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Abstract. Effects of the second vertical mode and nonlinear-
ity of the background flow field on the Lagrangian transport
of particle clouds are studied by employing a wind-forced
linear hydrostatic model and a weakly-nonlinear, weakly-
nonhydrostatic evolution model. It is confirmed that Kelvin
waves primarily advect particles near the basin perimeter in a
cyclonic direction, and Poincaré waves primarily advect par-
ticles in off-shore (radial) directions in a manner that is oscil-
latory in time with frequencies near the inertial period. The
internal current associated with the second vertical mode is
usually far smaller than that associated with the energetically
dominant, lowest vertical mode. However, because of the
disparately slow eigenspeed of the vertical mode-two Kelvin
wave, the resultant particle transport associated with the ver-
tical mode-two flow near the basin perimeter can drive trans-
port that is comparable with that associated with the Kelvin
wave of the lowest vertical mode. It is discovered that non-
linear interaction between the Kelvin-Poincaré wave pair can
give birth to a solitary-like wave of large amplitude in an off-
shore region. This new type of wave generates a large current
and co-propagates with the Kelvin wave in a cyclonic direc-
tion and, eventually, can cause a burst of particle transport in
an off-shore direction.

1 Introduction

It is broadly known that wind forcing over the surface of a
stratified lake can generate basin-scale internal waves. Such
long internal waves often possess amplitudes as large as ten
or more meters, and their resulting current plays an impor-
tant role in the transport of biogeochemical particles in lakes.
From an environmental perspective it is important to study

Correspondence to:T. Sakai
(sakai328@gmail.com)

the effects of such hydrodynamic response on trajectories
of particles because of consequences relating to water qual-
ity: for instance, the nutrient-rich upwelled region, plankton
clouds, local spill of chemical substances, etc., (Imberger,
1998).

Since lakes are confined bodies of water that exist in
essentially isolated environments, aside from a relatively
weak physical interaction with the peripheral environment
through riverine inflow-outflow, wind-driven basin-scale in-
ternal waves persist in such closed domains until they per-
ish through boundary and internal dissipation. In a large
lake, in particular, internal basin response to wind forcing
is comprised of Kelvin and Poncaré waves (Csanady, 1975),
and these waves travel along the basin perimeter for sev-
eral days, transporting particulate matter horizontally for dis-
tances comparable to the horizontal extent of the lake.

Stocker and Imberger(2003) addressed this large-scale
transport phenomenon through an analytical modeling ap-
proach by employing a traditional linear hydrodynamic ap-
proximation with a circular lake model. They demonstrated
the basin-scale transport of patches of Lagrangian particles
that are advected by a geostrophic flow and the gravest
Kelvin and Poncaŕe waves in a lake subject to uniform wind
stresses. They also discovered that chaotic advection of par-
ticles exists, and also considered the effect of a superposed
turbulent dispersion on cloud patches. The background flow
model employed in their study was restricted to linear hy-
drostatic with homogeneous medium that perceives essen-
tially a single vertical eigenmode, and in many examples they
tracked particle paths for extensive durations, up to tens of
days, under persistent wind stresses.

In practice most lakes are continuously stratified and,
therefore, possess a spectrum of vertical eigenmodes which
can be excited during a typical wind forcing event. Nom-
inal wind forcing events persist for some fraction of an in-
ertial period (a day, or perhaps two), and the consequent
excited wave modes can persist for several inertial periods
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before they have decayed substantially through dissipative
processes. Furthermore, since waves of large amplitude are
ubiquitous in many lakes, it is important to consider non-
linear effects of fluid acceleration in conjunction with inher-
ent non-hydrostatic effects. Since the particle transport is
dictated by the background flow, higher vertical eigenmodes
plus nonlinearity of the flow may, to a greater or lesser de-
gree, alter the fate of particles transported by the induced hy-
drodynamic field. The effect of the wind-stimulated, internal
wave field on particle transport in closed basins is an intrigu-
ing problem, and it appears that the role of frequently excited
wave modes on the characteristics of consequent transport is
not very well understood.

In this contribution we extend Stoker and Imberger’s novel
work to consider a continuously stratified medium and, in
particular, address the role of the second vertical mode within
a linear-hydrostatic frame work. We also attempt to discover
the effects of nonlinearity of the energetically dominant
mode (i.e., the lowest vertical mode) by employing our re-
cently developed weakly-nonlinear weakly-non-hydrostatic
evolution model (Sakai and Redekopp, 2010).

2 Continuously stratified model

In this paper we employ a circular lake of uniform depth sub-
ject to a uniform wind stress over a non-deformable upper
surface. This simple geometry eliminates surface waves plus
topographic and boundary irregularities that complicate the
field response. Furthermore, spatial gradients in the applied
stress are excluded in this study as we seek principally to
expose the role of the different modal responses on lateral
particle transport. The vertical structure of the water column
comprises an epilimnion of thicknessh1, a metalimnion of
thicknessh2, and a hypolimninon of thicknessh3. We let
both the epilimnetic and the hyplimnetic layers have the uni-
form densitiesρ1 andρ2, respectively, and set the density to
vary linearly across the metalimnetic layer fromρ1 to ρ2. A
cylindrical coordinate system(r,θ,z) is employed to describe
the dynamics in the cylindrical domain, in which we position
the origin of the radial coordinate at the center of the lake
upper surface and set thez-axis perpendicular to the upper
surface with a direction pointing upward from the lake sur-
face. A similar model is given inCsanady(1972) with appli-
cation to the North American Great Lakes. In what follows
we choose to describe briefly the model formulation, both for
clarification and to have the presentation self-contained.

