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Abstract. Theoretical studies usually attribute convections
to the developments of instabilities such as the static or sym-
metric instabilities of the basic flows. However, the follow-
ing three facts make the validities of these basic theories un-
convincing. First, it seems that in most cases the basic flow
with balance property cannot exist as the exact solution, so
one cannot formulate appropriate problems of stability. Sec-
ond, neither linear nor nonlinear theories of dynamical in-
stability are able to describe a two-way interaction between
convection and its background, because the basic state which
must be an exact solution of the nonlinear equations of mo-
tion is prescribed in these issues. And third, the dynamical
instability needs some extra initial disturbance to trigger it,
which is usually another point of uncertainty. The present
study suggests that convective activities can be recognized
in the perspective of the interaction of convection with vor-
tical flow. It is demonstrated that convective activities can
be regarded as the superposition of free modes of convection
and the response to the forcing induced by the imbalance of
the unstably stratified vortical flow. An imbalanced vortical
flow provides not only an initial condition from which un-
stable free modes of convection can develop but also a forc-
ing on the convection. So, convection is more appropriately
to be regarded as a spontaneous phenomenon rather than a
disturbance-triggered phenomenon which is indicated by any
theory of dynamical instability. Meanwhile, convection, par-
ticularly the forced part, has also a reaction on the basic flow
by preventing the imbalance of the vortical flow from further
increase and maintaining an approximately balanced flow.
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1 Introduction

Convective activities have long been a subject of great im-
portance for the study of severe weather. Although ap-
plied research toward the understanding of the generation
and the roles of convection has considered many relevant
aspects concerning latent heating, friction and other phys-
ical processes such as the statistical equilibrium theory of
Arakawa and Schubert (1974), boundary forcing and surface
fluxes, wind-induced surface heat exchange (WISHE), Tur-
bulent Kinetic Energy (TKE) and buoyancy production, etc.,
purely theoretical studies so far have mainly attributed con-
vection to the dynamical instabilities of the large scale ba-
sic state, including static instability and symmetric instabil-
ity (see, e.g. Holton, 1992; Hoskins, 1974; Xu and Clark,
1985). The mechanisms of these dynamical instabilities give
a reasonable explanation to many aspects of convective activ-
ities. Meanwhile, many other aspects of convective activities
still remain beyond the scope of the instability perspective
mainly due to the following three reasons. First, previous in-
stability theories only deal with very simple basic states such
as the static state or parallel geostrophic flows with verti-
cal/horizontal shears (Holton, 1992; Pedlosky, 1979; Drazin,
1981), which are too simple cases to have more applications.
It is almost impossible to establish the instability theory of
a general basic state, not only because of the difficulties in
ensuring the existence and finding out the exact solution for
a general basic state, but also because of the even more dif-
ficult mathematics for the instability of such basic states (see
Zhao, 2003 and references therein). Second, convective ac-
tivities and their spatiotemporal structures are essentially re-
sults of the two-way interaction between meso- and synoptic
scales (Emanuel et al., 1994; Roode et al., 2004). So, insta-
bility with the prescribed basic state as an exact solution of
the nonlinear equations of motion cannot be the most suitable
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description of this relationship between convection and its
environment. Last, once the basic state becomes unstable, it
does not mean that convection can arise, since an extra ini-
tial disturbance is usually needed to trigger the convection.
Sometimes, identifying the source of this initial disturbance
is itself a difficult problem, because any transient disturbance
to the atmosphere has been finally damped after long time
evolution and even the existence of such disturbance is hard
to determine.

The development of theories on balanced flow and slow
manifold in the past decades (for a review on this issue, see
e.g. McIntyre, 2000) provides a new possibility for the under-
standing of convective activities, particularly for overcoming
the above three drawbacks of dynamical instability theories.
The replacement of the basic states of the instabilities by an
approximate and adjustable balanced flow will logically infer
the existence of a new mechanism for the spontaneous pro-
duction of the convection from the balanced flow. This can
be viewed as a generalization of the concept of the sponta-
neous emission of inertia gravity waves by balanced or vorti-
cal flow (Lighthill, 1952; Ford et al., 2000). The motivation
of the present study is to incorporate convective activities in
the framework of the theory of the balanced flow or slow
manifold so as to investigate the arising, development and
spatiotemporal structure of convection and the conditions of
the balanced flow corresponding to these aspects. The paper
is arranged as follows. In Sect. 2, by discussing some general
properties of convection and the balance/imbalance of vorti-
cal flow, we give generalized definitions to the basic concepts
associated with convection and its environment. In Sect. 3 we
develop a theory for the response of convective activities to
the forcing induced by the departure of a vortical flow from
balance. Many related issues such as the two-way interaction
between convection and vortical flow are discussed there as
well. The last section is devoted to a summary and further
discussion of related issues.

2 Generalizations of basic concepts associated with
convection

Before further discussions, some important concepts and as-
sociated terminology need to be clarified. We call the envi-
ronment of convection the basic state or basic flow. The basic
state may be roughly defined as the remaining part of motion
after convection is removed in some given way. In this defi-
nition, the basic flow can be either a strict solution or just an
approximate one, with or without the property of balance. In
contrast, we need also an appropriate definition of convection
to include more complex cases. The following parts of this
section are devoted to generalizing these concepts and giving
more precise definitions.

