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Abstract. Effects of the second vertical mode and nonlinear-the effects of such hydrodynamic response on trajectories
ity of the background flow field on the Lagrangian transport of particles because of consequences relating to water qual-
of particle clouds are studied by employing a wind-forced ity: for instance, the nutrient-rich upwelled region, plankton
linear hydrostatic model and a weakly-nonlinear, weakly- clouds, local spill of chemical substances, ettmhberger
nonhydrostatic evolution model. It is confirmed that Kelvin 1998.
waves primarily advect particles near the basin perimeterina Since lakes are confined bodies of water that exist in
cyclonic direction, and Poincawaves primarily advect par- essentially isolated environments, aside from a relatively
ticles in off-shore (radial) directions in a manner that is oscil- weak physical interaction with the peripheral environment
latory in time with frequencies near the inertial period. The through riverine inflow-outflow, wind-driven basin-scale in-
internal current associated with the second vertical mode isernal waves persist in such closed domains until they per-
usually far smaller than that associated with the energeticallysh through boundary and internal dissipation. In a large
dominant, lowest vertical mode. However, because of thelake, in particular, internal basin response to wind forcing
disparately slow eigenspeed of the vertical mode-two Kelvinis comprised of Kelvin and Pondawaves Csanady1975,
wave, the resultant particle transport associated with the verand these waves travel along the basin perimeter for sev-
tical mode-two flow near the basin perimeter can drive trans-eral days, transporting particulate matter horizontally for dis-
port that is comparable with that associated with the Kelvintances comparable to the horizontal extent of the lake.
wave of the lowest vertical mode. It is discovered that non-  Stocker and Imbergef2003 addressed this large-scale
linear interaction between the Kelvin-Poineavave pair can  transport phenomenon through an analytical modeling ap-
give birth to a solitary-like wave of large amplitude in an off- proach by employing a traditional linear hydrodynamic ap-
shore region. This new type of wave generates a large currergroximation with a circular lake model. They demonstrated
and co-propagates with the Kelvin wave in a cyclonic direc-the basin-scale transport of patches of Lagrangian particles
tion and, eventually, can cause a burst of particle transport inhat are advected by a geostrophic flow and the gravest
an off-shore direction. Kelvin and Ponca waves in a lake subject to uniform wind
stresses. They also discovered that chaotic advection of par-
ticles exists, and also considered the effect of a superposed
1 Introduction turbulent dispersic_m on _cloud patches. Th_e backgr_ound flow
model employed in their study was restricted to linear hy-
It is broadly known that wind forcing over the surface of a drostatic with homogeneous medium that perceives essen-
stratified lake can generate basin-scale internal waves. Sudiplly asingle vertical eigenmode, and in many examples they
long internal waves often possess amplitudes as large as tdfficked particle paths for extensive durations, up to tens of
or more meters, and their resulting current plays an impor-days, under persistent wind stresses.
tant role in the transport of biogeochemical particles in lakes. [N practice most lakes are continuously stratified and,
From an environmental perspective it is important to studytherefore, possess a spectrum of vertical eigenmodes which
can be excited during a typical wind forcing event. Nom-
inal wind forcing events persist for some fraction of an in-
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before they have decayed substantially through dissipativéhe stress vanishes at the top of the metalimnion; see also
processes. Furthermore, since waves of large amplitude arf8akai and Redekop@0093. The analytical form chosen for
ubiquitous in many lakes, it is important to consider non- t(z,t) for —h1 <z <0 s given as
linear effects of fluid acceleration in conjunction with inher- 4
ent non-hydrostatic effects. Since the particle transport ist(z, ) _pou*o{l us(;—zo)}Z 1
dictated by the background flow, higher vertical eigenmodes
plus nonlinearity of the flow may, to a greater or lesser de-wherepy is a reference density,, is a friction velocity and
gree, alter the fate of particles transported by the induced hyz(r) is the Heaviside step function.
drodynamic field. The effect of the wind-stimulated, internal  The field equations consist of the conservation of mass
wave field on particle transport in closed basins is an intrigu-constraint for an incompressible fluid, the linearized, inviscid
ing problem, and it appears that the role of frequently excittdmomentum equations subject to the applied wind stress un-
wave modes on the characteristics of consequent transport iger the hydrostatic and Boussinesq approximations, plus the
not very well understood. linearized continuity equation expressing the conservation of
In this contribution we extend Stoker and Imberger’s novelthe density of a fluid parcel in its motion. These equations,
work to consider a continuously stratified medium and, inrespectively, have the forms:
particular, address the role of the second vertical mode within

1)

a linear-hydrostatic frame work. We also attempt to discover 2% +44 Lov + ow _ )
the effects of nonlinearity of the energetically dominant 97 190 = 9z
mode (i.e., the lowest vertical mode) by employing our re- du lop 19t

cently developed weakly-nonlinear weakly-non-hydrostatic 3; ~ /Y= 00 dr  po 97 co
evolution model $akai and Redekop@010.

