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Abstract. Many dynamical models, such as numerical affect the shortwave radiation fluxes in atmospheric models.
weather prediction and climate models, contain so called cloThese properties can be specified with parameters, such as
sure parameters. These parameters usually appear in physidhk mean effective radius of cloud water dropldaiaftin
parameterizations of sub-grid scale processes, and they act asal, 1994.
“tuning handles” of the models. Currently, the values of these The closure parameters act as “tuning handles” of the
parameters are specified mostly manually, but the increasingnodels. Parameter tuning is particularly necessary whenever
complexity of the models calls for more algorithmic ways to new and improved parameterized processes are implemented
perform the tuning. Traditionally, parameters of dynamical into the models. Currently, the parameters are usually pre-
systems are estimated by directly comparing the model simdefined by experts using a relatively small number of model
ulations to observed data using, for instance, a least squaresmulations. This tuning procedure is somewhat subjective
approach. However, if the models are chaotic, the classicadnd therefore open for criticism.
approach can be ineffective, since small errors in the initial In this paper, we discuss different algorithmic ways to es-
conditions can lead to large, unpredictable deviations fromtimate the tuning parameters, that is, how to find the opti-
the observations. In this paper, we study numerical methodsnal closure parameters by fitting the model to available ob-
available for estimating closure parameters in chaotic modservations. While this problem has not been studied much,
els. We discuss three technigues: off-line likelihood calcula-there are a few recent papers that address the problem in the
tions using filtering methods, the state augmentation methodgontext of climate modelinglackson et al2008 Villagran
and the approach that utilizes summary statistics from longet al, 2008 Jarvinen et al.201Q Sexton et al.2011). Nu-
model simulations. The properties of the methods are studmerical weather prediction (NWP) is considered to be more
ied using a modified version of the Lorenz 95 system, whereof an initial value problem than a parameter estimation prob-
the effect of fast variables are described using a simple palem (Annan and Hargreave2007) and tuning of closure pa-
rameterization. rameters is in general done manually by using samples of test
forecasts. In a recently proposed approach, NWP parame-
ter estimation is embedded into ensemble prediction systems
) (Jarvinen et al.2011; Laine et al, 2011).
1 Introduction While the motivation behind this work is the closure pa-

. . ) ) _rameter estimation problem in atmospheric models, we note
Many dynamical models in atmospheric sciences containhat similar parameterizations appear in many multi-scale
so called closure parameters. These parameters are Usgpdels in computational fluid dynamics. The parameter esti-
ally connected to processes that occur on smaller and fastpation is complicated by the fact that these models are often
scales than the model discretization allows. For instance, th%haotic, which means that a small change in the initial condi-
computational grid used in modern climate and numericalijons can lead to a completely different simulated trajectory.
weather prediction (NWP) models is too coarse to directly Therefore, the classical parameter estimation approaches that
model cloud micro-physics and many cloud-related phenomyre pased on directly comparing model simulations and ob-

ena are therefore represented by parameterization schemegyations using, for instance, a least squares approach, may
For example, consider the cloud shortwave optical properye inefficient.

ties, which are related to the cloud liquid water amount, and
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128 J. Hakkarainen et al.: On closure parameter estimation in chaotic systems

To fix the notation, let us assume for simplicity that a dy- Lorenz95 system
namical model can be described by a discrete state spac *° ‘ ‘ ‘
model — — Not assimilated

~ Assimilated
Xp = M(xk 1 0) (1) ® Observations

2k = K(xp), 2

wherex denotes the state of the system, the model opera%:g
tor M solves the equations that describe the dynamics 0'g
the systemk is the index of the timez are the variables
that can be observed; is the observation operator aifid
denotes the (closure) parameters. The model operatis 0
assumed to contain everything that is needed to simulate th
system, including also as external forcing terms and bound
ary conditions. In the real-world setting, we would like to
tune parameterg of the model in Egs.1)—(2) using a set

of available observationg={y1....,y,} taken atsometime >0 2 4 6 8 10 12 14 15 18 20
instanceqr1,...,t,}. Note thaty are measured values, while Time

z are simulated values of the same variables. . . . . o .
| t timati follow the B . thod Fig. 1. An illustration of sequential data assimilation in a chaotic
n parameter estimation, we follow the bayesian metho “system. After some time the control run, even with optimal param-

ology, in which the knowledge about the unknown parame-gter values, gets “off track” due to chaos. Data assimilation keeps
ters is inferred from the posterior distributigré|y): the model in the same trajectory with the data.

p@|y) < p(0)p(y10), 3

which is evaluated using the prigr(@) and the likelihood Statistics computed from long simulations are less dependent
p(¥10). The likelihood function specifies how plausible the on the initial conditions than the specific values of the state
observed data are given model parameter values. Therefor¥ariables.

defining a proper likelihood function is the central problemin ~ The other two approaches are based on embedding the pa-
parameter estimation. The prior contains the information tharameter estimation techniques into dynamical state estima-
we have about the parameters based on the accumulated ition (data assimilation) methods that constantly update the
formation from the past. For an introduction to Bayesian es-model state as new observations become available. Thus, the
timation, see, for example, the book Gg¢lman et al(2003. model is kept in the vicinity of the data, and the problems

Traditionally, parameters of dynamical systems are esti-caused by chaotic behavior can be alleviated. This is illus-
mated by comparing model simulations to observed data ustrated in Fig.1 by running the Lorenz system — that is used
ing a measure such as a sum of squared differences betwed®r experimentation in Secs.— two times from the same ini-

z andy. This corresponds to the assumption that the obsertial values, with and without data assimilation. One can see
vations are noisy realizations of the model values. The probthat the model run without assimilation eventually deviates
lem in applying these techniques directly to chaotic systemdrom the trajectory of the observations.

is that the dynamically changing model states not known We consider two ways to implement parameter estima-
exactly, and small errors in the state estimates can grow in ation within a data assimilation system. In tistate aug-
unpredictable manner, making direct comparisons of modementationapproach (see Sea), the model parameters are
simulations and observations meaningless over long time petreated as artificial states and assimilated together with the
riods. actual model state (see, el§jtagawa 1998 lonides et al.

In this paper, we consider three ways to estimate the clo2006 Dowd, 2011). In thelikelihood approach, detailed in
sure parameters of chaotic models. In the first approach, obSect.3, the likelihood of a parameter value is evaluated by
servations and model simulations are summarized in the formmunning a state estimation method over a chosen data set,
of statistics, which are typically some temporal and spatialkeeping the parameter value fixed. The likelihood is con-
averages of the data. The likelihood model is constructed irstructed using the filter residuals (the squared differences be-
terms of the summary statistics such that model parametersveen the observations and the short-range forecasts), see
producing statistics that are closer to the observed statisticEig. 1. This resembles classical parameter estimation, but
would have higher likelihood. This kind of an approach is the uncertainty in the model state is “integrated out” using
employed in climate model parameter estimation in severah state estimation technique. The problem of chaoticity is
recent studiesJackson et al.2008 Jarvinen et al. 201Q circumvented by computing the likelihood components from
Sexton et al.2011). In the summary statistics approach, short simulations, where chaotic behavior does not yet ap-
the problem of chaotic behavior can be alleviated, since thegpear. The likelihood approach is a standard technique in
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parameter estimation of stochastic models (seeKaévgnan, the correlations are ignored (E@). becomes a sum of mul-
2003 Singer 2002 Dowd, 2011), but less studied in connec- tiple terms. For example, idarvinen et al(2010 the cost
tion with deterministic, chaotic systems. function was similar to
The paper is organized as follows. In Setwe present g 92, 2
the methodology for the summary statistics approach. The (5:50) = (57 —55)"/0g
likelihood approach is discussed in Segitand the sequen- 12 , NT . .
tial parametpee estimation via state augmentation is [?resented + ZZ (slkt _slakt) Eﬁc;l (slkt —Sbkt> ) )
in Sect.4. In Sect.5, the case study setup and numerical re- =1 ik
sults are presented. In Se@tve discuss some specific issues wheres9 is the annual global mean of the net radiative flux
related to the properties of the methods. Secficoncludes  at the top of the atmosphere (TOA) asd’ are zonal and
the paper. monthly averages of thie-th variable computed for latitude
i and monthe. The first term in Eq. ) penalizes unstable
o o models which have an unrealistic balance of the global-mean
2 Likelihood based on summary statistics TOA radiation, whereas the second term ensures a realistic
annual cycle for the radiation. The same statistics computed

