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Abstract. Pore spaces heterogeneity in carbonates rocks haaddition, these heterogeneities can be observed over sev-
long been identified as an important factor impacting reser-eral scales ranging from micro-meter to hundred of meters.
voir productivity. In this paper, we study the heterogeneity Moreover, the geometry and the heterogeneity of carbonate
of carbonate rocks pore spaces based on the image analygieres can greatly impact the rock physics properties. For
of scanning electron microscopy (SEM) data acquired at varexample, recent experiments reveal that pore spaces hetero-
ious magnifications. Sixty images of twelve carbonate sam-geneity can cause variations in elastic properties values with
ples from a reservoir in the Middle East were analyzed. First,as much as 40 % change for the same total volume of pores
pore spaces were extracted from SEM images using a sedXu and Payne, 2009). Furthermore, pore spaces geometries
mentation technique based on watershed algorithm. Poreand heterogeneities can highly impact the transport proper-
geometries revealed a multifractal behavior at various magties (Payne et al., 2010; Weger et al., 2009). These obser-
nifications from 800x to 12 000x. In addition, the singularity vations indicate that the relationship between pore spaces
spectrum provided quantitative values that describe the destructure and rock properties can be highly complex, which
gree of heterogeneity in the carbonates samples. Moreovemakes their modeling a challenging issue. Nowadays, im-
for the majority of the analyzed samples, we found low vari- age acquisition and analysis techniques represent powerful
ations (around 5 %) in the multifractal dimensions for mag- nondestructive tools that make it possible to quantify the to-
nifications between 1700x and 12 000x. Finally, these resultgal porosity volume, morphologies and size distribution of
demonstrate that multifractal analysis could be an appropripore spaces in porous media. This digital description can
ate tool for characterizing quantitatively the heterogeneity ofbe used as input for mathematical models analysing pore
carbonate pore spaces geometries. However, our findingdistributions from images in order to provide some quan-
show that magnification has an impact on multifractal dimen-titative descriptors for heterogeneity. This characterization
sions, revealing the limit of applicability of multifractal de- needs a good specimen preparation and acquisition technique
scriptions for these natural structures. to produce representative images. Scanning electron mi-
croscopy (SEM) has been widely used as imaging acquisi-
tion technique providing high resolution images of rock sam-
ples and suitable distinction between solid particles and pores
(Bogner et al., 2007; Joos et al., 2011; Nadeau and Hurst,

Studying carbonate reservoirs is crucial for the oil industry aslggl)' These images consist on grey level pixels, V\_/here pore
in thespaces are represented by low levels whereas grains are rep-

world (Moore, 2001). Unlike sandstones which have mainlyresented by high level ones. In addition, the measurement

homogeneous intergranular pores, the diagenesis of carbof?—f geometr_|cal paraf”e‘efs requires a robust and reproduuble
r%sgmentatlon algorithm in order to separate the void phase

1 Introduction

ate rocks combined with other geological processes creat ¢ th lid ph :
heterogeneous and complex pore spaces with sizes rangi ore spaces) from the solid phase (grains).

from micro-meter to centimeters (Zhang et al., 2004). In The aim of this paper is to study pore spaces distribu-
tion in SEM images of carbonates rocks using a multi-

scale characterization. To accomplish this, we first provide

Correspondence td¥l. S. Jouini an image analysis procedure to automatically detect pore
m (mjouini@pi.ac.ae ) spaces (Fig. 1). Then we use the concept of fractality as a
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Fig. 1. Proposed workflow for pore spaces analy&g:Acquired SEM image(b) Segmentation process based on a combination of statistical
and spatial approachdg) Pore shapes analysis using multifractals and geometrical distributions of areas and aspect ratio.