— =——————sing, 2

at +fu por 060 po 9z @
2 Continuously stratified model 0— _ 1ap
~ podz

In this paper we employ a circular lake of uniform depth sub-

ject to a uniform wind stress over a non-deformable upper—a =N?(Q)w,

surface. This simple geometry eliminates surface waves plus

topographic and boundary irregularities that complicate theThe velocity componenté:, v, w) correspond to the veloc-

field response. Furthermore, spatial gradients in the appliedty in the radial, azimuthal and vertical directiong;is an

stress are excluded in this study as we seek principally tanertial frequency;p is a perturbation pressure;is a per-

expose the role of the different modal responses on lateraiurbation buoyancy defined by = pg/po0 , wherep is the

particle transport. The vertical structure of the water columnperturbation buoyancy anglis a gravitational constant; and

comprises an epilimnion of thickness, a metalimnion of ~ N?(z) is the Brunt-\&isala frequency defined by?(z) =

thicknesshy, and a hypolimninon of thicknedss. We let  —pl(z)g/po , Whereps(z) is a static (stable) density distri-

both the epilimnetic and the hyplimnetic layers have the uni-bution. Contribution of the wind stress is accounted in the

form densitieso; and oy, respectively, and set the density to horizontal momentum equations. Since Ej.does not take

vary linearly across the metalimnetic layer frgmto p2. A account of any energy damping and nonlinearity, the analyt-

cylindrical coordinate systei@, 9, z) is employed to describe ical model is limited to representing the internal dynamics

the dynamics in the cylindrical domain, in which we position only for time periods, at most, on the order of several days

the origin of the radial coordinate at the center of the lake(or inertial periods) Csanady1968.

upper surface and set theaxis perpendicular to the upper  The field variables are projected rationally in terms of ver-

surface with a direction pointing upward from the lake sur- tical eigenfunctions according to the relations

face. A similar model is given i€sanady(1972 with appli-

cation to the North American Great Lakes. In what follows (#:V:P/p0) = Z(U’ V. P)u(r.0.0)8, (),

we choose to describe briefly the model formulation, both for "

clarification and to have the presentation self-contained. ¥ = ZWn (r,0,)pn(2), (3)
The uniform wind stress is oriented in a particular direc-

tion, say the positive-direction, as given by = (z,1)ex, o= Zzn (r,0,)N?(2)¢n (2).

and the wind stress is applied for a finite time<@ < 1. n

We assume that the wind stress functiai, ¢) is separable  The field variables in upper case symbols represent the am-

in space and time, and that the stress decreases linearly withlitudes of respective vertical eigenmodes, and) is the

depth across the eplimnion and vanishes at the top of the metrertical eigenfunction defined by the boundary value prob-

aliminon (e.g., se®lonismith 1987 note that the final result  |em

is independent of the shape of the stress function so long as
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2
¢Z+N§Z) n=0, ¢,=0atz=0andz=—H, 4)
“n ky 1 I1(aoar) .
U,(r,0 t):——{ —— }{1—us(t—to)}S|n9
whereH is a total lake depth as given Wy = h1 +ho + h3. o wWB r I1i(aon)
The eigenvalue, is the propagation speed of a given vertical kn X Amn n R (@tmnT)
eigenmode in the longwave limit, ang), is normalized by T WB m{wmnw
its maximum value. Analytical expressions of eigenpairs in m=1 mn "
the present formulation are available, but are not given here _ 1 Ry(amnr) }{sin(e — Boyyt)
for brevity of presentation. The orthogonality relation of the r R1(Qnn) "
eigenfunction is given by — ug(t — 19) SINO — Bwy,, (t —19))},
/0 ), Py dz = g, andyuy — fo N?¢2d (5) k I (on?)
g T g o SR = L T Va(r6.0) = = {1—aonlll(T°g)}{1—us<r—ro>}cos9
n
wheres,,,, is the Kronecker delta. ky Sy A R} (@n )
In order to study parametric dependencies on particle dy- + WB Z 102 {amn R
namics, we scale the problem using the lake radius, as m=1"" ®mn 1(@nn)
a horizontal length scale, the epilimnion depth as the ®mn R1(@mnt) B
vertical length scale, antV;* as a time scaleN? = (o2 — r Ri(amm) }{cos(e ~Bomnt)
01)g/poh2). Specifically is scaled byq/Noh1; ¢, andW, — us(t — 19) COSO — Bwyn (t —10))},
are scaled byWoh1; (U, V, P), are scaled byNoh?; and Z,,
is scaled by:;. Employing scaled variables, and substituting ky T1(ctonr)

Egs. ) and @) into Eqg. @) and using Eq.5), we obtainan  Z,(r,0,1) = {1—us(t —10)}cod

2
evolution set for any given vertical eigenmode=£ 1, 2,...) Weir I1(eon)

! ing dimensi : ki N, Ra(@mar)
in the following dimensionless form: n an Z o ) {080 — Beop)
U, 20Z,  ky S — 1(@mn)
o DVntany, s =yyllmusti -, — us(t —10)COSO — By (i — 10))), ®)
Vn LBU +C2} 0Zn _ _k_n[l_u (1 — 10)]SinG ©) Parameters appearing in these expressions are defined as
o1 " e T T TR B B for
azn+aUn U, 18Vn_0 aOﬂ_av Olmn—a |a)mn_ [,
a  or r rag oy —1 9)
andA,,, = ,

In the first two equations the parametgr= c2¢/ (0)/ /i, 1+ wpn — (B/cn)?wd,
and the Burger numbef and the Wedderburn numb&v  gnq g, (a,,.7) is a radial eigenfunction which is either the

are defined by Bessel function/ (x) or the modified-Bessel functioh(x)
_ fro _ and W Néhi’_ - Z;zxzrder one depending on the value of the eigenfrequency
Noh1  (Noh1)/f uZyro

. . . . . Il(amnr)y wr%m < 17
The Burger number, in this formulation, is a lake radius rel- Ry (a;u,r) = (10)
ative to the internal Rossby radius, measuring the effect of J1(pnr), 3, > 1.

earth’s rotation. The inverse of the Wedderburn number MeaThe modal solutior’; (x) is associated with the Kelvin wave

sures the wind stress strength relative to the counter—actingsubinertial) solution, and that associated witix) is the
baroclinic pressure gradient. According to laboratory exper-p,incae wave (superinertial) solution. The eigenfrequency
iments, internal responses are dominated by internal gravig gptained from the characteristic equation

ity waves for values of the Wedderburn number in the range

1<W<5 (Horn etal, 200:0 R1(amn) — Omn@mn R:/L(Ofmn) =0. (11)

