlo-
gram (Fig. 5). It affects extrapolation toward the origin with
h < 2 m only. Figure 12b shows that the second term on the
right side of Eq. (6) cannot be detected in the correlogram
for sampling intervals greater than 2 m. Other types of evi-
dence for existence of strong autocorrelation over very short
distances in the Pulacayo orebody will be presented in later
Sects. (4.2, 5.2, and 6.3, respectively). In the Sect. 4.2, a mul-
tifractal autocorrelation function will be derived on the basis
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Fig. 12. Hypothetical autocorrelation function consisting of two
negative exponential functions to incorporate nugget effect over
short lag distancesh with h < 2 m. Autocorrelation function for
nugget effect is superimposed on negative exponential curve for dis-
tancesh > 2 m previously used to filter out the nugget effect in order
to retain “signal” of Fig. 1:(a) Graph of Eq. (17);(b) Same graph
as in(a) but with logarithmic scale for autocorrelation (Rho).

of self-similarity assumptions. It results in a curve (Fig. 14)
that resembles the one based on Eq. (6) (witha2 = 2). For ex-
ample, for lag distance equal to 60 cm, the theoretical value
according to Fig. 12a is 0.6, while Fig. 14 yields 0.7.

4.2 Theoretical multifractal autocorrelation function

Cheng and Agterberg (1996) have shown that the series of
118 Pulacayo zinc values can be modeled as a multifractal
with “partition function”χq(ε) (cf. Evertsz and Mandelbrot,
1992) for a sequence of “moments”q and line segments of
lengthε. The unit ofε was set equal to the sampling inter-
val (= 2 m). The log-log plot ofχq (ε) versusq shows ap-
proximately straight lines for different values ofq (Cheng
and Agterberg, 1996, Fig. 2a). The slopes of these straight
lines provide estimates of the “mass exponents”τ(q), which
can be used to construct the multifractal spectrum (cf. Feder,
1988). Cheng and Agterberg (1996) derived the following
expression for the autocorrelation function of a multifractal
of this type:

ρk(ε) =

cετ(2)−2

2σ 2(ε)

[
(k+1)τ(2)+1

−2kτ(2)+1
+(k−1)τ(2)+1

]
−

ξ2

σ 2(ε)
(7)

whereC is a constant,ε represents length of line segment
for which an average zinc concentration value is assumed to
be representative,τ (2) is the second-order mass exponent,ξ

represents overall mean concentration value, andσ 2(ε) is the
variance of the zinc concentration values. The unit intervalε

is measured in the same direction as the lag distanceh. The
index k is an integer value, that later in this section will be
transformed into a measure of distance by means ofk = 1/2h.
Estimation for the 118 Pulacayo zinc values using an ordi-
nary least squares model withτ(2) = 0.979 gave (see Cheng
and Agterberg, Eq. 35):

ρ̂k = 4.37
[
(k+1)1.979

−2k1.979
+(k−1)1.979

]
−8.00 (8)

The first 15 values (k ≥ 1) resulting from Eq. (8) are nearly
the same as the best-fitting semi-exponential previously
shown in Figs. 6 and 12. The model can be extrapolated to-
ward the origin by replacing the second-order difference on
the right side of Eq. (7) by the second derivative:[
(k+1)τ(2)+1

−2kτ(2)+1
+(k−1)τ(2)+1

]
∼= {τ(2)+1}kτ(2)−1 (9)

Linear regression of the second derivative forτ(2) = 0.979
on estimated values obtained by means of Eq. (8) then re-
sults in the straight-line approximation shown in Fig. 13.
Although the largest estimated value of that could be ob-
tained by Eq. (8) is only 0.487 (fork = 1), it becomes pos-
sible to extrapolate toward smaller values ofk = 1/2 h, so
that larger autocorrelation coefficients are obtained, by using
the second derivative on the right side of Eq. (9) instead of
the second-order difference. The theoretical autocorrelation
function shown in Fig. 14 was derived by transformation of
the straight line of Fig. 13 for lag distances withh ≥ 0.014 m.
For integer values (1≤ k ≤ 15), the curve of Fig. 14 repro-
duces the estimated autocorrelation coefficients obtained by
Eq. (8). Using it for extrapolating toward the origin results
in an overall pattern that closely resembles the hypothetical
pattern of Fig. 12a consisting of two superimposed negative
exponentials with a small white noise component. Conse-
quently, the multifractal autocorrelation model of Cheng and
Agterberg (1996), which is based on the assumption of scale-
independence, confirms the existence of strong autocorrela-
tion over short distances (h < 2 m).