The uniform wind stress is oriented in a particular direc-
tion, say the positivex-direction, as given byτ = τ(z,t)ex ,
and the wind stress is applied for a finite time 0≤ t < t0.
We assume that the wind stress functionτ (z,t) is separable
in space and time, and that the stress decreases linearly with
depth across the eplimnion and vanishes at the top of the met-
aliminon (e.g., seeMonismith, 1987; note that the final result
is independent of the shape of the stress function so long as

the stress vanishes at the top of the metalimnion; see also
Sakai and Redekopp, 2009a). The analytical form chosen for
τ(z,t) for −h1 < z ≤ 0 is given as

τ(z,t) = ρ0u
2
∗0{1−us(t − t0)}

z+h1

h1
, (1)

whereρ0 is a reference density,u∗0 is a friction velocity and
us(t) is the Heaviside step function.

The field equations consist of the conservation of mass
constraint for an incompressible fluid, the linearized, inviscid
momentum equations subject to the applied wind stress un-
der the hydrostatic and Boussinesq approximations, plus the
linearized continuity equation expressing the conservation of
the density of a fluid parcel in its motion. These equations,
respectively, have the forms:
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(2)

The velocity components(u,v,w) correspond to the veloc-
ity in the radial, azimuthal and vertical directions;f is an
inertial frequency;p is a perturbation pressure;σ is a per-
turbation buoyancy defined byσ = ρg/ρ0 , whereρ is the
perturbation buoyancy andg is a gravitational constant; and
N2(z) is the Brunt-V̈ais̈alä frequency defined byN2(z) =

−ρ′
s(z)g/ρ0 , whereρs(z) is a static (stable) density distri-

bution. Contribution of the wind stress is accounted in the
horizontal momentum equations. Since Eq. (2) does not take
account of any energy damping and nonlinearity, the analyt-
ical model is limited to representing the internal dynamics
only for time periods, at most, on the order of several days
(or inertial periods) (Csanady, 1968).

The field variables are projected rationally in terms of ver-
tical eigenfunctions according to the relations

(u,v,p/ρ0) =

∑
n

(U,V,P )n(r,θ,t)φ′
n(z),

w =

∑
n

Wn(r,θ,t)φn(z),

σ =

∑
n

Zn(r,θ,t)N2(z)φn(z).

(3)

The field variables in upper case symbols represent the am-
plitudes of respective vertical eigenmodes, andφn(z) is the
vertical eigenfunction defined by the boundary value prob-
lem
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φ′′
n +

N2(z)

c2
n

φn = 0, φn = 0 atz = 0 andz = −H, (4)

whereH is a total lake depth as given byH = h1+h2+h3.
The eigenvaluecn is the propagation speed of a given vertical
eigenmode in the longwave limit, andφn is normalized by
its maximum value. Analytical expressions of eigenpairs in
the present formulation are available, but are not given here
for brevity of presentation. The orthogonality relation of the
eigenfunction is given by∫ 0

−H

φ′
mφ′

ndz =
c2
n

µn

δmn, andµn =

∫ 0

−H

N2φ2
ndz, (5)

whereδmn is the Kronecker delta.
In order to study parametric dependencies on particle dy-

namics, we scale the problem usingr0, the lake radius, as
a horizontal length scale, the epilimnion depthh1 as the
vertical length scale, andN−1

0 as a time scale (N2
0 = (ρ2 −

ρ1)g/ρ0h2). Specifically,t is scaled byr0/N0h1; cn andWn

are scaled byN0h1; (U,V,P )n are scaled byN0h
2
1; andZn

is scaled byh1. Employing scaled variables, and substituting
Eqs. (1) and (3) into Eq. (2) and using Eq. (5), we obtain an
evolution set for any given vertical eigenmode (n = 1,2,...)
in the following dimensionless form:
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(6)

In the first two equations the parameterkn = c2
nφ

′
n(0)/µn,

and the Burger numberB and the Wedderburn numberW
are defined by

B=
f r0

N0h1
=

r0

(N0h1)/f
and W =

N2
0h3

1

u2
∗0r0

. (7)

The Burger number, in this formulation, is a lake radius rel-
ative to the internal Rossby radius, measuring the effect of
earth’s rotation. The inverse of the Wedderburn number mea-
sures the wind stress strength relative to the counter-acting
baroclinic pressure gradient. According to laboratory exper-
iments, internal responses are dominated by internal grav-
ity waves for values of the Wedderburn number in the range
1<W < 5 (Horn et al., 2001).

We note at this point that Eq. (6) has a similar struc-
ture as the set corresponding to the single-eigenmode model
(Csanady, 1968; Stocker and Imberger, 2003). The solu-
tion for a single vertical eigenmode in our case can be ob-
tained analytically through the Laplace transform method
(seeCsanady, 1968andStocker and Imberger, 2003for de-
tail) and expressed as:
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Parameters appearing in these expressions are defined as

α0n =
B
cn

, αmn =
B
cn

√
|ω2

mn −1|,

andAmn =
ωmn −1

1+ωmn −(B/cn)2ω3
mn

,

(9)

andR1(αmnr) is a radial eigenfunction which is either the
Bessel functionJ (x) or the modified-Bessel functionI (x)

of order one depending on the value of the eigenfrequency
ωmn:

R1(αmnr) =

{
I1(αmnr), ω2

mn < 1,

J1(αmnr), ω2
mn > 1.