gg\llerzl retcent tstu|d|2eosle(ckson et a,l.2?08 Jzi_rvmte_n et al'l_ from simulated data are denotediﬁ/andsi,k’ .
Q Sexton et al.201) on parameter estimation in cli- 0 60 o the studies hjarvinen et al(2010 was to ex-

mate models formulated the likelihood in terms of summary . .
" . ) L lore the uncertainty of the parameters which have a large ef-
statistics. The advantage of this approach is that it is compup y P 9

tationally feasibl d rather straiahtf d to imol tfecton the radiative balance and therefore only the net radia-
ationaly teasible and rather straightiorward 10 Implement. i, .,y 4t TOA was used to compute the zonal and monthly
It avoids the problem of chaotic behavior as in sufficiently

| imulati the effect of the initial val diminish averages’* in Eq. (7). In Jackson et a{2008), several vari-
ong simulations the efiect ot the initial values diminiSNes. oy 0.4 \ware included in the cost function and the covariance

In this approach, the observations are transformed to a S&hatrix /% was formulated in terms of a few leading empir-
of summary statistics =s(y1.,), whereys., denotes all ob- ical orthogonal functions (EOFs).

servations fom _ste.ps C,)f the simulation mode] EqL(2). One problem of the direct matching of observed and sim-
The posterior distribution of model paramet@iis evaluated ulated statistics is that the resulting likelihood E8) tnay

as not be a smooth function of the parameters, as will be seen in
p(81s) o p(0) p(s]6). &) th_e experimental results (e.g. F@). A possubl_e reason for
this are the random effects caused by the finite length of the
The likelihoodp(s|@) is constructed so that modélgro- simulations. The noise i_n th(_a objective function may compli-
ducing summary statistiag which are close to the observed cate the parameter estimation procedure. Another problem
valuess get higher probability. Here,y = s(zg.1.,) denotes IS that the matching approach is not based on a well justified
the summary statistics computed from daga., simulated  statistical model for the summary statistics: it is not easy to
for n steps with model parametets The approach is related define what values for the summary statistics are “good” in
to approximate Bayesian computation (ABC, see, €Egy- the statistical sense. For example, it is not straightforward to
nuet et al, 2008, where summary statistics are used to do Select the scaling parametgyy, in Eq. (7).
statistical inference in situations where the exact likelihood

is intractable. 2.2 Fitting a probabilistic model for summary statistics

The problems mentioned above can be partly overcome by
building a probabilistic model for the summary statistics.

When the simulated and observed summary statistics are dil e summary statistics are treated as random variables which
rectly matched, the likelihood can be formulated, for in- Zre systematically affected by varying the model parameters

stance, as

2.1 Matching observed and simulated statistics

so =f(0)+e, (8)

where functionf is often called an emulator or a surrogate
model Rougier 2008 Sexton et al.2017) and the noise
terme can be assumed Gaussian with zero mean and covari-
ance matrixx. The emulator and the noise model can be
estimated from training samples which are p4itgs,6;} of
C(s,59) = (s —59) = L(s —s9), (6)  simulated statisticsy, and parameter valugh used in the
simulations. This is a nonlinear regression problem which
where the covariance matriX takes into account possible have been studied intensively in statistics and machine learn-
correlations between the summary statistics. When some ahg (see, e.gBishop 2006. Examples of parametric models

1
p(s]0) O<eXP<—§C(S,So)>, ®)

where C(s,sg¢) is a cost function penalizing the misfit be-
tweens andsy. For example, one could use the Gaussian
assumption yielding the form
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130 J. Hakkarainen et al.: On closure parameter estimation in chaotic systems

for f include polynomials, radial basis function networks and State estimation in dynamical models can be carried out
multi-layer perceptrons. using filtering methods, where the distribution of the model
Thus, prior to constructing the likelihood, the model has to state is evolved with the dynamical model and sequentially
be simulated many times with different parameter values seupdated as new observations become available. When static
lected over a suitable range. This is computationally expenparameters are estimated, filtering can be used to “keep the
sive, but a necessary step. The likelihood is then constructedhodel on track” with the measurements. In this section, we

as present how the likelihood in chaotic models can be com-
puted using filtering methods. First, we present the general

s|0~N({©0),%). (©) filtering formulas and then consider the special case of Gaus-
sian filters.

One difficulty of learning Eq.g) is that the set of all possi-
ble statistics iryg is highly multidimensional while the num-
ber of examples to train the emulator E8) (s potentially
limited because of the high computational costs of model| g s consider the following discrete state space model at
simulations. This problem can be solved by reducing theime stepk with unknown parametess
number of summary statistics somehow before training the

3.1 General formulas

model Eg. 8). The simplest way is to consider only a linear xx ~ p(xg|xr—1,0) 12)
combination of the summary statistics, which means neglectyk ~ p(yklxr) (13)
ing the variability of summary statistics outside a selected , »(6) (14)

subspace. Thus, E@)(is replaced by
Thus, in addition to the unknown, dynamically changing
Ws =f.(0) + e, (10) " model statex;, we have static parametefs from which
whereW is a properly chosen matrix and the likelihood is W€ have some prior informatiop(6). As mentioned in the
formulated in terms of the projected data: mtrodugtlon, _the goal in parameter estimation, in Bayesian
terms, is to find the posterior distributign@|y1.,) of the
Ws|0 ~ N(f.(0),X,). (11) parameters, given a fixed data gat,. Here, the notation

. — ¥1n = {y1,..., ¥»} means all observations fartime steps.
Sexton et al(2011), computed/ using principal compo- Filtering methods (particle filter, Kalman filters, etc.) es-

nen.t a_nalysis (PCA) and the dimensionality ,Of the Summaryiimate the dynamically changing model state sequentially.
statistics was reduced from 175 000 to only six. Thus, the crl-l-hey give the marginal distribution of the state given the
terion for dimensionality reduction used there was the maXi'measurements obtained until the current timeThus. for
mum amount of variance retained in the projected statistics, given value o, filtering methods estimate(xy|y1. '0)

