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Abstract. The bias due to dynamical memory (serial correla-
tions) in an association/dependence measure (absolute cross-
correlation) is demonstrated in model data and identified in
time series of meteorological variables used for construction
of climate networks. Accounting for such bias in inferring
links of the climate network markedly changes the network
topology and allows to observe previously hidden phenom-
ena in climate network evolution.

1 Introduction

Statistical physics met graph theory in order to describe
structure and function of complex systems comprising a large
number of interacting elements. Such complex networks
(Boccaletti et al., 2006) are increasingly used as a model
and analysis paradigm for multivariate time series recorded
from complex, potentially nonlinear geophysical processes
including the Earth’s atmosphere and climate. Climate net-
works (Tsonis and Roebber, 2004; Tsonis et al., 2006) are
usually, although not exclusively, constructed using gridded
time series of meteorological variables preprocessed, e.g. in
the NCEP/NCAR reanalysis project (Kalnay et al., 1996).
Monthly (Tsonis and Swanson, 2008; Donges et al., 2009a)
or daily (Yamasaki et al., 2008; Gozolchiani et al., 2008)
surface air temperature data are frequently used, however,
equipotential heights (Tsonis et al., 2008; Donges et al.,
2011), sea surface temperature, humidity, precipitation and
related data (Steinhaeuser et al., 2011; Malik et al., 2011)
and other meteorological data are also analysed. Individual
grid-points, characterised by time series of a chosen meteo-
rological variable, are considered as nodes (vertices) of the
climate network, while links (edges) are inferred from some,
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mostly statistical association between the time series related
to the two nodes at the edge’s end-points. The most com-
mon association measure is Pearson correlation (Tsonis and
Roebber, 2004; Tsonis and Swanson, 2008), however, also
more general, nonlinear measures are tested, e.g. measures
derived from information theory (Donges et al., 2009b; Bar-
reiro et al., 2011), or phase synchronisation analysis (Ya-
masaki et al., 2009). The influence of the choice of an as-
sociation measure on the topology of the climate network
has been tested (Donges et al., 2009a,b), however, one im-
portant point hitherto has been neglected. In this study we
demonstrate how dynamics, or temporal complexity of time
series influences association measures such as absolute cor-
relations. Higher regularity or dynamical memory causes an
upward bias in association measures. We demonstrate that
accounting for such bias leads to dramatic changes in the
topology of climate networks, in particular, the role of the
North Atlantic Oscillation in the connectivity of global cli-
mate networks is sharply increased at the cost of the role of
the El Niño Southern Oscillation.

2 Dynamics and connectivity

Consider complex, dynamic processes{Yi(t)} evolving in
time t . For simplifying the notation we will drop the index
i in general considerations about a process; and use it only
when we will need to distinguish processes, sayY1 andY2. A
series of measurements done on such a process in consecu-
tive instants of timet = 1,2,... is usually called a time series
{y(t)}.

Let the dynamics at two nodes of a network be charac-
terised by dynamic processes{Y1(t)} and {Y2(t)}, respec-
tively. The existence of a link between the two nodes is in-
ferred from a measure of dependenced(Y1,Y2) which char-
acterises coordination or, in a special case, synchronisation
between the processes{Y1(t)} and {Y2(t)}. In the network
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context such dependence measures are also called connec-
tivity measures. The most common measure of dependence,
coming from statistics, is the linear (Pearson) correlation:

For N observationsy1(t), y2(t), t = 1,...,N , we define
means

ȳi =
1

N

N∑
t=1

yi(t) (1)

and standard deviations

σ 2
i =

1

N −1

N∑
t=1

(yi(t)− ȳi)
2 (2)

and compute the normalised observations

ỹi(t) =
yi(t)− ȳi

σi

. (3)

The correlation coefficient between{y1(t)} and{y2(t)} is

c(Y1,Y2) =
1

N −1

N∑
t=1

ỹ1(t)ỹ2(t). (4)

Typically, for independent processes or systems{Y1(t)} and
{Y2(t)}, the correlation coefficientc(Y1,Y2), or a general de-
pendence measured(Y1,Y2) is equal to zero which means
that there is no link between the two nodes represented by
{Y1(t)} and {Y2(t)}. For non-zerod(Y1,Y2) some depen-
dence, coordination or even synchronisation between the
considered nodes exists and we will speak aboutconnectiv-
ity. In this study we will not investigate the form of the ob-
served connectivity, nor try to discern whether it is direct or
indirect (Nawrath et al., 2010).