ods and proposes the finding of suitable thresholds in or-
w der to segment grey level images, depending on histogram

shapes. A simple way to obtain a binary image is to choose
a suitable threshold for the grey level distribution. Heilbron-
ner and Keulen (2006) adjusted the threshold using a sub-
jective criterion based on a visual comparison between the
v input SEM image of rock sample and the segmented image
result. Recently, Joos et al. (2011) proposed the use of a sin-
gle value threshold computed automatically using the Otsu’s
algorithm (Otsu, 1979) in order to segment SEM images
where histogram clearly showed a bi-modal behavior related
to pore spaces phase and the solid one. Vogel (1996) sug-
gested a more sophisticated segmentation technique based on

bi-level thresholding to segment SEM images of soil where
there was a partial merge between the pore spaces and grains
modes in the histogram. Tsai (1995) proposed computing the

maximum curvature to detect the suitable threshold in order
to solve the highly complex segmentation problem of uni-
modal distributed histograms in a porous media. Other au-
Watershed algorithm thors used spatial methods based on the analysis of local ge-
ometrical information in order to segment grey level images.
Videla et al. (2007), Malcolm et al. (2007), and Jorgensen et
al. (2010) proposed the use of a spatial method based on the
watershed technique in order to segment micro tomography
grey level images.

Y

Bi-level segmentation Morphological operations

Fig. 2. Image segmentation workflow based on statistical and

spatial method. Since there is no general solution to segment grey level

images, a suitable answer to this problem is to combine sta-
tistical and spatial image segmentation techniques to take ad-
vantage of both methods (Schulter et al., 2010). The pro-
quantitative descriptipn method of the heterogeneity of_ POreposed methodology in this paper is based on a combina-
spaces geometry. Finally, as SEM images were acquired &fon of statistical and spatial methods using mainly water-
several magnifications, we analyse carbonate pores spacgpeq algorithm, bi-level segmentation, morphological opera-
at different scales to assess the magnification impact on thggns and region growing techniques (Pratt, 2007; Dougherty,
sample porosity and the heterogeneity descriptors. 1992; Henk, 1998: Soille, 1999). The main output is a bi-
In order to solve the segmentation problem of grey levelnary image (black and white) where pixels are classified as
images, authors have used either statistical or spatial methodsore spaces or grains. It is then possible to compute some
(Electron, 2004; Ramlau and Ring, 2007). The histogram-statistics related to the distribution of pore spaces surfaces
based technique (Sahoo et al., 1988; Glasbey, 1993) is onand their aspect ratio. In addition, pore spaces of carbonates
of the most frequently used approaches in statistical methrock in general have complex shapes. Thus, heterogeneity
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gquantification can be an interesting characteristic to compute
over the several magnifications SEM acquisitions.

Recently, the fractal approach was introduced to charac-
terize complex and heterogeneous geometries. This tech- /\/\
nique is a powerful tool, proposed by Mandelbrot (1983), to /\/
describe quantitatively properties of complex morphologies.
Fractal analysis is widely recognized to describe and analyze
the scale variability of geometrical distributions over a wide ]
range of scales by computing a single exponent called frac- \
tal dimension (Schertzer and Lovejoy, 1994). The technique — —v—¥
is independent of the image source and the real scale of the Pl poson pll peston
features. Moreover, it has been used in many applications (a) (b)
of sciences for describing complexity and self-similarity in ~ Crudie Crey levels
nature as proposed by Evertsz and Mandelbrot (1992). Mul- T
tifractal is generalization of a fractal approach applied when
a single fractal dimension is not able to describe system ge-
ometry and instead computes a whole spectrum of exponents
(called singularity spectrum). Several studies of fractals and /—
multifractals related to the analysis of pore spaces distribu- / Y
tions in porous media and sedimentary rocks can be found in | | I i /
earth sciences (Block et al., 1991; Grout et al., 1998; Wong [ | \
and Howard, 1986; Flavio et al., 1998; Krohn, 1988; Hansen, pixel position pixel position
1988; Piluela et al., 2007; Tarquis et al., 2003, 2006). Muller © )
and McCauley (1992) compared multifractal spectrum of
segmented SEM images with a shape factor related to pore
a”OWIn.g them to distinguish soil groups associated to dlﬁer_' principle: (a) Grey levels of original imagép) Gradient of the sig-
ent soil Struct_ures. Muller (1996) demonst_rated_ that multi- nal with localization of sources (local minima in re@) Flooding
fractal analysis can be useful to characterize different geoys grey levels from sources and creation of dam when two floods

logical chalk environments. In particular, he observed thatmeet (in black)(d) Result of the segmentation process: in this ex-
the multifractal spectrum of pore space is correlated with airample four different regions were detected.

