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Abstract. Runup of long irregular waves on a plane beach
is studied experimentally in the water flume at the Univer-
sity of Warwick. Statistics of wave runup (displacement and
velocity of the moving shoreline and their extreme values)
is analyzed for the incident wave field with the narrow band
spectrum for different amplitudes of incident waves (differ-
ent values of the breaking parameter Brσ ). It is shown exper-
imentally that the distribution of the shoreline velocity does
not depend on Brσ and coincides with the distribution of the
vertical velocity in the incident wave field as it is predicted
in the statistical theory of nonlinear long wave runup. Statis-
tics of runup amplitudes shows the same behavior as that of
the incident wave amplitudes. However, the distribution of
the wave runup on a beach differs from the statistics of the
incident wave elevation. The mean sea level at the coast rises
with an increase in Brσ , causing wave set-up on a beach,
which agrees with the theoretical predictions. At the same
time values of skewness and kurtosis for wave runup are sim-
ilar to those for the incident wave field and they might be
used for the forecast of sea floods at the coast.

1 Introduction

The prediction of possible flooding and properties of the wa-
ter flow on the coast is an important practical task for phys-
ical oceanography and coastal engineering, which results in
numerous empirical formulas describing runup characteris-
tics of wind waves and swell available in the engineering lit-
erature (see, for instance, Le Mehaute et al., 1968; Stock-
don et al., 2006). Very often these formulae are strongly
dependent on the site specific location of the coastal zone
due to effects of reflection, refraction and diffraction. In the
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deterministic approach for a solitary incident wave the pro-
cess of wave runup is modelled within fully-nonlinear Euler
or Navier-Stokes equations including effects of wave break-
ing and dissipation in the near-bottom boundary layer (Liu
et al., 1995; Kennedy et al., 2000; Choi et al., 2007, 2008;
Fuhrman and Madsen, 2008). In the case of an irregular in-
cident wave field the wave runup on a beach is usually calcu-
lated from empirical expressions (Massel, 1989), which can
be found from experimental studies in laboratory and natu-
ral conditions. The statistics of nonlinear runup of irregu-
lar breaking waves was reported by Hedges and Mase (2004)
who conducted laboratory investigations. Experimental stud-
ies of wave runup on a beach in natural conditions have
been undertaken by numerous investigators (e.g. Bowen et
al., 1968; Huntley et al., 1977; Guza and Thornton, 1980;
Holman and Sallenger, 1985; Holman, 1986; Raubenneimer
and Guza, 1996; Raubenneimer et al., 2001). It has been
shown that nonlinearity in the coastal zone leads to an in-
crease in the mean sea level at the coast (wave set-up) for any
distribution of the wave field (Bowen et al., 1968; Huntley et
al., 1977; Raubenneimer and Guza, 1996; Dean and Walton,
2009) and that the distribution of wave runup on a beach de-
viates from a Gaussian profile (Huntley et al., 1977).

Runup of irregular non-breaking waves was theoretically
studied by Didenkulova et al. (2011), where the nonlinear
shallow water theory was applied to beaches of constant
slope. Beach slopes of constant inclines are commonly used
in validation techniques, as it enables an exact solution of the
nonlinear shallow water theory to be established (Carrier and
Greenspan, 1958). In the statistical approach, Didenkulova
et al. (2011) have found relationships between distributions
of wave runup, shoreline velocity and statistics of the incom-
ing irregular wave field. Didenkulova et al. (2011) demon-
strated that the nonlinearity does not change the statistics
of the shoreline velocity, but does influence the statistics of
wave runup displacement, resulting in a change to its statis-
tical moments. In this paper the influence of the nonlinearity
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on the statistics of wave runup is studied experimentally and
compared with the theoretical predictions.

The paper is organized as follows. The shallow water the-
ory and the main theoretical results are briefly discussed in
Sect. 2. The experimental setup is described in Sect. 3. The
structure of the incident wave field is presented in Sect. 4.
The experimental results on statistics of wave runup are dis-
cussed in Sect. 5, culminating with conclusions in Sect. 6.