(10)

The modal solutionI1(x) is associated with the Kelvin wave
(subinertial) solution, and that associated withJ1(x) is the
Poincaŕe wave (superinertial) solution. The eigenfrequency
is obtained from the characteristic equation

R1(αmn)−ωmnαmnR
′

1(αmn) = 0. (11)

Considering a basin in the northern hemisphere, a radial
eigenmode with a positive eigenfrequency travels in a cy-
clonic direction and an eigenmode with a negative eigenfre-
quency travels in an anti-cyclonic direction. The gravest ra-
dial mode in cyclonic wave modes is the Kelvin wave, and
the anti-cyclonic counterpart is the Poincaré wave. There ex-
ist infinitely many Poincaŕe wave modes with both cycloc-
nic and anti-cyclonic polarities, but only one Kelvin wave
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Fig. 1. Fundamental periods normalized by the inertial periodTi

for B= 2, h2 = 1 andh3 = 2.

mode exists in the entire radial eigenspace for given vertical
mode. Internal current profiles of the Kelvin and the Poincaré
waves are completely opposite. The Kelvin waves generate
the largest along-shore current at the basin perimeter and the
current decays exponentially toward the basin center. The
Poincaŕe waves, on the other hand, generate the largest off-
shore current at the basin center and the current decreases to
zero at the basin perimeter. The first grouped term in Eq. (8)
in each modal solution represents the flow component that is
geostrophically balanced with the applied wind stress. Since
the curl of the uniform wind stress is zero, this geostrophic
flow entirely vanishes immediately after the wind stress is
turned off. The field response following the wind event is
the linear combination of the Kelvin wave mode and a fam-
ily of the Poincaŕe wave modes. It has been reported that
the geostrophic flows persistent in the field (e.g., gyric flows
generated from non-uniform wind stresses, topographic vari-
ations, prolonged wind forcing, etc.) contribute to a signifi-
cant fraction of the dispersion rate of a particle cloud (Patil
et al., 2010; Stocker and Imberger, 2003), but such flow con-
ditions are excluded in the present study.

Although not shown here, the solution Eq. (8) can be eas-
ily extended to the solution with arbitrary temporal forcing
by discretizing the temporal forcing function into pieces of
single-window functions, and then performing a linear su-
perposition of their corresponding solutions.

3 Energetically dominant eigenmodes

It is important to note that in a continuously stratified domain
each vertical eigenmode possesses its own horizontal (radial
only, in this study) eigenspace, and a spectrum of vertical-
horizontal eigenmodes coexist in the domain. In order to gain
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Fig. 2. Modal velocity amplitudes forB= 2,h2 = 1 andh3 = 2. All
values are normalized by the value of the Kelvin wave of vertical

mode-oneA(v)
11 . Amplitudes of geostrophic waves are plotted on

radial mode-one as reference values.

some insight to the relative time scale of these modes, the
fundamental periodsTmn(= 2π/Bωmn) of the first four ver-
tical modes are computed as functions of the radial mode for
the case ofB= 2,h2 = 1 andh3 = 2 (Fig.1). The fundamen-
tal periods are normalized by the inertial periodTi (= 2π/B).
In this example the fundamental period of the Kelvin wave
of the first vertical mode (V1) is about twice as long as the
inertial period, but the Kelvin wave of the second vertical
mode (V2) is much slower and the fundamental period is
about seven times as long as the inertial period. The rel-
ative differences of the fundamental periods of the Kelvin
wave modes of different vertical modes are remarkably dis-
tinct, but the Poincaré waves of the lowest radial mode have
similar time scales that are near the inertial period. For ra-
dial modes larger than one, the cyclonic and anti-cyclonic
Poincaŕe wave modes exist in pairs and their frequencies are
nearly identical.

Figure2 shows the corresponding amplitudes of the funda-
mental wave modes presented in Fig.1. Although there can
be several ways to define the modal amplitudes, we particu-
larly refer to the velocity amplitudes(Un,Vn) in Eq. (8) and
simply extract a mode-dependent scaling factor from each
modal component and refer to the factor as the modal veloc-
ity amplitudeA

(v)
mn as given by

A(v)
mn =

knAmn

1−ω2
mn

. (12)

For a geostrophic component the corresponding amplitude
is defined asA(G)

n = kn. From Fig.2 the Kelvin waves of
the lowest two vertical modes and the Poincaré wave of the
lowest vertical mode have the most significant amplitudes,
and the amplitudes of all the other modes are one or more
orders of magnitude smaller. Geostrophic components have
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as references.

large amplitudes similar to those of the Kelvin waves, but the
geostrophic flows exist only during the wind forcing event as
mentioned earlier. In the field solution expressions (Eq.8),
trigonometric terms with the step functionus are the “reac-
tion” terms arising from the cessation of wind forcing after a
finite time (t = t0). After the wind event these reaction terms
result in the extra factor 2sin(Bωmnt0/2) that permanently
scales the wave amplitude following the wind cessation.