permeability values measured from the corresponding core

samples. Dathe and Thullner (2005) analyzed pore spaces

in porous media using, respectively, monofractals and multi- In order to segment grey level of SEM images, we used
fractal approaches where the authors tried to establish a relan image processing technique based on applying the water-
tionship between fractal dimensions of pore spaces and solighed algorithm as a main procedure combined at different
phase. In this study, we use the multifractality concept onsteps with statistical and other spatial methods as described
SEM images of carbonate rocks in order to achieve two mairby the whole workflow in Fig. 2. Watershed transformation
goals: the first is to evaluate pore spaces heterogeneities; tHeas been widely used inimage segmentation problems (Ram-
second is to assess the effect of magnification on multifracbabu and Chakrabarti, 2007; Bieniek and Moga, 2000; Vin-
tals descriptors and the estimated porosities. cent and Soille, 1991). In this method, a grey-level image
may be considered as a topographic relief where pixel value
represents a height. Intuitively, watershed of a relief corre-
sponds to the limits of the adjacent catchment basins of water
In this study, we used 60 SEM images from 12 samples of adrops. The main idea of this technique is to find local min-
carbonate reservoir in the Middle East taken at several depthinums which will be sources of a continuous water rising
and locations. Five (5) SEM images of each sample were acflood. Then in order to prevent merging water coming from
quired at different magnifications by focusing at each stepdifferent sources, a barrier is built at each point of contact.
on either the central part or a random location of the sam-The process ends when the maximum grey level is reached
ple. The size of images was 1024.024 pixels; magnifica- and the union of all those barriers composes the watersheds
tions used for acquisitions ranged between 800x and 12 000XFig. 3). Unfortunately, this transformation creates an over
Pore spaces were detected using the segmentation workflosegmentation of the image in most cases. In order to pre-
(explained presently) and porosities were estimated at everyent this problem, we used an efficient strategy based on us-
magnification scale. We developed the image segmentatioing controlled markers (Meyer and Beucher, 1990). These
algorithm and the multifractal analysis codes using Matlabmarkers aim to help the segmentation process by detecting
scripts. some zones in pore spaces and in grains which will represent

Grey levels Gradient

Al

Tfig. 3. One dimensional illustration of watershed segmentation

2 Image processing and segmentation
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sources in addition to local minima of the gradient of the
image used in the watershed algorithm itself. Markers cor- F§
responding to pore spaces were detected using a bi-leve £
segmentation and a region growing technique. Markers re-
lated to grains were obtained using morphological operations
(Fig. 4). The bi-level segmentation technique combined with
a region growing is a useful segmentation tool for grey level #
data with histogram partial merge between two main phases. |
This technique aims in a first step to find two threshold lev- *
els Gnin and Gnax. Hence, in our images segmentation of all (@) ()
grey levels below the lowest threshold,fz were detected as
pores and all grey levels above.g were detected as grains.
These thresholds were computed using gradient masks. So £¥
bel and the Laplace filters were used to compute histograms {Z#%
of grey levels corresponding to detected edges and deduct
from them these two thresholds. The second step consiste( «g&#
of using a growing region algorithm to segment the fuzzy in- K
terval zone (grey levels betweenyfs and Gnax) using con- N
nectivity between pixels belonging to pore spaces. Further- &
more, morphological operations were applied on the 60 SEM
images (from 12 carbonate samples) in order to detect grains
markers used as sources for the watershed algorithm. The
detected markers represent connected blobs of pixels inside
each of the grains zone (Fig. 4c). A series of erosion, opening
by reconstruction and closing by reconstruction were used to
create flat maxima inside each object. Finally, pixels connec-
tivity was used to extract these markers. The final segmen-
tation result of the workflow is a binary image where black
and white pixels denote respectively grains and pore space!
(Fig. 4e). This result depends on the quality of the detected
markers of pore spaces and grains. The next step was to give