2.1 Basic state, vortical flow, balance and imbalance

As a generalization of the simple basic state in the previ-
ous instability theories such as static and parallel geostrophic
flows, we would like to introduce the concept of the balanced
flow via that of the slow manifold. The starting point is given
by the vorticity equation, divergence equation and thermody-
namic equation inp-coordinates as below

∂ς

∂t
= −f δ−V ·∇ς −ω

∂ς

∂p
−ςδ+k ·(

∂V

∂p
×∇ω) (1a)

∂δ

∂t
= f ς −∇

2φ−V ·∇δ−ω
∂δ

∂p

−
1

2
(δ2

+a2
+b2

−ς2)−
∂V

∂p
·∇ω (1b)

∂

∂t
(
∂φ

∂p
) = −σω−V ·∇(

∂φ

∂p
), (1c)

where δ is the horizontal divergence,ς the vertical com-
ponent of vorticity,V the horizontal wind with zonal com-
ponentu and meridional componentv, ω the vertical wind
and φ the potential height. The Coriolis-parameterf has
a typical value of 10−4 s−1 for mid-latitudes. The stability
parameterσ ≡ −RT0p

−1d lnθ0/dp for the isobaric system
is approximately a constant, andθ0 is the potential temper-
ature corresponding to the basic state temperatureT0. In
addition, a = ∂u/∂x − ∂v/∂y,b = ∂v/∂x + ∂u/∂y are de-
formations of the horizontal wind field. From the continu-
ity equation, vertical velocity is related to the divergenceδ

by ω =
∫ p

0 δdp. For simplicity, in the equations above the
hydrostatic assumption is made, and the advection of the
Coriolis-parameterf , which gives rise to theβ-effect and
the related generation of Rossby waves, is neglected as well.
These simplifications specify the range of spatial scales in
the present study. Since a small-scale convection cell has
strong deviations from the hydrostatic balance, the equations
above are more applicable to a meso-scale convection sys-
tem than to an individual cell within it. On the other hand,
the spatial scale should not be too large, so that theβ-effect
is negligible. Accordingly, the applicable spatial scales of
the equations range from 100 to 1000 km. So, by “convec-
tive activities” we primarily mean meso-scale systems in this
paper.

A balanced flow can be defined by lettingδ = 0 in Eq. (1b).
The so-called balance equation then is

f ς −∇
2φ−

1

2
(a2

ς +b2
ς −ς2) = 0. (2)

Hereafter, the subscriptς and δ denote the pure contribu-
tions from the vortical and divergent component of the flow,
respectively. Equation (2) indicates some certain way of bal-
ance between horizontal wind and geopotential height field.
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On the other hand,δ = δ(ς, φ) ≡ 0 also defines a hypersur-
face called the slow manifold in the phase space spanned by
(ς , δ, φ). It can be viewed as a special case of the slow mani-
fold defined by Leith (1980) and Lorenz (1980). On this slow
manifold, the evolution of the system (1) is reduced to

∂ς

∂t
= −V ς ×∇ς (3a)

∂

∂t
(
∂φ

∂p
) = −V ς ×∇(

∂φ

∂p
), (3b)

i.e. an advection process of the relative vorticity (whenf is
constant) and the hydrostatic approximated temperature in-
duced by the vortical component of velocity. The balanced
flow defined in this way is a purely vortical flow. Obviously,
basic states of static flow, parallel geostrophic flow and ax-
isymmetric gradient flow are just particular cases of this bal-
anced flow. Just like deviations of the geostrophic equilib-
rium, deviations of this general balanced flow can be on the
one hand fast gravity waves, or on the other hand a slow and
forced secondary divergent motionδ restoring the balance.

Slow manifold or balanced flow has been a central concept
for the understanding of many aspects of the atmospheric dy-
namics. Much research has been devoted to this subject since
it was proposed by Leith (1980) and Lorenz (1980), among
which was the general discussion about the existence of a
slow manifold for realistic atmospheric flows starting with
Lorenz (1986). The most important result of this research
was the discovery that the slow manifold is not an exact in-
variant manifold. It can only exist as a modified concept of so
called slow quasi-manifold or fuzzy manifold (Lorenz, 1986,
1987, 1992; Jacobs, 1991; Vautard and Legras, 1986; Vallis,
1996; Vanneste and Yavneh, 2004; Warn and Menard, 1986;
Warn et al., 1995; Warn, 1997; Ford, 2000), which means
that balanced flow, to some extent, is just an approximation
except for some particular cases such as parallel geostrophic
flows and axisymmetric gradient flows. There is also now
strong experimental evidence that the slow manifold is not
an invariant manifold (Williams et al., 2008).

Since a much stronger conditionδ = 0 is imposed on the
primitive equations in Eq. (1), the balance system of Eqs. (2)
and (3) in this paper are neither exactly analogous to the bal-
ance equations by Charney (1955) which permit the spurious
nonphysical solutions noted by Moura (1976) nor to the slow
equations by Lynch (1989) in which the spurious solutions
are absent. As the slow manifold defined in the present way
usually can not exist as an exact invariant manifold, the bal-
ance system of Eqs. (2) and (3) may also permit spurious
nonphysical solutions. But the nonphysical parts of the solu-
tions may be small enough to be neglected and the nonphys-
ical solutions are roughly physical ones, if the slow manifold
remains to be a quasi-manifold.

It is also well recognized that the departure from the ex-
act balance is associated with the activities of inertia grav-
ity waves or the spontaneous emission (Ford et al., 2000).