4.3 Comparison to spatial covariance modeling of KTB
velocity and lithology logs

An autocovariance function consisting of two superimposed
negative exponentials with different scaling constants origi-
nally was obtained by Goff and Holliger (1999) for binary

www.nonlin-processes-geophys.net/19/23/2012/ Nonlin. Processes Geophys., 19, 23–44, 2012



34 F. P. Agterberg: Sampling and analysis of chemical element concentration distribution

y = 9.0063x - 8.246

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98

Second derivative

Es
tim

at
ed

 a
ut

oc
or

el
at

io
n 

co
ef

fic
ie

nt

Fig. 13. Relation between estimated autocorrelation coefficients
(blue diamonds) and second derivative of corresponding continu-
ous function (Eq. 9). Best-fitting straight line (colored red) will be
used for extrapolation to the origin (see Fig. 14).
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Fig. 14. Theoretical multifractal autocorrelation function derived
by using the best-fitting straight line in Fig. 13. For lag distances
h ≥ 2 m, autocorrelation coefficients approximately satisfy Eq. (9);
for h < 2 m, the model indicates a nugget effect with shape of auto-
correlation function resembling hypothetical curve of Fig. 12.

lithology values derived from velocity and lithology logs for
the main borehole of the German Continental deep Drilling
Program (KTB). In our Fig. 12,a1 = 0.1892 for larger scale
variability anda2 = 2 was assumed for nugget effect. In
Goff and Holliger’s Fig. 7,a1 = 0.001 for the “large scale”
anda2 = 0.019 for the “small scale” model. The dimension-
less ratioa2/a1 for KTB binary lithology is 19 and some-
what greater than our ratio of 11 in Fig. 12. Lithology in
the main KTB borehole was determined at points that are
1 m apart over a length of about 7 km. In general, signifi-
cant pre-processing is required for the analysis of long se-
ries of this type. Goff and Hollinger (1999) commenced this
process by plotting raw compressional velocity (Vp) aver-
aged within more or less homogeneous lithological sections
against depth. A deterministic component derived from this
plot was extracted for the purpose of detrending followed
by conversion of the lithology log into a binary residualVp
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Fig. 15. Copper concentration (ppm) values from Main KTB bore-
hole together with mean values for 101 m long segments of drill-
core. Locally the original data (blue diamonds) deviate strongly
from the moving average (pink line).

profile for which the spatial covariance in (km s−1)2 was
estimated. The two rock types retained in the binary plot
are mainly metabasite (Vp = +0.2 km s−1) and mainly gneiss
(Vp = −0.2 km s−1).

The von Ḱarmán autocovariance model has been used ex-
tensively to characterize crustal heterogeneity properties not
only for velocity log properties (e.g. Wu and Aki, 1985; Wu
et al., 1994; Goff and Hollinger, 1999, 2003) but also for
geological maps of crustal exposures (e.g. Goff et al., 1994;
Goff and Levander, 1996), seafloor morphology (Goff and
Jordan, 1988), and in field simulations (Goff and Jennings,
1999). This model was first proposed by von Kármán (1948)
and can be written as:

ρ(h) =
(ah)νKν(ah)

2ν−10(ν)
(10)

where ν is the Hurst number (cf. Mandelbrot, 1983;
Chemingui, 2001; Kliměs, 2002), andKν is the modified
Bessel function of orderν. Fitting of the two-parameter von
Kármán model to an estimated covariance function can be
performed using the inversion methodology of Goff and Jor-
dan (1988). Ifν = 0.5, Eq. (10) reduces toρ(h) = exp(−ah).
Goff and Hollinger’s (1999) best Eq. (10) von Kármán model
fit for the KTB binary residualVp profile hasν = 0.21 and
a = 0.00072. However, a better fit for the autocovariance of
this series was obtained by these authors using Eq. (6) with
c0 = 0, c1 = 0.684,c2 = 0.316,a1 = 0.001 anda2 = 0.019.
The Hurst numbers for both negative exponentials are equal
to 0.5, more than twice the Hurst number of best fit using
Eq. (10).

Because the series considered in the preceding paragraphs
is binary, it is possible to interpret the scaling constantsai

(I = 1, 2) as follows (cf. Jenkins and Watts, 1968; Agterberg,
1974). Suppose the two binary states along the borehole are
written as +1 and−1. If the mean can be set equal to zero,
the autocorrelationρ(h) is equal to the sum of the probability
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Fig. 16. Correlograms for three consecutive series of copper con-
centration (ppm) values from Main KTB borehole. Series 2 (for
depths between 2 and 4 km) and Series 3 (for depths between 4 and
5.54 km) show similar autocorrelation functions that differ from au-
tocorrelation function for Series 1 (for depths between 0.05 km and
2 km).

that number of state changes over the intervalh is even minus
the sum of the probability that it is odd. IfPk represents the
Poisson-type probability that there existk state changes over
h:

ρ(h) =

∞∑
k=0

(P2k −P2k−1);Pk =
e−λh(λh)k

k!
(11)

After some manipulation, it follows that

ρ(h) = e−2λh (12)

whereλ is number of state changes per unit of distance. A
similar result is obtained when the mean is not equal to zero.

For the Goff-Hollinger KTB example, the fact that there
are two separate negative exponentials illustrates that, over
short distances, there are rapid lithology changes or a
“nugget effect” fori = 2, but changes at larger scale are con-
trolled by the other negative exponential (i = 1) function.
Thus alternation between mostly metabasite and mostly fel-
sic gneisses in KTB is subject to two separate random pro-
cesses. The alternation either has high or low frequency
with probabilities controlled by theci (i = 1, 2) coefficients.
This type of modeling only applies to the binary residual
Vp profile for KTB. For example, Marsan and Bean (1999,
2003) have demonstrated that the KTB sonic log can be
modeled using a multifractal approach. Also, Hollinger and
Goff (2003) have developed a generic model for the 1/f na-
ture of seismic velocity fluctuations. In that paper, these au-
thors modeled the autocovariance function of KTB depth-
detrended sonic log through the superposition of four von
Kármán autocovariances using negative exponentials with
Hurst numbersν = 0.5 for large, medium, and intermediate
scales butν = 0.99 for the small scale.