In practical computations using experimental data, esti-
mates of connectivity measures are always different from
zero. Then, it is necessary to decide whether the digres-
sion from zero of a connectivity measure is due to random
effects or due to real connections between the studied pro-
cesses. The answer to such questions can be obtained using
ideas and tools of mathematical statistics. The termstatisti-
cal significanceis used for values of a statistical quantity (a
connectivity measure in our case) which differ from a value
specified by a so-callednull hypothesis(independence, in our
case) more than expected due to random effects. For more
details and explanation of statistical testing seePalǔs (2007)
and references therein.

Some researchers, using the correlation coefficient to es-
tablish connectivity or dependence in general, usecritical
valuesfor significance of correlations given in a number of
statistical handbooks. Such tables of critical values for the
correlation coefficient, however, are computed for the null
hypothesis of independent, identically distributed (IID) pro-
cesses, i.e. for observationsy1(t), y2(t) which are realisa-
tions of white noise processes. A well-known example of
such incorrect application of the correlation significance ta-
bles is the evaluation of correlations between sunspot num-
bers and the numbers of Republicans in the US Senate.Palǔs

(2007) analyzes this example in detail, showing that the tem-
poral dynamics of correlated data (the oscillatory behaviour
of the sunspot numbers and also of the numbers of the Re-
publican senators in 1960’s–1980’s) is the reason of the in-
creased correlation coefficient, not any real dependence be-
tween these datasets.

2.1 Characterisation of dynamics by entropy rates

In order to understand the behaviour of dependence measures
with respect to the dynamics of studied processes, let us con-
sider that the temporal evolution of the studied process or
system is not random, but that the state of the system at time
t depends on the state in which the system was at timet −τ .
The strength of such a dependence per unit time delayτ , or,
inversely, a rate at which the system “forgets” information
about its previous states, or, in other words, generates uncer-
tainty about its future, can provide an important quantitative
characterisation of temporal complexity in the system’s evo-
lution.

A time series{y(t)}, which is a recording of (a part of)
the temporal evolution of a system or process under study,
is considered as a realisation of a stochastic process, i.e. an
indexed sequence of random variables, characterised by the
joint probability distribution functionp(y(1),...,y(n)) . Un-
certainty in a stochastic variable is measured by its entropy.
The rate at which the stochastic process “produces” uncer-
tainty is measured by its entropy rate

h = lim
n→∞

1

n
H(Y (1),...,Y (n)), (5)

whereH(Y(1),...,Y (n)) is the joint entropy of then vari-
ablesY (1),..., Y (n), seePalǔs (1996) for details. The con-
cept of entropy rates is common to the theory of stochastic
processes as well as to information theory where the entropy
rates are used to characterise information production by in-
formation sources (Cover and Thomas, 1991).

Alternatively, we can consider a network of coupled dy-
namical systems or oscillators. Then the time series{y(t)}

is considered as a projection of a trajectory of a dynamical
system, evolving in some measurable state space. A. N. Kol-
mogorov, who introduced the theoretical concept of classi-
fication of dynamical systems by information rates, was in-
spired by information theory and generalized the notion of
the entropy of an information source. The Kolmogorov-Sinai
entropy is a topological invariant, suitable for the classifica-
tion of dynamical systems or their states, and is related to the
sum of the system’s positive Lyapunov exponents (seePalǔs
(1996) and references therein). Thus, the concept of entropy
rates is common to theories based on philosophically oppo-
site assumptions (randomness vs. determinism) and is ideally
applicable for the characterisation of complex geophysical
processes, where possibly deterministic rules are always ac-
companied by random influences.

