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Abstract. We investigate the time intermittency of turbulent
transport associated with the birth-death of self-organized
coherent structures in the atmospheric boundary layer. We
apply a threshold analysis on the increments of turbulent
fluctuations to extract sequences of rapid acceleration events,
which is a marker of the transition between self-organized
structures.

The inter-event time distributions show a power-law decay
ψ(τ)∼ 1/τµ, with a strong dependence of the power-law
indexµ on the threshold.

A recently developed method based on the application
of event-driven walking rules to generate different diffusion
processes is applied to the experimental event sequences.
At variance with the power-law indexµ estimated from the
inter-event time distributions, the diffusion scalingH , de-
fined by〈X2

〉 ∼ t2H , is independent from the threshold.
From the analysis of the diffusion scaling it can also be in-

ferred the presence of different kind of events, i.e. genuinely
transition events and spurious events, which all contribute to
the diffusion process but over different time scales. The great
advantage of event-driven diffusion lies in the ability of sepa-
rating different regimes of the scalingH . In fact, the greatest
H , corresponding to the most anomalous diffusion process,
emerges in the long time range, whereas the smallestH can
be seen in the short time range if the time resolution of the
data is sufficiently accurate.

The estimated diffusion scaling is also robust under the
change of the definition of turbulent fluctuations and, under
the assumption of statistically independent events, it corre-
sponds to a self-similar point process with a well-defined
power-law indexµ

D
∼ 2.1, whereD denotes thatµ

D
is

derived from the diffusion scaling. We argue that this re-
newal point process can be associated to birth and death
of coherent structures and to turbulent transport near the
ground, where the contribution of turbulent coherent struc-
tures becomes dominant.

1 Introduction

In the region of atmosphere very near to the ground, known
as Atmospheric Boundary Layer (ABL), the structure of tur-
bulence is highly intermittent. This is mainly related to the
direct interaction of the air masses with the ground, which
causes the growing of dynamical instabilities resulting in vi-
olent bursts of fluid moving upward or downward, in be-
tween periods of relatively quasi-stable slow motion with
variable duration times (Paw et al., 1992; Kaimal and Finni-
gan, 1994; Katul et al., 1997; Finnigan, 2000; Poggi and
Katul, 2007). The upward motion is given by the ejection
of slow fluid masses that suddenly move upward forming a
swirling structure. The opposite phenomenon of fluid intru-
sion from above to the ground, known as sweep motion, is
also observed. In other words, sudden fluid accelerations oc-
cur randomly in time and space alternating with periods of
quasi-stable motions. During the stable periods, it is possi-
ble to identify regions of fluid elements establishing a coher-
ent motion. These coherent fluid structures are characterized
by self-organized motion, which can be identified through
the space-time correlation structure. Thus, there is a spo-
radic emergence or “birth” of coherent structures from re-
gions of uncorrelated fluid elements. The evolution of the
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coherent structures, which has a relatively long life-time, is
quasi-stable or quasi-stationary. During this life-time there
is a slow increase of instabilities and, at some time instant,
the instability becomes so large that a quasi-instantaneous
passage to an unstable condition yields the “death” of the
structures. We denote these short-time, quasi-instantaneous,
transitions as “critical events”. These coherent structures of
self-organized fluid flow are then characterized by a birth-
death process of cooperation.

The critical events, marking the transition among differ-
ent coherent fluid structures, are thus the most important
manifestation of the turbulent intermittency. As an exam-
ple, an important source of intermittent behavior in the ABL
is given by the wake production, which is particularly im-
portant in canopy flows (Finnigan, 2000; Cava and Katul,
2009). Ejection-sweep processes also arise above grassland
sites and determine the greatest contribution to the turbulent
Reynold stress.Cava and Katul(2009) refer to this kind of
phenomenology as “external intermittency”, being the large
scales directly affected by the boundaries, such as ground,
vegetation and buildings, which can be regarded as a sort of
“external” factor.Mahrt (1989) claims that large scale inter-
mittency, called “global intermittency” and involving scales
of motion larger that the main coherent eddies of the energy
cascade, is associated with events of downward heat fluxes
and vertical mixing of pollutants in strongly stratified bound-
ary layer. It is then clear that coherent structure intermittency
gives a substantial contribution to turbulent transport (Mahrt,
1989; Katul et al., 1997; Mahrt, 2007).

This statistical description of turbulence based on criti-
cal events is recognized to be a complementary investigation
tool with respect to other classical approaches, such as the
Reynolds averaging procedure or the spectral description in-
troduced by Taylor (Narasimha and Kailas, 1990; Narasimha
et al., 2007; Bershadskii et al., 2004a,b; Sreenivasan and
Bershadskii, 2006; Cava and Katul, 2009; Poggi and Katul,
2010). Adopting this view of sporadic turbulent transport we
focus on the identification of critical events and on the statis-
tical characterization of thetime intermittencygenerated by
them. Different methods for identifying critical events have
been proposed in literature. For example,Bershadskii et al.
(2004a), within a laboratory experiment of turbulent convec-
tion, focus their attention on the events associated with the
occurrence of plumes, corresponding to anorganized activity
of convectionand define the events as zero-crossings of the
temperature fluctuations.Narasimha et al.(2007) proposed
a method for describing turbulent fluxes by encoding the tur-
bulence signals as a sequence of “flux events”, whose start-
ing and ending points are defined by a passage through given
thresholds.Sreenivasan and Bershadskii(2006) recognized
that two different contributions to turbulent intermittency can
be distinguished: one related to the fluctuation in the signal
amplitude and the other one to the local frequency of oscilla-
tions. They investigated this last feature through the cluster-
ing properties of a dichotomous version of the signal, i.e. a

sequence of critical events defined as threshold passages and
denoted as Telegraphic Approximation. Applying this ap-
proach to different data-sets, several authors determined the
scaling exponents associated with clustering properties, in-
termittency and power spectrum, in some cases also finding
functional relations among them (Bershadskii et al., 2004a,b;
Sreenivasan and Bershadskii, 2006; Cava and Katul, 2009).