4.4 Detection of nugget effect in copper determinations
from the KTB borehole

The second example is for a long series consisting of 2796
copper (XRF) concentration values for cutting samples taken
at 2 m intervals along the Main KTB borehole already dis-
cussed in the previous section. These data are in the public
domain (citation: KTB, WG Geochemistry). Depths of first
and last cuttings used for this series are 8 m and 5596 m, re-
spectively. Locally, in the database, results are reported for
a 1-m sampling interval; then, alternate copper values at the
standard 2 m interval were included in the series used for ex-
ample. Most values are shown in Fig. 15 together with a
101-point average representing consecutive 202-m long seg-
ments of drill-core. The data set was divided into three se-
ries (1, 2 and 3) with 1000, 1000 and 796 values, respec-
tively. Mean copper values for these three series are 37.8,
33.7 and 39.9 ppm Cu, and corresponding standard devia-
tions are 20.3, 11.0 and 20.6 ppm Cu, respectively. Fig. 16
shows correlograms of the three series. Each series shows a
nugget effect that, for series 2 and 3, is accompanied by a rel-
atively steeply increasing curve near the origin. Because the
autocorrelation coefficients are logarithmically transformed,
random fluctuations for near-zero autocorrelation values are
amplified. It is noted, however, that all three series only had
positive autocorrelations for the first 150 lag distances. Also,
the patterns for series 2 and 3 are strikingly similar.

It can be expected that series of element concentrations
over a vertical distance of about 5.5 km will exhibit deter-
ministic trends reflecting systematic changes in rock com-
positions. It is assumed here that these trends are largely
captured by the moving average curve of Fig. 15. Figure 17
shows autocorrelation coefficients for the three series after
subtracting the trend values from the original data. All three
series of deviations have autocorrelation functions that are
approximately negative exponential in shape over distances
less than 10 m. Each can be regarded as representing a nugget
effect with equationρh = cexp(−ah) . The slope coefficients
(a) of the three curves are nearly equal to one another (0.40,
0.38 and 0.41 for series 1, 2 and 3, respectively). The spatial
extent of this nugget effect is much less than the small scale
binary lithology variation for the same borehole discussed in
Sect. 4.3. It is interesting that the parameter (a) that deter-
mines the spatial extent of the nugget effect remains the same
over a vertical distance of nearly 6 km. The corresponding
variance components (c) of the copper nugget effect are 0.46,
0.82 and 0.81, indicating that the white noise component is
relatively strong for series 1.

Quantitative modeling of the nugget effect in KTB cop-
per determinations has yielded better results than could be
obtained for our examples from mineral deposits including
the Pulacayo Mine. This is not only because the series of
chemical determinations is much longer but also because the
nugget effect remains clearly visible over lag distances be-
tween 2 m (= original sampling interval) and 10 m.
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Fig. 17. Correlograms (first 5 lag distances only) for three series of
differences between original copper concentration values and mean
values shown in Fig. 15. Results are for same series as used for
Fig. 16 (Series 1: green; Series 2: black; Series 3: red). Best-fitting
semi-exponentials were obtained by ordinary least squares method
(Logarithms base 10). The slopes of the three best-fitting straight
lines are nearly equal. This indicates existence of a nugget effect
with same spatial extent along the entire Main KTB borehole.

5 Local singularity analysis

5.1 Basic concepts of singularity analysis

Cheng (1999, 2005) has proposed a new model for incorpo-
rating spatial association and singularity in interpolation of
exploratory data. In his approach geochemical or other data
collected at sampling points within a study area are subjected
to two treatments. The first of these is to construct a contour
map by any of the methods such as kriging or inverse dis-
tance weighting techniques generally used for this purpose.
Secondly, the same data are subjected to local singularity
mapping. The local singularityα then is used to enhance
the contour map by multiplication of the contour value by
the factorεα−2 whereε < 1 represents a length measure. A
note on notation is in order at this point. In this paper, Math-
eron’s absolute dispersion is written as italicα, singularity
as normalα and, later in this paper, bold italicα will de-
note Ĺevy index. In Cheng’s (2005) approach to predictive
mapping, the factorεα−2 is greater than 1 in places where
there has been local element enrichment or by a factor less
than 1 where there has been local depletion. Local singular-
ity mapping can be useful for the detection of geochemical
anomalies characterized by local enrichment even if contour
maps for representing average variability are not constructed
(cf. Cheng and Agterberg, 2009; Zuo et al., 2009).