Let us consider in the following that{Y (t)} is a zero-mean
stationary Gaussian process with spectral density function
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Fig. 1. Dependence of the entropy ratehG for the autoregressive
process (7) on the parameterc.

f (ω), whereω is a normalised frequency. Then its entropy
ratehG, apart from a constant term, can be expressed using
f (ω) (seePalǔs (1997) and references therein) as

hG =
1

2π

∫ π

−π

logf (ω)dω. (6)

2.2 Dynamics and bias in connectivity measures

Let us consider the autoregressive process (ARP)

yt = c

10∑
k=1

akyt−k +σet , (7)

whereak=1,..,10 = 0,0,0,0,0,.19,.2,.2,.2,.2, σ = 0.01 and
et are Gaussian deviates with zero mean and unit variance.
For c = 1 this ARP has a long coherence time, forc < 1
the coherence time decreases and the entropy rate increases
(Palǔs, 1996). In particular, we can generate realisations of
the ARP (7) with different values ofc and thus with different
entropy rates. The entropy rates of such ARP’s monotoni-
cally decrease with increasingc. Figure1 presents the en-
tropy rateshG for 100 ARP’s withc increasing from 0.5 to
0.9. Now, let us study the distribution of cross-correlations
betweenindependentrealisations of the process (7) for dif-
ferent values of the parameterc. For eachc we gener-
ate 8192 process realisations, each realisation consisting of
16 384 samples. Figure2 presents the histograms of cross-
correlations between independent realisations of ARP (7) for
three different values ofc. The mean value is always cor-
rectly equal to zero, however, the variance increases with
increasingc, i.e. with decreasing entropy rate. As a con-
sequence, when consideringabsolutecorrelations, or any
non-negative dependence measure, e.g. mutual information
(Palǔs et al., 1993; Palǔs, 1995), its mean value has an
increasing upward bias with decreasing entropy rates, i.e.
with increasing dynamical memory of the studied processes
(Fig. 3).

Fig. 2. Histograms of cross-correlations between independent real-
isations of the autoregressive process (7) for three different values
of the parameterc.

Fig. 3. Dependence of the mean absolute cross-correlation between
independent realisations of the autoregressive process (7) on the pa-
rameterc.

2.3 Coping with dynamical bias: surrogate data

The above example demonstrates that the values of connec-
tivity measures obtained from experimental data are only
relative and the true connectivity can only be inferred in a
proper statistical testing procedure. For experimental time
series with arbitrary dynamics no analytical treatment is pos-
sible, but we can generate an empirical distribution of the
used connectivity measure for independent realisations of so-
called surrogate data. In general we can say that the sur-
rogate data are numerically generated data which preserve
all important statistical properties of the original data but
the property which is tested for. A more realistic definition
for practical purposes requires that the surrogate data repli-
cate those data properties which influence the discriminating
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statistic and are the primary source of its bias and variance
irrespectively of the presence of the tested property. Of
course, the surrogate data should not posses the tested prop-
erty which is now the dependence between the processes
{Y1(t)} and{Y2(t)}. The dynamics, in particular, the entropy
rates of the processes should be preserved. If a Gaussian
process is a suitable model for the analysed data, it is satis-
factory to generate independent realisations of a process with
the same spectrum as the original data. This can be accom-
plished using Fourier transform (FT) surrogates which are
constructed by computing the fast Fourier transform (FFT)
of a time series, randomising the phase of each frequency
component and then taking the inverse FFT. For details see
Schreiber and Schmitz(2000); Palǔs (2007) and references
therein.

3 Dynamics and connectivity in climate networks

3.1 Data

In the following study we use monthly mean values of the
near-Surface Air Temperature (SAT) from the NCEP/NCAR
reanalysis data (Kalnay et al., 1996). We include the data up
to the latitudes 87.5◦ in the grid of 2.5◦×2.5◦ which leads to
10 224 grid points or network nodes. Temporal segments of
512 months starting in January 1958 enter the FFT for gen-
erating surrogate data, however, correlations are computed
from 500 samples after discarding 6 points at each end of
time series. Due to the nonstationary character of the data,
shifting the chosen temporal segment through the available
data (1948–2010), subtle local changes can be observed in
the presented maps of network characteristics. However, the
overall picture and the findings of this study are not affected.
As the only pre-processing of the data, the annual cycle was
removed by subtracting the mean values for each month in
the year.