However, convection, which may be another important phe-
nomenon associated with this loss of balance, has not been
investigated theoretically so far. In our following studies
on meso-scale disturbance such as convective activities, the
basic state can be selected as the vortical flow, no matter
whether or not it is an exact balanced flow. In this case, the
vortical componentς together withφ is viewed as the ba-
sic state, while the divergent componentδ is the disturbances
about it. This idea is more clearly seen by a mathematical
definition as below. LetS denote the phase state of the dy-
namical system (1),S0 the basic state andS′ the disturbance,
so

S ≡

 δ

ς

φ

 =

 δ

0
0

+

 0
ς

φ

 ≡ S′
+S0

regardless whether or not the basic stateS0 satisfies the bal-
ance Eq. (2). The conventional theory of balanced flow
divides the atmospheric motions into two classes: high-
frequency inertia-gravity waves (phase speeds up to hun-
dreds m s−1 and large divergence) and large-scale low-
frequency flow (phase speeds of the order of ten m s−1, pe-
riods of few days, vortical flow). However, the convective
scales are in between. So dividing atmospheric motions into
divergent and vortical flow rather than into high- and low-
frequency seems more essential in the understanding of the
relationship between convection and balanced flow.

2.2 Effects of balanced/imbalanced vortical flows on
convection

Equation (1) can be reduced to one equation forδ

∂2δpp

∂t2
+σ∇

2δ+f 2δpp +=(δ)−`ς,φδ = <(ς, φ). (4)

Here, the subscriptp denotes the partial derivative with re-
spect top. =(δ) is the nonlinear term of the disturbanceδ.
As no analytical solution of Eq. (4) can be gained in the non-
linear regime, it will be omitted in the following discussions
whereδ can be assumed to be small enough, not only because
we just care about the triggering stage of the convection, but
also becauseδ is usually far smaller thanς as will be pointed
out later in the next section. Finally,

`ς,φδ = [−f ∇ς ·V δ −f
∂ς
∂p

ω−f ςδ+f k ·(
∂V ς

∂p
×∇ω)]pp

−[V ς ·∇δ+(aςaδ +bςbδ)+
∂V ς

∂p
·∇ω]tpp

+∇
2
[∇(

∂φ
∂p

) ·V δ]p

(5)

is the linear operator acting onδ, while
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R(ς,φ) = −
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]
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+12
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∂ρ
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)

]
p
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is the inhomogeneous term which depends only on the basic
state(ς,φ). The subscriptt denotes the partial derivative
with respect tot . The physical meaning of<(ς,φ) is related
with the so-called omega equation and will be discussed in
detail in the next section.

If the basic state(ς,φ) is an exactly balanced flow, then it
is also the exact solution of Eq. (1). From Eqs. (3) and (6),
we have<(ς,φ) = 0. Then Eq. (4) becomes

∂2δpp

∂t2
+σ∇

2δ+f 2δpp −`ς,φδ = 0. (7)

This is a problem of stabilities including static instability and
symmetric instability when the basic state is a static flow and
parallel geostrophic flow, respectively. It follows that for the
exactly balanced flow, convection can only be attributed to
the instabilities of the balanced flow. For example, when the
balanced flow is the parallel geostrophic flow, and only sym-
metric disturbance is considered, Eq. (7) can be rewritten as

∂2δpp

∂t2
+N2δyy −2S2δyp +F 2δpp = 0. (8)

Here,N2
= σ , S2

= f Up,F 2
= f (f +Uy), andU is the

x-oriented basic flow. It can be proven that the criterion for
the symmetric instability is

q = F 2N2
−S4 < 0 when N2 > 0. (9)

Nevertheless, the exactly balanced flows are just a few of
very particular cases as mentioned above. Under ordinary
circumstances, the basic state(ς,φ) may more or less remain
apart from this exact balance. So, usually we have the in-
homogeneous term<(ς,φ) 6= 0, which appears as some ex-
ternal forcing on the convection from the basic state(ς,φ).
Consequently, besides producing instabilities, the impact of
vortical flow on convection can also be attributed to a forc-
ing by the imbalance of vortical flow. However,<(ς,φ) does
not directly depend on this departure. Rather, as shown in
Eq. (6), it depends on the spatiotemporal derivatives of each
of the three individual terms (or their advections) in Eq. (2)
which cancel each other only in the case of exact balance. As
a result, the forcing is not determined by the imbalance of the
three terms of Eq. (2) but by the imbalance of spatiotempo-
ral derivatives of them (or their advections) in Eq. (6). This
fact means that far departure from the balance does not need
to indicate a stronger forcing than a small departure and that
the forcing by the vortical flow can be very complex. Even
so,<(ς,φ) can still be used to measure the departure of the

vortical flow from the balance, because at least the distinc-
tion between the balanced and imbalance flows is reflected
well by <(ς,φ) = 0 or<(ς,φ) 6= 0, respectively. A physical
explanation of this imbalance forcing will be given in Sect. 3.

2.3 Reconsideration of the definition of convection

As mentioned above, if the basic states are purely balanced
flows, convection can be defined traditionally as the verti-
cal motion arising from the instabilities of these balanced
flows. However, the loss of balance of the vortical flow al-
ways yields an inhomogeneous term<(ς,φ) 6= 0 to Eq. (7),
that is

∂2δpp

∂t2
+σ∇

2δ+f 2δpp −`ς,φδ = <(ς,φ). (10)

In this case, since the basic state is no longer the exact solu-
tion, the definition of its stability becomes problematic and
so does the definition of convection. Consequently, we need
to reconsider the definition of convection and give a more
general one to include imbalance cases.

