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Abstract. Many dynamical models, such as numerical
weather prediction and climate models, contain so called clo-
sure parameters. These parameters usually appear in physical
parameterizations of sub-grid scale processes, and they act as
“tuning handles” of the models. Currently, the values of these
parameters are specified mostly manually, but the increasing
complexity of the models calls for more algorithmic ways to
perform the tuning. Traditionally, parameters of dynamical
systems are estimated by directly comparing the model sim-
ulations to observed data using, for instance, a least squares
approach. However, if the models are chaotic, the classical
approach can be ineffective, since small errors in the initial
conditions can lead to large, unpredictable deviations from
the observations. In this paper, we study numerical methods
available for estimating closure parameters in chaotic mod-
els. We discuss three techniques: off-line likelihood calcula-
tions using filtering methods, the state augmentation method,
and the approach that utilizes summary statistics from long
model simulations. The properties of the methods are stud-
ied using a modified version of the Lorenz 95 system, where
the effect of fast variables are described using a simple pa-
rameterization.

1 Introduction

Many dynamical models in atmospheric sciences contain
so called closure parameters. These parameters are usu-
ally connected to processes that occur on smaller and faster
scales than the model discretization allows. For instance, the
computational grid used in modern climate and numerical
weather prediction (NWP) models is too coarse to directly
model cloud micro-physics and many cloud-related phenom-
ena are therefore represented by parameterization schemes.
For example, consider the cloud shortwave optical proper-
ties, which are related to the cloud liquid water amount, and

affect the shortwave radiation fluxes in atmospheric models.
These properties can be specified with parameters, such as
the mean effective radius of cloud water droplets (Martin
et al., 1994).

The closure parameters act as “tuning handles” of the
models. Parameter tuning is particularly necessary whenever
new and improved parameterized processes are implemented
into the models. Currently, the parameters are usually pre-
defined by experts using a relatively small number of model
simulations. This tuning procedure is somewhat subjective
and therefore open for criticism.

In this paper, we discuss different algorithmic ways to es-
timate the tuning parameters, that is, how to find the opti-
mal closure parameters by fitting the model to available ob-
servations. While this problem has not been studied much,
there are a few recent papers that address the problem in the
context of climate modeling (Jackson et al., 2008; Villagran
et al., 2008; Järvinen et al., 2010; Sexton et al., 2011). Nu-
merical weather prediction (NWP) is considered to be more
of an initial value problem than a parameter estimation prob-
lem (Annan and Hargreaves, 2007) and tuning of closure pa-
rameters is in general done manually by using samples of test
forecasts. In a recently proposed approach, NWP parame-
ter estimation is embedded into ensemble prediction systems
(Järvinen et al., 2011; Laine et al., 2011).

While the motivation behind this work is the closure pa-
rameter estimation problem in atmospheric models, we note
that similar parameterizations appear in many multi-scale
models in computational fluid dynamics. The parameter esti-
mation is complicated by the fact that these models are often
chaotic, which means that a small change in the initial condi-
tions can lead to a completely different simulated trajectory.
Therefore, the classical parameter estimation approaches that
are based on directly comparing model simulations and ob-
servations using, for instance, a least squares approach, may
be inefficient.
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128 J. Hakkarainen et al.: On closure parameter estimation in chaotic systems

To fix the notation, let us assume for simplicity that a dy-
namical model can be described by a discrete state space
model

xk =M(xk−1,θ) (1)

zk = K(xk), (2)

wherex denotes the state of the system, the model opera-
tor M solves the equations that describe the dynamics of
the system,k is the index of the time,z are the variables
that can be observed,K is the observation operator andθ
denotes the (closure) parameters. The model operatorM is
assumed to contain everything that is needed to simulate the
system, including also as external forcing terms and bound-
ary conditions. In the real-world setting, we would like to
tune parametersθ of the model in Eqs. (1)–(2) using a set
of available observationsy = {y1,...,yn} taken at some time
instances{t1,...,tn}. Note thaty are measured values, while
z are simulated values of the same variables.

In parameter estimation, we follow the Bayesian method-
ology, in which the knowledge about the unknown parame-
ters is inferred from the posterior distributionp(θ |y):

p(θ |y) ∝ p(θ)p(y|θ), (3)

which is evaluated using the priorp(θ) and the likelihood
p(y|θ). The likelihood function specifies how plausible the
observed data are given model parameter values. Therefore,
defining a proper likelihood function is the central problem in
parameter estimation. The prior contains the information that
we have about the parameters based on the accumulated in-
formation from the past. For an introduction to Bayesian es-
timation, see, for example, the book byGelman et al.(2003).

Traditionally, parameters of dynamical systems are esti-
mated by comparing model simulations to observed data us-
ing a measure such as a sum of squared differences between
z andy. This corresponds to the assumption that the obser-
vations are noisy realizations of the model values. The prob-
lem in applying these techniques directly to chaotic systems
is that the dynamically changing model statex is not known
exactly, and small errors in the state estimates can grow in an
unpredictable manner, making direct comparisons of model
simulations and observations meaningless over long time pe-
riods.

In this paper, we consider three ways to estimate the clo-
sure parameters of chaotic models. In the first approach, ob-
servations and model simulations are summarized in the form
of statistics, which are typically some temporal and spatial
averages of the data. The likelihood model is constructed in
terms of the summary statistics such that model parameters
producing statistics that are closer to the observed statistics
would have higher likelihood. This kind of an approach is
employed in climate model parameter estimation in several
recent studies (Jackson et al., 2008; Järvinen et al., 2010;
Sexton et al., 2011). In the summary statistics approach,
the problem of chaotic behavior can be alleviated, since the
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Fig. 1. An illustration of sequential data assimilation in a chaotic
system. After some time the control run, even with optimal param-
eter values, gets “off track” due to chaos. Data assimilation keeps
the model in the same trajectory with the data.

statistics computed from long simulations are less dependent
on the initial conditions than the specific values of the state
variables.

The other two approaches are based on embedding the pa-
rameter estimation techniques into dynamical state estima-
tion (data assimilation) methods that constantly update the
model state as new observations become available. Thus, the
model is kept in the vicinity of the data, and the problems
caused by chaotic behavior can be alleviated. This is illus-
trated in Fig.1 by running the Lorenz system – that is used
for experimentation in Sect.5 – two times from the same ini-
tial values, with and without data assimilation. One can see
that the model run without assimilation eventually deviates
from the trajectory of the observations.

We consider two ways to implement parameter estima-
tion within a data assimilation system. In thestate aug-
mentationapproach (see Sect.4), the model parameters are
treated as artificial states and assimilated together with the
actual model state (see, e.g.Kitagawa, 1998; Ionides et al.,
2006; Dowd, 2011). In the likelihood approach, detailed in
Sect.3, the likelihood of a parameter value is evaluated by
running a state estimation method over a chosen data set,
keeping the parameter value fixed. The likelihood is con-
structed using the filter residuals (the squared differences be-
tween the observations and the short-range forecasts), see
Fig. 1. This resembles classical parameter estimation, but
the uncertainty in the model state is “integrated out” using
a state estimation technique. The problem of chaoticity is
circumvented by computing the likelihood components from
short simulations, where chaotic behavior does not yet ap-
pear. The likelihood approach is a standard technique in
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parameter estimation of stochastic models (see, e.g.Kivman,
2003; Singer, 2002; Dowd, 2011), but less studied in connec-
tion with deterministic, chaotic systems.

The paper is organized as follows. In Sect.2, we present
the methodology for the summary statistics approach. The
likelihood approach is discussed in Sect.3, and the sequen-
tial parameter estimation via state augmentation is presented
in Sect.4. In Sect.5, the case study setup and numerical re-
sults are presented. In Sect.6 we discuss some specific issues
related to the properties of the methods. Section7 concludes
the paper.