Since we will study possible effects of solar activity and
large-scale atmospheric circulation phenomena (North At-
lantic Oscillation, NAO; and El Nĩno Southern Oscillation,
ENSO) on climate networks, the following data will also be
used: the monthly NAO index, available with its descrip-
tion at http://www.cru.uea.ac.uk/cru/data/nao/; the SOI in-
dex, available athttp://www.cru.uea.ac.uk/cru/data/soi/, and
the solar 10.7 cm radio flux monthly means obtained from
http://www.ukssdc.ac.uk/datamenu.html.

3.2 The network

Using the above SAT anomalies (i.e. digressions from the
seasonal means, SATA in the following) we compute correla-
tion coefficientsci,j for each pair of nodesi,j = 1,...,NN =

10 224. We use the matrix of absolute correlationsCi,j =

|ci,j | in order to obtain the adjacency matrixAi,j of the bi-
nary network, defined as:Ai,j = 1 iff Ci,j > cT, otherwise
Ai,j = 0. Ai,i = 0 by definition.

The basic characterisation of connectivity of a nodei is its
degree, or degree centrality

ki =

NN∑
j=1

Ai,j , (8)

giving the number of nodes to which the nodei is connected.
In the context of climate networks, a related quantity is de-
fined, known as the area weighted connectivity

AWCi =

∑NN

j=1Ai,j cos(λj )∑NN

j=1cos(λj )
. (9)

Since the reanalysis data are defined on a grid which is reg-
ular in angular coordinates, the geographic distances of the
grid points depend on latitudeλi . AWC corrects for this de-
pendence and can be interpreted as the fraction of the Earth’s
surface area a vertex is connected to (Tsonis et al., 2006).

From the multitude of network characteristics (Boccaletti
et al., 2006; Hartman et al., 2011), in this study we will use
the key mesoscopic measure known asbetweenness central-
ity (also called theshortest path betweenness centrality) de-
fined as

BCi =

NN∑
j 6=i 6=k;j,k=1

σj,k(i)

σj,k

, (10)

whereσj,k denotes the number of all shortest paths between
verticesj andk andσj,k(i) denotes the number of the short-
est paths between the same vertices that go through the vertex
i (seeHartman et al.(2011) and references therein). This
measure is mesoscopic in the sense that it locally charac-
terises a property emerging in large-scale connectivity pat-
terns. In particular, it expresses how important the charac-
terised node is from a perspective of “information flow” from
one node to any other node. In other words, how important
this node is as a mediator between any pair of nodes.

3.3 Connectivity or dynamics?

We start the SATA climate network analysis in the line of
Donges et al.(2009a): In converting the absolute correlations
Ci,j into the binary adjacency matrixAi,j we establish the
thresholdcT so that we preserve only the “strongest” 0.5%
of all possible links. We say that the network (edge) density
is % = 0.005, which corresponds tocT = 0.74515. The re-
lated geographical distribution of AWC is mapped in Fig.4a.
The resulting pattern of the highest apparent connectivity in
the tropical oceanic, particularly in the tropical Pacific ar-
eas has been obtained in this way not only for the absolute
correlations, but also for mutual information (Donges et al.,
2009a) and also for mutual information of higher-order sym-
bolic sequences (Barreiro et al., 2011). Although several
authors proposed an explanation of this tropical connectiv-
ity patterns by the large-scale atmospheric phenomenon of
El Niño (Tsonis and Swanson, 2008; Yamasaki et al., 2008;
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Fig. 4. Area weighted connectivity for SATA climate networks with density% = 0.005 obtained by uniform thresholding of the absolute
correlations(a) and of the absolute correlationZ-scores related to independent univariate FT surrogate data(b).

Gozolchiani et al., 2008), we can ask whether the absolute
correlation or mutual information provide an unbiased esti-
mation of the climate network connectivity. Let us analyse
the dynamics of the SATA time series using the entropy rate
hG defined in Eq. (6). The entropy ratehG exactly charac-
terises the dynamics of linear Gaussian processes. A more
general version of a nonlinear entropy rate has been used for
air temperature records byvon Bloh et al.(2005), however,
their data included the annual cycle. We consider the en-
tropy ratehG suitable for this study, since the instrumental
air temperature records do not exhibit substantial nonlinear-
ity (Palǔs and Novotna, 1994). Moreover, the entropy rate
hG is able to distinguish different dynamical regimes of non-
linear systems (Palǔs, 1997).