labels to pore spaces by using connectivity algorithms whichrig, 4. watershed segmentation with markers for pores and grains:
allows extracting and evaluating surfaces and aspect ratio ofa) Grey levels input imagéb) 3-D visualization of image in relief,
every pore space. Consequently, the final result of this im{c) Grains detected markers in refd]) Pores detected markers in
ages processing is given by the total pore space, porosity andlue, (€) Final segmentation result: black pixels denote grains and
the pore aspect ratio distribution. white denote pores.

3 Multifractal model

morphologies and heterogeneities based on multifractals.
Unlike mathematical definition of ideal fractals, pore spaces
structures reveal fractal properties only in a statistical sense, & A W P
which means we need a statistically representative number of #
samples to be analyzed. In order to compute a fractal dimen-
sion, it is necessary to define a measure in the digital images
which is closely associated with pore spaces geometries in it el
images. A widely used measure to study spatial structures (@) (b)

is based on the box-counting method (Posadas et al., 2001).

The principle is to cover the binary image by a regular squarerig. 5. Image segmentation of samplg: $a) Original SEM image,
grid partitioning the space into boxes of sizeThis process (b) Binary image result (white pixels for pores and black for grains).
is repeated for different box sizes, which is equivalent to an-

alyzing the studied geometry or structure at different scales.

The main equation for fractal theory establishes a relation-
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ship between the number of boxd¢) needed to cover the

Frequency Frequency

analyzed structure a.nd thell‘ SIZE Area distribution Aspect ratio distribution
180
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N(e)~ e PO 1) 0
. . . 120] 20
whereDg is the fractal dimension: 100 .
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The generalization of fractal approach is the multifractal Area pm? Aspect ratio

analysis, and is applied when a single fractal dimension is @ (b)

not able to describe system geometry. These objects can

be more completely characterized by a spectrum of fractaFig. 6. Pore spaces statistics for samplg $a) Pore spaces size
dimensions. Multifractals are measured using a probabilitydistribution,(b) Aspect ratio distribution.

distribution P; in each ith box as:

P =% () Do, D1 and D> can be computed using the following equa-

wheree is the box size and; is the Lipschitz—kblder ex- tions (Posadas et al., 2005):

ponent characterizing the singularity strength inzttebox. N(e)

The factora; allows quantifying the distribution complex- log(N (&) 2 wi(&)log(ui(e))

ity in spatial location (Posadas et al., 2005). The num-pDg= lim ————=, Di=lim i=1 ,
ber of boxesN(«), where the probability?; has singularity e=>0 log(g) =0 log(e)
strengths betwean anda+dea, can be related to the box size

° s Dy = lim (M) (10)
N(a) = g_f(a) (4) e—0 |0g(8)

. : . . whereC(e) represents the correlation sum.
wheref(«) is the singularity spectrum of boxes characterized ; . : .
L : o A first analogy with physical properties appears s
with singularitya. For mono-fractal pore distributions,re- ' . . .
. . . nd corresponds to the information dimension (Shannon and
mains constant and the multifractal spectrum is composed o . o . .
Weaver, 1949)Dy is called capacity dimension and provides

a single point. For multifractal pore distributions, the spec- ) .
. . an average related to the information of the analyzed struc-
trum can be represented by a curve with a wide range of val-

ues fora. This interval increases with the increase of the ture distribution (Voss, 1988)D; is the correlation dimen-

distribution heterogeneity (Posadas et al., 2005; Xie et al_smn.'Eq.uaI!ty f.or'these three dimensions oceurs only when
2010). the distribution is ideally monofractal (Korvin, 1992).