According to Chen et al. (2007) local scaling behaviour
follows the following power-law relationship:

ρ{Bx(ε)} =
µ{Bx(ε)}

sE
= c(x)εα(x)−E (13)

whereρ{Bx(ε)} represents element concentration value de-
termined on a neighbourhood size measureBx at point x,

µ{Bx( ε)} represents amount of metal, andE is the Euclidean
dimension of the sampling space. For our 1-dimensional Pu-
lacayo example,E = 1; and, forε = 1,Bx extendsε/2= 1 m
in two directions from each of the 118 points along the line
parallel to the mining drift. Suppose that average concentra-
tion valuesρ{Bx(ε)} are also obtained forε = 3, 5, 7 and 9,
by enlargingBx on both sides. The yardsticksε can be nor-
malized by dividing the average concentration values by their
largest length (= 9). Reflection of the series of 118 points
around its first and last points can be performed to acquire
approximate average values ofρ{Bx( ε)} at the first and last
4 points of the series. Provided that the model of Eq. (13) is
valid, a straight line fitted by least squares to the 5 values of
ln µ{Bx(ε)} againstα(x)ln ε then provides estimates of both
ln c(x) andα(x) at each of the 118 points. Estimates ofc(x)

andα(x) are shown in Fig. 18 (red line) and Fig. 20 (Series
1), respectively. These results of ordinary local singularity
mapping duplicate estimates previously obtained by Chen et
al. (2007) who proposed an iterative algorithm to obtain im-
proved estimates. Their rationale for this was as follows.

In general,ρ{Bx( ε)} is an average value of element con-
centration values for smallerB ’s at points nearx with differ-
ent local singularities. Consequently, use of Eq. (13) would
produce biased estimates ofc(x) andα(x). How could we
obtain estimates ofc(x) that are non-singular in that they
are not affected by the differences between local singularities
within Bx? Chen et al. (2007) proposed to replace Eq. (13)
by:

ρ(x) = c∗(x)εα∗(x)−E (14)

whereα∗ (x) andc∗ (x) are the optimum singularity index
and local coefficient, respectively. The initial crude estimate
c(x) obtained by Eq. (13) at stepk = 1 is refined repeatedly
by using the iterative procedure:

ck−1(x) = ck(x)εαk(x)−E (15)

Equation (15) is similar to Eq. (3) of Chen et al. (2007).
Employing the previous least squares fitting procedure at
each step resulted in the values ofck(x) shown in Fig. 18
for the first and fourth step of the iterative process, and for
k = 1000 after convergence has been reached. Our values
for the first four steps of the iterative process exactly dupli-
cated Chen et al. (2007)’s values plotted in their Fig. 1 and
partially listed in their Table 1 except for the first and last
4 values in all successive series because a slightly different
end correction was employed (see before). Fork = 1, the pat-
tern ofck(x) resembles the signal in our Fig. 1 that was ob-
tained previously by eliminating the noise component from
the 118 zinc values. Chen et al. (2007) selectedα∗ (x) = α4
(x) because at this point the rate of convergence has slowed
down considerably.

5.2 Extension of local singularity iteration algorithm

For this paper, the iterative process was continued until ap-
proximately full convergence was reached in order to obtain
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Fig. 18. Results of applying iterative method of Chen et al. (2007) augmented by continuing iteration process until full convergence is
reached. Original zinc values (blue) are being smoothed during successive iterations. Second series (red line) obtained after first iteration
resembles “signal” in Fig. 1. Values obtained after 4 iterations are shown as black diamonds. At the end of the process, after 1000 iterations
when convergence has been reached, the result is approximately a straight line (brown diamonds) with average value slightly below average
zinc content (= 15.61 % Zn).
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Fig. 19. Same as Fig. 18 but iterative process was constrained to preserve average zinc value of 15.61 %. Result after 4 iterations (k = 5) is
same as in Fig. 18 but result after 1000 iterations (k = 1000) is slightly different. Intermediate steps fork = 10 and 100 are also shown.

more complete information on the nugget effect. In the limit,
after about 1000 iterations, the final pattern is as shown
in Fig. 18 with an average value that is slightly less than
15.61 % Zn representing the average of the 118 input val-
ues. This bias is due to the fact that, at each step of the
iterative process, straight-line fitting is being applied to log-
arithmically transformed variables and results are converted
back to original data scale. The small bias can be avoided
by forcing the mean to remain equal to 15.61 % during all
steps of the iterative process. End product and some in-
termediate steps of this new run are shown in Fig. 19. In

comparison with Fig. 18, the output for series obtained af-
ter the first and fourth step of the iterative process remains
unchanged. There is a very small difference in results for
k = 1000. This confirms that in local singularity analysis it
is generally permitted to neglect bias introduced by logarith-
mic transformation of variables. In Sect. 3 it was mentioned
that the variance of values used in least squares straight line
fitting ranges fromσ 2

E = 0.0622 toσ 2
E/9= 0.0069 at the be-

ginning of the iterative process, and these variances remain
very small at later steps. Estimated singularities fork = 1,
4 and 1000 are shown in Fig. 20. The results fork = 1 and
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Fig. 20. Estimated singularities for iterative process withk = 1 (green diamonds of Series 1),k = 5 (black squares of Series 2)andk = 1000
(red triangles of Series 3). Final singularities (k = 1000) differ only slightly from local singularities estimated by means of Eq. (17) (k = 1).
Except near beginning and end (locations 1–4 and 115–118) results are identical to estimates of Chen et al. (2007). Fork = 1000, original
iterative process of Fig. 18 and modified process of Fig. 19 gave the same final singularities.

k = 4 duplicate the results previously obtained by Chen et
al. (2007).