2 Scientific background

The statistics of irregular wave runup on a plane beach is
studied within the framework of nonlinear shallow water the-
ory
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where η(x,t) is water displacement,u(x,t) is depth-
averaged velocity,h(x) is unperturbed water depth,g is grav-
ity acceleration,x is a coordinate, directed onshore, andt is
time. The beach is assumed to be planeh(x) = −αx, where
α is a constant beach slope. The main conclusion of the non-
linear shallow water theory based on Eq. (1) is that extreme
runup statistics (maximum runup and backwash heights and
maximum runup and backwash velocities of the shoreline) in
nonlinear and corresponding linear theories (extremes of sea
level oscillationsR(t) and velocityU (t) in the pointx = 0
for the linearized Eq. (1) coincide if an incident wave ap-
proaches the shore from far distance (Carrier and Greenspan,
1958; Synolakis, 1991; Didenkulova et al., 2008). For the
case of irregular waves, Didenkulova et al. (2011) demon-
strated that this theory is still valid.

For example, if initial wave field is represented by a Gaus-
sian stationary random process with a narrow-band spectrum,
the distributions of amplitudes of the nonlinear wave runup
are described by Rayleigh distribution

f (Rextr) =
4Rextr

R2
s

exp

(
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Rs

]2
)

, (2)

whereRextr is the extreme (maximum or minimum) runup
heights,Rs is the significant runup height, defined as the av-
eraged of 1/3 of the largest waves, which is often used in the
oceanography; for the Gaussian processRs = 4σR, σR is the
standard deviation of linear wave runup.

The distribution Eq. (2) can also be written in terms of
the shoreline velocity using the significant shoreline veloc-
ity amplitudeUs. Moreover, the distribution functions and,
hence, statistical moments of the nonlinear velocity of the
moving shorelineu(t) coincide with distribution functions
and statistical moments of the corresponding velocity in the
linear problemU (t):

< un >=< Un > . (3)

Therefore, the nonlinearity does not influence the statistics
of the shoreline velocity. In contrast to the shoreline velocity,
the distribution of wave runup is not Gaussian and is influ-
enced by nonlinearity. Statistical moments of the nonlinear
wave runupr (t) can be derived through standard deviations
of linear wave runupσR and displacement velocityσU , such
that for example, the mean sea level (set-up) is

< r >=
σ 2

U

2g
. (4)

Using assumptions of the Gaussian stationary process for the
incident wave, expressions for varianceσr , skewnesss and
kurtosisk of the nonlinear wave field at the beach have been
established in (Didenkulova et al, 2011):
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At the same time, the random functionsR(t) andU(t) are
connected

U =
1

α

dR

dt
, (8)

and, therefore, they do not correlate with each other, hence,
standard deviationsσR andσU should be determined inde-
pendently. Thus, Eqs. (3)–(6) can be expressed in a non-
dimensional form with the use of a single parameter Brσ

(wave breaking parameter)
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The parametersσR and σU characterizing the linear wave
field in the pointx = 0 are not directly measured in experi-
mental studies, thus, it is more convenient to express Eqs. (8)
through measured characteristicsσr andσu
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and analyze experimental results with respect to the shoreline
displacement and velocity.

The velocity of the moving shoreline has a Gaussian dis-
tribution if the wave field offshore is also described by the
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Gaussian distribution. However, the distribution of the dis-
placement of the moving shoreline is non-Gaussian. If the
deviation is weak (small values of the parameter Brσ ), its
probability density function can be found by a perturba-
tion technique based on the Gram-Charlier series of Type A
(Kendall and Stuart, 1969; Massel, 1996).

ξ =
r

σr

, wr (ξ,Brσ ) = f (r)σr , (12)

The probability density functionwr in this case can be rep-
resented as
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whereH (ρ) are the Hermite polynomials
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−3ρ, H4(ρ) = ρ4
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+3. (14)

and
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The probability density functionwr is shown in Fig. 1 for
several values of the parameter Brσ . It is evident thatwr be-
comes asymmetric and shifts towards large values of shore-
line displacementξ with an increase in parameter Brσ .