The general solution of the linear Eq. (10) should be the
superposition of both the homogeneous solutionδ1satisfying
only homogeneous part of Eq. (10), and the inhomogeneous
solutionδ2 satisfying the whole equation of (10),

δ = δ1+δ2. (11)

It is easy to see that the homogeneous part and its solution
δ1 behave like a problem of stability, no matter whether or
not (ς,φ) is an exactly balanced flow with<(ς,φ) = 0. So
we can propose an apparent stability problem like Eq. (7)
for δ1 even when<(ς,φ) 6= 0. As a result, convection is
definitely associated with this kind of apparent instability
(Kelvin-Helmholtz instability, inertia instability, or symmet-
ric instability). On the other hand, the inhomogeneous solu-
tion δ2 for an unstable homogeneous operator of Eq. (10)
may also largely differ from that of a stable one that just
yields forced inertia gravity waves. So, both the homoge-
neous and the inhomogeneous solution contribute to the con-
vective activity when the homogeneous operator is unstable.
Consequently, the definition of convection can be general-
ized as the vertical motion resulting from an unstable basic
state given by(ς,φ), regardless whether or not the basic state
is a balanced flow. In other words, this generalized definition
regards convection as the results of both apparent instability
and forcing of an unstable and imbalanced basic state. There
are two key points of this generalized definition of convec-
tion, i.e. (1) the basic state(ς,φ) must be apparently unsta-
ble, and (2) it needs not to be balanced flow.

2.4 Disturbance-triggered or spontaneous convection?

The triggering mechanisms of convection for balanced and
imbalanced vortical flows are also different. In the former
case, convection is an issue of purely instability which grows
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from some external initial disturbance. We call this kind of
convection a disturbance-triggered convection. In the latter
case, convection is a result of both apparent instability and re-
sponse to forcing by an imbalanced basic state. The trigger-
ing of the apparent instability does not need an external initial
disturbance, because for an imbalanced vortical flow we al-
ways have an initial disturbanceδt=0 6= 0. So, imbalance pro-
vides not only a forcing but also an initial disturbance from
which the apparent instability can develop. Therefore, it is
more appropriate to attribute the triggering of convection to
the imbalance of the basic state itself rather than to some un-
known extra source. We can then call this kind of convection
a spontaneous convection. In the linear regime of the devel-
opment of convection, this imbalance-forced part of convec-
tion (δ2) cannot interact with free unstable modes of appar-
ent instability (δ1). However, as the convection develops into
the nonlinear regime, we hypothesize that the nonlinear in-
teraction between them (δ1 andδ2) may create an even more
complex structure of the convective activity. Even so, the
spontaneous nature of the convection remains unchanged.

3 Convections interacting with vortical flows

3.1 Simplification of concepts

As mentioned above, the linkage between convection and its
synoptic background is characterized by both a response to
forcing <(ς, φ) and the instability of the basic flow with
`ς,φδ involved. Usually, at synoptic scale, we have a Rossby
numberε � 1 and∣∣∣∣ δ

ς

∣∣∣∣ ≤ ε � 1, (12)

Also, for a meso-scale vortical flow with Rossby numberε =

O(1), we assume that the Froude numberFr can be esti-
mated from the barotropic mode byFr = U/

√
gH , where

U ∼ 101 m s−1 is the scale of wind speed, andH ∼ 104 m
is the vertical scale. In this case, or even forH ∼ 103 m,
a much shallower equivalent depth,Fr � 1 can be satisfied
very well, so that we have∣∣∣∣ δ

ς

∣∣∣∣ ∝ Fr2

ε
� 1. (13)

For details regarding the above scale analysis, we refer to
McIntyre (2000) or Ford et al. (2000). Under these condi-
tions, since both̀ς,φδ and<(ς, φ) are quadratic terms, once
δ is small, it can be proven that

`ς,φδ � <(ς, φ). (14)

Equation (10) is then reduced to

∂2δpp

∂t2
+σ∇

2δ+f 2δpp = <(ς, φ). (15)

Without the bilinear term̀ ς,φδ, the homogeneous part of
Eq. (15) is identical to a problem of static instability, which
simplifies the concepts and mathematics of the present issues
to a great extent. Consequently, the impact of the basic state
on convection is merely from the additive forcing<(ς, φ),
rather than from the multiplicative forcing̀ς,φδ associated
with the apparent instability.

By projecting Eq. (15) on the vertical modesPn defined
by the eigen-system

−
d2Pn

dp2
= λnσPn; n = 0, 1, 2, · · · (16)

satisfying suitable lower and upper boundary conditions, we
obtain (see Appendix A)

∂2δn

∂t2
−c2

n∇
2δn +f 2δn = <n(ς, φ). (17)

Here,c2
n = 1/λn. If c2

n > 0, or the atmosphere is stably strati-
fied, the left hand side of Eq. (17) describes the inertia grav-
ity waves, while the right-hand side is the “source” of these
waves. This is the concept of so-called spontaneous emis-
sion proposed and well studied in previous works such as
Lighthill (1952) and Ford et al. (2000). In the emission
Eq. (4), we take the linear term̀ς,φδ to be a source term.
However, in the Lighthill/Ford interpretation, it would be on
the left-hand side of Eq. (4) and would be regarded as a part
of the wave operator. This has implications for the ensuing
analysis, because the smallness of the linear term compared
to the inhomogeneous term (Eq. 14) is then irrelevant, and
what matters is the smallness compared to the other terms
in the wave operator. The resulting mathematics is largely
different from that of the present analysis. This discrepancy
may be understood as follows. Basically, (ς ,δ,φ) can also be
viewed as a small disturbance about the static background.
Therefore, by inertia gravity waves, we implicitly mean those
under the static background and the wave operator is then just
as the left-hand side of Eq. (15). The “linear” term`ς,φδ is
essentially a nonlinear one and should also be a small term
even compared to the true linear terms in the wave operator,
if weak linearity is assumed.