Another possible approach is to find projectiolis which Filters work by iterating two steps: prediction and update.
are most informative about closure paramegersor exam- |, the prediction step, the current distribution of the state is

ple, canonical correlation analysis is mentioned as a Morey oived with the dynamical model to the next time step:
appropriate dimensionality method IRougier (2008. In

the experlments pre'sented in SeeR.1, we flnd\.N. by fit- pk|yiso1.0) = /p(xklxk—lﬂ)
ting a linear regression modél~ Wsy to the training data
{z9,.0:}. The emulator 10) is then estimated for the pro- X p(Xg—1|y1:k—1,0)dx)_1. (15)

jected statistics. Note that one can analyze the elements of S .
W computed to maximize correlations betweands, in When the new observatioyy, is obtained, the model state

order to have a clue on which summary statistics are affectedf UPdated u3|ng0the Bz;yes’_ru.le with the predictive distribu-
by varying the closure parameters. tion p(xt|y1:x-1.6) as the prior:

p(xr|y1e,0) < p(yilxi, ) p(xi|y1i—1.0). (16)

3 Likelihood with filtering methods This posterior is used inside the integrab) to obtain the

. o ) . prior for the next time step.
Traditionally, the likelihood for a parameter in non-chaotic * jgjng the state posteriors obtained in the filtering method,
dynamical models is calculated by comparing the model (0t js a1so possible to compute the predictive distribution of

data using a goodness-of-fit measure, such as the sum @fis next observation. For observatipp, the predictive dis-
squared differences between the model and the observatlonﬁibution, given all previous observations, can be written as

In many cases, however, the model state is not known accu-

rately andi it has tg be'estlmated t.ogether.W|th the parames, . 1y 1 6) =fp(yklxk,0)p(xk|y1;k_1,0)dxk- (17)
ters. This is especially important with chaotic models, where

small errors in the model state can grow quickly when the  1ne |atter termp (x| y14_1,0) in the integral is the pre-
model is integrated in time. dictive distribution given by Eq.15).
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Let us now proceed to the original task of estimating staticassumed to be zero mean Gaussiakg:.~ N (O, C,'f) and
parameteré from observationg.,, i.e., computing the pos- e; ~ N(0,Cy).

terior distributionp(9|y1.,). Applying the Bayes’ formula In KF, the prediction and update steps can be written down
and the chain rule for joint probability, we obtain analytically, since everything is linear and Gaussian. EKF
uses the KF formulas, but the model matrix in KF is replaced
p®1y1n) < p(y1n10)p(9) (18) by a linearization of the nonlinear model. In EKF, the pre-
= p(Ynly1n-1.0)p(yn-11y1:n-2,0)... dictive distribution for the state at timieis
x p(y2ly1,0)p(y16)p(6). (19) xelysi 1.0~ NGl Ch), (22)

In the filtering context, the predictive distributions » " ) . ‘
wherex; = M(x¢%,,0) is the posterior meaw;*; from

p(yily1i—1,0) are calculated based on the marginal poste- : s - ;
rior of the model states, see E47. the previous time evolved with the model. The prior co-

Thus, the likelihood of the whole daga., can be calcu-  varianceC; = MzC,fithzT +CE is the covariance of the
lated as the product of the predictive distributions of the in-state estimate evolved with the linearized motMai =
dividual observations. That is, to check how well the model aM(xgitl,O)/axfitl.
with parameter vectad# fits the observations, one can check Inthe update step, the prior in EQJ) is updated with the
how individual predictions made from the current posterior new observatioty;. In the EKF formulation, the posterior is
fit the next observations. The only difference to traditional

t
model fitting is that the state distribution is updated after eachtx!Y1:x:0 ~ N (e CF*), (23)

measurement. _ wherex¢tandC®tare given by the Kalman filter formulas:
Note that the above analysis only tells how the parameter
likelihood is related to filtering methods. We have not yet x£'= x” + G, (yx — K(x1)) (24)

discussed how the parameter estimation can be implement est_ o _ G, K,CP (25)
in practice. In order to obtain the parameter estimates, two ¥ k KM

steps are required: (a) a filtering method to compute the pos- Here G, = CIKI(KyCPKT 4-C%)~1 is the Kalman gain
terior density for a given parameter value and (b) a parameteg, 5 irix andK = 8/C(x,f)/8x,f is the linearized observation

estimation algorithm to obtain the estimates. In this Paperonerator. The predictive distribution of measuremept
we use variants of the Kalman filter for task (a), but other fil- oeded in the likelihood evaluation. is given by

tering methods, such as particle filters (see, €appe et aJ.

2007, could be applied as well. For task (b) there are severaly;|y1.x—1,0 ~ N(IC(x,f), C,{), (26)
optimization and Monte Carlo approaches available, and the

method of choice depends on the case. In our examples, wehereC; = KC{K” +Cg. Now, applying the general for-
use three different methods to estimate the posterior distributula (19), the total likelihood of observings.,, given pa-
tion: a maximum a posteriori (MAP) optimization approach rameterd, can be written as

with a Gaussian approximation of the posterior, a Markov n
chain Monte Carlo (MCMC) algorithm, and an importance p ( y1.,10) :p(y1|0)1_[p(yk|y1:k_1,0)
sampling approach. For the sake of completeness, these al- k=2

gorithms are briefly reviewed in Appendix n 1 1 Cd/2imy 12
Next, we will present how the parameter estimation is per- = Hexp(— Erff(Ci) ’k)(Z”) ey
formed in the more familiar case, where the distributions =1

are assumed to be Gaussian, and the extended Kalman filter IO -1 y
(EKF) is used as the filtering method. x eXp(_ ‘kzzl['k C +'°g'ck'] ’ 27)
3.2 EKF likelihood wherer = y,—K(x7) and|-| denotes the determinant. Note

. ) that the normalization constants of the likelihood terms de-
The extended Kalman filter is one of the most popular meth—pend oné implicitly through the covariance@,f, and the

ods for state estimation in nonlinear dynamical models. EKF, y Py T .
) ) ) term log|C; | =log|K;C; K C¢| therefore needs to be in-
is an extension to the Kalman filter (KKalman 1960, 9C; | =logIKkCyKy +Cl

. - cluded.
where the model is assumed to be linear.

) The above likelihood resembles the traditional “least
Let us now write the state space model as follows:

squares” type of Gaussian likelihoods. The difference is that
xp = M(xp_1,0)+ Ex (20) the model state is allowed to change between time steps, and
the residuals are weighted by the model prediction uncer-
=K . 21 . . "
Tk (xe)+ex (1) tainty termK,;C’K! in addition to the measurement error
Unlike in the standard EKF, the modai now depends covariance'.?f. In fact, removing the model uncertainty terms
on parameter®. The model and observation errors are K,-C{’KZT reduces the likelihood to the classical Gaussian
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likelihood often used in parameter estimation. Adding the For notational convenience, we have dropped the time in-
prediction error covariances to the sum of squares terms esdexk from the error terms.

sentially gives more weight to situations that are predictable, In SA, we treat the combined vector = [x,0;]” as the
and down-weights the terms where the model prediction isstate vector that is updated at each time gteghe model

uncertain, due to, e.g. chaotic behavior of the system. for the combined vector can be written as
If, in addition to the actual model parameté@rghe model ~
error covarianc€g is unknown, we can parameterize it and $k+1= M(sk)+ Ex o, (31)

estimate its parameters from the measurements together Wi%h ~ T :
) . . ere M = [M(x(,0k),0;]" and E, g is the error of
the model parameters. As discussed later in more detalil, th (81) = [M(xk, 010, 0] *.0