Modal velocity amplitudes of several significant wave
modes are computed as functions of the wind forcing dura-
tion t0 and shown in Fig.3. These results particularly cor-
respond to the case presented in Figs. 1 and 2, but one can
obtain similar pictures for different parameter sets. It can
be observed from the figure that, if the wind event is within
or comparable to one inertial period, the V1 Kelvin wave is
energetically dominant (i.e., the amplitude is the largest) fol-
lowed by the V1 Poincaré wave, and that waves of vertical
mode two (or higher) are energetically insignificant relative
to the dominant V1 Kelvin–Poincaré wave pair. Therefore,
from an “energetics” point of view, considering only the V1
Kelvin-Poincaŕe pair can be a reasonable choice. In fact, a
number of previous studies considered the dynamics involv-
ing only a single (the lowest) vertical mode; for instance, by
exploiting the traditional two-layer stratification model rather
than one with a metaliminion with finite thickness and con-
tinuous stratification.

4 Effects of the second vertical mode on particle
transport

Physical space coordinates(r,θ,z) of a Lagarangian particle
are dictated by the following set of fully-coupled nonlinear
ordinary differential equations:

dr

dt
=

∑
n

Un(r,θ,t)φ′
n(z),

dθ

dt
=

∑
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r
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= −
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(
∂Un
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+
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r
+

1

r

∂Vn

∂θ

)
φn(z).

(13)

In this paper we are particularly interested in the evolution
of a localized cloud (patch) of particles over the lake top or
bottom surfaces, such as the transport of a local cloud of
phytoplankton bloom near a beach, the transport of chemi-
cally polluted regions condensed at the bottom of a lake, etc.
Although the particle transport is three-dimensional in na-
ture, over the top and the bottom surfaces of the present lake
model the particle transport is in-plane with a use of non-
deformable boundary conditions. For the background veloc-
ity field we consider only the first few energetically dominant
flow components, which are the gravest Kelvin wave modes,
and the gravest Poincaré wave modes, plus the geostrophic
flow components of the lowest two vertical modes (V1 and
V2). Inclusion of the higher eigenmodes does not alter the re-
sults dramatically. Analytical solutions (Eq.8) are exploited
to directly compute the flow field, and the set of tracer equa-
tions (Eq.13) is integrated forward-in-time for several iner-
tial periods by using the Runge-Kutta method of fourth or-
der. For all cases presented here the lake is subject to wind
stresses corresponding to a Wedderburn number of unit or-
der, and the wind stresses are imposed for some fraction of
an inertial period during a single wind event.

Figure 4 exhibits the snap shots of four different cloud
patches taken at every inertial period for the first four iner-
tial periods, with time increasing along a downward progres-
sion in a particular column in the figure. The lake is subject
to a uniform wind stress ofW = 1 directed from the left to
the right (as looking down the lake) for the first one third of
the inertial period, and the stress is permanently turned off
thereafter. Particle clouds having two concentric radii (the
outer radius is 0.7r0 and the inner radius is 0.35r0) are ini-
tially centered at four extreme sides of the top surface of the
lake (i.e., the windward and the leeward ends, plus the left
and the right sides, all relative to the positive direction of the
wind vector). The physical parameters for the patch-tracking
calculations areB = 2, h2 = 1 andh3 = 2. It can be seen
from Fig. 4 that the cloud patch initially set at the right side
of the wind vector (third column) stretches in along-shore di-
rections as it is advected in a cyclonic direction. It should be
noted that the cloud elongates quite remarkably, roughly by
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(a)

(b)

(c)

(d)

Fig. 4. Snap shots of several cloud patches att = Ti (row-a), t = 2Ti (row-b), t = 3Ti (row-c) andt = 4Ti (row-d). Grayed points represent
the initial position of particles. A uniform wind stress ofW = 1 is applied for 0< t < Ti/3 from the left to the right. The background velocity
field contains the geostrophic flows (during only the wind event) and the Kelvin and the Poincaré wave modes of the lowest two vertical
modes. (B= 2, h2 = 1, h3 = 2).

a factor of three, and that the frontal edge of the cloud trav-
els for a distance comparable to the lake diameter after three
inertial periods. The cloud on the opposite side (i.e., the left
side) of the wind vector (second column) squeezes in along-
shore directions as it travels in a cyclonic direction, and the
cloud protrudes significantly in an off-shore direction and re-
cedes in an on-shore direction oscillatory in time. The cloud
patch initially at the leeward end (fourth column) is skewed
in along-shore directions with pronounced along-shore trans-
port adjacent to the basin perimeter, and the cloud as a whole
is transported in a cyclonic direction. The cloud patch ini-
tially at the windward end (first column) is also skewed sim-
ilarly, but with less remarkable transport of the near-shore
portion when compared to the near-shore transport of clouds
at other positions around the perimeter of the lake.

In order to quantify the effects of the second vertical mode,
flow components of the second vertical mode are all turned
off and the resulting V1-only transport is compared with the
original V1+V2 transport. Differences in these mode-driven
transports depend on the initial position of a cloud patch rel-
ative to the wind direction. We find that the transport is most

remarkably enhanced by V2-driven current when the cloud
is initially positioned to the right of the wind vector. In what
follows, therefore, our presentation focuses exclusively on
this particular case. Snap shots of the cloud patch evolving
in the V1-only field are compared in Fig.5 with those cor-
responding to in the V1+V2 field previously presented in
Fig. 4. It can be seen in Fig.5 that, as time increases, the
transport of particles near the basin perimeter is remarkably
increased for the V1+V2 field relative to that occurring un-
der the V1-only field. However, the off-shore protrusions of
the clouds in these two fields appear to be very similar. This
is also true regardless of initial location of the cloud.