We note at this point that Eq6) has a similar struc- Considering a basin in the northern hemisphere, a radial

ture as the set corresponding to the single-eigenmode mOd%Iigenmode with a positive eigenfrequency travels in a cy-
(Csanady 196§ Stocker and Imberge2003. The solu- ¢ 5nic girection and an eigenmode with a negative eigenfre-

tion for a single vertical eigenmode in our case can be ob+ ency travels in an anti-cyclonic direction. The gravest ra-

tained analytically through the Laplace transform methodyio; mode in cyclonic wave modes is the Kelvin wave, and

(sgeCsanady1968andStocker and Imbergep003for de- e anti-cyclonic counterpart is the Poingavave. There ex-

tail) and expressed as: ist infinitely many Poinca& wave modes with both cycloc-
nic and anti-cyclonic polarities, but only one Kelvin wave
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Fig. 2. Modal velocity amplitudes foB =2, ho =1 andh3 = 2. All

Fig. 1. Fundamental periods normalized by the inertial petfod values are normalized by the value of the Kelvin wave of vertical

for B=2,hy=1andhz=2. mode-oneA(lvl). Amplitudes of geostrophic waves are plotted on

radial mode-one as reference values.

mode exists in the entire radial eigenspace for given vertical I Lo
. . i some insight to the relative time scale of these modes, the
mode. Internal current profiles of the Kelvin and the Poiacar

waves are completely opposite. The Kelvin waves eneratfundamental periods,,, (=2r/Bwyy) of the first four ver-
the largest annp-sho);e Elﬁ)rrent ;alt the basin erimetgr and th ical modes are computed as functions of the radial mode for
g 9 P %e case o5 =2, hy =1 andhz =2 (Fig.1). The fundamen-

. - t
current decays exponentially toward the basin center. Thefal periods are normalized by the inertial perid= 2 /).
this example the fundamental period of the Kelvin wave

Poincaé waves, on the other hand, generate the largest o 0
shore current at the basin center and the current decreases : ; . .
. . ) . of the first vertical mode (V1) is about twice as long as the

zero at the basin perimeter. The first grouped term in &q. ( . . . . .
: . .inertial period, but the Kelvin wave of the second vertical
in each modal solution represents the flow component that is . L

X ) . A . mode (V2) is much slower and the fundamental period is
geostrophically balanced with the applied wind stress. Since

. . i ; . about seven times as long as the inertial period. The rel-
the curl of the uniform wind stress is zero, this geostrophic_ . : : .
. . : . . . ative differences of the fundamental periods of the Kelvin
flow entirely vanishes immediately after the wind stress is

; . . .~ wave modes of different vertical modes are remarkably dis-
turned off. The field response following the wind event is . o )
) L. . tinct, but the Poincd& waves of the lowest radial mode have
the linear combination of the Kelvin wave mode and a fam-

ily of the Poincaé wave modes. It has been reported thatsimilar time scales that are near the inertial period. For ra-
the geostrophic flows persistent in the field (e.g., gyric flowsd'a.I ques larger than one, the_ cyclonic r_:md ant|-c¥c|on|c
generated from non-uniform wind stresses, topographic vari-Pomca.E wave modes existin pairs and their frequencies are
ations, prolonged wind forcing, etc.) contribute to a signifi- nea_rly identical . .

cant fraction of the dispersion rate of a particle cloBatil Figure2 shows the corresponding amplitudes of the funda-

et al, 201Q Stocker and Imberge2003, but such flow con- [)nemil vrva:vv?l mo?esd p]riiset%tef:nln dFjlgAnlwthlci)tu%h th(\—jvre Ca:::;i i
ditions are excluded in the present study. € several ways to define the modal ampiitudes, we particu

Although not shown here, the solution Eg) tan be eas- larly refer to the velocity amplitudedy, V) in Eq. @) and

ilv extended to th lution with arbitrary temporal forcin simply extract a mode-dependent scaling factor from each
y extended 1o the solutio aroitrary temporai 10rcing ., , 5 component and refer to the factor as the modal veloc-
by discretizing the temporal forcing function into pieces of

(v)
single-window functions, and then performing a linear su-

ity amplitudeA,,, as given by
perposition of their corresponding solutions. 40) _ kn Amn (12)

mn — 1_‘03”1 .
3 Energetically dominant eigenmodes For a geostrophic component the corresponding amplitude
is defined asA,ﬁG) =k,. From Fig.2 the Kelvin waves of
Itis important to note that in a continuously stratified domain the lowest two vertical modes and the Poiricarave of the
each vertical eigenmode possesses its own horizontal (radidwest vertical mode have the most significant amplitudes,

only, in this study) eigenspace, and a spectrum of vertical-and the amplitudes of all the other modes are one or more
horizontal eigenmodes coexist in the domain. In order to gainorders of magnitude smaller. Geostrophic components have
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1.2 , , 4 Effects of the second vertical mode on particle
10 V1 Geostrophic transport
Physical space coordinatésé, z) of a Lagarangian particle

0.8 are dictated by the following set of fully-coupled nonlinear
3 ordinary differential equations:
= 0.6 V1 Kelvin
= dr
g 04 r EZZUn(raeat)(b;l(z)v

n

V2 Geostrophic a0

1 /
o V2K e Z_Vn (r,0,0)¢,(2), (13)
Y e S ——— VIK_ S

dz au, U, 103V,
E__;< or T 70 )‘MZ)'

V1 Poincare’