. . . ; e augmented model1, here assumed to be zero mean
ability to estimate the variance parameters is one of the ad- ) : .
- Gaussian with covariance mati@ 4.
vantages of the likelihood approach, compared to the state _ o _
In EKF, we now need to lineariz&1(s;) with respect to

augmentation and summary statistics methods. hich its in the followi bi =

Unfortunately, as the dimension of the model increases®» Which results in the following Jacobian matrix:
EKF soon becomes practically infeasible. An approximation IM (s

i ) . 0 axy 0 a0

to EKF that can be implemented in large-scale systems is th = (51) = [ Aglo(s%i o Aa/lo(s%é k]
ensemble Kalman filter (EnKF). In EnKF and its numerous KIOZK W
variants (see, e.gEvensen2007 Ott et al, 2004 Whitaker _ [3M(sk)/axk 3M(sk)/30k] (33)
and Hamill 2002 Zupanskj 2005, the computational issues 0 '
in EKF are circumvented by using sample statistics in EKF Now, this matrixM, can be used in the EKF formulas.

formulas, computed from a relatively small number of en- \oe that the top left term in the matrix is the linearization
sembles. Hence, when EnKF is used, tpe likelinddg €an it respect to the actual states, which is needed in the stan-
be computed simply by defining’ andC;’ as sample mean 4 states-only EKF as well. In addition, the derivative with

and covgrlance matr_|x estimated from the ensemble. respect to the parameters is needed (the top right term).
Mostimplementations of the EnKF involve random pertur- -, EkE \ve also need to define the model error covariance
bations of the model states and observations. This i”tmd“ceﬁ‘mrixc 5. In SA, this must be defined in the joint space of
x,0- ’

randomness in the likelihood functio@%): two evaluations the state and the parameters. The errors in the state and pa-

with the same parameter value give different likelihood val- 15 eters are hardly uncorrelated, but for simplicity we model
ues. ,AS noted bypowd (2011, this complicates thg param- - them here as independent random variables, which yields a
eter inference, and one has to resort to stochastic optimizag .k diagonal error covariance matrix

tion methods that can handle noise in the target function (see

Shapiro et aJ.2009 for an introduction). Note that some _[Cx O
recent variants of EnKF, such as many of the so called en- x9= [ 0 Gy ]
semble square root filter§ippett et al, 2003 do not involve i i
random components, and they might be more suitable for pa- The model error in the stat€y, has a clear interpreta-

rameter estimation purposes. We test a variant called Locaio™ it represents the statistical properties of the error that
Ensemble Transform Kalman Filter (LETKFHunt et al the model makes in a filter time step. However, the parameter
2007 in the experiments of Sed ' error covariance matriCy lacks such an interpretation. We

considerCy as an additional tuning parameter of the SA ap-
proach. Roughly speaking, increasi@g allows more sud-
4 Parameter estimation with state augmentation den changes fror; to #;,1. Note that, unlike in the full
likelihood approach, the model error covariar@€g cannot
In the previous section, the parameter estimation was carriege estimated from data using SA. A simple example illus-
out off-line by repeatedly sweeping through the data using arating this problem is shown belSole and Yang2010.
filter. In state augmentation (SA), the parameters are addegthe effect of (and the sensitivity t@), ¢ is studied in more
to the state vector and estimated on-line in the filter. In pracetail in the experimental section. In Appendxwe give
tice this means that model parameters are updated togethgbme theoretical discussion of the effect of the seleCtegl
with the state, whenever new observations become available. As in the likelihood approach, the SA parameter estima-
Next, we will present how SA can be implemented with EKF. tion method can be implemented using other filtering meth-
Let us consider the following state space model, where theds besides EKF. For instance, replacing EKF with EnKF
parameter vector is modeled as an additional dynamical variis straightforward: the ensembles now contain perturbations
able: of both the model states and the parameters. The EnKF SA
Xpp1 = M(x,00) + Ex (28)  approach has been implemented, for instance, for a marine
biochemistry model bypowd (2011) and for an atmospheric
Or+1=0r+Eg (29)

model byAnnan et al(2005.
Yi+1 = K(Xk+1) +e. (30)

35 (32)

(34)
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Conceptually, SA is straightforward, although, like noted d M)
by Jarvinen et al(2010), it implicitly assumes the static pa- 8k, 0) = geixk : (38)
rameters as dynamical quantities and the parameter estimates =
therefore change at every update step of the filter. In some apwith 4 = 1. The goal is to “tune” the parametéso that the
plications, such as numerical weather prediction (NWP), thismodel fits the observations as well as possible. The param-
may be critical. Operational NWP systems perform undereter estimation resembles the closure parameter estimation
strict requirements of timely product delivery to end-users.problem in atmospheric models: the forecast model is solved
The “drifting” model parameters have to be therefore care-with a time stepAr = 0.025, which is too crude for modeling
fully considered from the system reliability point-of-view.  the fast variables that operate on a finer time scale.
The observations for parameter estimation are generated

) as follows. The model is solved with dense time stepping

5 Case study: parametrized Lorenz 95 (At =0.0025) for altogether 2500 days (in the Lorenz model,

In this section, we will demonstrate the discussed paramete?ne day corresponds t0 0.2 time l.m'ts)' Then Gaussian noise
is added to the model output with zero mean and covari-

estimation approaches using a modified Lorenz system. We nce(0 Logim) 2!, whereoim — 3.5 (standard deviation from

start by describing the model and the experiments, and theﬁon simulations). When the parameters are estimated us
present the results for the three different methods. g ): P

ing the filtering approaches, only 24 out of the 40 slow vari-
5.1 Description of the experiment ables are assumed to be observed each day. The observa-
tion operator, used also in previous data assimilation stud-
To demonstrate and compare the parameter estimation apes (Auvinen et al, 2009 2010, picks the last three state
proaches, we use a modified version of the Lorenz 95 ODEvariables from every set of five states and we thus observe
system, detailed bwilks (2009. The chaotic Lorenz model states 34,5,8,9,10,...,38,39,40. Partial observations were
(Lorenz 1995 is commonly used as a low order test model to assumed to emulate a realistic data assimilation setting. In
study estimation algorithms. The system used here is similathe experiments with the summary statistics approach, all the
to the original system, but the state variabtesire affected 40 states are assumed to be observed because hiding some
by forcing due to fast variables;, too. The full system is  of the states would introduce problems in the computation of

written as the statistics.
dx Note that with this set-up, it is possible to use the values
d_zk = —Xg—1(Xk—2—Xk41) —xx+ F of the fast variableg; simulated in the full systen8g)—(36)
" to estimate parametefsof the forcing model
hc
- oy (35) he  Jk
j=J(k—1)+1 g(xg,0) ~ — Z Yj-

dy; by ) L CF j=dk—1)+1
—— = —cvyjr1(yj+2—yj-1) —cCy;+ Iy i
dt b We will use the term “reference parameter values” for

+ h_cx i (36) which minimize the errors of this forcing model in the least
b LT squares sense. Naturally, such fitting cannot be performed in
wherek=1,....K andj=1,...,JK. Thatis, each of the real applications since the actual sub-grid scale forcing is not

“slow” state variables; are forced by a sum of the additional known.

fast variabley ;. The fast variables have dynamics similar to

the slow variables, but they are also coupled with the slow®-2 Results
variables. We use valugs =40,/ =8, F=F, =10,h=1
andc =b =10, adopted fromleutbecher2010.