Herein we transform the turbulent velocity into a sequence
of critical events. Having in mind the birth-death process of
coherent structures, we select events corresponding to abrupt
changes in the turbulent velocity, i.e. to the occurrence of
rapid fluid accelerations. Our events are threshold passages
of the signal increments, and not of the signal values as in
Sreenivasan and Bershadskii(2006). The main idea is that
this threshold passages should be a marker of the birth-death
process of cooperation that we want to analyze.Paradisi
et al. (2009a) used a similar definition and investigated the
intermittent events generated by turbulence dynamics in the
ABL, finding that the renewal hypothesis is satisfied with a
good approximation. A sequence of events is defined to be
a renewal point process when the inter-event times, or Wait-
ing Times (WT), are mutually independent random variables
(Cox, 1962; Lowen and Teich, 2005).

The renewal hypothesis is thought to be a basic feature
of complex systems with sporadic randomness, i.e. display-
ing critical events with Non-Poisson statistics and power-law
distributed WTs (Paradisi et al., 2005; Allegrini et al., 2006,
2007). We recall that Poisson statistics of the events means
that, given a time interval[t0,t0 + t], the number of events
N(t) contained in this interval is distributed according to a
Poisson law. In this case, the WT sequence is still renewal,
but with exponential WT distribution, namely, there is a well-
defined finite time scale.

It is important to note that the renewal assumption is also
a fundamental hypothesis in the theoretical derivation of a
new version of Linear Response Theory (LRT) and of a
Fluctuation-Response Theorem based on Non-Poisson re-
newal events (Allegrini et al., 2007, 2011). Some theoret-
ical predictions of this new LRT were also experimentally
verified in weak turbulence regime of nematic liquid crys-
tals (Silvestri et al., 2009; Allegrini et al., 2009b). Renewal
assumption is also a crucial hypothesis for the development
of theoretical models of anomalous diffusion based on frac-
tional calculus (Mainardi and Paradisi, 2001; Gorenflo et
al., 2002a), such as the fractional Fick’s law (Paradisi et
al., 2001a,b; Gorenflo et al., 2002b), which could explain
the counter-gradient phenomenon observed in canopy flows
(Kaimal and Finnigan, 1994; Finnigan, 2000). The renewal
assumption in the ABL is also in agreement with models pro-
posed in literature (Higbie, 1935; Katul et al., 2006), such
as the surface renewal model (Perlmutter, 1961), where a
renewal hypothesis is explicitly assumed. Considering the
general phenomenology of turbulence and, in particular, the
ground-turbulence interaction in the bottom part of the ABL,
i.e. the Surface Layer, this seems to be a general feature of

Nonlin. Processes Geophys., 19, 113–126, 2012 www.nonlin-processes-geophys.net/19/113/2012/



P. Paradisi et al.: Scaling of coherent structures in turbulence 115

atmospheric turbulence. Then, following the cited literature,
we assume a renewal hypothesis for the critical events. In
the presence of renewal events, transport processes are dom-
inated, in the long-time range, by the asymptotic properties
of the corresponding WT distribution. This is certainly true
if the selected events are exactly the renewal Non-Poisson
events driving the system. This is not always true experi-
mentally, and we expect to select spurious events and to dis-
regard some of the complex ones related to self-organization.
Nevertheless, the asymptotics of transport properties are still
dominated by the long-time properties of the renewal Non-
Poisson events driving the system (Allegrini et al., 2006,
2007, 2010b).

Herein we investigate the self-similarity of the birth-death
process driving the emergence of self-organization. To this
goal, we firstly evaluate the scaling of two diffusion pro-
cesses driven by the critical events previously detected from
turbulent velocities in the ABL. In the renewal case, esti-
mating the diffusion scaling allows also to evaluate the self-
similarity index of the WT distributionψ(τ), i.e. the expo-
nentµ of the inverse power-law tailψ(τ)∼ 1/τµ (Allegrini
et al., 2009a). This can be defined as a complexity measure of
the underlying dynamics generating the renewal events, and
it will be denoted in the following ascomplexity index(Al-
legrini et al., 2009a, 2010a). Complexity is here identified
as the ability of the system to dynamically generate highly
connected, self-organized structures. This is the case of the
coherent fluid structures described above. The smaller isµ

(but always above 1), the more complex the system is.
The paper is organized as follows. In Sect.2 we intro-

duce the method used to detect the events, which is then ap-
plied to experimental data of turbulence velocity in the ABL.
In Sect.3 we introduce renewal processes and two different
random walks defining the event-driven diffusion processes.
The relation between fractal dimension and complexity in-
dex is also discussed. In Sect.4 we estimate the scaling of
the diffusion processes by using the Detrended Fluctuation
Analysis (DFA) (Peng et al., 1994). Finally, in Sect.5 we
discuss the results and draw some conclusions.

2 Detecting critical events in turbulence

In order to estimate diffusion scaling and self-similarity of
time intermittency, both associated with the critical events,
the statistical analysis was performed on experimental obser-
vations of turbulent velocities in the ABL. The data were col-
lected in a measurement campaign carried out in Lecce dur-
ing March 2004. The site was the experimental field inside
the University Campus, about 3.5 km South-West of Lecce,
in the Salentum Peninsula (Apulia region), South-East part of
Italy (N40820010.800, E18807021.000 WGSA). The site is
characterized by short vegetation, with two contiguous sides
surrounded by small trees. There are a few sparse buildings
in the surrounding area over an extension of about 1 km. The

nearest building is about 100 m far from the measurement
site. Moreover, there could be possible wake effects on the
measured turbulence. The roughness length is about 0.5 m
and the displacement height about 7.5 m. The instrumental
set-up for the measurement of air velocity was an ultrasonic
anemometer Gill R3, operating at a sampling frequency of
ω= 100 Hz, mounted on a horizontal bar placed at the top of
a telescopic mast, 9.6 m above the ground. The analysis is
performed on time series about 8 h long.