The spontaneous emission whenc2
n > 0 is no longer the

topic of our present study. Rather, if the atmosphere is un-
stably stratified, i.e.c2

n < 0, the left-hand side of Eq. (17)
describes the convection, and the right-hand side is viewed
as the forcing from the vortical flow, which will be the focus
of our following discussion.

The inhomogeneous solution of Eq. (17) or the response to
the forcing can be obtained as below. By introducing a new
argumentτ = ci t with c2

i = −c2
n > 0, Eq. (17) is transformed

into a 3-dimensional Helmholtz equation

∂2δn

∂x2
+

∂2δn

∂y2
+

∂2δn

∂τ2
+

f 2

c2
i

δn =
1

c2
i

<n(ς, φ). (18)
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It is highly necessary to point out that the elliptic Eq. (18)
is essentially different from the hyperbolic Eq. (18) with
c2
n > 0, because the latter is wave equation describing inertia

gravity waves while the former describes convection which
can not be simply regarded as unstable inertia gravity waves.

3.2 Analytical solution of convection

The general solution of Eq. (18) is the sum of its homoge-
neous and inhomogeneous solutions, corresponding to free
modes of convection and forced convection as below, respec-
tively.

a. Free modes of convection

The homogeneous solution of Eq. (18) can be written
asAexp[(kxx +kyy +ωt)i], the growth rate of the un-
stable mode of which is obtained from the dispersion

relation asλ = iω =

√
(k2

x +k2
y)c

2
i −f 2. Obviously, dis-

turbances of small scale tend to grow more rapidly. So,
usually these free unstable modes are responsible for the
formation of small-scale cells of convection.

b. Forced convection

The Green’s function of Eq. (17) can be obtained from
that of Eq. (18) as

G(r,r ′,t, t ′) =
1

4π

exp[i f
ci

√
|r −r ′|2+c2

i (t − t ′)2]√
|r −r ′|2+c2

i (t − t ′)2

(19)

wherer = xi+yj , and the causality demandst > t ′ (see
e.g. Guo, 1979). So, the inhomogeneous solution of
Eq. (17) can be written as

δn(r,t)=
1

4πc2
i

∫
t ′<t

∞∫
−∞

∞∫
−∞

<n(r
′, t ′)

exp[i f
ci

√
|r −r ′|2+c2

i (t − t ′)2]√
|r −r ′|2+c2

i (t − t ′)2
dx′dy′dt ′ (20)

The physical meaning is clear: the strength of forced
convection inr at arbitrary timet depends on the cu-
mulative influence of the forcing from everywhere and
at all times earlier thant . The Green’s function indi-
cates that the influence of the forcing from the vorti-
cal flow is inversely proportional to the spatio-temporal
distance, which means that the overall spatio-temporal
structure of the forced convection is similar to that of
the forcing<(ς, φ). If the structure of the vortical flow
is movable, then so is the overall structure of the forced
convection associated with it. On the other hand, as in-
dicated by the spatio-temporal structure of the Green’s

 36

 
Figure 1．Spatio-temporal structure of the Green’s function (3.8) (contour lines in 
divergent regions are not shown). The figure shows that a pulsation at time t’ of the 
forcing located at 'r can induce convective structures around (shadow areas), and that 
these structures will move towards the “source” at 'r .  
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Fig. 1. Spatio-temporal structure of the Green’s function (19) (con-
tour lines in divergent regions are not shown). The figure shows that
a pulsation at timet ′ of the forcing located atr ′ can induce convec-
tive structures around (shadow areas), and that these structures will
move towards the “source” atr ′.

function in Fig. 1, the fine structures reflect the numera-
tor of the Green’s function (19). It shows that convective
structures induced by the pulsation at timet ′ of forcing
located atr ′ will move toward the “source” atr ′. We
suppose that this is a universal property of forced con-
vection and that its structures tend to approach that the
centers with the strongest forcing. This structure of the
Green’s function solution suggests that a spatial pattern
of forced convection can be generated instantly at infi-
nite distance from the source. However, as indicated by
the denominator of the Green’s function, this structure
decays rapidly with the distance from the source. So, in
the real world, such pattern can only be expected to be
observed in the adjacent region of the source. To illus-
trate the effect of the cumulation of forcing at different
places and times as indicated by Eq. (20), Fig. 2 gives
the spatio-temporal structure of the superposition of the
responses to two pulsations of forcing at (x,t) = (0, 0)
and (x,t) = (10,−2). A more complex structure than
that in Fig. 1 can be found due to this superposition.

c. Scale analysis of convective activities

The basic structure of the Green’s function indicates
that meso-scale forcing gives rise to forced convection
of meso-scale, while large-scale forcing gives rise to
forced convection of large-scale. However, the numera-
tor part of the Green’s function gives a description of the
effect of the inertia oscillation on the forced convection.
Very complex oscillating/propagating structures may be
embedded in (or superposed to) the overall structure
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Figure 2. To illustrate the effect of the superposition of forcings at different places and 
times as indicated by (3.9), the figure shows the spatio-temporal structure of the 
superposition of the responses to two pulsations of forcing at (x, t) = (0, 0) and (x, t) = 
(10, -2) (contour lines in divergent regions are not shown). A more complex structure 
can be found due to this superposition.   
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Fig. 2. To illustrate the effect of the superposition of forcings at
different places and times as indicated by Eq. (20), the figure shows
the spatio-temporal structure of the superposition of the responses
to two pulsations of forcing at (x,t) = (0, 0) and (x,t) = (10,−2)
(contour lines in divergent regions are not shown). A more complex
structure can be found due to this superposition.

induced by the forcing of the vortical flow, and are es-
sentially different from the inertia gravity waves.