The entropy ratehG has been computed for each node and
is mapped in Fig.5a. We can see that the lowest entropy rates
and thus the strongest dynamical memories can be found in
the SAT anomalies from the tropical, especially from the
tropical Pacific areas. Moreover, we can compute the mean
absolute correlations of the SATA time series in each node
with independent realisations of a Gaussian process with the
same entropy rate, realised as independent, univariate FT sur-
rogate data for each node’s SATA time series (Fig.5b). Again
we can see the strong correspondence between the entropy
rate of a process and the bias in its absolute correlations with
similar processes, as in Figs.1 and3. In order to better un-
derstand the effect of dynamics and, in our case, of the ge-
ographical position of the correlated nodes, we choose two
pairs of nodes and compute histograms of cross-correlations

of their independent FT surrogate data. Figure6 presents sur-
rogate cross-correlation histograms for a pair of nodes from
the low entropy rate area (orange and red lines, nodes with
the latitude 0◦, longitude 90◦ W and 10◦ S, 120◦ W) and a
pair from the high entropy rate area (green and blue lines,
nodes 60◦ N, 25◦ E and 60◦ N, 75◦ E). Considering the SATA
time series from the low entropy rate (tropical) areas, the his-
togram is wider, giving a higher probability for a random oc-
currence of large cross-correlation values even without any
real connectivity (dependence). The green and orange lines
illustrate histograms obtained from the simple FT surrogate
data, while the blue and red histograms were obtained using
the amplitude-adjusted (AA) FT surrogate data. The AAFT
surrogates are used to cope with non-Gaussianity of the anal-
ysed data (Schreiber and Schmitz, 2000). We can see that the
possible effect of non-Gaussianity is negligible in compari-
son with the effect of different dynamics, reflected by the
entropy rates.

In explanation of the apparently high connectivity in the
tropics induced by the El Niño phenomenon,Tsonis and
Swanson(2008) studied the climate networks for different
types of tropical atmospheric dynamics in so called El Niño
and La Nĩna periods. These can be defined by the values of
the Southern Oscillation Index (SOI, Sect.3.1). In this study
we have divided the sorted SOI values into three equally pop-
ulated bins. The bin around the median was discarded, while
the values in the bin over the median define the positive SOI
(ENSO+) episodes, and the bin under the median define the
negative SOI (ENSO–) episodes. Now we can construct the
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Fig. 5. SATA signal complexity measured by the Gaussian process entropy ratehG (a). Mean absolute correlations of SATA with their
independent univariate FT surrogate data(b).

Fig. 6. Histograms of cross-correlations of independent FT (green
and orange lines) and amplitude-adjusted FT (red and blue lines)
surrogate data for SATA of a pair of nodes from the low entropy
rate area (orange and red lines, nodes with the latitude 0◦, longitude
90◦ W and 10◦ S, 120◦ W) and a pair from the high entropy rate
area (green and blue lines, nodes 60◦ N, 25◦ E and 60◦ N, 75◦ E).

networks for the ENSO– and ENSO+ episodes and present
related AWC geographical distributions, however, no gener-
ally accepted methodology of network comparison has been
established yet. We can either use the approach ofDonges
et al.(2009a) and require% = 0.005 for both the conditions,

which leads to thresholdscT = 0.74052 andcT = 0.81235 for
the ENSO– and ENSO+ episodes, respectively (Fig.7). Or,
using the approach ofTsonis and Swanson(2008) we put
cT = 0.5 in both the cases which leads to% = 0.0166 and% =

0.0229 for the ENSO– and ENSO+ episodes, respectively
(Fig. 8). Consequently, we can see network-construction-
related differences between Figs.7 and8, however, in a rela-
tive sense they are similar and the main message is the same:
During the ENSO- episodes the strong AWC is confined to
the tropical Pacific region, while during the ENSO+ episodes
the strong AWC regions extend to all tropical, mainly oceanic
areas. In this conclusion we reproduce the result ofTsonis
and Swanson(2008), although our definition of ENSO± pe-
riods is not exactly the same.