To quantify somewhat the development of an evolving
cloud patch with a given initial radius ofr0/2, the gross
dimensions are measured as functions of time under both
the V1-only and the V1+V2 velocity fields. The particu-
lar cloud dimensions which are tracked include the along-
shore (cyclonic) displacement of both the front and the tail
vertices of the cloud position along the basin perimeter, the
maximum off-shore protrusion into the lake, and the to-
tal area of the cloud. The temporal development of these
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(a)

(b)

t = Ti t = 2Ti t = 3Ti t = 4Ti

Fig. 5. Comparison of cloud patch evolutions obtained in the field containing only the first vertical mode (row-a) and in the field including
the second vertical mode (row-b). Grayed points represent the initial position of particles. (B= 2, h2 = 1, h3 = 2,W = 1).
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Fig. 6. Time series of(a) along-shore displacement of cloud front and tail vertices,(b) along-shore arch length of the cloud on the basin
perimeter side,(c) off-shore protrusion of the cloud, and(d) cloud patch area, obtained in V1-only field and V1+V2 field. A cloud patch of
radiusr0/2 is initially placed at the right end of the basin relative to the positive wind vector. The along-shore displacement(a) is normalized
by πr0, the along-shore length(b) and the patch area(c) are normalized by their respective initial values, and the off-shore protrusion(d) is
normalized by their initial radius of the cloud patch. (B= 2, h2 = 1, h3 = 2,W = 1).

quantitative measures is presented in Fig.6. It is clearly ob-
served from the figure that the along-shore cloud displace-
ment and length are doubled when the field contains the sec-
ond vertical mode. The along-shore dimensions fluctuate ap-
proximately with the V1 Kelvin wave period (= 1.7Ti), and
in the case of the V1+V2 field the along-shore length of the
cloud is modulated by a lower frequency component which
is nearly equal to the V2 Kelvin wave period (= 6.6Ti). At a

fixed position along the basin boundary, the current induced
by the Kelvin wave is in a cyclonic direction during the half
Kelvin wave period, but reverses to an anti-cyclonic direction
for the following half-Kelvin-wave period. Such reversals in
flow direction underlie the oscillatory behavior exhibited in
the along-shore dimensions. A resultant persistent transport
in the cyclonic direction arises due to the nonlinear (Stokes)
drift. The maximum field velocity associated with the V1
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Kelvin wave is 0.34 dimensionless units while the V2 Kelvin
wave counterpart is 0.12, with the maxima in both cases oc-
curring at the basin perimeter. Although the V2 Kelvin wave
induces a considerably smaller peak velocity, the V2 Kelvin
wave can transport particles near the basin boundary for a
distance comparable with the V1-only transport. This en-
hanced transport relative to the peak velocity is due to the
fact that particle transport is given by the time-integral of the
velocity at the position of the particle. The disparately slow
V2 Kelvin wave is resident in the same region of the basin
for a considerably long time and, thus, the resultant particle
transport becomes non-negligible.

The off-shore protrusion, on the contrary, fluctuates much
faster with periods near the inertial period, and the off-shore
protrusion in the V1+V2 field differs from that in the V1-
only field only slightly. Since the Poincaré waves induce
the largest off-shore current across the center of the lake, the
off-shore current can push and pull the cloud in radial direc-
tions as frequent as rational multiples of their fundamental
periods which are near the inertial period. The area of the
cloud patch also fluctuates in time because the horizontal di-
vergence of the flow is non-vanishing, and is balanced by the
rate of change of vertical flows (driven by internal waves) as
dictated by the conservation of mass constraint. The patch
area for the V1+V2 field is roughly doubled after several in-
ertial periods owing to the aforementioned enhanced along-
shore stretching by the V2 Kelvin wave.

In order to confirm the effects of internal waves on the
evolution of the cloud shape, frequency spectra of the along-
shore cloud length and the off-shore cloud protrusion are
computed for different Burger numbers (B = 1, 2 and 4).
These spectra are presented in Fig.7, where it is clearly seen
that in all cases the Kelvin waves comprise the dominant
component in the time signal of the along-shore arc length.
Further, the signal amplitude associated with the V2 Kelvin
wave is of the same order as that of the V1 Kelvin wave.
It is also evident from the figure that the time signal of the
off-shore protrusion is dominated by the frequencies of the
Poincaŕe waves and their higher harmonics. There is one ex-
ception in the result forB= 1 (Fig.7d) where the V1 Kelvin
wave is also among the dominant components contributing
in the off-shore protrusion. This is because, for a small lake
(B/c1 <

√
2), the V1 Kelvin does not decay exponentially in

the off-shore direction. As such, the associated current in the
basin center serves as the off-shore current.

It should be added that, since the cloud patch is moving,
the time signals of the measured dimensions do not mani-
fest exactly the same frequency components as the analytical
eigenfrequencies due to the Doppler effect. To obtain reason-
able results as presented in Fig.7, the drift rate of the cloud
is diminished by reducing the wind stress strength (i.e., use
of larger Wedderburn numbers), and the cloud dimensions
were again sampled for a long time in order to capture the
small frequency components (i.e., the Kelvin waves) without
aliasing.