The spatial scale of such an oscillating/propagating
structure isci/f . Sincef = 10−4 s−1, ci/f can either
be very small or very large, depending on the static in-
stability (or the imaginary phase speedci). This struc-
ture can be viewed as being embedded in the synop-
tic scale system whenci is small enough, otherwise it
can also be comparable to the synoptic scale whenci is
large. However, this is just the case in the situation of
a vortical flow of synoptic scale. For a vortical flow
of meso-scale, Eq. (13) demands the Froude number
Fr ∝ U/ci � 1, which gives a limitation to the lower
bound ofci . In order for the existence of Eq. (18),ci

must be large enough, otherwise the multiplicative forc-
ing `ς,φδ becomes too complex in form and cannot be
omitted and leads to a mathematical difficulty beyond
the capability of the present study. In this case, the
meso-scale vortical flow can induce forced convection
with scales larger than the vortical flow itself. In fact,
following Ford (2000), we can assume the forcing of
the vortical flow to be confined to a small region with
diameterL. If the scale of the wind speed of the vor-
tical flow is U , then the scale of temporal variations is
L/U . Out of this small region, the growth rate of the
free mode of convection can be estimated by the disper-

sion relationship, i.e.λ =

√
c2
i k

2−f 2, wherek is the
wavenumber. We can assume that it is proportional to

L/U , or the time scale of the variation of the vortical
flow as the source of forcing. So the scale of forced
convection is 2πL/Fr � L whenFr � 1.

Anyway, the scales discussed above just apply to forced
convection by the imbalanced vortical flow. Free modes
of convection represented by the unstable homogeneous
solutions are another important factor that contributes
to the spatial scales of the convective activities. Conse-
quently, multiple spatial scales of convective activities
are caused by the following three factors: (1) the scale
of the imbalance of the vortical flow, (2) the scales of the
inertial oscillation and (3) the scales of the unstable free
modes of convection. Since unstable free modes of con-
vection tend to select structures with the smallest scales
and are embedded in the forced convection, convective
activities always appear as the former modulated by the
latter.

3.3 Two-way interaction between convection and
vortical flow

In addition to the response of convection to the forcing in-
duced by the imbalance of vortical flow as mentioned above,
Eq. (15) is actually a problem of two-way interactions be-
tween convective activities and the basic flow as well. The
convective activities can act on the basic flow and contribute
to its adjustment. In principle, this interaction between con-
vection and its basic state is described by Eq. (15), although
this kind of two-way interaction can never be dealt with in
the framework of dynamical instabilities of basic flows.

Generally speaking, the action of the convection on the
basic flow seems far more complex to describe. In the present
study we would like to address this issue mathematically as
below. According to the Fredholm alternative (see any text
book on partial differential equation, e.g. Haberman, 2003),
the solvability of Eq. (15) requires its inhomogeneous term
<(ς, φ) to be orthogonal to the homogeneous solutionδ0, or

< δ0, <(ς, φ) >=

∫
�

δ∗

0<(ς, φ)d� =0. (21)

Here,<, > is an inner product properly defined over some
spatiotemporal domain�, δ0 is the homogeneous solution of
Eq. (15) whileδ∗

0 is its adjoint solution. This constraint on
<(ς, φ) means that the departure from balance is confined
to merely some very special ways. It can then be explained
as the action of convection on its basic flow. Since the ho-
mogeneous solutionδ0 represents all possible free modes of
convection, this reaction adjusts the basic flow in a particu-
lar way so that the resulting forcing<(ς, φ) has no projec-
tion on any free mode of convection. As these free modes
of convection are all growing modes and can represent al-
most all possible ways of growth with time, Eq. (21) implies
that<(ς, φ) cannot have any infinitely growing component,
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which may be essentially a limitation to the further intensifi-
cation of the forcing<(ς, φ), or roughly, a measure for the
imbalance. So, the imbalance of the vortical flow cannot in-
crease infinitely and an approximately balanced flow can be
maintained.

A more physical explanation for this action of convection
on the basic flow can be obtained from an approximate anal-
ysis of the Green’s function (19). The inhomogeneous solu-
tion of convection far apart from the “source” of the imbal-
ance can be estimated by setting the “source” atr ′

= 0 and
t ′ = 0 in the Green’s function. So, we have

δn(r, t) ∝ Re(aeiθ ) = acos(θ), (22)

where the “phase” is given by

θ =
f

ci

√
|r|2+ c2

i t
2 (23)

The amplitudea varies slowly witht and r and is assumed to
be constant. On the other hand, out of the “source” region,
we have<n(ς, φ) = 0, so the governing equation should be

∂2δn

∂t2
+c2

i ∇
2δn +f 2δn = 0 (24)

although the inhomogeneous solution is considered. Multi-
plying Eq. (24) by∂δn

/
∂t , we have the following conserva-

tion law of Eq. (24)

∂

∂t
(
1

2
δ2
nt −

1

2
c2
i |∇δn|

2
+

1

2
f 2δ2

n)+∇ ·(c2
i δnt∇δn) = 0. (25)

By substituting Eqs. (22) and (23) into Eq. (25) and integrat-
ing from θ = 0 to θ = 2π , we rewrite Eq. (25) as

∂E

∂t
+∇ ·F = 0., (26)

Here,

E =
f 2c2

i t
2a2

2(|r|2+ c2
i t

2)
(27a)