The analysis is carried out on each velocity component
independently from the other ones. As the scaling analysis
is performed on a time segment whose duration is several
hours, non-stationary trends are apparent in the velocity time
series. In fact, the local mean wind depends on the large-
scale meteorological circulation patterns, such as the large-
scale pressure gradients, whose variability is on time scales
of about 1 h (Holton, 1992). As we are interested in rapid ac-
celeration associated with turbulent fluctuations, we follow
the standard approach, used in boundary-layer meteorology,
to define turbulent velocity fluctuations (Stull, 1988). Thus,
the mean wind is estimated with the Moving Average (MA),
defined by:

S(t)=
1

T

∫ t+T/2

t−T/2
S(t ′)dt ′ =

1

N

n+N
2 −1∑

k=n−N
2

S(k1t) , (1)

wheret = j1t for some integerj , 1t = 1/100 s is the sam-
pling time, T the averaging time (30 min in our case), and
N = T/1t the number of measured data in a time interval
T (N = 180 000 in our case), andS(t) is the generic tur-
bulent signal, corresponding here to the three velocity com-
ponents. After evaluating the mean wind with the Moving
Average method, the turbulent fluctuations are computed as
the difference between the total velocity and the mean wind.
As known from similarity theory (Stull, 1988), the inten-
sity of turbulent fluctuations, i.e. the turbulent kinetic energy,
depends on the mean wind, which in turn depends on the
large-scale circulation. This means that non-stationary ef-
fects could arise not only in the mean wind, but also in the
turbulence intensity, and could affect the threshold analysis.
Paradisi et al.(2009a) suggested that the modulation from
the large-scale circulation, interpreted as an external pertur-
bation acting on the local turbulence, could explain the slight
deviations from the renewal condition. In general, the ex-
ternal perturbation of a renewal process was shown to be
a delicate issue to be considered when estimating the self-
similarity of the WT distribution and in the evaluation of
renewal condition (Bianco et al., 2005b; Akin et al., 2006;
Bianco et al., 2007; Akin et al., 2009; Paradisi et al., 2008,
2009b), thus suggesting the need for reducing as much as
possible the effect of non-stationary external perturbations.

In order to minimize the effect of non-stationary trends of
the turbulence intensity, associated with large scale circula-
tion, on the threshold analysis, we estimate the local standard
deviationσ(k):
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Fig. 1. Comparison of original signal and normalized fluctua-
tion. (a) Sample fromUx(t) time series and Moving AverageUx(t)
(thick line). (b) normalized fluctuatioñUx(t).

σ 2(k)= 1
N

∑(k+1)N
m=kN+1

(
Sm−Sm

)2
; Sm= S(m1t) ;

Sm= S(m1t) ,

(2)

where the indexk labels the considered half-hour, being
kN1t the beginning time of the half-hourk. Then, we define
the normalized fluctuation:

S̃(t)=
S(t)−S(t)

σ (k)
, (3)

wherek is such that:kN1t < t < (k+1)N1t .
In Fig. 1 we show a sample of the velocityUx(t) time

series (panel a), compared with the normalized fluctuations
Ũx(t) (panel b), obtained by applying Eq. (3) to Ux(t). In
panel (a) the Moving Average is also reported.

The detection of critical events is done on the normalized
fluctuations by marking the passage through a thresholdD0

of the fluctuation increments:

|1Sm| = |S̃((m+1)1t)− S̃(m1t)|>D0 (4)

We note that, apart from the normalizing factorσ(k),
the statistical moments of|1Sm| correspond to the struc-
ture functions used to perform multi-scaling analysis
(Frish, 1995). Structure functions are related to the energy
flux across scales of motion. In fact, the structure function
of order 2 can be associated with the turbulent energy dis-
sipationε in the inertial range by means of dynamical and
similarity arguments. Then, it could be argued that sud-
den transitions in the turbulent fluctuation increments mirror
abrupt transitions in the energy fluxε. However, the feature
we are investigating here is related to the more immediate
kinematic interpretation of|1Sm| as a measure of fluid ac-
celeration, so that the threshold passages in|1Sm| clearly
correspond to rapid acceleration of the fluid masses. This is a
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Fig. 2. Samples from(a) time series of increments of the normal-
ized fluctuatioñUx(t); (b) sequence of Waiting Times for threshold
passages of1S=1Ux (D0 = 0.3).

natural choice to characterize the bursting behavior of sweep-
ejection events related to birth-death of coherent structures.

When condition given by Eq. (4) is satisfied for the first
time, the corresponding timet1 =m1 ∗1t is labeled as an
event occurrence time. The procedure runs iteratively and
the sequence{tn=mn1t ; n= 1,2,...} is obtained. The se-
quence of WTs{τn} is derived by the relation:τn= tn− tn−1,
n= 1,2,... In general, the first timet0 = 0 is not a time cor-
responding to an event, so that the first timeτ1 is not a real
WT and it can be disregarded. In any case, its effect on the
scaling analysis is negligible.

The signal increments1Ux , corresponding to the normal-
ized fluctuations of Fig. 1b, are reported in Fig. 2a.

The critical events are detected from each normalized fluc-
tuating velocity component for different thresholds:D0 =

0.02, 0.04, 0.09, 0.13, 0.2, 0.3. For each velocity com-
ponent and for each threshold, the sequences of occurrence
timestn and WTs{τn} was derived. A sample of the associ-
ated sequence of WTs is reported in Fig. 2b for the threshold
D0 = 0.3.
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3 Renewal processes and event-driven random walks

As said in the Introduction, we follow the hypothesis that the
critical events are renewal. In the following we give some
definitions used in the theory of renewal processes (Cox,
1962). Then, we briefly discuss the fractal dimension of re-
newal point processes and, finally, we review the concept of
event-driven diffusion, based on the model known as Contin-
uous Time Random Walk (CTRW) (Montroll, 1964; Kenkre
et al., 1973; Weiss and Rubin, 1983). The diffusion scaling
of the event-driven random walk can be investigated to char-
acterize not only the transport properties of turbulence in the
ABL, but also the complexity of the system. In fact, when the
renewal hypothesis applies, it is possible to guess the com-
plexity indexµ, as it will be explained below. The value ofµ
could be estimated through a direct power-law fit of the WT
histogram, but it was shown that, when a difference among
the two estimates is found, the diffusion scaling approach is
more robust and reliable, since spurious events can affect the
WT distribution (Allegrini et al., 2010b).

3.1 Renewal processes

A point process is defined as a series of events occurring ran-
domly in time. This is described as a sequence of increas-
ing random times:{tn}, n= 0,1,2,..., tn+1> tn. The time
instantt0 = 0 is the time of the first event occurrence. Denot-
ing the WTs byτn = tn− tn−1, n= 1,2,..., the point process
is defined to be a renewal process if the WTsτn are mutually
independent random variables (Cox, 1962).