Full convergence singularities (k = 1000) are significantly
different from local singularities and results fork = 4 differ
in two neighbourhoods along the Tajo vein (approximately
from sampling point positions 60 to 75, and 90 to 100, re-
spectively). In Fig. 21, final singularities are plotted against
original zinc concentration values showing a logarithmic
curve pattern. In Fig. 22 a straight line of least squares was
fitted for final singularity versus log10 ( %Zn) with the resid-
uals (deviations from this best fitting line) shown separately
in Fig. 23. The residuals exhibit a white noise pattern with
variance equal to 0.001178. Using original zinc values, the
variance of residuals is estimated to be 1.3837. Because %
Zn variance is 64.13, it follows that the white noise compo-
nent is 0.02079. This is only about 4 per cent of the variance
of the noise component previously used to construct the sig-
nal of Fig. 1. The new sampling error could be a measure-
ment error of the original chemical determinations for zinc
and incorporate the crystal boundary effect (Sect. 4.1). For
our example, incorporation of the nugget effect to estimate
zinc content (e.g. by using the theoretical values on the curve
fitted in Fig. 21), approximately reproduces the observed val-
ues. This in itself is a trivial result. However, the example
illustrates that, in general, any of the moving average tech-
niques, e.g. those commonly used to construct contour maps
from measurements at points outside the sphere of influence
of the nugget effect (cf. Fig. 12), can be improved by in-
corporating information on local singularities as originally
proposed by Cheng (2005).

Local singularity is associated with variability over very
short distances or “nugget effect”. Singularities less than
1 signify local Zn enrichment whereas singularities greater

 
Fig. 21. Relationship between final singularity and zinc concentration value is logarithmic. Final 
singularities (blue diamonds) are same as those for Series 3 in Fig. 20. Logarithmic curve (red line) was 
fitted by least squares. 
 

47 

 

Fig. 21. Relationship between final singularity and zinc concentra-
tion value is logarithmic. Final singularities (blue diamonds) are
same as those for Series 3 in Fig. 20. Logarithmic curve (red line)
was fitted by least squares.

than 1 indicate depletion. Minimum and maximum sin-
gularities areαmin = 0.547 andαmax = 1.719, respectively.
These values are only slightly different fromαmin = 0.591
and αmax = 1.693 obtained using Eq. (15) (also see Chen
et al., 2007, Table 1). They differ more strongly from
αmin = 0.835 andαmax = 1.402 derived by Cheng and Agter-
berg (1996) on the basis of the binomial/p model fitted to the
118 zinc values. The newly derived values (αmin = 0.547 and
αmax= 1.719) are probably better indicating that the origi-
nal binomial/p multifractal spectrum (Cheng and Agterberg,
1996, Fig. 2d) is probably too narrow.
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Fig. 22. Final singularity (black diamonds) plotted against log10 (%Zn) is according to straight line (red) 
fitted by least squares . 
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Fig. 22.Final singularity (black diamonds) plotted against log10 (%
Zn) is according to straight line (red) fitted by least squares.

6 Multifractal modeling and spectral analysis

6.1 Binomial/p model

Theory of the binomial/p model is presented in textbooks in-
cluding Feder (1988), Evertsz and Mandelbrot (1992), Man-
delbrot (1999) and Falconer (2003). There have been numer-
ous successful applications of this relatively simple model
including many to solve solid Earth problems (e.g. Cheng,
1994; Cheng and Agterberg, 1996; Agterberg, 2007; Xie et
al., 2007; Cheng, 2008). Although various departures from
the model have been described in these papers and elsewhere,
the binomial/p model basically is characterized by a single
parameter. In the original model of de Wijs (1951), this pa-
rameter is the dispersion indexd. In the Introduction it was
discussed that the absolute dispersion of Matheron satisfies
α = (lnη)2/ln16, andη = (1+d)/(1−d). When the param-
eterp is used, we havep = 0.5(1−d). The multifractal spec-
trum of this model has its maximumf (α) = 1 (for E = 1) at
α = 1, andf (α) = 0 at:

αmin = log2(1−p);αmax= −log2p (16)

Another parameter that can be used to characterize the
binomial/p model is the second order mass exponentτ(2) =

−log2 {p2
+ (1−p)2

}. If the binomial/p model is satisfied,
anyone of the parametersp, d, α, τ (2),αmin , αmax, orσ 2 (ln
x) can be used for characterization. Using different param-
eters is helpful in finding significant departures from model
validity.