2 Likelihood based on summary statistics

Several recent studies (Jackson et al., 2008; Järvinen et al.,
2010; Sexton et al., 2011) on parameter estimation in cli-
mate models formulated the likelihood in terms of summary
statistics. The advantage of this approach is that it is compu-
tationally feasible and rather straightforward to implement.
It avoids the problem of chaotic behavior as in sufficiently
long simulations the effect of the initial values diminishes.

In this approach, the observations are transformed to a set
of summary statisticss = s(y1:n), wherey1:n denotes all ob-
servations forn steps of the simulation model Eqs. (1)–(2).
The posterior distribution of model parametersθ is evaluated
as

p(θ |s) ∝ p(θ)p(s|θ). (4)

The likelihoodp(s|θ) is constructed so that modelsθ pro-
ducing summary statisticssθ which are close to the observed
valuess get higher probability. Here,sθ = s(zθ ,1:n) denotes
the summary statistics computed from datazθ ,1:n simulated
for n steps with model parametersθ . The approach is related
to approximate Bayesian computation (ABC, see, e.g.Cor-
nuet et al., 2008), where summary statistics are used to do
statistical inference in situations where the exact likelihood
is intractable.

2.1 Matching observed and simulated statistics

When the simulated and observed summary statistics are di-
rectly matched, the likelihood can be formulated, for in-
stance, as

p(s|θ) ∝ exp

(
−

1

2
C(s,sθ )

)
, (5)

whereC(s,sθ ) is a cost function penalizing the misfit be-
tweens and sθ . For example, one could use the Gaussian
assumption yielding the form

C(s,sθ ) = (s −sθ )
T 6−1(s −sθ ), (6)

where the covariance matrix6 takes into account possible
correlations between the summary statistics. When some of

the correlations are ignored (Eq.6) becomes a sum of mul-
tiple terms. For example, inJärvinen et al.(2010) the cost
function was similar to

C(s,sθ ) = (sg
−s

g
θ )2/σ 2

g

+

12∑
t=1

∑
i,k

(
sikt

−sikt
θ

)T

6−1
ikt

(
sikt

−sikt
θ

)
, (7)

wheresg is the annual global mean of the net radiative flux
at the top of the atmosphere (TOA) andsikt are zonal and
monthly averages of thek-th variable computed for latitude
i and montht . The first term in Eq. (7) penalizes unstable
models which have an unrealistic balance of the global-mean
TOA radiation, whereas the second term ensures a realistic
annual cycle for the radiation. The same statistics computed
from simulated data are denoted bys

g
θ andsikt

θ .
The goal of the studies byJärvinen et al.(2010) was to ex-

plore the uncertainty of the parameters which have a large ef-
fect on the radiative balance and therefore only the net radia-
tive flux at TOA was used to compute the zonal and monthly
averagessikt in Eq. (7). In Jackson et al.(2008), several vari-
ables were included in the cost function and the covariance
matrix6ikt was formulated in terms of a few leading empir-
ical orthogonal functions (EOFs).

One problem of the direct matching of observed and sim-
ulated statistics is that the resulting likelihood Eq. (5) may
not be a smooth function of the parameters, as will be seen in
the experimental results (e.g. Fig.2). A possible reason for
this are the random effects caused by the finite length of the
simulations. The noise in the objective function may compli-
cate the parameter estimation procedure. Another problem
is that the matching approach is not based on a well justified
statistical model for the summary statistics: it is not easy to
define what values for the summary statistics are “good” in
the statistical sense. For example, it is not straightforward to
select the scaling parameter6ikt in Eq. (7).

2.2 Fitting a probabilistic model for summary statistics

The problems mentioned above can be partly overcome by
building a probabilistic model for the summary statistics.
The summary statistics are treated as random variables which
are systematically affected by varying the model parameters
θ :

sθ = f(θ)+ε , (8)

where functionf is often called an emulator or a surrogate
model (Rougier, 2008; Sexton et al., 2011) and the noise
termε can be assumed Gaussian with zero mean and covari-
ance matrix6. The emulator and the noise model can be
estimated from training samples which are pairs{sθ i

,θ i} of
simulated statisticssθ i

and parameter valuesθ i used in the
simulations. This is a nonlinear regression problem which
have been studied intensively in statistics and machine learn-
ing (see, e.g.Bishop, 2006). Examples of parametric models
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for f include polynomials, radial basis function networks and
multi-layer perceptrons.

Thus, prior to constructing the likelihood, the model has to
be simulated many times with different parameter values se-
lected over a suitable range. This is computationally expen-
sive, but a necessary step. The likelihood is then constructed
as

s|θ ∼ N(f(θ),6). (9)

One difficulty of learning Eq. (8) is that the set of all possi-
ble statistics insθ is highly multidimensional while the num-
ber of examples to train the emulator Eq. (8) is potentially
limited because of the high computational costs of model
simulations. This problem can be solved by reducing the
number of summary statistics somehow before training the
model Eq. (8). The simplest way is to consider only a linear
combination of the summary statistics, which means neglect-
ing the variability of summary statistics outside a selected
subspace. Thus, Eq. (8) is replaced by

Ws = f∗(θ)+ε∗, (10)

whereW is a properly chosen matrix and the likelihood is
formulated in terms of the projected data:

Ws|θ ∼ N(f∗(θ),6∗). (11)

Sexton et al.(2011), computedW using principal compo-
nent analysis (PCA) and the dimensionality of the summary
statistics was reduced from 175 000 to only six. Thus, the cri-
terion for dimensionality reduction used there was the maxi-
mum amount of variance retained in the projected statistics.
Another possible approach is to find projectionsWs which
are most informative about closure parametersθ . For exam-
ple, canonical correlation analysis is mentioned as a more
appropriate dimensionality method byRougier (2008). In
the experiments presented in Sect.5.2.1, we findW by fit-
ting a linear regression modelθ ≈ Wsθ to the training data
{zθ i

,θ i}. The emulator (10) is then estimated for the pro-
jected statistics. Note that one can analyze the elements of
W computed to maximize correlations betweenθ andsθ in
order to have a clue on which summary statistics are affected
by varying the closure parameters.

3 Likelihood with filtering methods

Traditionally, the likelihood for a parameter in non-chaotic
dynamical models is calculated by comparing the model to
data using a goodness-of-fit measure, such as the sum of
squared differences between the model and the observations.
In many cases, however, the model state is not known accu-
rately and it has to be estimated together with the parame-
ters. This is especially important with chaotic models, where
small errors in the model state can grow quickly when the
model is integrated in time.

State estimation in dynamical models can be carried out
using filtering methods, where the distribution of the model
state is evolved with the dynamical model and sequentially
updated as new observations become available. When static
parameters are estimated, filtering can be used to “keep the
model on track” with the measurements. In this section, we
present how the likelihood in chaotic models can be com-
puted using filtering methods. First, we present the general
filtering formulas and then consider the special case of Gaus-
sian filters.

3.1 General formulas

Let us consider the following discrete state space model at
time stepk with unknown parametersθ :

xk ∼ p(xk|xk−1,θ) (12)

yk ∼ p(yk|xk) (13)

θ ∼ p(θ). (14)

Thus, in addition to the unknown, dynamically changing
model statexk, we have static parametersθ , from which
we have some prior informationp(θ). As mentioned in the
introduction, the goal in parameter estimation, in Bayesian
terms, is to find the posterior distributionp(θ |y1:n) of the
parameters, given a fixed data sety1:n. Here, the notation
y1:n = {y1,...,yn} means all observations forn time steps.

Filtering methods (particle filter, Kalman filters, etc.) es-
timate the dynamically changing model state sequentially.
They give the marginal distribution of the state given the
measurements obtained until the current timek. Thus, for
a given value forθ , filtering methods estimatep(xk|y1:k,θ).