0 0.5 1.0 1.5
{ [T In this paper we are particularly interested in the evolution
of a localized cloud (patch) of particles over the lake top or
Fig. 3. Several modal velocity amplitudes as functions of forcing bottom surfaces, such as the transport of a local cloud of
time 7p. All values are normalized by the maximum value of the phytoplankton bloom near a beach, the transport of chemi-
amplitude of the Kelvin wave of vertical mode-one. Amplitudes of cally polluted regions condensed at the bottom of a lake, etc.
geostrophic waves (effective during wind event only) are i”dUdedAIthough the particle transport is three-dimensional in na-
as references. ture, over the top and the bottom surfaces of the present lake
model the particle transport is in-plane with a use of non-

large amplitudes similar to those of the Kelvin waves, but thed&formable boundary conditions. For the background veloc-
geostrophic flows exist only during the wind forcing event as ity field we consider o_nly the first few energetl_cally dominant
mentioned earlier. In the field solution expressions @g. [lOW components, which are the gravest Kelvin wave modes,
trigonometric terms with the step functiar are the “reac-  2nd the gravest Poindawave modes, plus the geostrophic
tion” terms arising from the cessation of wind forcing after a flow components of the lowest two vertical modes (V1 and
finite time ¢ = f0). After the wind event these reaction terms V2)- Inclusion of the higher eigenmodes does not alter the re-
result in the extra factor 2siBBwmato/2) that permanently sult_s dramatically. Analytlcal_solutlons (E8) are exploited
scales the wave amplitude following the wind cessation.  (© directly compute the flow field, and the set of tracer equa-
Modal velocity amplitudes of several significant wave tions (Eq.13) is integrated forward-in-time for several iner-

modes are computed as functions of the wind forcing dura-ial Periods by using the Runge-Kutta method of fourth or-
tion 7o and shown in Fig3. These results particularly cor- der- For all cases presented here the lake is subject to wind

respond to the case presented in Figs. 1 and 2, but one cafiesses corresponding to a Wedderburn number of unit or-
obtain similar pictures for different parameter sets. It cander, and the wind stresses are imposed for some fraction of
be observed from the figure that, if the wind event is within & inértial period during a single wind event.

or comparable to one inertial period, the V1 Kelvin wave is ~ Figure 4 exhibits the snap shots of four different cloud
energetically dominant (i.e., the amplitude is the largest) fol-Patches taken at every inertial period for the first four iner-
lowed by the V1 Poincér wave, and that waves of vertical tial periods, with time increasing along a downward progres-
mode two (or higher) are energetically insignificant relative Sion in a particular column in the figure. The lake is subject
to the dominant V1 Kelvin—Poincarwave pair. Therefore, to a uniform wind stress ofV =1 directed from the left to
from an “energetics” point of view, considering only the V1 the right (as looking down the lake) for the first one third of
Kelvin-Poincaé pair can be a reasonable choice. In fact, athe inertial period, and the stress is permanently turned off
number of previous studies considered the dynamics involvthereafter. Particle clouds having two concentric radii (the
ing only a single (the lowest) vertical mode; for instance, by outer radius is 0'ro and the inner radius is.85r) are ini-
exploiting the traditional two-layer stratification model rather tially centered at four extreme sides of the top surface of the

than one with a metaliminion with finite thickness and con- lake (i.e., the windward and the leeward ends, plus the left
tinuous stratification. and the right sides, all relative to the positive direction of the

wind vector). The physical parameters for the patch-tracking
calculations ard8 =2, hp =1 andhz = 2. It can be seen
from Fig. 4 that the cloud patch initially set at the right side
of the wind vector (third column) stretches in along-shore di-
rections as it is advected in a cyclonic direction. It should be
noted that the cloud elongates quite remarkably, roughly by
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STz b
§ v ¢
LR
LU

Fig. 4. Snap shots of several cloud patches=at7; (row-a), r = 27; (row-b), t = 37; (row-c) andr = 4T; (row-d). Grayed points represent
the initial position of particles. A uniform wind stress)¥df = 1 is applied for O< ¢ < T; /3 from the left to the right. The background velocity
field contains the geostrophic flows (during only the wind event) and the Kelvin and the Foimaee modes of the lowest two vertical
modes. B=2,hp=1,h3=2).

a factor of three, and that the frontal edge of the cloud trav-remarkably enhanced by V2-driven current when the cloud
els for a distance comparable to the lake diameter after thregs initially positioned to the right of the wind vector. In what
inertial periods. The cloud on the opposite side (i.e., the leftfollows, therefore, our presentation focuses exclusively on
side) of the wind vector (second column) squeezes in alongthis particular case. Snap shots of the cloud patch evolving
shore directions as it travels in a cyclonic direction, and thein the V1-only field are compared in Fi§.with those cor-
cloud protrudes significantly in an off-shore direction and re-responding to in the VAV2 field previously presented in
cedes in an on-shore direction oscillatory in time. The cloudFig. 4. It can be seen in Fig that, as time increases, the
patch initially at the leeward end (fourth column) is skewed transport of particles near the basin perimeter is remarkably
in along-shore directions with pronounced along-shore transincreased for the VAV?2 field relative to that occurring un-
port adjacent to the basin perimeter, and the cloud as a wholder the V1-only field. However, the off-shore protrusions of
is transported in a cyclonic direction. The cloud patch ini- the clouds in these two fields appear to be very similar. This
tially at the windward end (first column) is also skewed sim- is also true regardless of initial location of the cloud.
ilarly, but with less remarkable transport of the near-shore To guantify somewhat the development of an evolving
portion when compared to the near-shore transport of cloudgjoud patch with a given initial radius of/2, the gross
at other positions around the perimeter of the lake. dimensions are measured as functions of time under both
In order to quantify the effects of the second vertical mode,the V1-only and the V4V2 velocity fields. The particu-
flow components of the second vertical mode are all turnedar cloud dimensions which are tracked include the along-
off and the resulting V1-only transport is compared with the shore (cyclonic) displacement of both the front and the tail
original V1+V2 transport. Differences in these mode-driven vertices of the cloud position along the basin perimeter, the
transports depend on the initial position of a cloud patch rel-maximum off-shore protrusion into the lake, and the to-
ative to the wind direction. We find that the transport is mosttal area of the cloud. The temporal development of these
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Fig. 5. Comparison of cloud patch evolutions obtained in the field containing only the first vertical mode)(eow-in the field including
the second vertical mode (rola): Grayed points represent the initial position of particlés=2,h, =1,h3=2, W =1).
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Fig. 6. Time series ofa) along-shore displacement of cloud front and tail verti¢b}$along-shore arch length of the cloud on the basin
perimeter side(c) off-shore protrusion of the cloud, arfd) cloud patch area, obtained in V1-only field and-MI2 field. A cloud patch of
radiusrg/2 is initially placed at the right end of the basin relative to the positive wind vector. The along-shore displa@iiserdrmalized