Figure 1 includes both linear and semi-logarithmic scales
of the distribution in order to demonstrate the changes in the
main body (slight increase of the mean level) and in the tails
(the probability of extreme runups increases and the proba-
bility of extreme backwashes decreases). This demonstrates
that wave runup prevails over the backwash even in cases
when the incident wave is symmetrical with respect to the
horizontal axis. This suggests, that nonlinear waves will
cause more prolonged flooding at the coast.

3 Experimental setup

Experimental investigations were completed in the new wave
flume at the University of Warwick, of dimensions, 22 m
long, 0.6 m wide and an operating water depth of 0.5 m. The
channel is equipped with an absorbing-piston type wave-
maker (Spinneken and Swan, 2009). The wavemaker pad-
dle is equipped with an active absorption mechanism, such
that it is assumed that the runup statistical processes can be
treated as stationary. Experiments were conducted on a plain
1:3.4 impermeable beach, located at the far end of the flume
(Fig. 2). Water surface elevations were measured by resis-
tance probes installed at 7 locations throughout the flume
(location x = 4, 4.4, 4.8 . . . 6.4 m from the slope). Probes
were spaced by 0.4 m to span at least a half-wavelength to
reconstruct the incident wave from its superposition with the
wave reflected by the beach (the method explained below).

The probability density function rw  is shown in Fig. 1 for several values of the parameter σBr . It is 

evident that rw  becomes asymmetric and shifts towards large values of shoreline displacement ξ  

with an increase in parameter σBr .  

 

Fig. 1. Probability density function of the displacement of the moving shoreline for 0=σBr  (solid line), 

2.0=σBr  (dashed line) and 3.0=σBr  (dash-dotted line). 

Fig. 1 includes both linear and semi-logarithmic scales of the distribution in order to demonstrate the 

changes in the main body (slight increase of the mean level) and in the tails (the probability of 

extreme runups increases and the probability of extreme backwashes decreases). This demonstrates 

that wave runup prevails over the backwash even in cases when the incident wave is symmetrical 

with respect to the horizontal axis. This suggests, that nonlinear waves will cause more prolonged 

flooding at the coast. 

 

3. Experimental setup  

Experimental investigations were completed in the new wave flume at the University of 

Warwick, of dimensions, 22 m long, 0.6 m wide and an operating water depth of 0.5 m. The channel 

is equipped with an absorbing-piston type wavemaker (Spinneken & Swan, 2009). The wavemaker 

Fig. 1. Probability density function of the displacement of the mov-
ing shoreline for Brσ = 0 (solid line), Brσ = 0.2 (dashed line) and
Brσ = 0.3 (dash-dotted line).

The runup was measured by a capacitance probe consist-
ing of the two lacquered copper wires of 0.2 mm thick sus-
pended in tension at 5 mm above the slope. The fluid veloc-
ity at the location of the wires is nearly parallel to the slope,
hence the flow doesn’t significantly deflect the wires. The
distance between wires (20 cm) is large compared with the
possible displacement due to the water motion and combined
with the logarithmic decay of electric field provides vanish-
ingly small effect on the probe reading. A 5 volt 100 kHz
signal was applied to the one of the wires. The signal from
the other wire was treated by a lock-in amplifier and its am-
plitude was logged with the sampling frequency of 200 Hz.
The signal from wave gauges was recorded with the sam-
pling frequency of 128 Hz. To speed up the processing, both
signals were decimated to 32 Hz as 64 sampling points per
wave period is commonly considered sufficient. Calibration
of the probe was performed by comparing the signal with re-
sults of video-recording. To avoid the drift of both runup and
the wave probes, water was kept in the channel for 5 days
before the experiment, to stabilize its temperature and thus
concentration of dissolved gases which can strongly affect
conductivity. The shoreline speed was calculated as the time
derivative of the runup signal.