Filters work by iterating two steps: prediction and update.
In the prediction step, the current distribution of the state is
evolved with the dynamical model to the next time step:

p(xk|y1:k−1,θ) =

∫
p(xk|xk−1,θ)

× p(xk−1|y1:k−1,θ)dxk−1. (15)

When the new observationyk is obtained, the model state
is updated using the Bayes’ rule with the predictive distribu-
tion p(xk|y1:k−1,θ) as the prior:

p(xk|y1:k,θ) ∝ p(yk|xk,θ)p(xk|y1:k−1,θ). (16)

This posterior is used inside the integral (15) to obtain the
prior for the next time step.

Using the state posteriors obtained in the filtering method,
it is also possible to compute the predictive distribution of
the next observation. For observationyk, the predictive dis-
tribution, given all previous observations, can be written as

p(yk|y1:k−1,θ) =

∫
p(yk|xk,θ)p(xk|y1:k−1,θ)dxk. (17)

The latter termp(xk|y1:k−1,θ) in the integral is the pre-
dictive distribution given by Eq. (15).
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Let us now proceed to the original task of estimating static
parametersθ from observationsy1:n, i.e., computing the pos-
terior distributionp(θ |y1:n). Applying the Bayes’ formula
and the chain rule for joint probability, we obtain

p(θ |y1:n) ∝ p(y1:n|θ)p(θ) (18)

= p(yn|y1:n−1,θ)p(yn−1|y1:n−2,θ)...

× p(y2|y1,θ)p(y1|θ)p(θ). (19)

In the filtering context, the predictive distributions
p(yi |y1:i−1,θ) are calculated based on the marginal poste-
rior of the model states, see Eq. (17).

Thus, the likelihood of the whole datay1:n can be calcu-
lated as the product of the predictive distributions of the in-
dividual observations. That is, to check how well the model
with parameter vectorθ fits the observations, one can check
how individual predictions made from the current posterior
fit the next observations. The only difference to traditional
model fitting is that the state distribution is updated after each
measurement.

Note that the above analysis only tells how the parameter
likelihood is related to filtering methods. We have not yet
discussed how the parameter estimation can be implemented
in practice. In order to obtain the parameter estimates, two
steps are required: (a) a filtering method to compute the pos-
terior density for a given parameter value and (b) a parameter
estimation algorithm to obtain the estimates. In this paper,
we use variants of the Kalman filter for task (a), but other fil-
tering methods, such as particle filters (see, e.g.Cappe et al.,
2007), could be applied as well. For task (b) there are several
optimization and Monte Carlo approaches available, and the
method of choice depends on the case. In our examples, we
use three different methods to estimate the posterior distribu-
tion: a maximum a posteriori (MAP) optimization approach
with a Gaussian approximation of the posterior, a Markov
chain Monte Carlo (MCMC) algorithm, and an importance
sampling approach. For the sake of completeness, these al-
gorithms are briefly reviewed in AppendixA.

Next, we will present how the parameter estimation is per-
formed in the more familiar case, where the distributions
are assumed to be Gaussian, and the extended Kalman filter
(EKF) is used as the filtering method.

3.2 EKF likelihood

The extended Kalman filter is one of the most popular meth-
ods for state estimation in nonlinear dynamical models. EKF
is an extension to the Kalman filter (KF,Kalman, 1960),
where the model is assumed to be linear.

Let us now write the state space model as follows:

xk =M(xk−1,θ)+Ek (20)

yk = K(xk)+ek. (21)

Unlike in the standard EKF, the modelM now depends
on parametersθ . The model and observation errors are

assumed to be zero mean Gaussians:Ek ∼ N(0,CE
k ) and

ek ∼ N(0,Ce
k).

In KF, the prediction and update steps can be written down
analytically, since everything is linear and Gaussian. EKF
uses the KF formulas, but the model matrix in KF is replaced
by a linearization of the nonlinear model. In EKF, the pre-
dictive distribution for the state at timek is

xk|y1:k−1,θ ∼ N(x
p
k ,Cp

k ), (22)

wherex
p
k =M(xest

k−1,θ) is the posterior meanxest
k−1 from

the previous time evolved with the model. The prior co-
varianceCp

k = M θ
kCest

k−1M θT

k + CE
k is the covariance of the

state estimate evolved with the linearized modelM θ
k =

∂M(xest
k−1,θ)/∂xest

k−1.
In the update step, the prior in Eq. (22) is updated with the

new observationyk. In the EKF formulation, the posterior is

xk|y1:k,θ ∼ N(xest
k ,Cest

k ), (23)

wherexest
k andCest

k are given by the Kalman filter formulas:

xest
k = x

p
k +Gk(yk −K(x

p
k )) (24)

Cest
k = Cp

k −GkK kCp
k . (25)

HereGk = Cp
k KT

k (K kCp
k KT

k +Ce
k)

−1 is the Kalman gain
matrix andK k = ∂K(x

p
k )/∂x

p
k is the linearized observation

operator. The predictive distribution of measurementyk,
needed in the likelihood evaluation, is given by

yk|y1:k−1,θ ∼ N(K(x
p
k ),Cy

k ), (26)

whereCy
k = KCp

k KT
+Ce

k. Now, applying the general for-
mula (19), the total likelihood of observingy1:n, given pa-
rametersθ , can be written as

p ( y1:n|θ) = p(y1|θ)

n∏
k=2

p(yk|y1:k−1,θ)

=

n∏
k=1

exp

(
−

1

2
rT

k (Cy
k )

−1rk

)
(2π)−d/2

|Cy
k |

−1/2

∝ exp

(
−

1

2

n∑
k=1

[
rT

k (Cy
k )

−1rk + log|Cy
k |

])
, (27)

whererk = yk−K(x
p
k ) and|·| denotes the determinant. Note

that the normalization constants of the likelihood terms de-
pend onθ implicitly through the covariancesCp

k , and the
term log|Cy

k | = log|K kCp
k KT

k +Ce
k| therefore needs to be in-

cluded.
The above likelihood resembles the traditional “least

squares” type of Gaussian likelihoods. The difference is that
the model state is allowed to change between time steps, and
the residuals are weighted by the model prediction uncer-
tainty termK iC

p
i KT

i in addition to the measurement error
covarianceCe

i . In fact, removing the model uncertainty terms
K iC

p
i KT

i reduces the likelihood to the classical Gaussian
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likelihood often used in parameter estimation. Adding the
prediction error covariances to the sum of squares terms es-
sentially gives more weight to situations that are predictable,
and down-weights the terms where the model prediction is
uncertain, due to, e.g. chaotic behavior of the system.

If, in addition to the actual model parametersθ , the model
error covarianceCE is unknown, we can parameterize it and
estimate its parameters from the measurements together with
the model parameters. As discussed later in more detail, the
ability to estimate the variance parameters is one of the ad-
vantages of the likelihood approach, compared to the state
augmentation and summary statistics methods.

Unfortunately, as the dimension of the model increases,
EKF soon becomes practically infeasible. An approximation
to EKF that can be implemented in large-scale systems is the
ensemble Kalman filter (EnKF). In EnKF and its numerous
variants (see, e.g.Evensen, 2007; Ott et al., 2004; Whitaker
and Hamill, 2002; Zupanski, 2005), the computational issues
in EKF are circumvented by using sample statistics in EKF
formulas, computed from a relatively small number of en-
sembles. Hence, when EnKF is used, the likelihood (27) can
be computed simply by definingxp

i andCp
i as sample mean

and covariance matrix estimated from the ensemble.
Most implementations of the EnKF involve random pertur-

bations of the model states and observations. This introduces
randomness in the likelihood function (27): two evaluations
with the same parameter value give different likelihood val-
ues. As noted byDowd (2011), this complicates the param-
eter inference, and one has to resort to stochastic optimiza-
tion methods that can handle noise in the target function (see
Shapiro et al., 2009, for an introduction). Note that some
recent variants of EnKF, such as many of the so called en-
semble square root filters (Tippett et al., 2003) do not involve
random components, and they might be more suitable for pa-
rameter estimation purposes. We test a variant called Local
Ensemble Transform Kalman Filter (LETKF,Hunt et al.,
2007) in the experiments of Sect.5.