by 7 rg, the along-shore lengitb) and the patch arg@) are normalized by their respective initial values, and the off-shore protr{djas
normalized by their initial radius of the cloud patclB £2,hp =1, h3=2, W =1).

quantitative measures is presented in Biglt is clearly ob-  fixed position along the basin boundary, the current induced
served from the figure that the along-shore cloud displaceby the Kelvin wave is in a cyclonic direction during the half
ment and length are doubled when the field contains the sed<elvin wave period, but reverses to an anti-cyclonic direction
ond vertical mode. The along-shore dimensions fluctuate apfor the following half-Kelvin-wave period. Such reversals in
proximately with the V1 Kelvin wave period<1.7T;), and  flow direction underlie the oscillatory behavior exhibited in
in the case of the V4V?2 field the along-shore length of the the along-shore dimensions. A resultant persistent transport
cloud is modulated by a lower frequency component whichin the cyclonic direction arises due to the nonlinear (Stokes)
is nearly equal to the V2 Kelvin wave periog 6.67;). At a drift. The maximum field velocity associated with the V1
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Kelvin wave is 0.34 dimensionless units while the V2 Kelvin  All the results presented so far pertain to particle trans-
wave counterpart is 0.12, with the maxima in both cases ocport over the top surface of the lake. Although not presented
curring at the basin perimeter. Although the V2 Kelvin wave here, we also considered the transport over the lake bottom
induces a considerably smaller peak velocity, the V2 Kelvinsurface. Similar trends as seen in the forgoing figures have
wave can transport particles near the basin boundary for #een found for bottom transport. However, since in many
distance comparable with the V1-only transport. This en-lakes the hypolimnion is usually deeper than the epilimnion,
hanced transport relative to the peak velocity is due to thehe horizontal current is far smaller in the hypolimnion than
fact that particle transport is given by the time-integral of the in the epilimnion, resulting in a much diminished transport
velocity at the position of the particle. The disparately slow over the bottom surface.

V2 Kelvin wave is resident in the same region of the basin

for a considerably long time and, thus, the resultant particle . )
transport becomes non-negligible. 5 Nonlinearity of the background flow

The off-shore protrusion, on the contrary, fluctuates much . . . .
: ) o X Recent studies of nonlinear internal wave evolutions revealed
faster with periods near the inertial period, and the off-shore . . :
o ! : . the generation of solitary waves from a steepened Kelvin
protrusion in the VV?2 field differs from that in the V1- .
onlv field onlv sliahtly. Since the Poindarwaves induce  Vave and the pseudo-recurrence character of P@naves
y y shghtly. Sakai and RedekopR01Q de la Fuente et al2008. The
the largest off-shore current across the center of the lake, th : . . . .
. . remainder of this report is motivated by an interest as to how
off-shore current can push and pull the cloud in radial direc- . . : .
. . X . nonlinear effects modify the evolution of a particle cloud rel-
tions as frequent as rational multiples of their fundamental __ : . . X
. : L . ative to that resulting under a linearized hydrodynamic de-
periods which are near the inertial period. The area of the_ .~ . o : .
- . _scription. To simplify the problem we restrict the consider-
cloud patch also fluctuates in time because the horizontal di-_ . ; : .
. o ; ation to self-nonlinear effects of the energetically dominant,
vergence of the flow is non-vanishing, and is balanced by th . . )
. . . owest vertical mode and keep the second vertical mode lin-
rate of change of vertical flows (driven by internal waves) as . T
i ) . ear hydrostatic. This simplification neglects not only the
dictated by the conservation of mass constraint. The patCgelf nonlinearity of the second vertical mode but also the
area for the V3#V2 field is roughly doubled after several in- y

. . ; . inter-modal nonlinear interactions. For the flow field model
ertial periods owing to the aforementioned enhanced along-

shore stretching by the V2 Kelvin wave. desc_nblng the first vertical mo_de, we employ a weakly-
4 . nonlinear, weakly-nonhydrostatic version of the modal evo-
In order to confirm the effects of internal waves on the

evolution of the cloud shape, frequency spectra of the anng!Utlon equations (Ecf) as given by:
shore cloud length and the off-shore cloud protrusion are g, 2071 { ( oU1 V10U
—

computed for different Burger number8 €1, 2 and 4). 5, V1+61W -

11—+ ——

+
L A or r 060
These spectra are presented in Figvhere it is clearly seen

that in all cases the Kelvin waves comprise the dominant Vl2 2,90 (9D

; . . — —= | +BD1Ur; +Ay —| — |,
component in the time signal of the along-shore arc length. r at \ or
Further, the signal amplitude associated with the V2 Kelvin

wave is of the same order as that of the V1 Kelvin wave. %JrBU 21921 :_{a<y Vi Vidn