In the preceding section it was noted that estimates of
αmin and αmax derived for the Pulacayo orebody in Chen
et al. (2007) and in this paper differ greatly from previous
estimates based on the binomial/p model. However, Fig. 3
in Cheng and Agterberg (1996) illustrates that this model
provides excellent fit with 95 % confidence interval equal
to τ(2) = 0.979± 0.038. From this result it would follow
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Fig. 23. Residuals from straight line of Fig. 22 show white noise
pattern with variance equal to 0.00118.
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Fig. 24. Relative power spectrum for autocorrelation function
shown in Fig. 12. Decrease in slope at higher frequency side is
caused by the nugget effect (Logarithms base 10).

that d = 0.121,αmin = 0.835, andαmax= 1.186. The latter
estimate differs not only fromαmax= 1.719 derived in this
paper, it also is less than the estimateαmax= 1.402 on the
right side of the multifractal spectrum in Cheng and Agter-
berg (1996). The estimated = 0.121 is much too small. Us-
ing absolute values of differences between successive values,
de Wijs (1951) had already derivedd = 0.205 resulting in
Matheron’sα = 0.0208, and this is close toα = 0.0195 de-
rived on the basis of Fig. 10 in this paper. Use of any of the
estimates ofαmin or αmax obtained in the preceding section
would result in estimates ofd that are much too large; e.g.
the full convergence local singularities would yieldd = 0.369
andd = 0.392, respectively. Clearly, the binomial/p model
has limited range of applicability although it shows linear
patterns for different moments (q) on the log-log plot of par-
tition function versusε when the multifractal spectrum is de-
rived. The preceding inconsistencies suggest that a more
flexible model with additional parameters should be used.
The “universal multifractal model” with three parameters
was initially developed during the late 1990s by Schertzer
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and Lovejoy (1991). Lovejoy and Schertzer (2007) have suc-
cessfully applied this model to the 118 Pulacayo zinc values
as will be discussed in the next section.

6.2 Universal multifractal modeling

Figure 3a in Lovejoy and Schertzer (2007) shows a realis-
tic universal multifractal simulation for the Pulacayo ore-
body using the following three parameters: Lévy index
α = 1.8, codimensionC1 = 0.03 and deviation from con-
servationH = 0.090. Their approach is explained in de-
tail and illustrated by means of other applications in a
large number of publications including Lovejoy, Gaonac’h,
and Schertzer (2008), Lovejoy et al. (2001), Schertzer and
Lovejoy (editors, 1991), Schertzer and Lovejoy (1996) and
Schertzer et al. (1997). The codimensionC1, which char-
acterizes sparseness of mean field, andH can be derived
as follows. First a log-log plot of the so-called “first or-
der structure function” (cf. Monin and Yaglom, 1975) is
constructed. Successive moments are obtained for abso-
lute values of differences between concentration values for
points that are distanceh apart by raising them to the pow-
ersq(= 0.25,0.5,...,3 for the 118 zinc values). The result-
ing pattern forq = 2 represents the variogram and the first
point on the pattern forq = 0 is the de Wijs index of dis-
persiond. Straight lines are fitted to all patterns and a new
diagram is constructed with the slopes of the lines (ξq ) plot-
ted againstq. Slope and value of this new line nearq = 1
yieldedH = 0.090 andC1 = 0.02 for the Pulacayo orebody
becauseH = ξ1 andC1 = H −ξ ′

1 whereξ ′

1 is the first deriva-
tive of ξq with respect toq (Lovejoy and Schertzer, 2007,
Fig. 26a and b). Their use of the so-called “double trace mo-
ment” method (cf. Lavalĺee et al., 1992) yielded estimates of
the Lévy index equal toα = 1.76 andα = 1.78, and codimen-
sionC1 = 0.023, 0.022, respectively. In general, a relatively
small value ofC1 with respect toH indicates that the mul-
tifractality is so weak that deviation from conservation (H)

will be dominant except for quite high moments (Lovejoy
and Schertzer, 2007, p. 491). In the preceding section it was
shown that the binomial/p model produced inconsistencies
between results for lower and higher moments. Universal
multifractal modeling is more flexible and produces realistic
zinc concentration variability. On the other hand, the esti-
mate for the second order moment (τ(2) = 0.979± 0.038)
produces a realistic autocorrelation function including the
nugget effect, which affects the power spectrum for high fre-
quencies as will be discussed in the next section. The exis-
tence ofτ (2) as a constant parameter is not tied to validity
of the binomial/p model for both lower and higher moments
(Sect. 4.2).

6.3 Spectral analysis

Another important tool in universal multifractal modeling
is spectral analysis. Theoretically, this model results in a

y = 0.1969x2 - 1.1827x + 1.1749
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Fig. 25. Periodogram (black diamonds) of 118 zinc values with
quadratic curve (red curve) fitted by least squares (Logarithms base
10). The flattening of the curve toward higher frequencies is due to
the nugget effect (Logarithms base 10).

spectrum consisting of a straight line with slope−β. This
parameter can either be estimated directly or indirectly using
β = 1−K2 +2H whereK2 representing the “second char-
acteristic function”. Lovejoy and Schertzer (2007) estimated
K2 = 0.05 by double trace moment analysis. With the previ-
ously mentioned estimateH = 0.090 this yieldedβ ≈ 1.12 in
good agreement with the experimental spectrum for the 118
zinc values.