All the results presented so far pertain to particle trans-
port over the top surface of the lake. Although not presented
here, we also considered the transport over the lake bottom
surface. Similar trends as seen in the forgoing figures have
been found for bottom transport. However, since in many
lakes the hypolimnion is usually deeper than the epilimnion,
the horizontal current is far smaller in the hypolimnion than
in the epilimnion, resulting in a much diminished transport
over the bottom surface.

5 Nonlinearity of the background flow

Recent studies of nonlinear internal wave evolutions revealed
the generation of solitary waves from a steepened Kelvin
wave and the pseudo-recurrence character of Poincaré waves
(Sakai and Redekopp, 2010; de la Fuente et al., 2008). The
remainder of this report is motivated by an interest as to how
nonlinear effects modify the evolution of a particle cloud rel-
ative to that resulting under a linearized hydrodynamic de-
scription. To simplify the problem we restrict the consider-
ation to self-nonlinear effects of the energetically dominant,
lowest vertical mode and keep the second vertical mode lin-
ear hydrostatic. This simplification neglects not only the
self-nonlinearity of the second vertical mode but also the
inter-modal nonlinear interactions. For the flow field model
describing the first vertical mode, we employ a weakly-
nonlinear, weakly-nonhydrostatic version of the modal evo-
lution equations (Eq.6) as given by:
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(14)

In these equations the symbolD1 denotes the horizontal
divergence given byD1 = ∂U1/∂r +U1/r + ∂V1/r∂θ ; the
parameter3 is a depth-to-radius aspect ratio as given by
3 = h1/r0; and, the parametersα, β andγ are integral co-
efficients containing the essence of the vertical structure as
defined by
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Fig. 7. Frequency spectrum of along-shore arc length(a, b, c) and off-shore protrusion(d, e, f) of a cloud patch of radiusr0/2 initially
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This evolution system was rationally derived through a per-
turbation analysis, and has been amply discussed in our pre-
vious work (Sakai and Redekopp, 2010). In that earlier work
the model appears with generalizations to include variable to-
pography terms, and inter-modal nonlinear interaction terms,
and wind-stress forcing. We purposely excluded wind forc-
ing in Eq. (14) above because, when the forcing is active,
higher radial modes (i.e., other than the lowest Poincaré wave

mode) are excited and these (noisy) wave modes persist in
the domain after the wind ceases. In order to make defini-
tive comparisons with the transport results presented in the
previous section, we choose to integrate Eq. (14) forward in
time from an initial condition constructed by the sum of the
Kelvin and the Poincaré wave modes that correspond to their
respective analytical (linear hydrostatic) profiles at the cessa-
tion of the wind. Since we consider wind events with moder-
ate strength lasting only some fraction of an inertial period,
the effects of nonlinearity and the neglected geostrophic flow
during the wind event are expected to be minimal. There-
fore, the use of the linear hydrostatic solutions in absence of
the geostrophic flow as an initial condition is a reasonable
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choice, and provides a means for direct comparison between
the computed transport by an entirely linear dynamics and
that associated with a nonlinear hydrodynamic model under
similar initial conditions. Furthermore, the approximate rep-
resentation of the hydrodynamic field at the end of a wind
event of limited duration is supported by multiple simula-
tions reported in our earlier work. Adopting this simplifi-
cation of the initial velocity field, we can restrict our atten-
tion to the nonlinear evolution and interaction of the Kelvin-
Poincaŕe pair within the lowest vertical mode.

The evolution equation set (Eq.14) with its linear hydro-
static version for the second vertical mode are numerically
simulated by employing the spectral method developed in
our previous work (Sakai and Redekopp, 2009b), and the
tracer equation set (Eq.13) is simultaneously integrated for-
ward in time with Eq. (14) by employing the fourth-order
Runge-Kutta method. The velocity field at the location of
each particle is precisely interpolated by exploiting the full
range of the spectral expansion functions that are used to ap-
proximate the field variables in the spectral method.

Snap shots of cloud evolutions are tabulated for Wedder-
burn numbersW = 1.5, 1.2 and 1.0 in Fig.8. Initial ampli-
tudes of the wave modes are set to the values corresponding
to those at the wind cessation timet0 = Ti/3 for each of the
Wedderburn numbers. In all cases the Burger number is fixed
to B = 2 with the depth-to-radius ratio3 = 1/40, and the
stratification profile is set with an epilimnion depth ofh2 = 1
and a metalimnion depth ofh3 = 2. It is observed from the
figure that the cloud boundaries appear to be very similar for
the first couple of inertial periods for each Wedderburn num-
ber. After three inertial periods, however, a local protrusion
forms in the off-shore portion of the cloud (i.e., the region
between the outer and the inner radii). This protrusion, ex-
tending deeper into the interior of the lake, becomes more
intense for smaller Wedderburn numbers (i.e., larger wind
stress). Cloud boundaries resulting solely from transport as-
sociated with the complete linear hydrostatic field are also
included in Fig.8, and no pronounced off-shore protrusion
of the cloud boundary is observed. Clearly, this off-shore
burst is induced by nonlinear effects of the background flow
field of the first vertical mode.