Under this assumption, the occurrence of an event is as-
sociated with a dynamical instability determining the basic
property of erasing memory of the past. An example is
given by the Manneville map (Manneville, 1980), display-
ing long-time “laminar” states with a small Lyapounov expo-
nent and rapid transitions to short-time, quasi-instantaneous,
“chaotic” states with a large Lyapounov exponent. The
chaotic state, displaying a typical bursting behavior, has low
predictability, so that a decay of memory is associated with
the passage through this state, which can be seen as a quasi-
instantaneous event marking the transition between two sta-
tistically independent laminar states.

In the time-homogeneous case, a renewal process is
uniquely defined by a time-homogeneous Probability Den-
sity Function of WTs (WT-PDF):ψ(τ). Equivalently, it can
be described by the local rate of event productionr(t), which
is the expected number of events per time unit in a neighbor-
hood of the timet (Cox, 1962). Assuming that the last event
occurred attn, the local rater(t) is the conditional probabil-
ity density that an event occurs in an infinitesimal time inter-
val [t,t+dt], given that no events occur in the time interval
[tn,t]:

r(t)= lim
dt→0

1

dt
Pr{t < tn+1 ≤ t+dt | tn+1> t}. (5)

By using the properties of conditional probabilities, it is
possible to prove the following expression for the rater(t)
(Cox, 1962):

r(t)=
ψ(t− tn)

9(t− tn)
= −

1

9(t− tn)

d9

dt
(t− tn) ; tn< t < tn+1 , (6)

where:

9(τ)=

∫
∞

τ

ψ(s)ds= 1−

∫ τ

0
ψ(s)ds (7)

is the associated Survival Probability Function (WT-SPF),
i.e. the probability that a WTτj , extracted randomly from
the ensemble of the WTs{τn}, is larger thanτ . r(t) is the
instantaneous rate, which assumes a maximum value at an
event, then it decays in time and, finally, it is reset to the
maximum value at the next event, and so on. It is then possi-
ble to define an average decay rateg(τ), whereτ is the time
distance from the preceding event:

g(τ)=
ψ(τ)

9(τ)
= −

1

9(τ)

d9

dt
(τ ) (8)

Clearly, it results:ψ(τ)= −d9(τ)/dτ . It is worth noting
that the renewal condition is given by the independence of
ψ(τ) (and9(τ)) from the absolute timet , the indexn la-
beling then-th event and the previous WTs (or, equivalently,
the previous occurrence times). This is also seen in Eq. (6),
defining the rate in the absolute timet associated with the re-
newal sequence{tn}. Only the explicitt− tn dependence can
be seen, that is, the time elapsed from the last renewal event.

Once the rate functiong(τ) is known, the WT-SPF is sim-
ply derived by solving Eq. (8) with respect to9(τ) and im-
posing the initial condition9(0)= 1:

9(τ)= exp

(
−

∫ τ

0
g(τ ′)dτ ′

)
. (9)

The WT-SPF of a time-homogeneous Poisson process is an
exponential function:9(τ)= exp(−r0τ); so that, comparing
with Eq. (9), it results that the event rate is constant in time:
r(t)= r0 (Cox, 1962). This is in agreement with the well-
known property that, in a Poisson process, the mean number
of events in a given time interval[t,t+1t] is proportional to
the length of the time interval itself:〈N [t,t+1t]〉 = r01t .
At variance with Poisson processes, a renewal Non-Poisson
process is characterized by a Non-Poisson distribution of the
events, a non-exponential WT distribution and a changing in
time event rateg(t). An important example is given by the
following rate:

g(τ)=
r0

1+r1τ
. (10)

By applying Eq. (9), it is easy to prove the following expres-
sion for the WT-SPF:

www.nonlin-processes-geophys.net/19/113/2012/ Nonlin. Processes Geophys., 19, 113–126, 2012



118 P. Paradisi et al.: Scaling of coherent structures in turbulence

9(τ)=

(
T0

T0 +τ

)µ−1

; T0 =
1

r1

; µ= 1+
r0

r1

, (11)

corresponding to the WT-PDF:

ψ(τ)=
µ−1

T0

(
T0

T0 +τ

)µ
. (12)

These last two expressions become an inverse power-law,
1/τµ−1 and 1/τµ respectively, in the long-time ranget� T0,
thus satisfying scale invariance and self-similarity.

3.2 Fractal dimension of renewal events

Time intermittency is represented as a sequence of events oc-
curring randomly in time, whose geometrical representation
is given by a set of points on the time axis. As a consequence,
it is possible to define the fractal dimension of the set com-
posed by all the event occurrence times. This is done through
the standard box counting method (Ott, 2002):

Nb(1tb)∼
(
1tb

)−DF , (13)

whereNb is the number of “boxes” (time intervals in our
case) that contain at least one event. The algorithm is as fol-
lows. The event sequence is completely covered with a set of
non-overlapping time intervals of size1tb (i.e. the length of
the time intervals). Then, the number of interval containing
at least one event is computed.
It is known that, forµ≤ 2, the fractal dimensionDF is related
toµ itself through the relationship:

µ= 1+DF . (14)

This expression was rigorously derived byLowen and Teich
(2005) (see alsoLowen and Teich, 1993) using exact analyt-
ical results of probability theory (Feller, 1971). A heuristic
proof can be found inSchmitt et al.(1998) in the model-
ing of rainfall time series. Notice that Eq. (14) is valid only
for Non-Poisson renewal point processes withµ≤ 2, as it
is evident by considering the geometrical limitDF ≤ 1. For
example,Schmitt et al.(1998) found this relationship to be
experimentally verified only for the WT distribution of non-
rainy periods but not for that of rainy periods.