4 Parameter estimation with state augmentation

In the previous section, the parameter estimation was carried
out off-line by repeatedly sweeping through the data using a
filter. In state augmentation (SA), the parameters are added
to the state vector and estimated on-line in the filter. In prac-
tice this means that model parameters are updated together
with the state, whenever new observations become available.
Next, we will present how SA can be implemented with EKF.

Let us consider the following state space model, where the
parameter vector is modeled as an additional dynamical vari-
able:

xk+1 =M(xk,θk)+Ex (28)

θk+1 = θk +Eθ (29)

yk+1 = K(xk+1)+e. (30)

For notational convenience, we have dropped the time in-
dexk from the error terms.

In SA, we treat the combined vectorsk = [xk,θk]
T as the

state vector that is updated at each time stepk. The model
for the combined vector can be written as

sk+1 =M̃(sk)+Ex,θ , (31)

whereM̃(sk) = [M(xk,θk),θk]
T andEx,θ is the error of

the augmented modelM̃, here assumed to be zero mean
Gaussian with covariance matrixCx,θ .

In EKF, we now need to linearizẽM(sk) with respect to
sk, which results in the following Jacobian matrix:

M k =
∂M̃(sk)

∂sk

=

[
∂M(sk)/∂xk ∂M(sk)/∂θk

∂θk/∂xk ∂θk/∂θk

]
(32)

=

[
∂M(sk)/∂xk ∂M(sk)/∂θk

0 I

]
. (33)

Now, this matrixM k can be used in the EKF formulas.
Note that the top left term in the matrix is the linearization
with respect to the actual states, which is needed in the stan-
dard states-only EKF as well. In addition, the derivative with
respect to the parameters is needed (the top right term).

In EKF, we also need to define the model error covariance
matrixCx,θ . In SA, this must be defined in the joint space of
the state and the parameters. The errors in the state and pa-
rameters are hardly uncorrelated, but for simplicity we model
them here as independent random variables, which yields a
block diagonal error covariance matrix

Cx,θ =

[
Cx 0
0 Cθ

]
. (34)

The model error in the state,Cx , has a clear interpreta-
tion: it represents the statistical properties of the error that
the model makes in a filter time step. However, the parameter
error covariance matrixCθ lacks such an interpretation. We
considerCθ as an additional tuning parameter of the SA ap-
proach. Roughly speaking, increasingCθ allows more sud-
den changes fromθk to θk+1. Note that, unlike in the full
likelihood approach, the model error covarianceCx cannot
be estimated from data using SA. A simple example illus-
trating this problem is shown byDelSole and Yang(2010).
The effect of (and the sensitivity to)Cx,θ is studied in more
detail in the experimental section. In AppendixB, we give
some theoretical discussion of the effect of the selectedCx,θ .

As in the likelihood approach, the SA parameter estima-
tion method can be implemented using other filtering meth-
ods besides EKF. For instance, replacing EKF with EnKF
is straightforward: the ensembles now contain perturbations
of both the model states and the parameters. The EnKF SA
approach has been implemented, for instance, for a marine
biochemistry model byDowd(2011) and for an atmospheric
model byAnnan et al.(2005).
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Conceptually, SA is straightforward, although, like noted
by Järvinen et al.(2010), it implicitly assumes the static pa-
rameters as dynamical quantities and the parameter estimates
therefore change at every update step of the filter. In some ap-
plications, such as numerical weather prediction (NWP), this
may be critical. Operational NWP systems perform under
strict requirements of timely product delivery to end-users.
The “drifting” model parameters have to be therefore care-
fully considered from the system reliability point-of-view.

5 Case study: parametrized Lorenz 95

In this section, we will demonstrate the discussed parameter
estimation approaches using a modified Lorenz system. We
start by describing the model and the experiments, and then
present the results for the three different methods.

5.1 Description of the experiment

To demonstrate and compare the parameter estimation ap-
proaches, we use a modified version of the Lorenz 95 ODE
system, detailed byWilks (2005). The chaotic Lorenz model
(Lorenz, 1995) is commonly used as a low order test model to
study estimation algorithms. The system used here is similar
to the original system, but the state variablesxi are affected
by forcing due to fast variablesyj , too. The full system is
written as

dxk

dt
= −xk−1(xk−2−xk+1)−xk +F

−
hc

b

Jk∑
j=J (k−1)+1

yj (35)

dyj

dt
= −cbyj+1

(
yj+2−yj−1

)
−cyj +

c

b
Fy

+
hc

b
x1+b

j−1
J

c
(36)

wherek = 1,...,K andj = 1,...,JK. That is, each of the
“slow” state variablesxi are forced by a sum of the additional
fast variablesyj . The fast variables have dynamics similar to
the slow variables, but they are also coupled with the slow
variables. We use valuesK = 40,J = 8, F = Fy = 10,h = 1
andc = b = 10, adopted from (Leutbecher, 2010).

The system (35)–(36) is considered as the “truth” and used
for generating synthetic data. As a forecast model, we use a
version where the net effect of the fast variables is described
using a deterministic parameterization. The forecast model
reads as

dxk

dt
= −xk−1(xk−2−xk+1)−xk +F −g(xk,θ), (37)

whereg(xk,θ) is the parameterization in which the missing
fast variablesyj are modeled using the “resolved” variables.
Here, we use a polynomial parameterization,

g(xk,θ) =

d∑
i=0

θix
(i)
k , (38)

with d = 1. The goal is to “tune” the parametersθ so that the
model fits the observations as well as possible. The param-
eter estimation resembles the closure parameter estimation
problem in atmospheric models: the forecast model is solved
with a time step1t = 0.025, which is too crude for modeling
the fast variables that operate on a finer time scale.

The observations for parameter estimation are generated
as follows. The model is solved with dense time stepping
(1t = 0.0025) for altogether 2500 days (in the Lorenz model,
one day corresponds to 0.2 time units). Then Gaussian noise
is added to the model output with zero mean and covari-
ance(0.1σclim)2I , whereσclim = 3.5 (standard deviation from
long simulations). When the parameters are estimated us-
ing the filtering approaches, only 24 out of the 40 slow vari-
ables are assumed to be observed each day. The observa-
tion operator, used also in previous data assimilation stud-
ies (Auvinen et al., 2009, 2010), picks the last three state
variables from every set of five states and we thus observe
states 3,4,5,8,9,10,...,38,39,40. Partial observations were
assumed to emulate a realistic data assimilation setting. In
the experiments with the summary statistics approach, all the
40 states are assumed to be observed because hiding some
of the states would introduce problems in the computation of
the statistics.

Note that with this set-up, it is possible to use the values
of the fast variablesyj simulated in the full system (35)–(36)
to estimate parametersθ of the forcing model

g(xk,θ) ≈
hc

b

Jk∑
j=J (k−1)+1

yj .

We will use the term “reference parameter values” forθ

which minimize the errors of this forcing model in the least
squares sense. Naturally, such fitting cannot be performed in
real applications since the actual sub-grid scale forcing is not
known.

5.2 Results

In this section, we will present the results using the summary
statistics, likelihood and state augmentation approaches. Our
emphasis is on comparing the accuracy and the properties of
these different approaches.