Spectral analysis of the 118 logarithmically zinc values
was performed previously (Agterberg, 1967, Fig. 4). The
discrete Fourier transform was taken of autocorrelation cor-
relation coefficients with lag distances<32 m after applying
a cosine transformation in order to largely eliminate distor-
tions according to Tukey’s “hanning” method (Blackman and
Tukey, 1958). In a discussion of this result, Tukey (1970)
pointed out that the resulting spectrum “drooped” although it
was within the 90 % confidence interval around the theoret-
ical spectrum for the signal-plus-noise model with negative
exponential autocorrelation function (cf. Fig. 5). Replotting
the earlier results on a log-log plot shows a linear pattern with
straight line of best fit yieldingβ = 0.79.

The normalized power spectrum corresponding to Eq. (6)
is:

P(f ) = 62
i=1

[
1−ci +

ci/πfci

1+(f/fci)2

]
(17)

wherefci = ai/2π . A log-log plot of this spectrum is shown
in Fig. 24 adopting the coefficients previously used for the
autocorrelation function satisfying Eq. (6) and plotted in
Fig. 12. The curve in Fig. 24 is approximately a straight
line for lower frequencies but for high frequencies there is a
marked decrease of slope reflecting the nugget effect.

Figure 25 shows the periodogram of the 118 zinc values to-
gether with a quadratic curve fitted by least squares. A best-
fitting straight line for the same values results inβ = 0.72,
but by means of an F-test it can be shown that the quadratic
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Fig. 26. Periodogram (black diamonds) of 132 TiO2 concentra-
tion values from boreholes in the Black Cargo Titaniferous mag-
netite deposit, Los Angeles County, California. Quadratic curve
(red curve)was fitted by least squares. The overall pattern is similar
to that of Fig. 25 for the Pulacayo zinc values.

fit is significantly better than the linear fit in Fig. 25 (for level
of significance= 0.01). The slope of the curve at the origin
in Fig. 25 givesβ = 1.18 with gradually decrease to 0.49 at
maximum log wave number on the right. A log-log plot of
the 2-point moving average of the periodogram of Fig. 21
produces a pattern that is close to Lovejoy and Schertzer’s
(2007, Fig. 3b) spectrum for the de Wijs data. A straight
line fit to the first 20 points of this 2-point moving average
givesβ = 1.03, which is close toβ = 1.18 at the origin of
Fig. 25 and close toβ ≈ 1.12. A possible explanation is that
spectral analysis confirms validity of the universal multifrac-
tal model but with superimposed noise that tends to flatten
the spectrum at higher frequencies. For comparison, the pre-
ceding method also was applied to a sequence of 132 tita-
nium concentration values from the Black Cargo Titaniferous
magnetite deposit, Los Angeles County, California (Benson
et al., 1962). This sequence, previously analyzed in Agter-
berg (1965), is a composite of four sub-sequences obtained
from 4 different boreholes. All samples were 5 ft in length
except for three 10 ft samples at the subsequence meeting
points. Mean and standard deviation of the 132 numbers are
2.73 % and 1.65 % TiO2, respectively. The resulting peri-
odogram shown in Fig. 26 is similar to Fig. 25 in that the
best-fitting quadratic trend line has a slope that decreases to-
ward higher frequencies. At the origin (x = 0) its value is
−1.088 and at maximum frequency (x = 1.8195) the slope is
−0.6186. Other results for this example also were similar to
those obtained for the 118 Pulacayo zinc values.

The curves in Figs. 23 to 25 indicate (1) the log-log plots
of the three power spectra are not straight lines but curves
with slopes that decrease toward higher frequencies; and
(2) at their maximum frequency or highest position num-
ber the curves are probably not horizontal indicating that the
nugget effect is not white noise with Dirac delta autocorrela-
tion function. The sampling intervals of two data sets used

for example in this section are too wide to allow a better de-
scription of the effect of the nugget effect on the power spec-
tra.

7 Concluding remarks

In a general way, orebodies are different from most other
rocks (sedimentary, igneous, volcanic, metamorphic rocks)
in that most of them exhibit clear evidence that nonlinear
processes were involved in their genesis. This evidence in-
cludes the following features: (1) element concentration val-
ues in orebodies commonly show a positively skewed fre-
quency distribution that is approximately lognormal; (2) ele-
ment concentration values in orebodies generally exhibit spa-
tial covariance including a nugget effect at or near the origin;
(2) statistics that apply to entire orebodies of the same type
including total amount of ore usually show approximately
lognormal distributions in the vicinity of their means and me-
dians but the high-value tails of these frequency distributions
can be Pareto-type; and (3) bedrock and surficial geology in
the vicinity of orebodies often show patterns with charac-
teristics similar to those of concentration values within the
mineral deposits. All of these four features are of economic
importance: (1) and (2) are important for ore reserve estima-
tion; (2) facilitates regional or global mineral potential es-
timation; and (3) is helpful in prospecting for undiscovered
deposits. In a general way, these rules apply to hydrocarbon
deposits as well (cf. Barton and La Pointe, editors).

Although the preceding four features have been known
to exist for a long time, it is only relatively recently that
nonlinear methods to clarify the spatial element concentra-
tion patterns and their genesis have become available. The
primary purpose of this paper was to help build a bridge
between Matheron-type geostatistical sampling methodolo-
gies and geometric probability theory with nonlinear process
modeling methods. Main conclusions are as follows:

1. Existing sampling techniques applied within known
orebodies such as channel sampling along mining drifts
yield average concentration values for blocks of ore that
have relatively small extension variance and can be used
for multifractal modeling in addition to their usage in
existing ore reserve estimation approaches.