In Fig. 3a we reported the results of the box counting al-
gorithm applied to Monte-Carlo numerical simulations of the
Non-Poisson renewal process described by the WT-PDF of
Eq. (12). Two values ofµ smaller than 2 and two greater than
2 were used. As expected, Eq. (14) is satisfied in the range
µ< 2, which can be seen also as a testing on the quality of
our numerical codes. On the contrary, the application of the
box counting to the casesµ> 2 showed a dimensionDF = 1
independently from the value ofµ. The scaling is reached for
time scales larger than the mean WT, which, at variance with
the caseµ< 2, assumes a finite value forµ> 2. In Fig. 3b
the same box counting analysis is applied to the experimen-
tal sequence of events derived from the turbulence data. The
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counting method.(a) Renewal model given by Eqs. (11)–(12), T0 =

1; (b) turbulence data.

results are shown for different thresholds. The limiting be-
havior for times much larger than the average WT is always
associated with a constant dimensionDF = 1, whereas in the
short time range no evident power-law is observed. Conse-
quently, we guess that short time range depends only on the
average WT and, thus, on the threshold value.

It is interesting to compare these results with those ob-
tained from the WT distribution. In Fig. 4 the probability
density (WT-PDF) and survival probability (WT-SPF) of the
WTs are reported for theUx component and for different
threshold values. The WT distributions display a self-similar
behavior, i.e. a power-law decay. As discussed in the intro-
duction, this is a signature of complex behavior, which is the
ability of the system to generate self-organization. By visual
inspection of Fig. 4 it is evident that the complexity indexµ
evaluated from the WT distribution has a strong dependence
on the thresholdD0.

In Table1 the estimated values ofµ are reported with the
associated values of the threshold. It can be seen that the val-
ues span from the case of finite values to the case of infinite
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Fig. 4. Distribution of Waiting Times (Ux component):(a) proba-
bility density;(b) survival probability.

values of the average WT (µ>2 andµ≤ 2, respectively) and
of the variance (µ>3 andµ≤ 3, respectively).

Further, it is worth noting that the higher threshold value,
D0 = 0.3, leads to a valueµ = 1.7 (see Table1), which
is smaller than 2. According to Eq. (14), this should lead
to a fractal dimensionDF = 0.7. On the contrary, after a
short transient whose duration is about 1 min, it again re-
sultsDF = 1. This is an indication that the estimation ofµ
from the WT distribution is probably not reliable, a condition
that could be related to several causes, such as, for exam-
ple, to the presence of spurious events not related to the self-
organized structures. Even if large errors could occur in the
direct estimation ofµ from the WT distribution, a threshold
dependence exists and can be seen as a manifestation of the
multi-scaling and multi-fractal nature of turbulence, which
is mainly associated with the intensity of the turbulent field
(Schertzer and Lovejoy, 1987; Schertzer et al., 2002).

However, we are here more interested to investigate the
role of intermittent time structure of self-organized coher-
ent fluid motion in the scaling of turbulent transport. As

Table 1. Values ofµ estimated from the WT distribution and the
associated threshold values (Ux component).

D0 0.02 0.04 0.09 0.13 0.2 0.3

µ (from WT-PDF) 4 3.3 2.7 2.4 2.1 1.7

explained in the next Sections, this is done by investigating
the scaling properties of diffusion generated by the sequences
of critical events that define the birth-death process of coop-
eration.

The fact that we get alwaysDF = 1 means that the frac-
tal analysis always detects a time homogeneous distribution
of events for time longer than the average WT, which be-
comes finite forµ> 2 and is given by〈τ 〉 = T0/(µ−2) in
the case of renewal processes. However, even ifDF remains
constant and equal to its limit value 1, a self-similarity is still
observed in the event sequence through the complexity index
µ, which can then be exploited for the analysis of a more ex-
tended range of different conditions. This is seen by the WT
distributions of Fig. 4 and will be confirmed by the diffusion
scaling analysis in the next Sections.

3.3 Event-driven random walks

The CTRW model was first investigated by Montroll and co-
workers (Montroll, 1964; Kenkre et al., 1973; Weiss and Ru-
bin, 1983). At variance with the standard Random Walk with
fixed time steps, it is allowed to have random time steps, in
our case corresponding to sequence of renewal WTs{τn} ex-
tracted from the experimental time series. Here we want to
study that part of the turbulent transport properties that are
related to the time intermittency of critical events. To this
goal, we investigate two different CTRWs driven by the same
critical events, by defining two walking rules.Allegrini et al.
(2009a) used this approach not only to estimate the complex-
ity indexµ, but also to evaluate the renewal condition on a
data-set of human brain ElectroEncephaloGrams.

The random walk is defined through a signalξ(t), which is
a kind of random discontinuous velocity, taking two or three
different values depending on the event occurrence times.
This signal is highly discontinuous in time and intensity, as
it jumps among two or three values and only at time instants
randomly distributed in time. Thus, the diffusion variable is
defined as:

X(t)=X0 +

j=t∑
j=0

ξ(j) 1t , (15)

being1t the sampling time of the experimental time series.
It is worth noting that the Taylor-Green-Kubo formula, re-
lating the mean square displacement to the auto-correlation
function, follows from this kinematic relationship. However,
in this case, the classical version based on the stationary auto-
correlation function (Taylor, 1921) must be modified to take
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(a) Asymmetric Jump (AJ)

t0 t2t1

τ 1 τ 2 τ 3

t3

+1 +1+1 +1

(b) Symmetric Jump (SJ)

t0

t1

t2

t3

τ1 τ2 τ3

+1 +1

−1−1

Fig. 5. The AJ and SJ walking rules for the “velocity signal” ξ(t).

In Fig. 5 a sketch of the two signals ξ(t) is reported. The times t0 , t1 , t2 ,... correspond to the

occurrence of the events 0, 1, 2,..., while τ1 , τ2 ,... are the WTs, i.e., the time interval between the

events 0 and 1, the events 1 and 2 and so on. In particular, we have:355

(a) Asymmetric Jump (AJ) rule:

the walker makes a positive jump (ξ(tn) = 1) in correspondence of each event n, otherwise it

stands (ξ(t) = 0). Then, ξ(t) is a sequence of pulses of constant intensity.

(b) Symmetric Jump (SJ) rule:

as in the AJ rule, but the walker can make positive or negative jumps in correspondence of an360

event: ξ(tn) =±1. The sign ± is chosen with a coin tossing prescription.