The off-shore burst is not a phenomenon restricted par-
ticularly to the present case withB = 2. Similar off-shore
transport is observed for different Burger numbers as shown
in Fig. 9 (B = 1) and in Fig.10 (B = 3). In these exam-
ples the transport associated with the nonlinear dynamics is
also compared with that obtained in the presence of the re-
spective linear hydrostatic field. Again, there is no off-shore
burst observed in the case of the linear hydrodynamic field.
According to the definition of the Burger number (Eq.7), in-
creasing the Burger number implies an increase in the lake
radius (i.e.,B ∝ r0) for a fixed vertical structure (i.e., fixed
depth and stratification). For this reason, the Wedderburn
numbers for the cases ofB= 1 andB= 3 are adjusted such
that the same level of the wind stress (∼ ρ0u

2
∗0) is applied to

the lake surface with different Burger numbers. The reader
should note that both the timet and the inertial periodTi

are scaled byr0/N0h1. Therefore, the snap shots with iden-
tical dimensionless time in Figs.8–10 correspond to identi-
cal dimensional time (i.e.,t/Ti = t∗/(r0/N0h1)/(2π/B) =

t∗/(r0/N0h1)/(2πN0h1/f r0) = t∗/(2π/f ) = t∗/T ∗

i , where
starred values are dimensional).

For the case ofB= 3 (Fig. 10) the along-shore transport
is slower than that ofB = 2, and the off-shore burst ap-
pears aroundt = 6Ti as compared tot ≈ 4Ti for the case
of B = 2. These differences primarily derive from the fact
that the Kelvin wave periods are longer for the larger Burger
number, resulting in smaller initial amplitudes of the Kelvin
wave at the time of cessation of the wind (i.e.,t0 = Ti/3 in
this case). For the case ofB = 1 (Fig. 8) the along-shore
transport does not appear faster than that ofB= 2, although
the off-shore burst appears a bit later (t ≈ 6Ti) than the case
of B= 2. ForB= 1 the Kelvin wave of the lowest vertical
mode turns out to be superinertial (i.e.,B/c1 <

√
2). Thus,

the residence time of the Kelvin wave is much shorter than
that of the subinertial one (B = 2). Also, the radial eigen-
funtion of the superinertial Kelvin wave is a regular Bessel
function (the same as that of Poincaré waves) as opposed to
a modified-Bessel function having an exponential character,
with the consequence that the along-shore current is smaller.
The smaller currents and shorter residence times of the low-
est Kelvin wave mode retard the along-shore transport, as
well as the off-shore burst, in lakes with smaller Burger num-
bers.

It should be added that the region of the along-shore trans-
port for larger Burger number (large lake) is more confined
near the basin perimeter relative to the respective lake ra-
dius, a direct consequence of the radial width of the Kelvin
wave lK as given by the asymptotic relationlK/r0 ∼ cn/B
for largeB (Sakai and Redekopp, 2010). This relation can
also explain the fact that the along-shore transport associated
with the second vertical mode is more confined near the shore
due to the disparately slow eigenspeedc2 (this is also evident
from Fig.5).

To visualize the nonlinear effect of the background flow,
several snap shots of the isopycnal amplitude (Z1) of the first
vertical mode are exhibited in Fig.11. Immediately after
the wind event (t = 0Ti) the field is linear and appears sym-
metric, but the Kelvin wave steepens and distorts the sym-
metry as it propagates in a cyclonic direction. The negative
volume of the isopycnal amplitude is gradually concentrated
(attracted) to an off-shore side of the Kelvin wave front, and
the concentrated negative volume grows into a “solitary-like”
wave possessing large amplitude after two inertial periods.
We refer here to the solitary-like wave as the “nonlinear
Poincaŕe wave” because this nonlinear wave is particularly
concentrated in the off-shore region. The nonlinear Poincaré
wave propagates in a cyclonic direction with its phase nearly
engaged with the Kelvin wave front (to be precise, the non-
linear Poincaŕe wave travels slightly faster than the Kelvin
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Fig. 8. Evolution of a particle cloud for different Wedderburn numbersW = 1.5 (row-a),W = 1.2 (row-b) andW = 1.0 (rowsc, d). Rows
(a–c)are subject to nonlinear flow for the lowest vertical mode and linear hydrostatic flow for the second vertical mode. Row(d) is subject to
linear hydrostatic flow for both vertical mode-one and two. Grayed points represent the initial position of particles. (B= 2, h2 = 1, h3 = 2).

(a)

(b)

W=2

W=2
Linear

t=3Ti t=4Ti t=5Ti t=6Ti

Fig. 9. Evolution of a particle cloud forB= 1 with the Wedderburn numberW = 2. Row(a) is subject to nonlinear flow for the lowest vertical
mode and linear hydrostatic flow for the second vertical mode. Row(b) is subject to linear hydrostatic flow for both vertical mode-one and
two. Grayed points represent the initial position of particles. (h2 = 1, h3 = 2).

www.nonlin-processes-geophys.net/18/765/2011/ Nonlin. Processes Geophys., 18, 765–778, 2011



776 T. Sakai and L. G. Redekopp: Lagrangian transport in a circular lake

Fig. 10. Evolution of a particle cloud forB = 3 with the Wedderburn numberW = 2/3. Row (a) is subject to nonlinear flow for the
lowest vertical mode and linear hydrostatic flow for the second vertical mode. Row(b) is subject to linear hydrostatic flow for both vertical
mode-one and two. Grayed points represent the initial position of particles. (h2 = 1, h3 = 2)

wave because the former wave possesses larger amplitude
than the latter one).

In Fig. 12 contour plots of the polar velocity field at the
lake top surface are extracted fort = 3Ti . It can be seen
from the figure that large radial and azimuthal velocities are
generated by the nonlinear Poincaré wave. This locally con-
centrated region of large velocities travels around the basin,
and it passes across the off-shore portion of the cloud patch,
eventually causing the inner portion of the cloud to burst in
the off-shore direction.