The reason for not placing the capacitance probe directly
on the slope was the evidence of a thin layer of water (or-
der 1mm), which waves leave on retraction. This would have
affected the capacitance between wires placed on the slope.
Suspension of the wires by 5 mm results in an error of the
similar magnitude in runup measurement. This is compara-
ble with the error introduced by the capillary effect at the
shoreline. To estimate the latter, we set the capillary pressure
associated with meniscus formation equal to the hydrostatic

pressure, i.e.σ
h/2 ≈ ρ gh which results inh ≈

√
2σ
ρ g

≈ 3 mm.
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paddle is equipped with an active absorption mechanism, such that it is assumed that the runup 

statistical processes can be treated as stationary. Experiments were conducted on a plain 1:3.4 

impermeable beach, located at the far end of the flume (Fig. 2). Water surface elevations were 

measured by resistance probes installed at 7 locations throughout the flume (location x = 4, 4.4, 4.8 

…6.4 metres from the slope). Probes were spaced by 0.4 m to span at least a half-wavelength to 

reconstruct the incident wave from its superposition with the wave reflected by the beach (the 

method explained below). 

 

Fig. 2. Experimental setup. 

The runup was measured by a capacitance probe consisting of the two lacquered copper 

wires of 0.2 mm thick suspended in tension at 5 mm above the slope. The fluid velocity at the 

location of the wires is nearly parallel to the slope, hence the flow doesn’t significantly deflect the 

wires. The distance between wires (20 cm) is large compared with the possible displacement due to 

the water motion and combined with the logarithmic decay of electric field provides vanishingly 

small effect on the probe reading. A 5 volt 100 kHz signal was applied to the one of the wires. The 

signal from the other wire was treated by a lock-in amplifier and its amplitude was logged with the 

sampling frequency of 200 Hz. The signal from wave gauges was recorded with the sampling 

frequency of 128 Hz. To speed up the processing, both signals were decimated to 32 Hz as 64 

sampling points per wave period is commonly considered sufficient. Calibration of the probe was 

performed by comparing the signal with results of video-recording. To avoid the drift of both runup 

and the wave probes, water was kept in the channel for 5 days before the experiment, to stabilize its 

temperature and thus concentration of dissolved gases which can strongly affect conductivity. The 

shoreline speed was calculated as the time derivative of the runup signal. 

The reason for not placing the capacitance probe directly on the slope was the evidence of a 

thin layer of water (order 1mm), which waves leave on retraction. This would have affected the 

capacitance between wires placed on the slope. Suspension of the wires by 5 mm results in an error 

of the similar magnitude in runup measurement. This is comparable with the error introduced by the 

Fig. 2. Experimental setup.
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Hence, by Fourier-decomposing the signal from 2 probes, for each harmonic n we get a 

system of 4 equations involving 4 variables c
nA , s

nA , c
nB , s

nB , and are able to recover every 

harmonics of the incident wave and thus to reconstruct the incident signal. In reality, precision of the 

measurement allows only to recover first two harmonics which gives a good approximation for the 

incident wave. To utilize the existence of the 7 probes, we have averaged results obtained from the 

pairs for which the determinant of the system composed of the equations like (17) is greater than 2. 

As the generated wave was of a narrow band spectrum, by applying the Fourier transform to 1-

period (2 seconds) window of a signal, we were able to reconstruct the incident wave of varying 

amplitude and analyze its statistics.  

 

 

 

 

Fig. 3. Top: A typical wave gauge signal; Middle: zoomed signal with reconstructed amplitudes of first and 
second harmonics of the incident (red) and reflected (blue) waves; Bottom: zoomed signal from the wave 
gauge. 

 

Experimental runs corresponding to the incident wave root mean square RMS = 2.0, 2.5, 2.7, 

and 3.1 mm have been analysed. A typical signal from the wave gauge is shown in Fig. 3. The 

amplitudes of first and second harmonics of incident and reflected waves are imposed on the gauge 

signal. The front-back asymmetry of weak amplitude waves can be seen in the beginning of the 

zoomed part of the record and the non-linear peaks are seen where the waves become large, which 

demonstrates existence of higher harmonics. In average, the 2nd harmonic constitutes approximately 

8% of the total amplitude of the incident wave and this value is nearly constant through all runs. The 

delay between the peak of reflected wave amplitude and that of the incident wave corresponds to the 

distance between the probe array and the slope. Delay between the peak of the second harmonic and 

that of the first harmonic corresponds to the lower speed of shorter waves generated by the 

wavemaker because the amplitude of its panel motion is independent of the vertical coordinate. In 

Fig. 4, the reconstructed incident wave is shown. Expectedly, the reconstructed wave has smaller 

amplitude than the wave signal (Fig. 3) and repeats its behavior.  