2. Geometric probability theory applied to Matheron’s ex-
tension of the model of de Wijs suggests that new in-
formation on the nugget effect consisting of local clus-
tering of ore minerals can be derived from experimental
variograms.

3. The new method of local singularity mapping applied
within orebodies provides new insights into the na-
ture of the nugget effect which has spatial extent less
than distances between samples collected for chemical
analysis; within the Pulacayo orebody, Bolivia, local
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singularity is linearly related with logarithmically trans-
formed concentration value.

4. Parameters to characterize spatial covariance, which are
estimated from samples subjected to chemical analysis,
are not necessarily valid at strictly local scale because
of the nugget effect; this indicates that moving aver-
ages resulting from covariance models or estimated by
other methods such as kriging then can be improved by
incorporating local singularities for additional local el-
ement enrichment or depletion to be superimposed on
the smooth moving average patterns.

5. Although the series of 118 zinc concentration values
from the Pulacayo Mine was the primary example in
this paper, similar negative exponential autocorrela-
tion functions were found for copper concentration val-
ues from channel samples from the Whalesback cop-
per Mine, Newfoundland, and gold in Witwatersrand
Mines, South Africa although the nugget effect could
not be studied in more detail for these examples. In ex-
amples of application to large KTB borehole data sets,
nugget effects were shown to exist in binary residual
Vp profile for lithology (alternating mostly gneiss and
metabasite layers) over a length of approximately 7 km,
and in copper concentration values over nearly 6 km.

6. Although there have been many successful applications
of the multifractal binomial/p model, its application
within the Pulacayo orebody results in several inconsis-
tencies indicating shortcomings of this relatively simple
approach.

7. Universal multifractal modeling is a promising new ap-
proach to improve upon use of the binomial/p model.
However, more research will be needed to clarify how
spectral analysis and universal multifractal modeling
can be applied to orebodies and their surroundings.
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Klimeš, L.: Correlation functions in random media, Pure Appl.
Geophys., 159, 1811–1831, 2002.

Krige, D. G.: Lognormal de-Wijsian Geostatistics for Ore Evalua-
tion, South African Institute Mining Metall, Monograph Series,
Geostatistics 1, 1978.

Krige, D. G. and Ueckermann, H. J.: Value contours and improved
regression techniques for ore reserve valuations, J. South Afr.
Inst. Mining Metall., May 1963, 429–452, 1963.

Krige, D. G., Watson, M. I., Oberholzer, W. J., and du Toit, S. R.:
The use of contour surfaces as predictive models for ore values,
Proc. Symp. Comput. Appl. Oper. Res. Mineral Industry, 8th,
Am. Instit. Mining Metall., Salt Lake City, 127–161, 1969.

Lavallée, D., Lovejoy, S., Schertzer, D., and Schmitt, F.: On the
determination of universal multifractal parameters in turbulence,
in Topological Aspects of the Dynamics of Fluids and Plasmas,
edited by: Moffatt, H. K., Zaslavsky, G. M., Conte, P., and Tabor,
M., Kluwer, Dordrecht, 463–478, 1992.

Lovejoy, S. and Schertzer, D.: Multifractals, universality classes
and satellite and radar measurements of cloud and rain fields, J.
Geophys. Res., 95, 2021–2034, 1990.

Lovejoy, S. and Schertzer, D.: Scaling and multifractal fields in
the solid earth and topography, Nonlin. Processes Geophys., 14,
465–502,doi:10.5194/npg-14-465-2007, 2007.

Lovejoy, S., Gaonac’h, H., and Schertzer, D.: Anisotropic scaling
models of rock density and the Earth’s surface gravity field, in:
Progress in Geomathematics, edited by: Bonham-Carter, G. and
Cheng, Q., Springer, Heidelberg, 151–193, 2008.

Lovejoy, S., Currie, W. J. S., Tessier, Y., Claereboudt, M. R., Bour-

get, E., Roff, J. C., and Schertzer, D.: Universal multifractals
and ocean patchiness: phytoplankton, physical fields and coastal
heterogeneity, J. Plankton Res., 23, 117–141, 2001.

Mandelbrot, B. B.: The Fractal Geometry of Nature, Freeman, San
Francisco, 468 pp., 1983.

Mandelbrot, B. B.: The statistics of natural resources and the law of
Pareto, in: Fractals in petroleum geology and the earth sciences,
edited by: Barton, C. C. and La Pointe, P. R., Plenum, New York,
1–12, 1995.

Mandelbrot, B. B.: Multifractals and 1/f Noise, Springer, New
York, 442 pp., 1999.

Marsan, D. and Bean, C. J.: Multiscaling nature of sonic velocities
and lithology in the upper crystalline crust: Evidence from the
KTB main borehole, Geophys. Res. Lett., 26, 275–278, 1999.

Marsan, D. and Bean, C.: Multifractal modeling and analyses of
crustal heterogeneity, edited by: Goff, J. A. and Hollinger, K.,
Kluwer Academic, New York, 207–236, 2003.
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