Multifractals generalized dimensioi, of theg " order

(Hentschel and Procaccia, 1983) are defined as: 4 Multifractal analysis of SEM images

1 lo I3
Dy = lii)no(q — gl(olg((qg,) ))> (5) 4.1 Image analysis
wherepu (g, ) is the partition function (Chhabra and Jensen, Porosity was computed as a percentage of the segmented
1989): pore area to the total image size for the analyzed samples.
The segmentation process provides a binary image where
NGE) q black pixels denote the detected grains and the white pixels
1n(g,e) = Z P (6) denote pore spaces. In addition, as no ground-truth informa-
i=1 . .
tion was available, the resulted detected pores were analyzed
Moreover, this partition function scales with box sizas: visually in order to validate the accuracy of the segmentation
@ process. Figure 5 provides an example of one of the SEM
nig.e)=e ) images (sample 1 and the associated segmentation result.

The analyzed zone is a square of 45 x5 um, composed
mainly of calcite and revealing a homogeneous distribution
of grains and pores. Detected pore spaces in images are in

wherez(q) is theq™ mass exponent arféx) the singularity
spectrum (Halsey et al., 1986), are related as:

1(9)=(1-¢q)Dy (8) agreement with the expected result based on visual observa-
tion. Moreover, these pores are regular and homogeneous
f(@)=qalq)—1t(q) (9) and are mainly micro-pores and meso-pores, with a majority
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Table 1. Estimation of capacity dimensiaBRg, information dimensiorD41 and correlation dimensiof, for samples $to S;». RZis the
coefficient of determination computed for the linear interpolation in the loglog plot.

Fig. 7. Log-log plots of partition functiong (¢, ) vs.e for moment

Sample Porosity  Dg R? Dq R? Dy R?
(%)
S 760 1548 0995 1505 0.999 1.492 0.997
S 17.46 1.661 0.996 1.647 0.998 1.638 0.997
S3 20.66 1.776 0.992 1.747 0.997 1.733 0.996
Sy 1655 1.681 0.993 1.650 0.996 1.641 0.991
S5 16.05 1.676 0.999 1.638 0.997 1.632 0.992
S 16.39 1.704 0.995 1.671 0.995 1.655 0.997
Sy 722 1537 0999 1498 0.994 1.491 0.993
Sg 792 1668 0992 1585 0.993 1.564 0.996
So 10.24 1595 0.996 1.549 0.993 1.541 0.990
S10 748 1633 0994 1562 0.997 1.510 0.996
S11 1537 1.693 0.999 1.649 0.993 1.641 0.992
S12 2280 1.723 0.998 1.702 0.993 1.694 0.995
S1 18
*
0 . o 175
1 Q ,,'/ *
=, 3 § 17 .:
; 3 . #q=0 é ‘ - e
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Fig. 8. Linear direct relationship between the capacity dimensions
Sz Dg and porosities for all samples.
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Fig. 9. Multifractal dimensionsD, associated to the SEM image of

order g=0 and g=1 for Sample, &ind Sample § respectively, in  sample § for moments order q betweerb and 5.

(a) and(b).
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Fig. 10. SEM images for samples,&nd S (a, ¢) and respective segmentation reslisd). White pixels denote pores and black pixel
denote grains.