The scaling properties of these random walks were extensively investigated in several papers
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where X is the mean value of X(t). The analytical expressions for the diffusion scaling exponent

H as a function of the complexity index µ are plotted in Fig. 6 and summarized in the following:375
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Fig. 5. The AJ and SJ walking rules for the “velocity signal”ξ(t).

into account the lack of an invariant measure, i.e. of an equi-
librium state in the long-time regime (Korabel et al., 2007).
In other words, a stationary condition does not exist ans this
is theoretically associated with the strong memory of the ini-
tial conditions. In many real systems with power-law behav-
ior, such as turbulence in the ABL, a stationary condition can
also exist. However, the relaxation to this stationary state can
be so slow that the time scale of non-stationary trends, cor-
responding to the time scale over which the local (in time
and space) equilibrium distribution changes, could be com-
parable or even shorter that the relaxation time of the local
turbulence. The main consequence is that only anomalous
diffusion is seen and the normal diffusion regime is never
reached.

In Fig. 5 a sketch of the two signalsξ(t) is reported. The
timest0, t1, t2,... correspond to the occurrence of the events
0, 1, 2,..., while τ1, τ2,... are the WTs, i.e. the time interval
between the events 0 and 1, the events 1 and 2 and so on. In
particular, we have:

a. Asymmetric Jump (AJ) rule:
the walker makes a positive jump (ξ(tn)= 1) in corre-
spondence of each eventn, otherwise it stands (ξ(t)=
0). Then,ξ(t) is a sequence of pulses of constant inten-
sity.

b. Symmetric Jump (SJ) rule:
as in the AJ rule, but the walker can make positive or
negative jumps in correspondence of an event:ξ(tn)=

±1. The sign± is chosen with a coin tossing prescrip-
tion.

The scaling properties of these random walks were ex-
tensively investigated in several papers (Shlesinger, 1974;
Metzler and Klafter, 2000; Grigolini et al., 2001, 2002) by
applying the analytical methods of CTRW model, i.e. the
Montroll-Weiss equation for the Fourier-Laplace transform
of the probability distributionp(x,t)dx= Pr[x <X(t)≤ x+

1

0.5

0
1 2 3 µ

AJ

SJ

H

Fig. 6. Diffusion scalingH vs. complexity indexµ for SJ and AJ
walking rules: AJ (continuous line), SJ (dotted-dashed line).

dx] (Montroll, 1964; Weiss and Rubin, 1983), or by apply-
ing simple scaling relationships in the case of AJ rule (Lowen
and Teich, 1993; Allegrini et al., 2009a). In particular, two
scaling indices were found in the asymptotic long-time limit:
the self-similarity indexδ of the diffusion probability distri-
bution, defined byp(x,t)= f (x/tδ)/tδ; and the scaling ex-
ponentH of the second moment. These scaling indices were
determined in the case of Non-Poisson renewal WTs with in-
verse power-law tail:ψ(τ)∼ 1/τµ. Here the diffusion scal-
ing will be investigated through the estimation of the second
moment scaling exponentH , defined by:

σ 2(t)= 〈
(
X(t)−X

)2
〉 ∼ t2H , (16)

whereX is the mean value ofX(t).
The analytical expressions for the diffusion scaling expo-

nentH as a function of the complexity indexµ are plotted in
Fig. 6 and summarized in the following:

AJ. H =


µ/2 ; 1<µ< 2

2−µ/2 ; 2≤µ<3

1/2 ; µ≥ 3

(17)

SJ. H =

{
(µ−1)/2 ; 1<µ< 2

1/2 ; µ≥ 2
(18)

Both rules give a normal scalingH = 1/2 forµ≥ 3, corre-
sponding to normal (Gaussian) diffusion. For the SJ rule this
is true also in the range 2<µ≤ 3, while AJ rule is super-
diffusive (H >1/2) in all the interval 1<µ< 3. On the con-
trary, the SJ rule is sub-diffusive (H < 1/2) for 1<µ< 2.
We note that, if the WTs comes from a Poisson process, the
value ofH is again 1/2 and, in the long-time, we have a
Gaussian diffusion.

The joint use of these walking rules can be used to eval-
uate the value of theµ by inverting the expressions given
in Eqs. (17)–(18). Grigolini et al. (2001) found that the AJ
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rule is faster in reaching the scaling regime with respect to
the other ones. Considering the finite length of experimental
WT sequences, this means that the estimation ofµ is usually
more accurate in the AJ rule. It can be seen from Fig. 6 that
HAJ(µ) is not an invertible function, as the same value ofH

corresponds to two distinct values ofµ, one smaller and the
other greater than 2. WhenHSJ< 1/2 it resultsµ< 2 and
both rules, i.e. the associated values ofµ derived from AJ
and SJ rules, could be compared to each other. On the con-
trary, forHSJ = 1/2, a value ofµ cannot be derived from the
SJ rule, but we can assumeµ> 2. For this reason, the SJ
rule could be used to discriminate betweenµ< 2 andµ> 2,
overcoming the ambiguity of AJ rule.

4 Diffusion scaling

Two diffusion processes are computed from the WT se-
quences extracted in Sect.2. This is done by applying the AJ
and SJ walking rules introduced in Sect.3. Finally, the dif-
fusion scalingH of the two processes is estimated for each
component independently from the other components.

The diffusion scalingH of the two random walks is es-
timated by means of Detrended Fluctuation Analysis (DFA)
(Peng et al., 1994). We briefly recall the main steps of this
method:

– For a discrete timeL= 4,5,..., the time series of the
diffusion processX(t) is split into not-overlapping time
windows of lengthL: [kL+1,kL+L]. The window
number is given by[M/L], i.e. the integer part ofM/L,
beingM the total length of the time series.

– For each time window [kL + 1,kL + L] (k =

0,1,...,[M/L]), the local trend is evaluated with a least-
squares straight line fit:
Xk,L(t)= ak,L t+bk,L; kL< t ≤ (k+1)L.

– The fluctuation is derived in the usual way:

X̃k,L(t)=X(t)−Xk,L(t)=

=X(t)−a
k,L
t−b

k,L
; kL< t ≤ (k+1)L.