An off-shore current can be generated in a region of a
steepened Kelvin wave front as given in the earlier works
of Fedorov and Melville(1995, 1996for the Kelvin jump),
where the hydrostatic, nonlinear evolution models describ-
ing the Kelvin wave (or jump) propagation along a rectilin-
ear coastline in a semi-infinite domain are employed. In the
present model we find that a similar off-shore current is gen-
erated in a slightly off-shore region of the steepened Kelvin
wave front. However, such an off-shore current is smaller
than the along-shore counterpart by an order of magnitude.
The off-shore current of the nonlinear Poincaré waves can
exceed the along-shore current of the steepened Kelvin wave.
In the present model, therefore, the contribution of the Kelvin
wave-generated off-shore current to the off-shore transport is
far less relative to that derived from the nonlinear Poincaré
waves.

The results presented in this section should be viewed with
some caution because the amplitudes of the fully-evolved
Poincaŕe waves grow quite large (e.g., in Fig.11 the am-
plitude grows to about twice as large as the epilimnion
depth h1). With such large amplitude the magnitude of
the velocity field is potentially an overestimate with use of
the weakly-nonlinear model presented here. It is widely
known that the higher order nonlinearity has the effect of

limiting the amplitudes of solitary waves (e.g., seeHelfrich
and Mellville, 2006; Sakai and Redekopp, 2007). Neverthe-
less, the initial stage of the generation process of the non-
linear Poincaŕe wave presented here is still valid because the
wave amplitude at that stage remains modest.

If the field consists solely of either a Kelvin or a Poincaré
wave, the nonlinear Poincaré wave does not emerge (see
Figs. 5 and 15 inSakai and Redekopp, 2010). It is known
that the amplitude of the Poincaré wave undergoes an oscilla-
tory, temporal modulation in nonlinear flows (Sakai and Re-
dekopp, 2010; de la Fuente et al., 2008). We conjecture that
the nonlinear modulation of the Poincaré wave is amplified
through the nonlinear interaction with the steepened Kelvin
wave, resulting in the nonlinear Poincaré wave of large am-
plitude as presented in this section.

6 Conclusions

In this paper we considered the effects of the second verti-
cal mode and the effects of nonlinearity of the energetically
dominant flows on the transport of Lagrangian particles in
an ideal circular cylindrical lake subject to a uniform wind
stress persisting for a finite duration.

It is confirmed that the Kelvin waves primarily drive the
along-shore transport of particles near the basin perimeter,
and that the Poincaré waves are the primary source of driving
the off-shore transport. It is quite common to neglect the dy-
namics of the second or higher vertical eigenmodes in some
flow models because of their perceived insignificant ampli-
tudes relative to the amplitude of the energetically domi-
nant eigenmode (usually the lowest vertical mode). However,
when it comes to study the particle transport, one should not
ignore the second vertical mode in the background flow do-
main because the disparately slow Kelvin wave of the second
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t=0Ti t=1.0Ti t=1.5Ti t=2.0Ti

t=2.5Ti t=3.0Ti t=3.5Ti t=4.0Ti

Fig. 11.Nonlinear evolution of the isopycinal amplitudeZ of the first vertical mode. Contour level step is every 0.1 dimensionless unit from
zero values, and shaded regions represent negative values. (B= 2,W = 1.2, h2 = 1, h3 = 2).
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Fig. 12. : Instantaneous velocity components at the upper surface of the lake forB= 2,W = 1.2 at t = 3Ti along with the corresponding
isopycnal amplitude of the first vertical mode taken from Fig.11. Contour level step is every 0.1 dimensionless unit, and shaded regions
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vertical mode is resident for a long time and, then, the resul-
tant particle transport becomes non-negligible and compara-
ble to the transport driven by the first vertical mode.

Effects of the flow nonlinearity become increasingly im-
portant as time increases. When both the Kelvin and the
Poincaŕe waves coexist in the lake domain, a solitary-like
wave of large amplitude (i.e., the nonlinear Poincaré wave)
can emerge in an off-shore region as a consequence of non-
linear interaction between the Kelvin-Poincaré wave pair.
The nonlinear Poincaré wave co-propagates with the Kelvin

wave in a cyclonic direction nearly side by side, and the large
current generated by the nonlinear Poincaré wave potentially
induces a pronounced off-shore transport of a particle cloud
and, therewith, enhances horizontal mixing. This quite inter-
esting phenomenon is an entirely nonlinear effect and cannot
be derived from the classical linear hydrostatic model.

Since we employed a weakly-nonlinear model to drive
the background flow, the largeness of the amplitude of the
nonlinear Poincaré wave remains in question. Similar flow
nonlinearity is also possible in the flow domain of the second
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vertical mode. Nonlinear interaction between the lowest
two vertical modes is certainly possible (e.g.,Sakai and
Redekopp, 2009a). We restricted our study to the particle
transport on the top (or bottom) surface of the simplified
lake model. While particle transport is three-dimensional in
nature, and since it is almost certainly significantly affected
by three-dimensional bathymetric irregularities (e.g.,Okely
et al., 2010; implications given byWake et al., 2005),
vertical motions and the effect of irregular lake boundaries
on particle transport are important issues deserving of future
study in order to augment the conclusions of this present
work.
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Reviewed by: two anonymous referees
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