5.2.1 Summary statistics

In a synthetic example like Lorenz 95, summarizing the data
in the form of a few statistics is not a trivial task. For exam-
ple, if one wants to repeat the parameter estimation procedure
similarly to Järvinen et al.(2010); Sexton et al.(2011), it is
not clear what would be a suitable counterpart for the zonal
and monthly averages in Eq. (7).
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Matching observed and simulated statistics

As mentioned in Sect.2.1, the simulated statistics may not
be a smooth function of the parameters. One method that is
rather insensitive to that kind of behavior in the likelihood
is importance sampling (see AppendixA3 for details). We
perform importance sampling for the two parameters[θ0,θ1]

of the model Eqs. (37)–(38). First, we draw 1000 candidate
values uniformly and independently for the two parameters
from the intervalsθ0 ∈ [1.4,2.2] andθ1 ∈ [0,0.12]. Then, the
system defined by Eqs. (37)–(38) is simulated for each can-
didate value, the summary statistics are computed and the
likelihood is calculated. The parameter ranges were chosen
so that the shape of the posterior distribution is clearly visi-
ble.

In the first experiment, the cost function was constructed
around a set of summary statistics which were selected ar-
bitrarily. We used six statistics: mean, variance, auto-
covariance with time lag 1, covariance of a node with its
neighbor and cross-covariance of a node with its two neigh-
bors for time lag 1. Since the model is symmetric with re-
spect to the nodes, we averaged these statistics across differ-
ent nodes. The cost function was

C(ŝ,sθ ) =

6∑
i=1

(ŝi
−si

θ )
2/σ̂ 2

i , (39)

wheresi
θ is one of the six statistics computed from data simu-

lated with parametersθ , andŝi , σ̂ 2
i are the mean and variance

of the same statistics computed from a relatively long simula-
tion of the full-system (35)–(36) similarly to (Järvinen et al.,
2010) . All the 40 variablesxk were assumed to be observed
and the observation period was taken to be 200 days.

Figure2 shows the importance sampling weights obtained
for the 1000 candidate values. The results show that the cost
function (39) does not restrict the model parameters much
and the posterior distribution is rather broad. The parameter
estimates are also clearly biased: the values obtained using
the knowledge of the simulated fast variables are outside the
obtained distribution. Note also the “spiky” behavior of the
cost function: the weights do not vary smoothly as a function
of the parameters.

Likelihood based on an emulator

In the next experiment, the likelihood was computed using
an emulator trained on the same set of six summary statis-
tics. We again performed importance sampling of parameters
θ0 andθ1 of the model (37)–(38) using the same 1000 can-
didate values drawn fromθ0 ∈ [1.4,2.2] and θ1 ∈ [0,0.12].
The likelihood Eq. (11) was constructed using an emulator,
as explained in Sect.2.2.

Figure3a presents the results for the likelihood Eq. (11)
in which the dimensionality reduction was performed using
PCA with only two principal components retained. Figure3b
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Fig. 2. The scatter plots of the parameter value candidates and their
likelihood (represented by the size of the markers) obtained with
cost function (39). The marker size reflects the value of the weights
for importance sampling. The black ellipse represents the first two
moments estimated with importance sampling. The red star repre-
sents the parameter values estimated by fitting the forcing model to
the simulated fast variables (see Sect.5 for details).

presents similar results for the case when the dimensionality
of the features was reduced from six to two by fitting a lin-
ear regression modelθ ≈ Wsθ and by using a feed-forward
neural network (see, e.g.Bishop, 2006) to build an emulator.

There are a few remarks that we can make based on the
obtained results. Using the emulator results in a posterior
density which is a smooth function of the parameters, thus
the problem of the spiky behavior is solved. The parame-
ters found with this approach are close to the reference val-
ues but there is a bias which is affected by the choice of the
summary statistics. This effect is related to the known result
from the field of Approximate Bayesian Computation that
only usingsufficientsummary statistics yields the same pos-
terior distribution as when the full data set is used (Marjoram
and Tavaŕe, 2006). A longer observational period results in
a more narrow posterior distribution but the bias problem re-
mains.

The results are generally sensitive to the dimensionality re-
duction approach and to the number of components retained
in the model. In this simple example, using more or less
components leads to qualitatively similar results (biased esti-
mates). In more complex cases, a cross-validation procedure
(e.g. similar toSexton et al., 2011) might be needed to esti-
mate the right number of the required components.

Another problem is that the observed values of some of
the summary statistics cannot be obtained by varying the pa-
rameters of the surrogate model. This situation can easily
occur in real model tuning and it may result in over-fitting of
the parameters to such problematic statistics. In the results
shown in Fig.3a, this problem is concealed by the fact that
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(a) Dimensionality reduction by PCA
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(b) Dimensionality reduction by fitting a linear regression model θ≈Wsθ

Fig. 3. The scatter plots of the parameter value candidates and their likelihood (represented by the size of the markers) obtained with cost
function (11). The simulation length is 500 days (left) and 2500 days (right). The marker size reflects the value of the weights for importance
sampling. The black ellipses represent the first two moments estimated with importance sampling. The red start represents the parameter
values estimated by fitting the forcing model to the simulated fast variables (see Section 5 for details).

only two principal components are retained in the analysis
and those principal components can be simulated well by the
surrogate model.700

The summary statistics approach has a few other potential
problems. The choice of the summary statistics has a critical
impact on the estimated parameter values. Some arbitrarily
selected statistics may not be affected by varying the model
parameters and the idea behind the most informative projec-705

tions is to diminish this problem. In the tuning of climate
models, summary statistics often include only monthly and
regional averages of some state variables, which means the
focus is on how well climate models reproduce the seasonal
cycle. It may be that some model parameters have little ef-710

fect on the seasonal cycle but they can be important for the
overall quality of a climate model.

Thus, the summary statistics approach has a few practical
problems and can result in biased estimates. We think that the
essential problem is the averaging procedure in which a lot715

of important information is lost. We argue that the sequential
methods provide a more appropriate way to determine the
likelihood for the parameters.

5.2.2 Likelihood calculations using filtering methods

In this section, we estimate the parameters of the forecast720

model (37) for the Lorenz 95 system using the filtering
methodology presented in Section 3.

Filtering with EKF. Implementation of EKF requires lin-
earization of the model (37), which is rather straightforward
in this synthetic example. As mentioned in Section 3.2, the725
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function (11). The simulation length is 500 days (left) and 2500 days (right). The marker size reflects the value of the weights for importance
sampling. The black ellipses represent the first two moments estimated with importance sampling. The red start represents the parameter
values estimated by fitting the forcing model to the simulated fast variables (see Sect.5 for details).

only two principal components are retained in the analysis
and those principal components can be simulated well by the
surrogate model.

The summary statistics approach has a few other potential
problems. The choice of the summary statistics has a critical
impact on the estimated parameter values. Some arbitrarily
selected statistics may not be affected by varying the model
parameters and the idea behind the most informative projec-
tions is to diminish this problem. In the tuning of climate
models, summary statistics often include only monthly and
regional averages of some state variables, which means the
focus is on how well climate models reproduce the seasonal
cycle. It may be that some model parameters have little ef-
fect on the seasonal cycle but they can be important for the
overall quality of a climate model.

Thus, the summary statistics approach has a few practical
problems and can result in biased estimates. We think that the
essential problem is the averaging procedure in which a lot
of important information is lost. We argue that the sequential
methods provide a more appropriate way to determine the
likelihood for the parameters.

5.2.2 Likelihood calculations using filtering methods

In this section, we estimate the parameters of the forecast
model (37) for the Lorenz 95 system using the filtering
methodology presented in Sect.3.