F =
f 2c2

i ta
2

2(|r|2+ c2
i t

2)
r (27b)

are the energy density and flux, respectively. The group ve-
locity which indicates the wave energy transportation can be
obtained by

cg =
F
E

=
1

t
r. (28)

It clearly demonstrates that outward and temporally de-
caying energy transportation from the “source” accompanies
the imbalance, which will essentially reduce the convection
or δ and tends to maintain the balance of the basic flow. The

fact that the group velocity goes to infinity whent goes to 0
does not need to mean that there is no point unaffected by the
“source”, because the energy densityE as well as the fluxF
vanish, i.e. there is no transport of energy. On the contrary,
the local phase speed is given by

c =
−∂θ/∂t

∂θ/∂x
i +

−∂θ/∂t

∂θ/∂y
j = −

c2
i t

|r|2
r , (29)

This phase propagation toward the “source” has been demon-
strated in Fig. 1. So, we can conclude that the two-way in-
teraction between convection and its basic state is character-
ized by the following process: the imbalance of the basic
flow generates convection, while the convection suppresses
the further increase of this imbalance in turn.

3.4 Physical explanation and observational evidences

In order to identify spontaneous convection as described
above in the real world, two fundamental aspects, i.e. un-
stable stratification and imbalance of the basic state should
be observed simultaneously. The unstable stratification gen-
erates small cells of convection, while the imbalance gives a
larger-scale modulation with spatio-temporal structures indi-
cated by Eq. (20). In fact, since no exactly balanced flow can
be found in the atmosphere and unstable stratification is also
very common, most of the convective activities have some-
thing to do with this spontaneous convection.

For the purpose above, we need also an explanation of the
physical meaning of the imbalance forcing<(ς, φ). If the
vertical or horizontal structures of the terms in brackets in
<(ς, φ) are approximately sine or cosine functions, the im-
balance forcing can be viewed as the result of(a2

ς +b2
ς −ς2)t

(nonsteady processes of the vortical flow),V ς ·∇ς (vorticity
advection) and[V ς ·∇(

∂φ
∂p

)]p (difference of temperature ad-
vections between upper and lower levels). The physical inter-
pretations of these terms are also clear: both local changes of
vorticity/deformation with time and vorticity advection can
result in changes of the pressure so as to maintain the bal-
ance, while the changes of the pressure gradient can cause
convergence/divergence in turn. Similarly, temperature ad-
vection results in some changes of pressure, while the result-
ing changes of the pressure gradient can also generate con-
vergence/divergence. These are usually the situations in syn-
optic systems of various scales such as fronts, jets, troughs,
ridges and eddies. These systems are subjected to departures
from balanced flows such as geostrophic and gradient flows.
For example, a front is associated with a difference of tem-
perature advection between upper and lower level. Moving
trough, ridges and eddies of various scales cause vorticity ad-
vection, and local changes of deformation are related to the
speedup/slowdown of meso-scale jets. All these phenomena
may cause imbalances of vortical flows. So, if these sys-
tems become unstably stratified and convections arise within
them, the convection resulting from these imbalance forcings
can be regarded as observational evidences of spontaneous
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Figure 3. A schematic overview about the different cases discussed in Section 3. 
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Fig. 3. A schematic overview about the different cases discussed in
Sect. 3.

convection. A particular case for convection without large or
meso-scale synoptic systems accompanied is daytime heat-
ing on a flat and homogeneous surface. In this case, the ba-
sic flow is nearly balanced and<(ς, φ) remains very small.
Once the stratification of the atmosphere becomes unstable,
the unstable free modes dominate over the forced part of con-
vection. Although imbalance may be too weak to generate a
noteworthy part of convection, it can still provide an initial
disturbance from which instability develops spontaneously.
Although the forcing terms are very similar to those of the
well-knownω equation (see, e.g. Holton, 1992), it is worthy
to mention that the forced part of convection is essentially
different from the issue of vertical motion generated from
vortical flow as described by theω equation. If the atmo-
sphere is stably stratified (σ > 0), the ω equation is an el-
liptic equation. To the leading order, it describes the spon-
taneous emission of inertia gravity waves in the “source”
region. However, if the atmosphere is unstably stratified
(σ < 0), ω equation becomes a hyperbolic equation and usu-
ally not to be used for the diagnosis of the vertical motion.
So, the vertical motion forσ < 0 remains unclear so far, and
the present concept of forced convection can’t be attributed to
the conventional vertical motion. In other words, it is the way
of response rather than the form of forcing that is different.
A schematic overview about the different cases discussed in
this section is given in Fig. 3.

4 Conclusions and discussions

The present study suggests that convective activities can be
recognized in the perspective of their interaction with the
vortical flow. It has been demonstrated that convective ac-
tivities can be regarded as the superposition of free modes
of convection and the response to the forcing induced by the
imbalance of the unstably stratified vortical flow. An im-
balanced vortical flow provides not only an initial condition
from which unstable free modes of convection can develop
but also a forcing on the convection. Soconvection is more
appropriately to be regarded as a spontaneous phenomenon
rather than a disturbance-triggered phenomenon which is in-
dicated by any theory of dynamical instability. Meanwhile,
convection, particularly the forced part, has also a reaction
on the basic flow by preventing the imbalance of the vortical
flow from further increase and maintaining approximately a
balanced flow.

It is crucial to make clear how the proposed point of view
could improve the classical description of convection. The
key point is that, by introducing the framework of balanced
flows, it extends previous theories which attribute convec-
tion mainly to dynamical instabilities of the balanced basic
state. The presented theory considers not only the apparent
instabilities but also the interaction of convective activities
with the imbalanced basic state. Moreover, the basic state
can now be much more complex than in traditional theory.
These differences need not to increase the difficulties in the
analysis of the apparent instability and the interaction when
`ς,φδ is dropped just as in Sect. 3.