The probability density function (pdf) of the incident wave field is shown in Fig. 5. It can be 

seen that the distribution slightly deviates from Gaussian, which is also confirmed by non-zero 

values of skewness (about 0.1) and kurtosis (up to 2.5). For clarity, the quadratic semi-logarithmic 

scale has been applied to the horizontal axis. 

Fig. 3. Top: a typical wave gauge signal; Middle: zoomed signal with reconstructed amplitudes of first and second harmonics of the incident
(red) and reflected (blue) waves; Bottom: zoomed signal from the wave gauge.

Another source of error affecting the measurements was
formation of a viscous boundary layer at the slope. To eval-
uate the layer thickness, we use the standard estimate for a
viscous boundary layer forming during the wave half-period

h ≈

√
ν 1

2
2π
ω

≈ 1 mm. Ash → ∞ as ω → 0, we note that
the viscosity plays its role only when the shoreline speed
is greater or comparable with the speed of water flowing
down due to gravity in a layer of the thicknessh, i.e. when
ω R
sinα

≈
gsinα

2υ
h2, which is true for the higher end of amplitudes

we deal with.

Generation of the narrow band spectrum at 0.5 Hz was
provided by simultaneously generating 32 monochromatic

waves of equal amplitudes and the frequencies evenly spaced
in the interval 0.488–0.512 Hz. The wave pattern has been
generated at several amplitudes for the duration of 8000 s
each. Thus, statistics over approximately 4000 waves was
collected.

The experiments were designed for non-breaking condi-
tions, the wave number times depthkh = 0.774, which is
less than 1, thus satisfying the shallow water approximation.
Visual observation of waves has been performed to ensure
breaking was not occurring.
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Fig. 4. Reconstructed incident wave (top) and its zoom (bottom). 

 

Fig. 5. Probability density function of the incident wave field in linear and semi-logarithmic scales. Solid 
lines show the statistics for experiments with =σBr  0.2, 0.25, 0.27, and 0.3. Dashed line corresponds to the 

normal distribution.  

 

5. Wave runup  

A typical runup signal is shown in Fig. 6. The general structure of the signal repeats the one 

from the incident wave (Fig. 4). Here, the maximum runup amplitude exceeds the maximum 

amplitude of the incident wave 4 times. It also can be seen that the waves on the beach become more 

nonlinear with increases in their amplitude and it is manifested in a parabolic shape of the water 

Fig. 4. Reconstructed incident wave (top) and its zoom (bottom).
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Fig. 5. Probability density function of the incident wave field in linear and semi-logarithmic scales. Solid 
lines show the statistics for experiments with =σBr  0.2, 0.25, 0.27, and 0.3. Dashed line corresponds to the 

normal distribution.  

 

5. Wave runup  

A typical runup signal is shown in Fig. 6. The general structure of the signal repeats the one 

from the incident wave (Fig. 4). Here, the maximum runup amplitude exceeds the maximum 

amplitude of the incident wave 4 times. It also can be seen that the waves on the beach become more 

nonlinear with increases in their amplitude and it is manifested in a parabolic shape of the water 

Fig. 5. Probability density function of the incident wave field in
linear and semi-logarithmic scales. Solid lines show the statistics
for experiments with Brσ = 0.2, 0.25, 0.27, and 0.3. Dashed line
corresponds to the normal distribution.