The system35)—(36) is considered as the “truth” and used
for generating synthetic data. As a forecast model, we use
version where the net effect of the fast variables is describe
using a deterministic parameterization. The forecast modef 5 Summary statistics

In this section, we will present the results using the summary
statistics, likelihood and state augmentation approaches. Our
emphasis is on comparing the accuracy and the properties of
Shese different approaches.

reads as
dx; In a synthetic example like Lorenz 95, summarizing the data
o —Xg—1(Xk—2—Xk41) — X+ F — g(xx, 0), (37) in the form of a few statistics is not a trivial task. For exam-

_ o . . ple, ifone wants to repeat the parameter estimation procedure
whereg(xx,9) is the parameterization in which the missing similarly to Jarvinen et al(2010; Sexton et al(2011), it is

fast variabley ; are modeled using the “resolved” variables. nqt clear what would be a suitable counterpart for the zonal
Here, we use a polynomial parameterization, and monthly averages in Eq)(
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Matching observed and simulated statistics 0.12

As mentioned in Sec®.], the simulated statistics may not R
be a smooth function of the parameters. One method that i R

rather insensitive to that kind of behavior in the likelihood

is importance sampling (see Appendi8 for details). We 0.08[. %" o, ]
perform importance sampling for the two paramefégso ]| D L

of the model Eqs.37)—(38). First, we draw 1000 candidate < 0.06f - " ° K 1
values uniformly and independently for the two parameters o

from the interval®) € [1.4,2.2] and®; € [0,0.12]. Then, the 00aN - 7" h

system defined by Eqs37)—(38) is simulated for each can-
didate value, the summary statistics are computed and th
likelihood is calculated. The parameter ranges were chose
so that the shape of the posterior distribution is clearly visi- S o !
ble. 94 6 . 2.2
In the first experiment, the cost function was constructed
around a set of summary statistics which were selected ar-
bitrarily. We used six statistics: mean, variance, auto-Fig. 2. The scatter plots of the parameter value candidates and their
covariance with time lag 1, covariance of a node with its likelihood (represented by the size of the markers) obtained with

neighbor and cross-covariance of a node with its two neigh-COSt function 89). The marker size reflects the value of the weights
bors for time lag 1. Since the model is symmetric with re- for importance sampling. The black ellipse represents the first two

spect to the nodes, we averaged these statistics across diffenP—Oments estimated with importance sampling. The red star repre-
P ' . 9 Sents the parameter values estimated by fitting the forcing model to
ent nodes. The cost function was

the simulated fast variables (see S&dor details).

6
CG.s9)=) (3 —s)?/67, (39)  presents similar results for the case when the dimensionality
i=1 of the features was reduced from six to two by fitting a lin-

i . - . ear regression modél~ Wsy and by using a feed-forward
wheres, is one of the six statistics computed from data simu- . ?
" A2 ) neural network (see, e.Bishop 2006 to build an emulator.
! are the mean and variance

lated with paramet_eﬂs ands’, 5; . . There are a few remarks that we can make based on the
of the same statistics computed from a relatively long simula-

tion of the full-system 85)—(36) similarly to (Jarvinen et al. gg;a;.rt]ed L?Sﬁli'al;z:%%h? f]g:.uol ?g; trr?esufr;;r\gtgfs,sutar:losr
2010 . All the 40 variables;;, were assumed to be observed the Irztlllver; ofl the spik bel;avilor is solve% The ar,amltja-
and the observation period was taken to be 200 days. P . € Spiky ’ P
. . . . . ters found with this approach are close to the reference val-
Figure2 shows the importance sampling weights obtained

for the 1000 candidate values. The results show that the cost. > but there lsa bias .Wh'Ch |s_affected by the choice of the
: ) summary statistics. This effect is related to the known result
function 39) does not restrict the model parameters much

and the posterior distribution is rather broad. The paramete];'rom th_e f|e|d.o.f Approximate Bay.e stan Computation that
. . ) . .-only usingsufficientsummary statistics yields the same pos-
estimates are also clearly biased: the values obtained using =~ 7. S5 ° . . i
. . . rior distribution as when the full data set is uskthjoram

the knowledge of the simulated fast variables are outside the

obtained distribution. Note also the “spiky” behavior of the and Tavag, 2006. A I(_)nge_r o_bse_rvatlonal per_|od results in
o . .~ amore narrow posterior distribution but the bias problem re-
cost function: the weights do not vary smoothly as a function

mains.
of the parameters. N i . )
The results are generally sensitive to the dimensionality re-

Likelihood based on an emulator duction approach and to the number of components retained
in the model. In this simple example, using more or less

In the next experiment, the likelihood was computed usingcomponents leads to qualitatively similar results (biased esti-

an emulator trained on the same set of six summary statismates). In more complex cases, a cross-validation procedure

tics. We again performed importance sampling of parameterée.g. similar toSexton et al.2011) might be needed to esti-

6o and6, of the model 87)—(38) using the same 1000 can- Mate the right number of the required components.

didate values drawn frorfp € [1.4,2.2] and 61 € [0,0.12]. Another problem is that the observed values of some of
The likelihood Eg. {1) was constructed using an emulator, the summary statistics cannot be obtained by varying the pa-
as explained in Sec2.2 rameters of the surrogate model. This situation can easily

Figure 3a presents the results for the likelihood Ef{l)(  occur in real model tuning and it may result in over-fitting of
in which the dimensionality reduction was performed usingthe parameters to such problematic statistics. In the results
PCA with only two principal components retained. FigBbe  shown in Fig.3a, this problem is concealed by the fact that

Nonlin. Processes Geophys., 19, 12743 2012 www.nonlin-processes-geophys.net/19/127/2012/



J. Hakkarainen et al.:

On closure parameter estimation in chaotic systems

0.12 - R 012+ e
S \v -| =500 days AN —— 2500 days
0.1 AP 01t AR
0.08[. * 0.08. %1
0.04} - 0.04f
0.02f ... 0.02F L e
0 A ol oos
1.4 22 1.4 22
(a) Dimensionality reduction by PCA
0.12 ———— 012
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(b) Dimensionality reduction by fitting a linear regression model 0 ~ Wsg

Fig. 3. The scatter plots of the parameter value candidates and their likelihood (represented by the size of the markers) obtained with cost
function (11). The simulation length is 500 days (left) and 2500 days (right). The marker size reflects the value of the weights for importance
sampling. The black ellipses represent the first two moments estimated with importance sampling. The red start represents the paramete
values estimated by fitting the forcing model to the simulated fast variables (se® Sraetails).

only two principal components are retained in the analysis5.2.2 Likelihood calculations using filtering methods

and those principal components can be simulated well by the

surrogate model. In this section, we estimate the parameters of the forecast
The summary statistics approach has a few other potentiamodel @7) for the Lorenz 95 system using the filtering

problems. The choice of the summary statistics has a criticamethodology presented in Set.

impact on the estimated parameter values. Some arbitrarily . . .

selected statistics may not be affected by varying the modeEFIIterIng with EKF

parameters and the idea behind the most informative projec;.

tlonds :S to diminish Ehlt's Froblim. _In lthde tunllng of (t;:::natedmodel B7), which is rather straightforward in this synthetic
models, summary Statistics often include only monthly an example. As mentioned in Sec8.2, the EKF filtering pro-

regional averages of some state variables, which means thﬁ?edure also requires the model error covariance magix
focus is on how well climate models reproduce the seasonaly . | ,se a simple parameterization:

cycle. It may be that some model parameters have little ef-

fect on the seasonal cycle but they can be important for th&e =0 2, (40)

overall quality of a climate model. wheres? is a parameter which needs to be estimated together

Thus, the summary statistics approach has a few practicalith parameterg of the forecast modeB(). In practice, we
problems and can result in biased estimates. We think that thestimate the logarithm af2, which guarantees the positiv-
essential problem is the averaging procedure in which a 10§ty of the variance and yields a posterior distribution whose
of important information is lost. We argue that the Sequentialshape is closer to Gaussian. We perform parameter estima-
methods provide a more appropriate way to determine thejon using delayed rejection adaptive Metropolis (DRAM)
likelihood for the parameters. MCMC (Haario et al, 2006 AppendixA).