Filtering with EKF

Implementation of EKF requires linearization of the
model (37), which is rather straightforward in this synthetic
example. As mentioned in Sect.3.2, the EKF filtering pro-
cedure also requires the model error covariance matrixCE.
We use a simple parameterization:

CE = σ 2I , (40)

whereσ 2 is a parameter which needs to be estimated together
with parametersθ of the forecast model (37). In practice, we
estimate the logarithm ofσ 2, which guarantees the positiv-
ity of the variance and yields a posterior distribution whose
shape is closer to Gaussian. We perform parameter estima-
tion using delayed rejection adaptive Metropolis (DRAM)
MCMC (Haario et al., 2006, AppendixA).
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Fig. 4. Scattering plot of parameter pairs from MCMC runs us-
ing 10 (blue), 20 (red), 50 (black) and 500 (green) day simula-
tions. Clear tightening of posterior can be observed as the simu-
lation length increases. The third parameter is related to the model
error covariance.

In Fig. 4, the pairwise marginal distributions for the pa-
rameters are illustrated using 10, 20, 50 and 500 day simu-
lations. As expected, the distribution becomes tighter as the
simulation length increases. Note that the posterior distri-
bution is much tighter compared to the summary statistics
approach (see, e.g. Fig.3) even though almost half of the
states are not observed and the filtering procedure is applied
to a relatively short observation sequence. The parameter
estimates are closer to the reference values obtained using
the knowledge of the simulated fast variables, compared to
the estimates obtained via the summary statistics approach.
We also observe that the parameter distribution is approxi-
mately Gaussian when sufficiently long simulations are used,
as shown in Fig.5.

In Fig. 6, we plot the true forcing in the simulated full
system (35)–(36) against the slow variables. The red lines
in the figure represent the parameter values from the 50 day
MCMC simulation. The blue line represent the parameter
values obtained by fitting a line to the true forcing in the least
squares sense. We observe good agreement with our results
and the fitted line.

The estimates obtained by the likelihood approach are
close to the reference values obtained using the knowledge
of the fast variables. However, there is no reason to think
that the reference values are optimal, for instance in the sense
of forecast accuracy. Therefore, to further demonstrate that
likelihood approach produces good parameter estimates, we
study the effect of the parameters on the forecast skill of the
model. We grid the 2-dimensional parameter space and cal-
culate the average 6 day forecast skill for different parameter
values. The average forecast skill is computed by making a
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Fig. 5. Posterior distribution using 20 day simulations with MCMC
(red dots) and Gaussian approximation (black ellipse).
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Fig. 6. Actual forcing of fast variables (black cloud). Red lines
indicate forcing from MCMC runs. Red lines in the figure represent
results from the 50 day MCMC simulations. Blue line is gotten by
formally fitting the parameter values in the cloud.

6 day forecast starting every 24 h for 100 days. The averaged
forecast skill can be written as

f (θ) =
1

NKσ 2
clim

N∑
i=1

‖M6(x
true
i ,θ)−xtrue

i+6‖
2
2,

where N = 100, K = 40 and σclim = 3.5. The notation
M6(x

true
i ,θ) means a 6 day prediction launched from the

true statextrue
i with parameter valuesθ . The contour lines of

the average forecast skill and the parameter values obtained
by 10, 50 and 500 day MCMC runs are shown in Fig.7.
Again, we observe a good agreement: parameters tuned with
the likelihood approach yield a good average forecast skill
provided that the simulation length is sufficient.
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Fig. 7. An illustration of the average forecast skill. Black, red and
green dots indicate the results from 10, 50 and 500 day MCMC
simulations, respectively. Blue contour colors indicate high forecast
skill.

Sensitivity to model error covariance

The possibility to estimate the model error covarianceCE
from data is an advantage of the parameter estimation based
on filtering. In data assimilation,CE is often considered as a
tuning parameter which has to be selected somehow. In large
scale models like NWP, the model error covariance is usually
estimated in a separate procedure, and finding an effective
parametrization ofCE is an open question (see, e.g.Bonavita
et al., 2008).

Therefore, in the following experiment, we test how spec-
ifying non-optimal values for the model error covariance af-
fects the quality of parameter estimation. We use the same
parameterization (40) and vary the variance parameterσ 2 so
that it is two, five and 10 times smaller or greater than the
optimal value obtained in the EKF exercise with the 500 day-
long simulations (see Fig.4). We run the likelihood approach
with only 50 days of data. Since the posterior distribution is
approximately Gaussian, we do not perform the computa-
tionally heavy MCMC runs, but compute the MAP estimate
using an optimizer and calculate the Gaussian approximation
of the posterior at the MAP estimate (see AppendixA).

The results are shown in Fig.8. We observe that speci-
fying the model error covariance wrongly can lead to biased
parameter estimates: too small values ofσ 2 lead to an un-
derestimated posterior covariance of the parameters and vice
versa. In this specific example, we change the correctCE
only by one order of magnitude and still obtain reasonable
parameter estimates. For larger errors inCE, parameter esti-
mates can be severely biased.
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Fig. 8. Gaussian posterior approximations with 10, 5 and 2 times
too small and too largeσ2.

Filtering with EnKF

As discussed in Sect.3.2, replacing the deterministic EKF
with a stochastic filter, such as the EnKF, leads to a noisy
likelihood function. We performed importance sampling for
the two parameters similarly as in the summary statistics ex-
periment in Section5.2.1. The EnKF likelihood was evalu-
ated by fixing the model error varianceσ 2 to the optimum
found in the EKF exercise, and setting the number of ensem-
ble members to 100.

In our experiment, the noise in the likelihood function
dominated the statistical analysis: most of the importance
weights were assigned to only a few candidate values. That
is, statistical inference could not be performed properly, and
the noise in the likelihood seems to be a real issue in the
likelihood approach computed with EnKF. Here, we settle
for plotting the negative log-likelihood surface, as was done
with EnKF parameter estimation byDowd (2011). From
Fig. 9 we observe that the general pattern is good: low val-
ues are found from the correct region, and a reasonable MAP
estimate might be found using stochastic optimization tech-
niques. However, statistical inference is complicated by the
noisy likelihood. Smoothing methods could be used to al-
leviate the noise in the likelihood, but this question is not
pursued further here.

In addition, we also tested the likelihood set-up with
LETKF (Hunt et al., 2007) which falls into the category of
ensemble square-root filters with no random perturbations.
In this method, the model error term is neglected, but a
covariance inflation term is used to inflate the posterior co-
variance and to account for the missing model error term.
The covariance inflation parameter (seeHunt et al., 2007, for
details) can be estimated together with the parameters like
the model error term in EKF. In Fig.10we show MCMC runs
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Fig. 9. The use of stochastic filtering method yields a noisy likeli-
hood function. The results of 50 day run using EnKF based likeli-
hood function is illustrated in the Figure. The values indicate nega-
tive log-likelihood times two values. White star and black ellipse is
acquired from correspondent EKF likelihood calculations.

using different values for the covariance inflation parameter
and a run where the inflation parameter is estimated together
with the model parameters. Although there is a small bias,
depending on the value of the covariance inflation parameter,
the agreement with EKF calculations is rather good. Thus,
deterministic ensemble filters seem to be more suitable for
parameter estimation purposes.

5.2.3 State augmentation

As discussed in Sect.4, in SA the model parameters are mod-
eled as dynamical quantities, and the estimates do not con-
verge to any fixed value as more observations are added. The
rate at which parameter values can change from one filter
time step to another is controlled by the extra tuning parame-
ter, the model error covariance for the parameters,Cθ . Here,
we study how the SA method performs in parameter estima-
tion and specifically how the tuning ofCθ affects the results.