4 Incident wave field

To compare statistics of the runup height to that of the inci-
dent waves, the incident waveform has been extracted from
the signals at 7 evenly spaced resistance gauges using the
first two Fourier harmonics of the signals. The method used
is similar to that described in Goda and Suzuki (1976). Let
the gauge coordinates arexi, i = 1..6, frequencies of signal
harmonics arenω 0. Then, the water elevation at a gaugei

can be written in the form

ηi =

∑
n=1,2

[
Ac

ncos(knxi −nω 0t)+As
nsin(knxi −nω 0t)+

Bc
ncos(−knxi −nω 0t)+Bs

nsin(−knxi −nω 0t)
]

=

∑
n=1,2

[
F c

incosnω 0t +F s
insinnω 0t

]
, (16)

whereAc
n, As

n, Bc
n, Bs

n are coefficients ofn-th cos and sin
harmonics of the incident and the reflected waves, andF c

in,
F s

in are then-th cos and sin coefficients of the time series of

water elevation atn-th gauge. Rearranging the trigonometric
terms and equating coefficients of cos(nω0t) and sin(nω0t)at
similarn, we get a pair of equations for each probe:

Ac
ncosknxi +As

nsinknxi +Bc
ncosknxi −Bs

nsinknxi = F c
in

Ac
nsinknxi −As

ncosknxi −Bc
nsinknxi −Bs

ncosknxi = F s
in

(17)

Hence, by Fourier-decomposing the signal from 2 probes,
for each harmonicn we get a system of 4 equations involv-
ing 4 variablesAc

n, As
n, Bc

n, Bs
n, and are able to recover every

harmonics of the incident wave and thus to reconstruct the
incident signal. In reality, precision of the measurement al-
lows only to recover first two harmonics which gives a good
approximation for the incident wave. To utilize the existence
of the 7 probes, we have averaged results obtained from the
pairs for which the determinant of the system composed of
the equations like Eq. (17) is greater than 2. As the gener-
ated wave was of a narrow band spectrum, by applying the
Fourier transform to 1-period (2 s) window of a signal, we
were able to reconstruct the incident wave of varying ampli-
tude and analyze its statistics.

Experimental runs corresponding to the incident wave root
mean square RMS= 2.0, 2.5, 2.7, and 3.1 mm have been
analysed. A typical signal from the wave gauge is shown
in Fig. 3. The amplitudes of first and second harmonics of
incident and reflected waves are imposed on the gauge sig-
nal. The front-back asymmetry of weak amplitude waves
can be seen in the beginning of the zoomed part of the record
and the non-linear peaks are seen where the waves become
large, which demonstrates existence of higher harmonics. In
average, the 2nd harmonic constitutes approximately 8 % of
the total amplitude of the incident wave and this value is
nearly constant through all runs. The delay between the peak
of reflected wave amplitude and that of the incident wave
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Fig. 6. Typical signals from the runup probe (top) and its zoom (bottom).

distribution is normalized by its standard deviation ησ , horizontal axis of the runup (negative part 

for the backwash) distribution is normalized by the corresponding standard deviation rσ .  

Although statistics of extreme values of the incident wave is not described by the Rayleigh 

distribution and neither is the statistics of the runup height (Fig. 8), both distributions appear almost 

identical, which confirms the theoretical result that nonlinear wave propagation in the coastal zone 

does not change statistics of extremes.  

It can be seen in Fig. 8 that the most pronounced difference between incident wave 

amplitudes and the extreme runup values occur at the deepest backwash stage, where the first wave 

breaking naturally occurs (Zahibo et al., 2008). It is worth noting that experiments were conducted 

in regimes short of wave breaking where theoretical assumptions may cease to be valid.  

 

 

 

Fig. 7. Probability density functions of wave runup and the incident wave elevation in linear (top) and semi-
logarithmic (bottom) scale. Colour lines correspond to runup statistics and black lines show distribution of 

Fig. 7. Probability density functions of wave runup and the inci-
dent wave elevation in linear (top) and semi-logarithmic (bottom)
scale. Colour lines correspond to runup statistics and black lines
show distribution of the water elevation in the incident wave which
is separately plotted in Fig. 5. Black dashed lines show the Normal
distribution.

corresponds to the distance between the probe array and the
slope. Delay between the peak of the second harmonic and
that of the first harmonic corresponds to the lower speed of
shorter waves generated by the wavemaker because the am-
plitude of its panel motion is independent of the vertical co-
ordinate. In Fig. 4, the reconstructed incident wave is shown.
Expectedly, the reconstructed wave has smaller amplitude
than the wave signal (Fig. 3) and repeats its behavior.