Implementation of EKF requires linearization of the

www.nonlin-processes-geophys.net/19/127/2012/ Nonlin. Processes Geophys., 1914372012



136 J. Hakkarainen et al.: On closure parameter estimation in chaotic systems
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Fig. 5. Posterior distribution using 20 day simulations with MCMC

Fig. 4. Scattering plot of parameter pairs from MCMC runs us- (ed dots) and Gaussian approximation (black ellipse).
ing 10 (blue), 20 (red), 50 (black) and 500 (green) day simula-
tions. Clear tightening of posterior can be observed as the simu
lation length increases. The third parameter is related to the mode [
error covariance.

variables y

In Fig. 4, the pairwise marginal distributions for the pa-
rameters are illustrated using 10, 20, 50 and 500 day simu g
lations. As expected, the distribution becomes tighter as the e
simulation length increases. Note that the posterior distri-%5
bution is much tighter compared to the summary statistics
approach (see, e.g. Fig) even though almost half of the
states are not observed and the filtering procedure is applie . AR oo
to a relatively short observation sequence. The paramete® _| T <
estimates are closer to the reference values obtained usir o
the knowledge of the simulated fast variables, compared t¢ -2f : ) 7
the estimates obtained via the summary statistics approacl © 4 =2 o 2 4 & 8 10 12
We also observe that the parameter distribution is approxi- slow variables x
mately Gaussian when sufficiently long simulations are USEdFig. 6. Actual forcing of fast variables (black cloud). Red lines

as shown in Fig5. indicate forcing from MCMC runs. Red lines in the figure represent
In Fig. 6, we plot the true forcing in the simulated full yesults from the 50 day MCMC simulations. Blue line is gotten by

system 85)—(36) against the slow variables. The red lines formally fitting the parameter values in the cloud.

in the figure represent the parameter values from the 50 day

MCMC simulation. The blue line represent the parameter )

values obtained by fitting a line to the true forcing in the least® day forecast starting every 24 h for 100 days. The averaged

squares sense. We observe good agreement with our resuf@"ecast skill can be written as

and the fitted line. 1 N e e 2
The estimates obtained by the likelihood approach aref(9)=mZIIMe(x,- :0) —x;ll2,

close to the reference values obtained using the knowledge clim i=1

of the fast variables. However, there is no reason to thinkwhere N =100, K =40 andocim = 3.5. The notation

that the reference values are optimal, for instance in the sens&{s(x]""®,6) means a 6 day prediction launched from the

of forecast accuracy. Therefore, to further demonstrate thatrue stater;’“ with parameter value#. The contour lines of

likelihood approach produces good parameter estimates, wie average forecast skill and the parameter values obtained

study the effect of the parameters on the forecast skill of thedy 10, 50 and 500 day MCMC runs are shown in Fig.

model. We grid the 2-dimensional parameter space and calAgain, we observe a good agreement: parameters tuned with

culate the average 6 day forecast skill for different parametethe likelihood approach yield a good average forecast skill

values. The average forecast skill is computed by making @rovided that the simulation length is sufficient.

actual forcing
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Fig. 8. Gaussian posterior approximations with 10, 5 and 2 times
Fig. 7. An illustration of the average forecast skill. Black, red and too small and too Iargez.
green dots indicate the results from 10, 50 and 500 day MCMC
simulations, respectively. Blue contour colors indicate high forecast

skill. Filtering with EnKF

Sensitivity to model error covariance As discussed in Sec8.2, replacing the deterministic EKF
e . . with a stochastic filter, such as the EnKF, leads to a noisy
The p033|plllty to estimate the model error °°Ya”‘"?m@ likelihood function. We performed importance sampling for
f“’”_‘ da_ta IS an ad"a”t?‘g? Of the parameter es_tlmatlon base( e two parameters similarly as in the summary statistics ex-
on filtering. In data assimilatiorGg is often considered as a eriment in Sectio’.2.1 The EnKE likelihood was evalu-
tuning parameter which has to be selected somehow. In Iarggted by fixing the model error variane@ to the optimum

scale models like NWP, the model error covariance is usuallyt, .o 4 i the EKFE exercise. and setting the number of ensem-
estimated in a separate procedure, and finding an effectivBIe members to 100 ’

parametrization o€g is an open question (see, eBpnavita
et al, 2008.

Therefore, in the following experiment, we test how spec-
ifying non-optimal values for the model error covariance af-
fects the quality of parameter estimation. We use the sam
parameterizatiord() and vary the variance parametet so
that it is two, five and 10 times smaller or greater than the

%F:m;?r;ﬁ:;;zgtgggi:;; h&gﬁﬂiﬁg&iﬁim t: dtge Sr(c)ggﬁy'with EnKF parameter estimation byowd (2011). From
g ' pp Fig. 9 we observe that the general pattern is good: low val-

with only 50 days of data. Since the posterior distribution is .
. ) ues are found from the correct region, and a reasonable MAP
approximately Gaussian, we do not perform the computa-

tionally heavy MCMC runs, but compute the MAP estimate estimate might be found using stochastic optimization tech-

. . . .. niques. However, statistical inference is complicated by the
using an optimizer and calculate the Gaussian approximation

of the posterior at the MAP estimate (see Apperijx noisy likelihood. Smoothing methods could be used to al-
Thepresults are shown in Fig. We obser?fa that speci- leviate the noise in the likelihood, but this question is not
fying the model error covariance wrongly can lead to biasedpursueOI f'u.rther here. . i
parameter estimates: too small valuessdflead to an un- In addition, we also test(_ad the I|_kel|hood set-up with
derestimated posterior covariance of the parameters and viceF TKF (Hunt et al, 200_7) Wh'Ch_ falls into the category (_)f
versa. In this specific example, we change the coi@act ensemble square-root filters with no random perturbations.
only by one order of magnitude and still obtain reasonable!n this method, the model error term is neglected, but a

parameter estimates. For larger error€in parameter esti- covariance inflation term is used to inflate the posterior co-
mates can be severely biased variance and to account for the missing model error term.

The covariance inflation parameter ($¢ent et al, 2007, for
details) can be estimated together with the parameters like
the model error term in EKF. In Fig.Owe show MCMC runs

In our experiment, the noise in the likelihood function
dominated the statistical analysis: most of the importance
weights were assigned to only a few candidate values. That
is, statistical inference could not be performed properly, and

e noise in the likelihood seems to be a real issue in the
likelihood approach computed with EnKF. Here, we settle
for plotting the negative log-likelihood surface, as was done
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EnKF -2 x log-likelihood function values in the box with optimal 62 (50 days) LETKF full likelihood calculations (50 days)

T T
0.12 T

0.1r-
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Fig. 9. The use of stochastic filtering method yields a noisy likeli-
hood function. The results of 50 day run using EnKF based likeli-
hood function is illustrated in the Figure. The values indicate nega
tive log-likelihood times two values. White star and black ellipse is
acquired from correspondent EKF likelihood calculations.