Tuning of the parameter error covariance

In our experiments, we use a diagonal matrix asCθ and keep
it fixed during the runs. The model error for the state vector
was fixed to its “optimal value”, obtained from the likelihood
experiments. In Fig.11we show four different runs using the
EKF version of the SA method. The runs are made so that
the diagonal elements ofCθ are taken to be 0.1 %, 1 %,10 %
and 100 % of the optimal parameter values acquired from
the likelihood experiment. In all cases, the SA method con-
verged quickly to values near the optimum. The effect of
the size ofCθ was as expected. WhenCθ is set to be small,
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Fig. 10.Full likelihood calculations using LETKF data assimilation
method. Different MCMC runs with different covariance inflation
factor together with 95 % trust ellipses. Red color indicates a run,
where the factor is also estimated (mean value is 1.52). Magenta,
blue and cyan colors indicate a run where covariance inflation factor
is fixed to 1.4, 2.0 and 2.5, respectively. Black star and ellipse is
acquired from correspondent EKF likelihood calculations.

the method reacts slowly on new data and the parameter val-
ues take small steps. On the other hand, ifCθ is set large,
the method allows larger deviations, but can yield unrealistic
values for the parameters. Some theoretical discussion about
the effect ofCθ is given in AppendixB.

In this example, we do not observe any systematic tempo-
ral variations in the parameter value. However, it is worth
pointing out that the SA method could be useful in checking
if such variations exist. Since the parameter trajectories are
stationary, one could use the mean value of the trajectories
as the final parameter estimate. In the current example, the
mean is a good estimate, and it is also rather insensitive to
the tuning ofCθ . In general, however, the parameter trajec-
tories cannot be interpreted in the statistical sense, since the
parameter values and their variation depend entirely on the
tuning ofCθ . Thus, the SA method cannot be used for sta-
tistical inference of the parameters in the same sense as the
likelihood approach.

Sensitivity to model error covariance

If, on the other hand, we keep the “parameter model error
covariance”Cθ fixed and vary the model error covariance
Cx , the effects are somewhat different than in the likelihood
approach. Too smallσ 2 values can cause the filter to di-
verge leading to unrealistic parameter estimates. Examples
of runs with too large model error covariance are illustrated
in Fig.12. We observe that too largeσ 2 values can cause bias
to the estimates. In addition,Cx affects the rate of change of
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Fig. 11.Runs using the EKF version of the SA method, when the di-
agonal elements ofCθ are taken to be 0.1 % (black), 1 % (red),10 %
(blue) and 100 % (green) of the optimal initial values. The effect
of the size ofCθ was as expected. WhenCθ is set to be small,
the method reacts slowly on new data and the parameter values take
small steps.

the parameters: the higherσ 2 is, the smaller are the param-
eter changes. The latter effect can be theoretically justified
(see AppendixB for details).

State augmentation with EnKF

The use of ensemble based filtering methods is possible in
state augmentation system. In our tests, with a large enough
ensemble size, the results were similar to the EKF results.
In the Lorenz system the minimum required ensemble size
is roughly 50. Smaller ensemble size leads to underestima-
tion of the covariances and can cause the filter to diverge.
We note that state augmentation does not have the problem
with the stochasticity of EnKF, which was encountered in the
likelihood approach.

6 Remarks and discussion

6.1 Applicability to large scale systems

The discussed parameter estimation methods differ in their
applicability to large scale systems like NWP and climate
models. The summary statistics based approaches are com-
putationally expensive although straightforward to imple-
ment: one only needs to simulate the model, and compare
the selected summary statistics of the simulations and the
observations. The difficulty lies in selecting the appropri-
ate summary statistics that enable the identification of the
parameters.
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Fig. 12. Examples of too large model error: the model error vari-
ance is multiplied with 100 and 1000. Too large model error in state
augmentation will cause bias in the parameter values. Note that the
rate of change of the parameters becomes smaller as the variance
grows, althoughCθ is kept fixed in all runs. The straight lines rep-
resent the means of the parameter trajectories.

The state augmentation and the likelihood approaches de-
pend on a data assimilation system, which is often available
for NWP systems, but not commonly for climate models.
The state augmentation method requires modifications to the
assimilation method. In deterministic assimilation systems,
such as the variational approximations to EKF that are of-
ten used in operational NWP systems (Rabier et al., 2000;
Gauthier et al., 2007), one needs to add derivative compu-
tations with respect to the parameters. If an ensemble data
assimilation method is used, such as a variant of the EnKF
(seeHoutekamer et al., 2005) parameter perturbations need
to be added. Computationally, state augmentation is econom-
ical, since it requires only one assimilation sweep over the
selected data.

The filter likelihood approach is computationally much
more challenging than the state augmentation approach,
since it involves many repeated filter sweeps, the number of
which depends on the parameter estimation technique used.
The likelihood approach requires, in addition to a data assim-
ilation system, a method to estimate the forecast error covari-
ance. In ensemble data assimilation systems, the covariance
can be estimated from the ensemble. Variational data assimi-
lation methods do not contain error propagation mechanisms,
and it is not immediately clear how the likelihood approach
can be implemented in these systems. A potential way is
to obtain the covariance from ensemble prediction systems
(EPS), that are built for approximating the prediction errors
(Molteni et al., 1996; Palmer et al., 2005). Our preliminary
tests with the low order system suggest that such EPS in-
formation could be used to approximate the likelihood ap-
proach, but verifying this is a topic of on-going research.
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Fig. 13.Distribution of the state variables in the full Lorenz system
(top left) and in the parameterized system with maximum likelihood
estimate (top left) and two arbitrarily chosen “poor” parameter val-
ues (bottom row).

6.2 Climatologies with tuned parameters

In our likelihood experiment, the optimal parameter values
led to improved short-range average forecast skills, as ex-
pected. Another question is related to the effect of parameter
tuning on the quality of long model simulations (or “clima-
tologies”): the tuned parameters should, in addition to im-
proving short-range forecasts, improve climatologies, too. In
Fig. 13, we compare the histograms of the state variables in
the full Lorenz system and in the forecast model with differ-
ent parameter values. We compare the statistics of the full
system to the statistics produced by the forecast model with
maximum likelihood parameter estimate and two arbitrarily
chosen “poor” parameter values. We observe that, in this
case, the parameters tuned with the likelihood approach pro-
duce also the correct climatologies. We also note that the
overall statistics of the system can be quite good even with
rather poor parameter values. This highlights the difficulties
in choosing the correct likelihood for the summary statistics
approach.

7 Conclusions

In this paper, we review three methods for parameter estima-
tion in chaotic systems. In the summary statistics approach,
the selected statistics computed from model simulations are
compared to the same statistics calculated from observations.
In the state augmentation method, unknown parameters are
added to the state vector and estimated “on-line” together
with the model state in a data assimilation system. In the
likelihood approach, the likelihood for a parameter value is

computed by running a data assimilation method “off-line”
over a selected data set. All methods were studied using a
modified version of the Lorenz 95 model.

Our results indicate that the summary statistics approach,
albeit relatively easy to implement and compute, can have
problems in properly identifying the parameters, and may
lead to biased estimates. This result is supported by the
previous climate model parameter estimation experiments
(Järvinen et al., 2010) where simple summary statistics were
not enough to uniquely identify all selected model parame-
ters.

The state augmentation approach can work well and con-
verge fast, if properly tuned. State augmentation contains ad-
ditional tuning parameters, to which the performance of the
method is somewhat sensitive: one must correctly specify
the model error covariance both for the actual model states
and for the parameters. The state augmentation approach
is computationally feasible, since parameters are estimated
“on-line” instead of repeatedly comparing model simulations
to observations. The implementation of the method requires
a modification to the data assimilation system. A down-
side of the approach is that the “static” model parameters are
modeled as dynamical quantities, and one needs to accept the
fact that the parameter estimates change at every time step
and do not converge to a fixed value. Moreover, the method
does not support statistical inference of the model parame-
ters, since the obtained parameter values depend directly on
the tuning of the model error covariance.