The probability density function (pdf) of the incident wave
field is shown in Fig. 5. It can be seen that the distribution
slightly deviates from Gaussian, which is also confirmed by
non-zero values of skewness (about 0.1) and kurtosis (up to
2.5). For clarity, the quadratic semi-logarithmic scale has
been applied to the horizontal axis.

5 Wave runup

A typical runup signal is shown in Fig. 6. The general struc-
ture of the signal repeats the one from the incident wave
(Fig. 4). Here, the maximum runup amplitude exceeds the
maximum amplitude of the incident wave 4 times. It also
can be seen that the waves on the beach become more non-
linear with increases in their amplitude and it is manifested
in a parabolic shape of the water displacement at the runup
stage and a sharp beak shape during the backwash. Runup of
weak-amplitude waves is more sinusoidal.

The corresponding pdf of wave runup is shown in Fig. 7
for two different values of the parameter Brσ , which were
defined by Eq. (10) from the measured runup field. The ve-
locity of the moving shoreline was found as a time deriva-
tive of vertical runup displacement (the same as Eq. 7). A
shift of the distribution towards the positive runup heights is
evident and agrees with the theoretical results obtained for
the narrow-band Gaussian field. For Brσ = 0.2 the runup
distribution almost repeats the distribution for the incident
wave, while with increase in Brσ (Brσ = 0.3) the distribution
becomes more asymmetric and its maximum increases and
shifts more to positive values, which can be seen from the
linear figure (top of Fig. 7). At the same time the probabil-
ity of larger runups increases with increase in Brσ , this effect
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Fig. 9. Mean sea level for different values of Brσ . Circles corre-
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is more pronounced in the semi-logarithmic scale (bottom of
Fig. 7). All this is in a good agreement with an asymptotic
description Eq. (12), presented in Fig. 1.

In Fig. 8, we present probability density functions of runup
and incident wave heights, which are normalized appropri-
ately and plotted on the same axis. The horizontal axis of
incident wave distribution is normalized by its standard de-
viationση, horizontal axis of the runup (negative part for the
backwash) distribution is normalized by the corresponding
standard deviationσr .

Although statistics of extreme values of the incident wave
is not described by the Rayleigh distribution and neither is
the statistics of the runup height (Fig. 8), both distributions
appear almost identical, which confirms the theoretical result
that nonlinear wave propagation in the coastal zone does not
change statistics of extremes.

It can be seen in Fig. 8 that the most pronounced dif-
ference between incident wave amplitudes and the extreme
runup values occur at the deepest backwash stage, where the
first wave breaking naturally occurs (Zahibo et al., 2008). It
is worth noting that experiments were conducted in regimes
short of wave breaking where theoretical assumptions may
cease to be valid.

The mean water level of the incident wave field and runup
are shown in Fig. 9, the dashed lines correspond to theoretical
Eq. (10). The incident wave field was generated with a zero
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Fig. 11. Red lines correspond to runup statistics and black lines
show distribution of the water elevation in the incident wave for
Brσ = 0.3. The dashed blue lines represent the forecasted proba-
bility density functions of wave runup calculated from Eq. (12) by
substituting measured values for skewness and kurtosis instead of
those predicted by Eq. (9).

mean, while the mean water level on the beach grows with
an increase in Brσ , which agrees with the theory.

Figure 10 shows the relationship between higher statistical
moments (skewness and kurtosis) for incident wave field and
waves on the beach. It can be seen that values of both skew-
ness and kurtosis for wave runup, only slightly deviate from
those for the incident wave field. Therefore, the skewness
and kurtosis of the incident wave field could be used to de-
termine the prognostic wave runup distribution by Eq. (12),
thus allowing forecasting of runup on actual coastlines.