The interaction between convection and basic flow is the
typical situation for dry or adiabatic convection. Although
we suppose that these purely dynamical processes work also
for moist or diabatic convection, other important processes
contributing to the interaction are associated with the exis-
tence of water vapor. The dominant thinking about the inter-
action between large-scale atmospheric circulation and moist
convection holds that convection acts as a heat source for
large-scale circulation, while the latter supplies water vapor
to the convection. Emanuel et al. (1994) shows that this idea
has led to fundamental misconceptions and offers an alterna-
tive paradigm. They suggest that the understanding of large-
scale circulations in convecting atmospheres can be regarded
as a problem of understanding the distribution in space and
time of the subcloud-layer entropy to which the temperature
profile is directly tied. Also, they argue that the direct ef-
fect of convection on large-scale circulations is to reduce by
roughly an order of magnitude the effective static stability
felt by such circulations, and to damp all of them. We be-
lieve that our results do not conflict with those of Emanuel et
al. (1994), because these two theories just describe two dif-
ferent aspects (i.e. convections with and without water vapor
considered) of interaction between convection and its basic
state. Emanuel et al. (1994) also argue that the respective
time scales of convection and larger-scale forcing are too
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disparate to allow convection to directly affect the larger-
scale flow. This is a central assumption in the statistical
quasi-equilibrium hypothesis (SQE), which is not opposite
to our conjecture that convection serves to adjust the larger-
scale environment to a state of balance. What Emanuel et
al., mean by convection corresponds just to the free modes
of convection or the homogeneous solution that is not related
to the vortical flows in the linear stage of growth. On the
contrary, the forced part of convection or the inhomogeneous
solution does serve to adjust the larger-scale environment as
was pointed in last section. Such a discrepancy is just due
to the difference of definitions of convection and is not sig-
nificant for larger-scale vortical flow. But for smaller-scale
vortical flows with strong imbalance, this discrepancy may
become important.

Another question may also arise from this difference of
definitions of convection, that is, the larger-scale environ-
ment always has regions of convergence/divergence of the
same scale, while a vortical flow associated with the forc-
ing <(ς, φ) is always nondivergent. This can simply be
explained because in the generalized definition these larger-
scale convergence/divergence is included in the convection
rather than in its environment. It is also easy to see that
the friction and diabatic heating can be incorporated into the
present framework without technical difficulty. As a result,
the effects of the physical boundary layer and latent heating
on convections can be discussed within this framework as
well, which will be the topic of our future investigations on
this issue. We believe these theoretical results on balanced
circulations with convective activity can provide a new per-
spective for diagnostic studies to understand the formation
and the structure of meso-scale convection systems.

Appendix A

Let L denote the linear operator in the left-hand side of (15),
i.e.

L = −
d2

dp2
(A1)

Then the eigen-system (15) can be written as

LPn = λnσPn; n = 0, 1, 2, ... (A2)

It may satisfy the following boundary conditions of the
first, second and third kinds atp = 0 andps :

α1Pn(0)+β1P
′
n(0) = 0

α2Pn(ps)+β2P
′
n(ps) = 0

. (A3)

Here,|α1|
2
+|β1|

2
6= 0; |α2|

2
+|β2|

2
6= 0. We define the

inner product by

< u,v >=

∫ ps

0
u∗vdp. (A4)

It is easy to prove that

< Pn,LPn > − < LPn,Pn >= (λn −λ∗
n)

∫ p0

0
σ |Pn|

2dp. (A5)

And by multiplying Eq. (A2) byP ∗
n , we have also

λn

∫ p0

0
σ |Pn|

2dp = − Pn

dP ∗
n

dp

∣∣∣∣p0

0
+

∫ p0

0

∣∣∣∣dPn

dp

∣∣∣∣2dp. (A6)

SinceL is a self-adjoint operator and the first term of the
right hand side of Eq. (A6) is non-negative under any of the
boundary conditions of Eq. (A3), for an arbitrary nontrivial
solution of Eq. (A2), we have

(λn −λ∗
n)

∫ p0

0
σ |Pn|

2dp =0 (A7a)

λn

∫ p0

0
σ |Pn|

2dp > 0. (A7b)

For a certain eigenfunctionPn, we can define an equivalent
parameter of static stability by the weighted average ofσ

over the entire layer of the atmosphere, i.e.

σn =

∫ p0

0
σ |Pn|

2dp (A8)

where the weight is chosen as the power of the normalized
Pn. It can be inferred from Eq. (A7a and b) that, ifσn > 0
(σn < 0), λn is real andλn > 0 (λn < 0). A special case is
whenσ > 0(σ < 0) at all levels. In other words, if the at-
mosphere is statically stable, thenλn > 0 holds for all eigen-
functions. Otherwise, if the atmosphere is statically unstable
at some layer, it is assumed that we can find someλn < 0, a
particular case of which is all theλn < 0 whenσ < 0, or the
atmosphere is statically unstable at the whole layer.

It is necessary to specify the vertical boundary condition
suitable for the present issue from Eq. (A3). By lettingα1 = 0
and β2/α2 > 0 in Eq. (A3), the eigen-system satisfies the
second and the third kind of boundary conditions atp = 0
andps , respectively. The physical meanings of these bound-
ary conditions are also clear: there is no exchange of conver-
gence at the top of the atmosphere, and exchange of conver-
gence at surface is proportional to the convergence in situ.
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