Yet this result is not the answer whether AWC of the cli-
mate network obtained by thresholding the absolute corre-
lations reflects the unbiased connectivity of the climate net-
work. Unfortunately we cannot reliably estimate the entropy
rates for the number of short segments of various lengths
related to the ENSO± episodes, however, in the same way
as we can compute the absolute cross-correlations between
the nodes, we can compute for each node the mean absolute
cross-correlations of the SATA series with its independent FT
surrogates. For this purpose, we construct the surrogate data
using the whole analysed segment and consider only cross-
correlations between the observational and surrogate values
falling into the respective ENSO± episodes. These measures
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Fig. 7. Area weighted connectivity for SATA climate networks with density% = 0.005 obtained by uniform thresholding of the absolute
correlations for negative(a) and positive(b) ENSO index.

Fig. 8. Area weighted connectivity for SATA climate networks obtained by uniform thresholding of the absolute correlations using the
thresholdcT = 0.5 for negative(a) and positive(b) ENSO index.
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Fig. 9. Mean absolute correlations of SATA with their independent univariate FT surrogate data for negative(a) and positive(b) ENSO
index.

of the dynamics-related bias of the absolute correlations for
both the ENSO- and ENSO+ conditions are mapped in Fig.9.
Although the patterns in Figs.7, 8 and 9 are not exactly the
same, qualitatively they are very similar. This comparison
supports the explanation of the tropical AWC patterns and
their dependence on the ENSO mainly by the dynamics of
SATA in the tropics, rather than by connectivity in the cli-
mate network.

3.4 Connectivity adjusted to dynamics

Let us adjust the values of absolute cross-correlations rela-
tively to the dynamics of particular pairs of SATA time se-
ries. For each pair of nodesi, j let us construct one hundred
pairs of realisations of independent FFT surrogates, preserv-
ing the entropy ratehG in each respective node, and com-
pute their cross-correlations which have reasonably normal
distribution (Fig.6). We compute the mean absolute cross-
correlationC̄i,j [S] of the independent surrogate pairs, as well
as their standard deviationσi,j [S]. Then, for each absolute
cross-correlationCi,j we compute itsZ-score as

Zi,j =
Ci,j − C̄i,j [S]

σi,j [S]
. (11)

Let us construct the binary network adjacency matrix with
% = 0.005 by thresholdingZi,j instead ofCi,j . The geo-
graphical distribution of AWC for such a network is pre-
sented in Fig.4b. We can see that the patterns of maximum

connectivity are quite different from the AWC map obtained
by thresholdingCi,j (Fig.4a). The upward bias in connectiv-
ity of the tropics is compensated and the most connected ar-
eas are located in the land areas of the Northern Hemisphere
(NH). Let us remind that in both cases in Fig.4 we preserve
0.5 % of all possible links. In the upper map we have pre-
served the links with the largest absolute correlations, while
in the lower map we have preserved the links with the most
significant correlations. There is no universal critical level
for significance – each pair of nodes has its own signifi-
cance test accounting for the dynamics of each SATA time
series by constructing FFT surrogate data for each SATA se-
ries individually. Requiring% = 0.005 leads to the threshold
ZT = 18.187 which is large enough even for accounting for
the high multiplicity of statistical tests.

4 North Atlantic Oscillation and solar activity in
climate network connectivity

Looking again to the map in Fig.4b we can see that after ac-
counting for the connectivity bias due to dynamics of SATA
time series, the most connected areas moved from tropics,
from the influence of the El Niño Southern Oscillation, to
NH areas which are known to be affected by the North At-
lantic Oscillation (cf. Fig.4b and Plate 1a inMarshall et al.,
2001).
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The North Atlantic Oscillation (NAO) is a dominant pat-
tern of atmospheric circulation variability in the extratropical
Northern Hemisphere and is a major factor influencing mete-
orological variables including temperature, precipitation, oc-
currence of storms, wind strength and direction in the At-
lantic sector and surrounding continents. On the global scale,
NAO has a climate significance that rivals the Pacific ENSO
(Marshall et al., 2001). It is natural to ask what is the in-
fluence of NAO on the climate network. In full analogy to
the definition of the ENSO– and ENSO+ periods, we de-
fine NAO– and NAO+ periods using the NAO index. Since
NAO reflects synchronous variations of the pressure gradient
between the Icelandic Low and Azores High on timescales
from daily to multidecadal, the NAO index is defined as the
normalised pressure difference between the Azores and Ice-
land. The AWC geographic distributions, computed for the
networks obtained by thresholding theZ-scores, for the neg-
ative and positive NAO periods, are depicted in Fig.10a and
Fig. 10b, respectively. In these and other similar computa-
tions, the surrogate data are used in order to obtain average
reference levels. Therefore they are constructed using the
whole analysed segment, while the NAO– and NAO+ divi-
sion applies only for the original temperature data.