1+ ——+ 1w+
It is also evident from the figure that the time signal of the 9? Lr 90 or r 99

off-shore protrusion is dominated by the frequencies of the U1Vh , 8 (13D
Poincaé waves and their higher harmonics. There is one ex- + > +ﬂDlUl} Ao (; W) ;
ception in the result foB = 1 (Fig. 7d) where the V1 Kelvin

wave is also among the dominant components contributingdZy  dU1 Ui  10Vi

in the off-shore protrusion. This is because, for a small lake §; + or " " r a0

(14)

(B/c1 < +/2), the V1 Kelvin does not decay exponentially in

e : " 071 V1071
the off-shore direction. As such, the associated current in the —BlULl—+——|4+aD1Z;
basin center serves as the off-shore current. or r oo

It should be added that, since the cloud patch is movingJn these equations the symbal; denotes the horizontal
the time signals of the measured dimensions do not manidivergence given byD1 = dU1/0r + U1/r + dV1/rd6; the
fest exactly the same frequency components as the analyticglarametera is a depth-to-radius aspect ratio as given by
eigenfrequencies due to the Doppler effect. To obtain reasona = 4 /ro; and, the parametets, g andy are integral co-
able results as presented in Figthe drift rate of the cloud  efficients containing the essence of the vertical structure as
is diminished by reducing the wind stress strength (i.e., us&jefined by
of larger Wedderburn numbers), and the cloud dimensions
were again sampled for a long time in order to capture the
small frequency components (i.e., the Kelvin waves) without
aliasing.
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Fig. 7. Frequency spectrum of along-shore arc len@thb, c)and off-shore protrusiofd, e, f) of a cloud patch of radiugy/2 initially

placed at the right end of the basin relative to the positive wind vectoBferl with W =4 (a, d), B=2 with W =2 (b, e)andB=4

with W =1 (c, f). Frequencies of fundamental wave modes are also marked in the figure and denoted as “V1K"(=V1 Kelvin), “V2K"(=V2
Kelvin), “V1P"(=V1 Poincag) and “V2P"(=V2 Poinc&). On pane(d) “V1K —V2P” represents the difference frequency between V1K and
V2P wave modes. On pan@) “2 x” represents the double-harmonic frequenéyg. £ 1 andhg = 2 for all cases).

o= C_%fo (¢’1)3dz, B= ifo ¢/1¢5N2d17 mode) are excited and these (noisy) wave modes persist in
m1J_pg ni1J_pg the domain after the wind ceases. In order to make defini-
2 10 (15) tive comparisons with the transport results presented in the
andy = -1 / ¢>fdz. previous section, we choose to integrate Bd) forward in
H1J-H time from an initial condition constructed by the sum of the
_Kelvin and the Poinc& wave modes that correspond to their
J_espective analytical (linear hydrostatic) profiles at the cessa-
vious work Sakai and Redekop@010. In that earlier work tian of the wind. $|nce we consider V.de evenfcs W'.th merr—
ate strength lasting only some fraction of an inertial period,

the model appears with generalizations to include variable to . : .

pography terms, and inter-modal nonlinear interaction terms,the_effects of'nonllneanty and the neglected ggqstrophlc flow
and wind-stress forcing. We purposely excluded wind forc-during the wind event are expecteq o be. m|n!mal. There-
ing in Eq. (L4) above because, when the forcing is active, fore, the use of the linear hydrostatic solutions in absence of

higher radial modes (i.e., other than the lowest Poiawsave the geostrophic flow as an initial condition is a reasonable

This evolution system was rationally derived through a per
turbation analysis, and has been amply discussed in our pr
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choice, and provides a means for direct comparison betweethe lake surface with different Burger numbers. The reader
the computed transport by an entirely linear dynamics andshould note that both the timeand the inertial period;
that associated with a nonlinear hydrodynamic model undeiare scaled byg/Noh1. Therefore, the snap shots with iden-
similar initial conditions. Furthermore, the approximate rep- tical dimensionless time in Fig8-10 correspond to identi-
resentation of the hydrodynamic field at the end of a windcal dimensional time (i.ez/T; = t*/(ro/Noh1)/(2n/B) =
event of limited duration is supported by multiple simula- t*/(ro/ Noh1) /(2w Noh1/fro) =t*/(2r/f) =t*/T;*, where
tions reported in our earlier work. Adopting this simplifi- starred values are dimensional).
cation of the initial velocity field, we can restrict our atten-  For the case o8 = 3 (Fig. 10) the along-shore transport
tion to the nonlinear evolution and interaction of the Kelvin- is slower than that of5 =2, and the off-shore burst ap-
Poincaé pair within the lowest vertical mode. pears around = 67; as compared te ~ 47; for the case
The evolution equation set (Ef4) with its linear hydro-  of 5=2. These differences primarily derive from the fact
static version for the second vertical mode are numericallythat the Kelvin wave periods are longer for the larger Burger
simulated by employing the spectral method developed immumber, resulting in smaller initial amplitudes of the Kelvin
our previous work $akai and Redekop20098, and the wave at the time of cessation of the wind (ig.=T7;/3 in
tracer equation set (EG3) is simultaneously integrated for- this case). For the case #f=1 (Fig. 8) the along-shore
ward in time with Eq. {4) by employing the fourth-order transport does not appear faster than that ef 2, although
Runge-Kutta method. The velocity field at the location of the off-shore burst appears a bit later(67;) than the case
each patrticle is precisely interpolated by exploiting the full of B=2. ForB =1 the Kelvin wave of the lowest vertical
range of the spectral expansion functions that are used to apnode turns out to be superinertial (i.8/c1 < ~/2). Thus,