of pore sizes ranging between 0.1 to 13(fig. 6a). Further-  Thus, we chose to restrict our study to this interval where the
more, we provide the aspect ratio distribution for the samemass exponent(q) versus q is showing a linear relationship
sample in Fig. 6b. This statistic refers to the ratio betweenwith a coefficient of determinatioR? above 0.94 (Posadas
the minor and major axes of an ellipsoidal pore. The aspecet al., 2003). Moreover, we found that a moment step equal
ratio distribution for sample Sshows a maximum closeto 1. to 0.5 allows showing accurately the multifractal behavior
However, this value is not representative of the whole samplén the range g[—5, +5]. In addition, we applied the box-
but is generated by the large number of detected micro-poresounting method to the analyzed images (1824024 pix-

with sizes close to the image resolution limit. els) using box sizes ranging from 1 to 1024 and assessed the
partition functionw(q,e) as function of box sizes. We found
4.2 Determination of multifractals parameters a linear behavior relationship with coefficient of determina-

tion R? above 0.9 for box sizes range[8, 512] and mo-
The choice of suitable box sizes and range of moments orderents range «] -5, +5]. These ranges were suitable for the
are crucial for the multifractal analysis (Saucier and Muller, majority of analyzed images. Values of multifractal coeffi-
1999). In order to find these ranges, we have used two criterigients were determined first by computing slopes of logarith-
based on assessing the linear behaviors of the mass exponenic values of the partition function over logarithmic values
7(q) as a function of q and the partition functipr{g,e) as  box size as presented in Eq. (5), and second by using the rela-
a function ofs (Dathe et al., 2006). First, we assessed thetion presented in Eq. (8). Figure 7 shows the linear behavior
variation of the mass exponenq) for several ranges of mo- of the partition functiory.(g,e) for g=0 and g=1 of sam-
ments . We observed thafq) behaves nonlinearly when ples § and $. Table 1 provides the capacity dimensibg,
considering an interval of moments wider thatj-g5, +5]. the information dimensio®4, the correlation dimensiobo,
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less, the generalized dimensiabg for ¢ > 2 do not show a
clear tendency that can be correlated to the total porosity. In
relatively homogeneous samples, the generalized dimension
D, showed a slow rate decrease leading to a convergence
toward a constant value for moments@ as illustrated in

Fig. 9 for sample & In this example, generalized dimen-
sions D, are constant for g2. This behavior was also ob-
served for homogeneous samples & and S1. Moreover,

Singularity spectra the generalized dimensior3, for the heterogeneous sam-
. o ples S, S, S5, S, 7, S8, So and S revealed a continu-
165 o “ ous decrease forq<5. These two observations corrobo-
g 1 rate that generalized dimensiobg can provide an indicator
- /\ of data heterogeneity degree, since their values would con-
125 verge to a constant faster in images where pore distributions

115 were less heterogeneous. Furthermore, Posadas et al. (2005)
have shown that homogeneous multifractal distributions have

Mass ovonents a narrow concave &)-spectra, whereas the opposite is true
0 —— for heterogeneous structures. Thus, the wider is the magni-
s | = tude of change of &) around the value &(0)), the higher
. P is the heterogeneity of analyzed structures. A visual inter-
z° o pretation of our segmented images qualitatively reveals more
5 ;f‘ heterogeneity in samples with widewj¢spectra, which cor-
- / roborates previous studies. Figures 10 and 11a provides the
segmented images of samplas $, and S. Figure 11b and
15 ¢ shows respectively theird§-spectra and their mass expo-
sAmaAoL A nentst(q) with coefficients of determinations, respectively,
(;‘) 0.998, 0.995 and 0.999. For instance, sampféS-spectra

showed a narrower shape compared to samplesn 3,
Fig. 11. Plots of the detected pore spaces for samplesSsand ~ with a computed interval ate[1.48, 1.87] andAa = omax—
33 (a) and their associated singularity spedif@) (b), and mass  amin = 0.39. Whereas, the singularity spectra revealed higher

exponentgc). magnitudes of alfa changes@¢[1.64, 2.17] andA« = 0.53
for sample $, andwe[1.72, 2.24] andAa= 0.51 for sample
Ss.