– For a given time scaleL, the mean-square deviation of
the fluctuation is calculated over every window:

F 2(k,L)= 1
L

∑(k+1)L
t=kL+1X̃

2
k,L(t)=

=
1
L

∑(k+1)L
t=kL+1

(
X(t)−Xk,L(t)

)2 (19)

– Finally, an average over the windows is performed:

F 2(L)=
1

[M/L]

[M/L]∑
k=0

F 2(k,L) (20)

In the case of a self-similar process, it results:F(L)∼L
H

.
Then, by definingz= log(F (L)) andy= log(L), it is possi-
ble to apply a least-squares straight line fit:
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Fig. 7. Detrended Fluctuation Analysis applied to random walks
driven by events derived fromUx velocity component.(a) AJ rule.
(b) SJ rule. The results for different thresholdsD0 are reported. The
continuous lines are reported as an eye-guide. The vertical dotted
line corresponds to the averaging timeT = 1800 s.

z=Hy+C , (21)

whereC is a constant.
In Fig. 7 we reported the DFA functionF(L) in log-log

plots, for the two walking rules (AJ and SJ) and for differ-
ent thresholds. The slope of both AJ and SJ curves in the
log-log plot are approximately independent of the threshold
value. This was true for the threshold values adopted, while
remarkably different values are found for lower and larger
values. Incidentally, we found that for extremely low thresh-
old values the definition of event was dominated by erratic
fluctuations, yielding a significantly smallerH for the AJ
rule, related to the detection of spurious events. For large
threshold values the number of events was too small for our
statistical analysis. The effect of the threshold is seen only in
the intercept of the curves or, equivalently, in the area be-
low the curveF(L): smaller threshold values correspond
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to greater number of events and, then, to greaterF(L) (top
curves). The presence of a short-range or white noise is re-
vealed by the short-time behavior of the AJ rule (Fig. 7a). In
fact, the thresholding procedure detects not only genuinely
complex Non-Poisson events but also spurious events that,
following Allegrini et al. (2010b), we can assume as Poisson
events. Thus, a superposition of a Non-Poisson and a Pois-
son point process would yield, for the second moment of the
AJ rule, the sum of the second moments stemming from the
two independent processes:

σ 2(t)=Ppσ
2
p (t)+Pnσ

2
n (t) , (22)

wherePp andPn are the statistical weights,σp andσn the
standard deviations, for the Poisson and Non-Poisson pro-
cesses, respectively. Our data suggest that the ratioPp/Pn
decreases as the threshold increases. This takes into account
the shift towards the left, upon threshold increase, of the
knee marking the transition from normal diffusion to super-
diffusion in the AJ rule (see Fig. 7a).

In Table2 the estimated values of the diffusive scalingH
of the AJ walking rule are reported for each velocity com-
ponent. TheH values are estimated by averaging over the
different thresholds. For each threshold, the fitted values are
derived in the interval going from about 5 s to 500 s, where
the scaling behavior is more evident in the AJ rule. A sec-
ond fit was done up to 1000 s without significant changes.
As said above, the AJ rule does not allow to discriminate
among the rangesµ< 2 andµ> 2. However, the normal
scalingH ' 1/2, found in the SJ rule, restricts the range to
the intervalµ≥ 2. As a matter of fact, even in the caseµ<2
the superimposed Poisson noise would yield a normal scaling
H = 1/2 in the SJ rule. However, notice that Eq. (22) holds
also for the SJ rule and we expect a sub-diffusive behavior in
the short-time region with a knee shifting towards the right
upon threshold increase. However, there is no evidence of a
knee in the SJ rule (see Fig. 7b) and this suggests both terms
of Eq. (22) yield normal diffusion. Another clue is given by
the fractal dimension analysis shown in Fig. 3b, which gives
DF = 1 for all threshold values. As shown in Fig. 3a, this
is another strong indication thatµ> 2. Notice that, for the
reasons discussed above and later in the conclusions, we can-
not use the direct inspection of the WT distribution to prove
thatµ> 2, as we cannot assume that the diffusion process
is strictly related to the WT distributions displayed in Fig. 4.
As a counter-example, we refer to the superposition of Pois-
son and Non-Poisson point processes described above, a con-
dition in which reliable information cannot be extracted di-
rectly from the WT distribution and the diffusion scaling is
related to a “hidden” Non-Poisson renewal process (Allegrini
et al., 2010b).

Inverting Eq. (17), which is based on the renewal hypoth-
esis, we find the values of the complexity indexµ

D
reported

in the last column of Table2. The labelD is used to dis-
tinguish this complexity index and those evaluated from the
WT distribution and to underline that it is computed from the

Table 2. Diffusion scalingH of the AJ rule and complexity index
µD for each velocity component. The values ofµD are here derived
from the diffusion scalingH under the renewal assumption, i.e. by
inverting Eq. (17). The average and the range of fitted (H ) and
computed (µD ) values are reported.

velocity H (AJ) µD
component

u 0.95 (0.93–0.96) 2.1 (2.08–2.14)
v 0.95 (0.93–0.96) 2.1 (2.08–2.14)
w 0.97 (0.95–0.98) 2.06 (2.04–2.1)

diffusion scaling. The estimated values ofµ
D

are slightly
above 2. This is a critical value marking the transition from
a finite to an infinite mean WT and, then, between a slow re-
laxation to an asymptotic equilibrium state (2<µ< 3) and
no relaxation at all (1<µ≤ 2).

4.1 Effect of data detrending and normalization on
diffusion scaling

We give a brief account of the robustness of the diffusion
scaling analysis considering different definitions of the fluc-
tuating signal, i.e. we substitute the definition given in Eq. (3)
with two alternative ones. In the first one we evaluate the
mean wind with a linear detrending procedure. Then, the
fluctuation is:

S̃1(t)=
S1(t)− [a(k)t+b(k)]

σ1(k)
, (23)

where, analogously to Eq. (3), k labels the half-hour con-
taining the timet , Sk(t)= a(k)t + b(k) is the linear trend
evaluated with a least-squares straight line fit over non-
overlapping time windows of 30 min (the half-hourk) and
σ1(k) is the analogous ofσ(k) in Eq. (2). In the second alter-
native definition, we use again the Moving Average method,
but without applying the normalization withσ(k). Then, we
get:

S̃2(t)= S(t)−S(t)= σ(k)S̃(t) . (24)

Note that the statistical moments of the fluctuation incre-
ments in this last definition correspond to the standard struc-
ture functions widely studied in turbulence and relating to the
energy fluxε across the different scales of turbulence (Frish,
1995).