proximate the field variables in the spectral method. the residence time of the Kelvin wave is much shorter than
Snap shots of cloud evolutions are tabulated for Wedderthat of the subinertial one3(= 2). Also, the radial eigen-
burn numbers’/ = 1.5, 1.2 and 1.0 in Fig8. Initial ampli- funtion of the superinertial Kelvin wave is a regular Bessel

tudes of the wave modes are set to the values correspondirfgnction (the same as that of Poineawaves) as opposed to
to those at the wind cessation time= T; /3 for each of the = a modified-Bessel function having an exponential character,
Wedderburn numbers. In all cases the Burger number is fixedvith the consequence that the along-shore current is smaller.
to B =2 with the depth-to-radius ratie. = 1/40, and the  The smaller currents and shorter residence times of the low-
stratification profile is set with an epilimnion depth/gf=1 est Kelvin wave mode retard the along-shore transport, as
and a metalimnion depth @f; = 2. It is observed from the well as the off-shore burst, in lakes with smaller Burger num-
figure that the cloud boundaries appear to be very similar fobers.
the first couple of inertial periods for each Wedderburn num- It should be added that the region of the along-shore trans-
ber. After three inertial periods, however, a local protrusionport for larger Burger number (large lake) is more confined
forms in the off-shore portion of the cloud (i.e., the region near the basin perimeter relative to the respective lake ra-
between the outer and the inner radii). This protrusion, ex-dius, a direct consequence of the radial width of the Kelvin
tending deeper into the interior of the lake, becomes morewvave I as given by the asymptotic relatidr/ro ~ ¢, /B
intense for smaller Wedderburn numbers (i.e., larger windfor large 5 (Sakai and Redekop2010. This relation can
stress). Cloud boundaries resulting solely from transport asalso explain the fact that the along-shore transport associated
sociated with the complete linear hydrostatic field are alsowith the second vertical mode is more confined near the shore
included in Fig.8, and no pronounced off-shore protrusion due to the disparately slow eigenspeedthis is also evident
of the cloud boundary is observed. Clearly, this off-shorefrom Fig.5).
burst is induced by nonlinear effects of the background flow To visualize the nonlinear effect of the background flow,
field of the first vertical mode. several snap shots of the isopycnal amplitudg) ©f the first

The off-shore burst is not a phenomenon restricted parvertical mode are exhibited in Fidl Immediately after
ticularly to the present case with =2. Similar off-shore  the wind event{= OT;) the field is linear and appears sym-
transport is observed for different Burger numbers as showmmetric, but the Kelvin wave steepens and distorts the sym-
in Fig. 9 (B=1) and in Fig.10 (B=3). In these exam- metry as it propagates in a cyclonic direction. The negative
ples the transport associated with the nonlinear dynamics isolume of the isopycnal amplitude is gradually concentrated
also compared with that obtained in the presence of the refattracted) to an off-shore side of the Kelvin wave front, and
spective linear hydrostatic field. Again, there is no off-shorethe concentrated negative volume grows into a “solitary-like”
burst observed in the case of the linear hydrodynamic fieldwave possessing large amplitude after two inertial periods.
According to the definition of the Burger number (&9}, in- We refer here to the solitary-like wave as the “nonlinear
creasing the Burger number implies an increase in the lakd?oincaé wave” because this nonlinear wave is particularly
radius (i.e.,B o« rg) for a fixed vertical structure (i.e., fixed concentrated in the off-shore region. The nonlinear Poecar
depth and stratification). For this reason, the Wedderburrwave propagates in a cyclonic direction with its phase nearly
numbers for the cases #f=1 andB = 3 are adjusted such engaged with the Kelvin wave front (to be precise, the non-
that the same level of the wind stres\s,ﬁoufo) is appliedto  linear Poincae wave travels slightly faster than the Kelvin
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=
o D
A D
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Fig. 8. Evolution of a particle cloud for different Wedderburn numb@ys= 1.5 (row-a), WW = 1.2 (row-b) andV = 1.0 (rowsc, d). Rows
(a—c)are subject to nonlinear flow for the lowest vertical mode and linear hydrostatic flow for the second vertical mode) iRsubject to
linear hydrostatic flow for both vertical mode-one and two. Grayed points represent the initial position of paffieles.h> =1, h3 = 2).

(a)
w=2
(0)
w=2
Linear

Fig. 9. Evolution of a particle cloud foB = 1 with the Wedderburn numb&y = 2. Row(a) is subject to nonlinear flow for the lowest vertical
mode and linear hydrostatic flow for the second vertical mode. @)us subject to linear hydrostatic flow for both vertical mode-one and
two. Grayed points represent the initial position of particlés.=£ 1, h3 =2).
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=37, 1=4T; =5T; 1=6T;

(@)
w=2/3

(b

w=2/3
Linear

Fig. 10. Evolution of a particle cloud foi3 = 3 with the Wedderburn numbén =2/3. Row (a) is subject to nonlinear flow for the
lowest vertical mode and linear hydrostatic flow for the second vertical mode.(Ras/subject to linear hydrostatic flow for both vertical
mode-one and two. Grayed points represent the initial position of partiéles: 1, h3 = 2)

wave because the former wave possesses larger amplitudieniting the amplitudes of solitary waves (e.g., déelfrich
than the latter one). and Mellville, 2006 Sakai and Redekop@007). Neverthe-

In Fig. 12 contour plots of the polar velocity field at the less, the initial stage of the generation process of the non-
lake top surface are extracted foe 37;. It can be seen linear Poincag wave presented here is still valid because the
from the figure that large radial and azimuthal velocities areWave amplitude at that stage remains modest. »
centrated region of large velocities travels around the basinWave, the nonlinear Poincawave does not emerge (see
and it passes across the off-shore portion of the cloud patci:19s. 5 and 15 irbakai and Redekop010Q. It is known

eventually causing the inner portion of the cloud to burst in that the amplitude of the Poinéawave undergoes an oscilla-
the off-shore direction. tory, temporal modulation in nonlinear flowSgkai and Re-