Fig. 10. Full likelihood calculations using LETKF data assimilation
method. Different MCMC runs with different covariance inflation
“factor together with 95 % trust ellipses. Red color indicates a run,
where the factor is also estimated (mean value is 1.52). Magenta,
blue and cyan colors indicate a run where covariance inflation factor
is fixed to 1.4, 2.0 and 2.5, respectively. Black star and ellipse is
acquired from correspondent EKF likelihood calculations.

using different values for the covariance inflation parameter

and a run where the inflation parameter is estimated together

with the model parameters. Although there is a small biasthe method reacts slowly on new data and the parameter val-
depending on the value of the covariance inflation parameterfiies take small steps. On the other handgfis set large,

the agreement with EKF calculations is rather good. Thusthe method allows larger deviations, but can yield unrealistic
deterministic ensemble filters seem to be more suitable fovalues for the parameters. Some theoretical discussion about

parameter estimation purposes. the effect ofCy is given in Appendix8.
. In this example, we do not observe any systematic tempo-
5.2.3 State augmentation ral variations in the parameter value. However, it is worth

pointing out that the SA method could be useful in checking
As discussed in Seat, in SA the model parameters are mod- if such variations exist. Since the parameter trajectories are
eled as dynamical quantities, and the estimates do not corstationary, one could use the mean value of the trajectories
verge to any fixed value as more observations are added. Thgs the final parameter estimate. In the current example, the
rate at which parameter values can change from one filtefean is a good estimate, and it is also rather insensitive to
time step to another is controlled by the extra tuning paramethe tuning ofCy. In general, however, the parameter trajec-
ter, the model error covariance for the paramet€ys,Here,  tories cannot be interpreted in the statistical sense, since the
we study how the SA method performs in parameter estimaparameter values and their variation depend entirely on the
tion and specifically how the tuning @ affects the results.  tuning of Cy. Thus, the SA method cannot be used for sta-

tistical inference of the parameters in the same sense as the
Tuning of the parameter error covariance likelihood approach.

In our experiments, we use a diagonal matrixCasand keep  Sensitivity to model error covariance

it fixed during the runs. The model error for the state vector

was fixed to its “optimal value”, obtained from the likelihood If, on the other hand, we keep the “parameter model error
experiments. In Figl1we show four different runs using the covariance”Cy fixed and vary the model error covariance
EKF version of the SA method. The runs are made so thatC,, the effects are somewhat different than in the likelihood
the diagonal elements @ are taken to be.Q %, 1%,10%  approach. Too smal? values can cause the filter to di-
and 100 % of the optimal parameter values acquired fromverge leading to unrealistic parameter estimates. Examples
the likelihood experiment. In all cases, the SA method con-of runs with too large model error covariance are illustrated
verged quickly to values near the optimum. The effect ofin Fig.12. We observe that too large? values can cause bias
the size ofCy was as expected. Wheldy is set to be small, to the estimates. In additio,, affects the rate of change of
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State augmentation runs State augmentation runs varying o2
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Fig. 12. Examples of too large model error: the model error vari-
Fig. 11. Runs using the EKF version of the SA method, when the di- ance is multiplied with 100 and 1000. Too large model error in state
agonal elements @, are taken to be.@ % (black), 1% (red),10%  augmentation will cause bias in the parameter values. Note that the
(blue) and 100 % (green) of the optimal initial values. The effect rate of change of the parameters becomes smaller as the variance
of the size ofCy was as expected. Whely is set to be small,  grows, althougICy is kept fixed in all runs. The straight lines rep-
the method reacts slowly on new data and the parameter values takesent the means of the parameter trajectories.
small steps.

The state augmentation and the likelihood approaches de-

pend on a data assimilation system, which is often available
the parameters: the highef is, the smaller are the param- for NWP systems, but not commonly for climate models.
eter changes. The latter effect can be theoretically justifiedrhe state augmentation method requires modifications to the
(see AppendiB for details). assimilation method. In deterministic assimilation systems,
such as the variational approximations to EKF that are of-
ten used in operational NWP systenfgabier et al. 200Q
Ig%authier et al.2007), one needs to add derivative compu-

State augmentation with EnKF

The use of ensemble based filtering methods is possible i

state augmentation system. In our tests, with a large enoug}‘?t'qnsl W,'th respr(]ec(tj tp the garamﬁters. If an ensfer‘rr:bklaz d;lt:a
ensemble size, the results were similar to the EKF results2>S'™M! ation method is used, such as a variant of the £n

In the Lorenz system the minimum required ensemble Size(seeHoutekamer et 812009 parameter perturbations need

is roughly 50. Smaller ensemble size leads to underestimat-0 be gddeq. Com_putationally, state_aqgmentation is econom-
tion of the covariances and can cause the filter to diverge'.cal’ since it requires only one assimilation sweep over the
elected data.

We note that state augmentation does not have the probler?l The filter likelihood hi ionall h
with the stochasticity of EnKF, which was encountered in the e filter elinood approach 1S computatlgna y muc
more challenging than the state augmentation approach,

likelihood approach. . . :
since it involves many repeated filter sweeps, the number of
which depends on the parameter estimation technique used.

6 Remarks and discussion The likelihood approach requires, in addition to a data assim-
o ilation system, a method to estimate the forecast error covari-
6.1 Applicability to large scale systems ance. In ensemble data assimilation systems, the covariance

) o ] ] _can be estimated from the ensemble. Variational data assimi-
The discussed parameter estimation methods differ in theifation methods do not contain error propagation mechanisms,
applicability to large scale systems like NWP and climate 54 it is not immediately clear how the likelihood approach
models. The summary statistics based approaches are corgan pe implemented in these systems. A potential way is
putationally expensive although straightforward to imple- o optain the covariance from ensemble prediction systems
ment: one only needs to simulate the model, and compargeps)  that are built for approximating the prediction errors
the selected summary statistics of the simulations and th%MoIteni et al, 1996 Palmer et a].2005. Our preliminary
observations. The difficulty lies in selecting the appropri- tasts with the low order system suggest that such EPS in-

ate summary statistics that enable the identification of thegmation could be used to approximate the likelihood ap-
parameters. proach, but verifying this is a topic of on-going research.
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computed by running a data assimilation method “off-line”
over a selected data set. All methods were studied using a
modified version of the Lorenz 95 model.

Our results indicate that the summary statistics approach,
albeit relatively easy to implement and compute, can have
problems in properly identifying the parameters, and may
lead to biased estimates. This result is supported by the
previous climate model parameter estimation experiments
(Jarvinen et al.2010 where simple summary statistics were
not enough to uniquely identify all selected model parame-
ters.