In Fig. 8 the DFA analysis for events extracted from
the fluctuations defined with linear detrending, Eq. (23), is
shown. No dependence on the threshold is seen in the scal-
ing behavior, which is very similar to that obtained applying
the moving average method for both AJ and SJ rules. The
fitted values confirm these qualitative observations. In Fig. 9
the normalized fluctuations, Eq. (3), and not normalized fluc-
tuations, Eq. (24), are compared. Even in this case, no evi-
dent effect of the fluctuation definition is seen on the scaling
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Fig. 8. Same as Fig. 7, but with events extracted from the fluctuat-
ing signal defined in Eq. (23).

behavior, at least on time below the averaging time, i.e. be-
low 30 min (see vertical line in Figs. 7, 8 and 9). Apart from
scaling, some qualitative differences are seen, especially on
times of order of 30 min, but this is not a surprising effect.
This is more evident in Fig. 9, where the not normalized case
deviate by the normalized one at about 500 s. It is worth not-
ing that, even being not accurate over times of the order of
30 min or larger, the DFA scaling region seems to be slightly
more extended in the normalized case than in the not normal-
ized case, so that the deviations could be an effect of slow
non-stationary trends associated with slow variations of the
local turbulent intensity.

5 Discussions and concluding remarks

Self-organized coherent structures have been recognized to
play a central role in turbulence, being the emergence of
these highly correlated fluid regions associated with an

Normalized D0 = 0.13
Not Normalized, D0 = 0.12F (L)
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Fig. 9. DFA analysis: comparison of normalized and not normal-
ized fluctuations, Eqs. (23) and (24)

enhancement of diffusion and transport (Mahrt, 1989; Finni-
gan, 2000). Diffusivity generated by coherent structures is a
feature of particular interest from both theoretical and exper-
imental point of view.

In this paper we investigated the time intermittent charac-
ter of turbulent transport and we showed that it is driven by
a self-similar point process leading to a well-defined diffu-
sion scaling independent of the threshold used to define the
intermittent transition events. We also showed that our anal-
ysis is robust under the change of the definition of turbulent
fluctuations.

The diffusion scaling was found by means of a method
based on event-driven random walks. The basic idea is that,
as these random walks have a simple jump statistics, the dif-
fusion depends only on the self-similarity and memory fea-
tures of the event sequences, i.e. the complexity indexµ and
the inter-dependence among WTs. Further, in the case of re-
newal events and due to the simple jump statistics, analytical
formulas relating diffusion scaling and complexity index are
available. Notice that also the renewal assumption is cru-
cial, but a direct correlation analysis on the WT sequences
could lead to misleading results. As an example, when two or
more renewal processes are superposed, the final global pro-
cess would appear as a non-renewal point process (Allegrini
et al., 2010b). However, as discussed in the introduction,
the renewal assumption is reasonable and widely applied in
the stochastic modeling of turbulent transport (Higbie, 1935;
Perlmutter, 1961; Katul et al., 2006).

A direct evaluation of the complexity indexµ from the
WT distribution was also obtained. A strong dependence on
the threshold was found with aµ range spanning from 1.7
to 4. This is probably related to a combination of different
effects: the multi-scaling nature of turbulence; the low statis-
tics in the computation of the histogram, which is crucial in
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power-law fitting; the presence of spurious events related to
the thresholding method, to real events not associated with
self-organization or to both and which affect the shape of the
WT distribution in a non-trivial way (Allegrini et al., 2010b).

The threshold dependence ofµ evaluated from the WT
distribution shows another important aspect of event-driven
random walks, which essentially justifies their use in the
analysis carried out in this paper. In fact, from the depen-
denceµ=µ(D0) we expect a threshold dependence in the
random walks and, then, in the diffusion scalingH . How-
ever, the AJ and SJ rule have the crucial property of adding
linearly the contributions coming from independent point
processes. This allows to the more rapid diffusion to emerge
in the long-time regime. If enough data resolution is avail-
able and if the time scales of the different point processes are
sufficiently far from each other, it it possible to detect also
intermediate regimes. This can be seen in Figs. 7, 8 and 9,
where a knee, dividing a short-time normal diffusion and a
long-time super-diffusion, is evident.

It is important to note that, assuming renewal hypothesis,
the diffusion scaling leads to a complexity index indepen-
dent from the threshold. This complexity indexµ

D
is about

2.1, definitively greater than 2. The finding ofµ
D

& 2 is
confirmed by the combination of the SJ rule with the frac-
tal dimension analysis. In fact, it was numerically proved
that the classical relationµ= 1+DF is valid only forµ< 2,
while DF = 1 for µ> 2. It is interesting to note that, even
whenDF = 1, a self-similar behavior is still seen in the WT
distribution and that this self-similarity in the WT distribu-
tion determines the scaling of event-driven diffusion in the
AJ walking rule.

This observation leads us to conclude that an underlying
process exists and that it drives the time intermittency of tur-
bulent diffusion in the region of the ABL very near to the
ground. The definition of event as fluid rapid acceleration
leads us to identify this self-similar point process with the
birth/death process of cooperation, which is associated with
the emergence and decay of self-organized coherent struc-
tures. However, this interpretation is only hypothetical and
needs further investigations.

The presence of coherent structures in turbulence deter-
mine the failure of the basic hypothesis of standard dif-
fusion models, i.e. the separation between small and large
scales, even when considering scales above the integral Eu-
lerian scales (Stull, 1988). The scale separation hypothesis
allows considering local turbulent fluxes, thus a local diffu-
sivity can be defined. In some cases, even if fluxes are not
local, an equivalent, but unphysical local diffusivity model
can be used. Moreover, the emergence of counter-gradient
phenomena, especially in convective conditions, makes this
treatment inappropriate (Paradisi et al., 2001a,b). Diffusion
scaling and intermittency are important features of trans-
port in turbulent flows, particularly of diffusion processes
related to coherent structures. Consequently, these features
must be taken into account in the development of data-based

stochastic models (Donner et al., 2009). In particular, the ex-
istence of a self-similar birth-death stochastic point process
of cooperation driving the turbulent diffusion in the region of
ABL near the ground has been assessed. This point process
is perhaps related to the “external intermittency” claimed by
Cava and Katul(2009) (see alsoMahrt, 1989), but these as-
pects deserve further investigations and will be the subject of
future work.
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