AN off-shor rrent can b nerated in a redion of dekopp 201Q de la Fuente et g12008. We conjecture that
ofi-shore current can be generate a region ol &y, o onlinear modulation of the Poinéawave is amplified

S;elf pgnrec\i/ zﬁg':\}l V;/\‘;’}\llle 1fr909n5t igg%'}/ernﬂ;n tEﬁﬁ?-':ﬁ; Worksthrough the nonlinear interaction with the steepened Kelvin
ot Fedoro el o ; or the 1elvin J P). ., wave, resulting in the nonlinear Poinéavave of large am-
where the hydrostatic, nonlinear evolution models describ-

| . : . .. plitude as presented in this section.
ing the Kelvin wave (or jump) propagation along a rectilin-

ear coastline in a semi-infinite domain are employed. In the

present model we find that a similar off-shore currentis gen-g  ~gnclusions

erated in a slightly off-shore region of the steepened Kelvin

wave front. However, such an off-shore current is smaller| this paper we considered the effects of the second verti-
than the along-shore counterpart by an order of magnitudega| mode and the effects of nonlinearity of the energetically
The off-shore current of the nonlinear Poiraraves can  gominant flows on the transport of Lagrangian particles in
exceed the along-shore current of the steepened Kelvin wavey, jgeal circular cylindrical lake subject to a uniform wind
In the present model, therefore, the contribution of the Kelvingiregs persisting for a finite duration.
wave-generated off-shore current to the off-shore transportis |t is confirmed that the Kelvin waves primarily drive the
far less relative to that derived from the nonlinear Poiacar along-shore transport of particles near the basin perimeter,
waves. and that the Poincamwaves are the primary source of driving
The results presented in this section should be viewed witlthe off-shore transport. It is quite common to neglect the dy-
some caution because the amplitudes of the fully-evolvechamics of the second or higher vertical eigenmodes in some
Poincaé waves grow quite large (e.g., in Figjl the am-  flow models because of their perceived insignificant ampli-
plitude grows to about twice as large as the epilimniontudes relative to the amplitude of the energetically domi-
depth z1). With such large amplitude the magnitude of nant eigenmode (usually the lowest vertical mode). However,
the velocity field is potentially an overestimate with use of when it comes to study the particle transport, one should not
the weakly-nonlinear model presented here. It is widelyignore the second vertical mode in the background flow do-
known that the higher order nonlinearity has the effect of main because the disparately slow Kelvin wave of the second
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Fig. 11. Nonlinear evolution of the isopycinal amplitudeof the first vertical mode. Contour level step is every 0.1 dimensionless unit from
zero values, and shaded regions represent negative vale®2, )V =1.2,hp =1, h3=2).

Radial velocity Azimuthal velocity V1 Isopycnal amplitude

Fig. 12. : Instantaneous velocity components at the upper surface of the lalg=£d&, VW = 1.2 atr = 37; along with the corresponding
isopycnal amplitude of the first vertical mode taken from Hig). Contour level step is every 0.1 dimensionless unit, and shaded regions
represent negative valuedo(=1, h3 =2).

vertical mode is resident for a long time and, then, the resulwave in a cyclonic direction nearly side by side, and the large
tant particle transport becomes non-negligible and comparaeurrent generated by the nonlinear Poigcamave potentially
ble to the transport driven by the first vertical mode. induces a pronounced off-shore transport of a particle cloud
and, therewith, enhances horizontal mixing. This quite inter-
Effects of the flow nonlinearity become increasingly im- esting phenomenon is an entirely nonlinear effect and cannot

portant as time increases. When both the Kelvin and theye derived from the classical linear hydrostatic model.
Poincaé waves coexist in the lake domain, a solitary-like

wave of large amplitude (i.e., the nonlinear Poiltcaave) Since we employed a weakly-nonlinear model to drive
can emerge in an off-shore region as a consequence of northe background flow, the largeness of the amplitude of the
linear interaction between the Kelvin-Poinéawave pair.  nonlinear Poinca wave remains in question. Similar flow

The nonlinear Poincarwave co-propagates with the Kelvin nonlinearity is also possible in the flow domain of the second
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vertical mode. Nonlinear interaction between the lowestHorn, D. A., Imberger, J., and Ivey, G. N.. The degeneration of
two vertical modes is certainly possible (e.&akai and large-scale interfacial gravity waves in lakes, J. Fluid Mech., 434,
Redekopp20093. We restricted our study to the particle ~ 181-207, 2001.

transport on the top (or bottom) surface of the simplified Imberge!', J.: Flux path; in stratified lake: A review, vol. 54 of.
lake model. While particle transport is three-dimensional in Fhysical processes in lakes and oceans: coastal and esturine
nature, and since it is almost certainly significantly affected Studies”, American Geophysical Union, Washington, DC, 1-17,
by three-dimensional bathymetric irregularities (e@kely 1998.

. L . Monismith, S.: Modal response of reservoirs to wind stress, J. Hy-
et al, 201Q implications given byWake et al, 2005, draul. Eng., 113 1290—plso6 1987, y

vertical motions and the effect of irregular lake boundariesgyely, p., Imberger, J., and Shimizu, K.: Particle disparsal due to in-

on particle transport are important issues deserving of future - terplay motions in the surface layer of a small reservoir, Limnol.
study in order to augment the conclusions of this present Oceanogr., 55, 589-603, 2010.

work. Patil, S., Singh, V. P., and Imberger, J.: Horizontal dispersion in
gyres-interal wave flow field in a rotating circluar lake, J. Hydrol.
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