image porosities, and the respective coefficients of determi-

nation R? of the partition function for the twelve analyzed 4.3 Scale effect

samples for the magnification 12 000x. Furthermore, in or-

der to validate the choices made for the moments and th&@he magnification at which images are investigated in car-
box sizes ranges, we verified that the singularity spectrunbonate rocks may affect the physical interpretation, in terms
f(«) is a concave parabola for each analyzed image showef structures and distributions of the visualized pore spaces.
ing a multifractal behavior. In addition, we also verified that Patterns that can be distinguished at a certain image size and
the spectrum touches the internal bisectow Xt ) of the magnification may be not present at others. Zhi-bin Liu et
axis (Riedi, 1997). The point of intersection between the tan-al. (2005) studied the magnification effects on the interpreta-
gent and the graph ofd{ corresponds to (1)) =«(1) = D3 tion of SEM images of expansive soils and provided a range
(Evertsz and Mandelbrot, 1992). Moreover, we have investi-of validity for fractal dimensions variations depending on im-
gated the possibility of existence of a relationship betweenage magnification. Therefore, we studied the magnification
the variation of the total porosity and multifractal dimen- effect on SEM images in order to evaluate the variations in
sions. Figure 8 reveals a direct linear fitting relationship multifractal dimensions and the total porosity.

with a coefficient of determinatioR? equal to 0.67 between

porosity and the capacity dimensiddy. This observation 4.3.1 Scale effect on multifractal dimensions

suggests that high porosities correspond to high capacity di-

mensions. This is an expected result, as for high porosityDimensions were computed for the 12 samples at magni-
images the pore spaces structure is more compact, which irfications ranging from 800x to 12000x. We found that,
creases the capacity dimension. In addition, the same infor most of analyzed samples, the variation of multifrac-
creasing behavior is observed in Table 1 for the informationtal dimensions was relatively low, around 5% in interme-
dimensionD; and the correlation dimensiab,. Neverthe-  diate magnifications (1700x to 12 000x). Figure 12 shows
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(c)

(d)

(e)

Fig. 12. Sample $ acquired at five magnifications: 12 000x {M5600x (M), 3000x (Mg), 1700x (My) and 800x (M).

Table 2. The mean of multifractal dimensions variations, for q, for all samples and the variation of the factorThe first column shows

samples names. The second shows the mean of variations for intermediate magnifications only (magnifications 1700x to 12 000x). The third
column provides the mean of variations including the lower magnification (800x). The following columns recapitulate the variation of the
factor« for the five magnifications for each sample. (NM: Non multifractal).

Sample Mean Mean 12000x 5600xc 3000x 1700x  800x
variation  variation Ao Aa Aa Ao Ao
(%) (%)

S 5.76 13.95 0.402 0.391 0.386 0.428 0.203
S 1.61 3.58 0.289 0.482 0.522 0537 0.462
S3 8.00 8.00 NM 0.524 0.524 0584 0.368
Sy 5.21 11.37 0.460 0.420 0.390 0.560 0.442
S5 5.80 5.80 0.458 0.458 0.522 0.396 0.430
Ss 2.11 2.95 NM 0.507 0.483 0.494 0.470
S 1.67 6.02 0.287 0.133 0.333 0.470 0.381
Sg 8.31 10.7 NM 0.441 0.405 0.338 0.502
So 4.81 6.89 0.491 0.359 0.466  0.443 0.432
S10 0.90 3.26 0.523 0.490 0.381 NM NM
S11 1.87 5.92 0.380 0.410 0.430 0.544 0.537
S12 6.07 6.14 0.368 0.265 0.432 0.408 0.383
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S 4.3.2 Scale effect on porosity