The likelihood approach performed well in our tests. The
performance of the method was somewhat sensitive to the
tuning of the model error covariance, like in the state aug-
mentation approach. The likelihood approach assumes that
the parameter values are static, and allows for statistical in-
ference of the model parameters. The method requires a data
assimilation system, and a method to propagate model error
statistics. This may be restrictive in large-scale systems. The
computational burden is much higher than in the state aug-
mentation approach, and may be a bottleneck when scaling
up to large scale NWP and climate models. The likelihood
can be implemented with ensemble data assimilation meth-
ods, but the statistical analysis may be complicated by the
stochasticity introduced into the likelihood function, if ran-
dom perturbations are used in the ensemble method.

Appendix A

Parameter estimation algorithms

A1 MAP estimation and Gaussian approximation

The Maximum a Posteriori (MAP) estimate can be found by
maximizing the posterior densityp(θ |y) with respect toθ ,
or, equivalently, minimizing the negative logarithm of the
posterior
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L(θ) = −logp(θ |y) = −logp(y|θ)− logp(θ).

The maximization can be done by different numerical meth-
ods (see, e.g.Nocedal and Wright, 1999). Once the estimate
θ̂ = argminL(θ) has been obtained, one can construct a mul-
tivariate Gaussian approximation ofp(θ |y) around the point
θ̂ . It is well known (see, e.g.Gelman et al., 2003) that the
covariance matrix at̂θ can be approximated by the inverse
Hessian of the negative logarithm of the posterior:

Cov(θ) ≈ H(θ̂)−1,

where the Hessian matrixH(θ̂) contains the second deriva-
tives of the negative logarithm of the likelihood, evaluated at
θ̂ :

Hij (θ̂) =
∂L(θ)

∂θ i∂θ j

∣∣∣∣
θ=θ̂

.

The Hessian can be calculated analytically or numerically.
In our examples, we have used a standard finite difference
approximation applying the central difference formula (No-
cedal and Wright, 1999).

A2 MCMC sampling

In principle, the Bayes formula, see Eq. (3), solves the pa-
rameter estimation problem in a fully probabilistic sense.
However, the problem of calculating the integral of the
normalizing constant is faced. This integration is often a
formidable task, even for only moderately high number of
parameters in a nonlinear model, and direct application of the
Bayes formula is intractable for all but trivial nonlinear cases.
The MCMC methods provide a tool to handle this problem.
They generate a sequence of parameter valuesθ1,θ2,...θN ,
whose empirical distribution approximates the true posterior
distribution for large enough sample sizeN .

In many MCMC methods, instead of sampling directly
from the true distribution, one samples from an artificialpro-
posal distribution. Combining the sampling with a simple
accept/reject procedure, the posterior can be correctly ap-
proximated. The simplest MCMC method is theMetropolis
algorithm(Metropolis et al., 1953):

1. Initialize by choosing a starting pointθ1.

2. Choose a new candidateθ̂ from a suitable proposal dis-
tributionq(.|θn) that may depend on the previous point
of the chain.

3. Acceptthe candidate with probability

α(θn,θ̂) = min

(
1,

π(θ̂)

π(θn)

)
.

If rejected, repeat the previous point in the chain. Go
back to step 2.

So, points withπ(θ̂) > π(θn), i.e., steps “uphill”, are al-
ways accepted. But also points withπ(θ̂) < π(θn), i.e. steps
“downhill”, may be accepted, with probability that is given
by theratio of theπ values. In practice, this is done by gen-
erating a uniformly distributed random numberu ∈ [0,1] and
acceptingθ̂ if u ≤ π(θ̂)/π(θ i). Note that only the ratios of
π at consecutive points are needed, so the main problem of
calculation the normalizing constant is circumvented, since
the constant cancels out.

However, the choice of the proposal distribution may still
pose a problem. It should be chosen so that the “sizes” of
the proposalq and target distributions suitably match. This
may be difficult to achieve, and an unsuitable proposal can
leadt to inefficient sampling. For simple cases, the proposal
might be relatively easy to find by some hand-tuning. How-
ever, the “size” of the proposal distribution is not a sufficient
specification. Especially In higher dimensions, the shape and
orientation of the proposal are crucial. The most typical pro-
posal is a multi–dimensional Gaussian (Normal) distribution.
In therandom walkversion, the center point of the Gaussian
proposal is chosen to be the current point of the chain. The
task then is to find a covariance matrix that produces efficient
sampling.

Several efficient adaptive methods have been recently pro-
posed, for example, the adaptive Metropolis (AM) algorithm
(Haario et al., 2001). In adaptive MCMC, one uses the sam-
ple history to automatically tune the proposal distribution
“on-line” as the sampling proceeds. In AM, the empirical
covariance from the samples obtained so far is used as the
covariance of a Gaussian proposal. In this paper, a vari-
ant of AM called the delayed rejection adaptive Metropolis
(DRAM, Haario et al., 2006) is used for all sampling tasks.

A3 Importance sampling

Some methods considered here use a likelihood which de-
pends on initial conditions, random seeds and other settings,
and the estimated likelihood is therefore random. For such
methods, we used the following importance sampling proce-
dure for estimating the parameters. The likelihood was com-
puted for a set of candidate parameter valuesθ1,...,θN which
were drawn from animportance functiong(θ). The posterior
distribution of the parameters was evaluated by weighting
each sample according to their likelihood values with respect
to the importance function:

wi = p(z | θ i)/g(θ i).

One can now compute the required statistics using sam-
plesθ i with weightswi . Here, we evaluated the weighted
posterior mean

θ̄ =
1

W

N∑
i=1

wiθ i

with W =
∑N

i=1wi and the weighted covariance matrix
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Cθ =
1

W

N∑
i=1

wi(θ i − θ̄)T (θ i − θ̄)

to approximate the confidence intervals for the closure pa-
rameters.

Appendix B

The effect of the model error covariance matrix
in the state augmentation method

Here we study the effect of the block diagonal error covari-
ance matrix

Cx,θ =

[
Cx 0
0 Cθ

]
in the state augmentation set up, that is when we assume that
the errors in the state and the parameters are uncorrelated.
For notational convenience, we do not use the time indexk.
Naturally, we do not observe the model parameters and the
observation operator is

K̃ =
[
K 0

]
,

whereK is the original observation operator.
The Kalman gain matrixG, that defines how much the

prior state and covariance are changed by an observation, can
be written as

G = CpK̃T (K̃CpK̃T
+Ce)−1

= M θCest
k−1M θT

K̃T (K̃M θCest
k−1M θT

K̃T

+ K̃Cx,θ K̃T
+Ce)−1

+ Cx,θ K̃T (K̃M θCest
k−1M θT

K̃T

+ K̃Cx,θ K̃T
+Ce)−1. (B1)

Our augmented model error covariance matrixCx,θ ap-
pears in the gain matrix only asCx,θ K̃T . Now,

Cx,θ K̃T
=

[
Cx 0
0 Cθ

][
KT

0

]
=

[
CxKT

0

]
.

This means that the parameter partCθ of the model error
covariance matrix has no (direct) effect on the gain matrix.
Hence, it would be the same as it would be directly inserted to
its place in the posterior error covariance matrix. Especially
this can be noted in the first round of the state augmentation:
the selected matrixCθ has no effect on parameters or state.

From the expansion (B1) of G we can note that
only the first termM θCest

k−1M θ T K̃T (K̃M θCest
k−1M θ T K̃T

+

K̃Cx,θ K̃T
+Ce)−1 affects the parameter part of the gain ma-

trix, since the second term has a multiplierCx,θ K̃T . In that
term the model error termCx,θ appears only in the inverse,
so if we will increaseCx in the experiments, it will cause a

smaller rate of change to the parameters. In addition to the in-
verse, the previous posterior covariance matrixCest

k−1 appears
also in the “numerator”. Hence, the effect of increasingCθ

will saturate at some point.
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