The state augmentation approach can work well and con-
verge fast, if properly tuned. State augmentation contains ad-
ditional tuning parameters, to which the performance of the

method is somewhat sensitive: one must correctly specify
the model error covariance both for the actual model states
and for the parameters. The state augmentation approach
is computationally feasible, since parameters are estimated

Fig. 13. Distribution of the state variables in the full Lorenz system on-line |n§tead ofhrepeatledly comparlr;ghmodel slmulatlo_ns
(top left) and in the parameterized system with maximum likelihood © observations. The implementation of the method requires

estimate (top left) and two arbitrarily chosen “poor” parameter val- & modification to the_ data assimilqtion system. A down-
ues (bottom row). side of the approach is that the “static” model parameters are

modeled as dynamical quantities, and one needs to accept the
fact that the parameter estimates change at every time step
and do not converge to a fixed value. Moreover, the method
In our likelihood experiment, the optimal parameter valuesdoes not support statistical inference of the model parame-
led to improved short-range average forecast skills, as exters, since the obtained parameter values depend directly on
pected. Another question is related to the effect of parametethe tuning of the model error covariance.

tuning on the quality of long model simulations (or “clima-  The likelihood approach performed well in our tests. The
tologies”): the tuned parameters should, in addition to im-performance of the method was somewhat sensitive to the
proving short-range forecasts, improve climatologies, too. Intuning of the model error covariance, like in the state aug-
Fig. 13, we compare the histograms of the state variables inmentation approach. The likelihood approach assumes that
the full Lorenz system and in the forecast model with differ- the parameter values are static, and allows for statistical in-
ent parameter values. We compare the statistics of the fulference of the model parameters. The method requires a data
system to the statistics produced by the forecast model witrassimilation system, and a method to propagate model error
maximum likelihood parameter estimate and two arbitrarily statistics. This may be restrictive in large-scale systems. The
chosen “poor” parameter values. We observe that, in thiscomputational burden is much higher than in the state aug-
case, the parameters tuned with the likelihood approach promentation approach, and may be a bottleneck when scaling
duce also the correct climatologies. We also note that theup to large scale NWP and climate models. The likelihood
overall statistics of the system can be quite good even withcan be implemented with ensemble data assimilation meth-
rather poor parameter values. This highlights the difficultiesods, but the statistical analysis may be complicated by the
in choosing the correct likelihood for the summary statisticsstochasticity introduced into the likelihood function, if ran-
approach. dom perturbations are used in the ensemble method.

0 0
-10 0 10 20 -10 0 10 20
slow variables x slow variables x

6.2 Climatologies with tuned parameters

7 Conclusions Appendix A

In this paper, we review three methods for parameter estimaP’arameter estimation algorithms
tion in chaotic systems. In the summary statistics approach

the selected statistics computed from model simulations aré\1 MAP estimation and Gaussian approximation

compared to the same statistics calculated from observationsshe Maximum a Posteriori (MAP) estimate can be found by

In the state augmentation method, unknown parameters afaximizing the posterior density(@]y) with respect tof,

added to the state vector and estimated “on-line” togetheg, oquivalently, minimizing the negative logarithm of the
with the model state in a data assimilation system. In the,

v - Ha “posterior
likelihood approach, the likelihood for a parameter value is
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So, points withn(é) > m(#,), i.e., steps “uphill”, are al-
L(6)=—logp(®ly) = —logp(y16) —logp(®). ways accepted. But also points withi@) < 7 (8,), i.e. steps

The maximization can be done by different numerical meth- downhill’, may be accepted, with probability that is given
ods (see, e.glocedal and WrightL999. Once the estimate by theratlo of thex values. In practice, this is done by gen-
f— argminL (9) has been obtained, one can construct a mul- erating a unlformly distributed random numbet [0, 1] and

tivariate Gaussian approximation pfé|y) around the point acceptingd if u < (8)/7(6;). Note that only the ratios of
9. Itis well known (see, e.gGelman et al.2003 that the at consecutive points are needed, so the main problem of

. . . . calculation the normalizing constant is circumvented, since
covariance matrix af can be approximated by the inverse

Hessian of the negative logarithm of the posterior: the constant cancels out.
' However, the choice of the proposal distribution may still

Cov(6) ~H(0) 1, pose a problem. It should be chosen so that the “sizes” of
the proposal; and target distributions suitably match. This

where the Hessian matrid(8) contains the second deriva- may be difficult to achieve, and an unsuitable proposal can

tives of the negative logarithm of the likelihood, evaluated at|eadt to inefficient sampling. For simple cases, the proposal

0: might be reIat|ver easy to find by some hand-tuning. How-
aL(9) ever, the “size” of the proposal distribution is not a sufficient
i 0)= 2559 ry specification. Especially In higher dimensions, the shape and

orientation of the proposal are crucial. The most typical pro-
The Hessian can be calculated analytically or numerically.posal is a multi-dimensional Gaussian (Normal) distribution.
In our examples, we have used a standard finite differencgn therandom walkversion, the center point of the Gaussian
approximation applying the central difference formulof  proposal is chosen to be the current point of the chain. The

cedal and Wright1999. task then is to find a covariance matrix that produces efficient
) sampling.
A2 MCMC sampling Several efficient adaptive methods have been recently pro-

posed, for example, the adaptive Metropolis (AM) algorithm
(Haario et al, 200)). In adaptive MCMC, one uses the sam-
ple history to automatically tune the proposal distribution
“on-line” as the sampling proceeds. In AM, the empirical
covariance from the samples obtained so far is used as the
covariance of a Gaussian proposal. In this paper, a vari-
ant of AM called the delayed rejection adaptive Metropolis
(DRAM, Haario et al.2008 is used for all sampling tasks.

In principle, the Bayes formula, see E®),(solves the pa-
rameter estimation problem in a fully probabilistic sense.
However, the problem of calculating the integral of the
normalizing constant is faced. This integration is often a
formidable task, even for only moderately high number of
parameters in a nonlinear model, and direct application of the
Bayes formula is intractable for all but trivial nonlinear cases.
The MCMC methods provide a tool to handle this problem.
They generate a sequence of parameter valugh, ...0 v, A3 Importance sampling
whose empirical distribution approximates the true posterior
distribution for large enough sample sixe Some methods considered here use a likelihood which de-
In many MCMC methods, instead of sampling directly pends on initial conditions, random seeds and other settings,
from the true distribution, one samples from an artifipi@-  and the estimated likelihood is therefore random. For such
posal distribution. Combining the sampling with a simple methods, we used the following importance sampling proce-
accept/reject procedure, the posterior can be correctly apdure for estimating the parameters. The likelihood was com-
proximated. The simplest MCMC method is thtetropolis  puted for a set of candidate parameter values., # y which
algorithm(Metropolis et al. 1953 were drawn from aimportance functiorz (). The posterior
distribution of the parameters was evaluated by weighting
each sample according to their likelihood values with respect
to the importance function:

1. Initialize by choosing a starting poifit.

2. Choose a new candidaifrom a suitable proposal dis-
tribution ¢ (.|0,) that may depend on the previous point wi=pz10:)/2®)).

of the chain.
_ _ N One can now compute the required statistics using sam-
3. Acceptthe candidate with probability plesd; with weightsw;. Here, we evaluated the weighted
R posterior mean
A ) 7(0)
o(0,,0)=min{ 1, 9 . .

i=1
If rejected, repeat the previous point in the chain. Go N ] ) ]
back to step 2. with W =3"." ; w; and the weighted covariance matrix
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1N smaller rate of change to the parameters. In addition to the in-
Cop=— Zwi @ —6)7 0, —0) verse, the previous posterior covariance madiX'; appears
W= also in the “numerator”. Hence, the effect of increasihig

. , ) will saturate at some point.
to approximate the confidence intervals for the closure pa-
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