An example of such forecast is shown in Fig. 11 for for
Brσ = 0.3, where the forecasted probability density functions
of wave runup calculated from Eq. (12) by substituting mea-
sured values for skewness and kurtosis instead of those pre-
dicted by Eq. (9) is compared with the measured statistics
of the incident wave and wave runup. It can be seen that
the forecast gives a good fit for weak and moderate ampli-
tude waves and demonstrate some reasonable deviations for
waves of extreme amplitudes. The largest discrepancy be-
tween measured and forecasted data is observed at the back-
wash stage. This can be related to the wave breaking effects,
which occur at the backwash stage for shallow water waves
(Zahibo et al., 2008).

The probability density function of the shoreline ve-
locity wu is shown in Fig. 12. The dashed line corre-
sponds to the normal distribution. Although the functionwu
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Fig. 11. Red lines correspond to runup statistics and black lines show distribution of the water elevation in the 
incident wave for 3.0=σBr . The dashed blue lines represent the forecasted probability density functions of 

wave runup calculated from (13) by substituting measured values for skewness and kurtosis instead of those 
predicted by (10).  

 

The probability density function of the shoreline velocity uw  is shown in Fig. 12. The dashed 

line corresponds to the normal distribution. Although the function uw  slightly deviates from the 

normal distribution and asymmetry between positive and negative velocities is clearly seen in the 

semi-logarithmic plot, the statistics of the shoreline velocity is in a good agreement with the 

statistics of the vertical velocity in the incident wave.  

 

 

 

Fig. 12. Probability density function of the shoreline speed in linear (top) and semi-logarithmic (bottom) 
scale. Colour lines correspond to statistics of the moving shoreline and black lines show distribution of the 
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Fig. 12.Probability density function of the shoreline speed in linear
(top) and semi-logarithmic (bottom) scale. Colour lines correspond
to statistics of the moving shoreline and black lines show distribu-
tion of the vertical velocity in the incident wave. Black dashed lines
show Normal distribution.

slightly deviates from the normal distribution and asymmetry
between positive and negative velocities is clearly seen in the
semi-logarithmic plot, the statistics of the shoreline velocity
is in a good agreement with the statistics of the vertical ve-
locity in the incident wave.

6 Conclusions

This paper represents a study on how the nonlinearity, which
is associated with the wave amplitude and a breaking pa-
rameter, influences the statistics of long waves at the coast.
This is a typical situation for many natural coasts affected by
swell, storms and sometimes even tsunamis after a long time
of their propagation, and has many practical applications.
This paper presents the set-up, skewness and kurtosis as a
function of observed non-linear runup characteristics, which
is convenient for experimental investigations and differs from
those connections introduced in (Didenkulova et al., 2011).
However, the importance of this work is in an experimental
study of long irregular waves in laboratory conditions, which
is usually considered only for short breaking waves, while
for long waves only deterministic waves are studied.

The runup of long irregular waves on a plane beach is stud-
ied experimentally in the wave flume at the University of
Warwick. The case of narrow band spectrum has been stud-
ied. Displacement and velocity of the moving shoreline and
their amplitudes are analyzed with respect to the amplitude
of the incident wave field (different values of the wave break-
ing parameter Brσ ). It is shown that statistics of the shoreline
velocity coincides with the statistics of velocity in the inci-
dent wave field, which agrees with the theory (Didenkulova

et al., 2011). Distribution of runup amplitudes is also similar
to that of the incident wave amplitudes.

The experimental research goes beyond theoretical limits
and shows tendencies in a wider range. It is confirmed ex-
perimentally that the mean sea level at the coast (wave set-
up) increases with an increase in wave amplitude (param-
eter Brσ ) as predicted by Didenkulova et al. (2011). The
higher statistical moments (skewness and kurtosis) of water
elevation at the coast depend on the parameters of the inci-
dent wave field and are hard to forecast with a theoretical as-
sumption of narrow-band Gaussian process. However, their
values change consistently with those of incident wave field,
and might be used for building prognostic distributions of the
beach flooding.
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