1.8 M1 . . . .
——M2 We also studied the scale effect on porosity estimation from

the segmented SEM images. We found that porosity had an
increasing behavior with image magnifications for nine sam-
ples and a decreasing behavior for the other three. Figure 15
shows the porosity estimations for samples & and S
for the five magnifications. First, in terms of image analy-
sis, the decreasing behavior was expected for samples com-
posed mainly of micro-pores and meso-pores, with an equiv-
5 4 3 2 1 0 1 2 3 4 s alent pore radius ranging, respectively, from 0.1 to 0.5 um
and from 0.5 to 2 um, like sampleg @nd $. Indeed, for
lower magnifications, micro-pores and meso-pores were less
Fig. 13. Results of multifractal analysis for samplg.SPlots of ~ Visible and therefore less detectable by the segmentation al-
multifractal dimensiorD, versus moment q.ef—5, 5], at magnifi- ~ gorithm. Second, the increasing behavior of the other sam-
cations: 12 000x (M), 5600x (M), 3000x (M), 1700x (My) and ples was related to the detection of macro-pores and mega-
800x (Ms). pores. Sample 5 for example, revealed at the lowest mag-
nifications some pores with an equivalent radius larger than
12 ym. Finally, we investigated the possibility of a correla-
tion between the variation of multifractal dimensions for the

the sample Sacquired at five magnifications, and Fig. 13 g6 magnifications and the variation of porosities for these
provides its associated multifractal dimensions. The a"erag‘ﬁwagnifications, but unfortunately we did not find any clear
variation of multifractal dimensions between magnifications . re|ation between them.

M1 (1700x) and M(12000x) was equal to 5.76 % for-@

for sample . Table 2 recapitulates these results for all sam-

ples and provides the variation of alphad) for allimages 5 Conclusions

having multifractal behavior. In Fig. 14, we provide the mul-

tifractal dimensions results for all the other analyzed samples he image analysis techniques presented in this paper allow
at these five magnifications. For the majority of samples, thestudying pores morphologies using a grey level image as in-
lowest magnification M(800x) showed significant variations Put data without any a priori required for images source. The
in multifractal dimensions between 2.3% and 13.95% forProposed study showed how useful the multifractal analysis
the worst case when compared to the other scales. This magould be when investigating spatial features in highly com-
nification corresponds to the highest scale of visualizationPlex geometry images. This paper indicates that the pore
and represents the lowest magnification from which detectegpace of the analyzed carbonates samples is multifractal and
patterns were most likely related to macro-pores and megatheir heterogeneity can be quantified through the variation
pores with an equiva|ent pore radius ranging, respective|ypf the Singularityoz. In addition, multifractality behavior
from 2 to 10 um and from 10 to 100 um. Furthermore, we Was detected over a limited range of magnifications (mag-
found that no clear multifractal behavior could be detectednifications between 1700x and 12000x). Thus, we could
for three samples at the highest magnificatienS and S provide a range of scales for the multifractal modeling va-
as their respective spectraj(failed to show a concave shape lidity. We also focused on the scale effect on the porosity
(Riedi, 1997). The main reason is that the detected patterngstimation from the segmented SEM images. We found that
at this magnification showed very irregular pores, which arePorosity showed an increasing behavior with image magnifi-

unrepresentative of the general pore spaces distribution oteation, increasing for nine samples and a decreasing for the
served for the other magnifications. other four samples. However, no clear correlation could be
. o , found between the variations of multifractal coefficients and

These findings show that magnification has an impact onye yariations of porosities due to the magnifications effect.

multifractal dimensions, revealing the limit of applicabil- Finally, future acquisitions of thin sections and X-ray com-

ity of multifractal descriptions for natural structures, which puted tomography scans for the same samples will be con-

seem to have multifractal behavior for a limited range of 0b- ,cteq in order to study the behavior of detected carbonates

servations scales. Moreover, it corroborates the study of Zh"pore spaces at higher scales and to compare them to our ac-

bin Liu et al. (2005). In our case, the ratio between magnifi- 2| results.

cations providing significant estimations for multifractal di-

mensions was 0.14 (ratio between magnifications 1700x and

12 000x). This result indicates that future studies should be

orientated to investigate self similarity for higher scales and

its limits.
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Fig. 14. Results of multifractal analysis for the 13 samples. Plots of multifractal dimem3joversus moment g,«§—5, 5], at magnifica-
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