In Fig. 10we can see that the connectivity in the NH NAO
areas is enhanced during the NAO+ periods.Hurrell and
Dickson(2005) help us to understand our finding: “in the so-
called positive phase, higher than normal surface pressures
south of 55◦ N combine with a broad region of anomalously
low pressure throughout the Arctic and subarctic. Conse-
quently, this phase of the oscillation (NAO+) is associated
with stronger-than-average westerly winds across the mid-
dle latitudes of the Atlantic onto Europe, with anomalous
southerly flow over the eastern United States and anomalous
northerly flow across western Greenland, the Canadian Arc-
tic, and the Mediterranean. The easterly trade winds over
the subtropical North Atlantic are also enhanced during the
positive phase of the oscillation. During the negative phase
(NAO–), both the Icelandic low- and Azores high-pressure
centres are weaker-than-normal, so both the middle latitude
westerlies and the subtropical trade winds are also weak”. To
put it more simply, the stronger transport of air masses during
NAO+ periods enhances the climate network connectivity in
the areas affected by NAO.

It is also interesting to study the geographical distribution
of the betweenness centrality (BC, Fig.11) computed under
the same conditions as AWC in Fig.10. We can see that
the areas most central in the sense of information transfer, as
defined by BC, are very close to the most connected areas
according to AWC.

If we map AWC for NAO± periods, obtained from the net-
works based on thresholding the absolute correlations with-
out significance testing, we obtain both maps (not presented)
similar to the map in Fig.4a. The NAO influence is masked
by the upward biased connectivity of the tropical areas. Fig-
ure12 displays betweenness centrality for this case. Similar

patterns like in Fig.12 have been observed byDonges et al.
(2009b). In this approach the most central areas (referred
to as the backbone of the climate network byDonges et al.,
2009b) are different from the most connected (tropical) ar-
eas. It is a question what is the role of the connectivity bias
in computing BC and whether the patterns in Fig.12reflect a
physical phenomenon. In any case, constructing the network
without accounting for the dynamic bias in the connectivity
measure, neither BC nor AWC are able to uncover the NAO
influence in the Northern Hemisphere.

Solar radiation is the main energy source for the atmo-
spheric envelope of the Earth, thus the Sun has an obvi-
ous effect on climate. Nevertheless, there is a long-standing
controversy about the role of the solar variability in climate
change (see reviews byBard and Frank(2006); Gray et al.
(2010) and references therein). It is natural to ask if we can
detect any influence of variable solar activity on the climate
network topology. Interestingly,Kodera(2002) has found
that there is a solar influence on the extent of the NAO phe-
nomenon: During the periods of high solar activity the NAO
has a quite more extended spatial structure than during low
solar activity.

The F10.7 index is a measure of the solar radio flux per
unit frequency at a wavelength of 10.7 cm, near the peak of
the observed solar radio emission. It represents a measure of
diffuse, nonradiative heating of the coronal plasma trapped
by magnetic fields over active regions, and is an excellent
indicator of overall solar activity levels. Therefore we use
the F10.7 index in the same way as the ENSO and NAO in-
dices, i.e. we define F10.7– and F10.7+ periods for low and
high solar activity. The related geographical distribution of
AWC of the climate networks obtained by thresholding the
Z-scores is illustrated in Fig.13. In agreement with more
extended NAO during solar maxima (Kodera, 2002) we can
see stronger connectivity during the high solar activity pe-
riods (Fig.13b). In both the NAO+ (Fig.10b) and F10.7+
(Fig. 13b) periods, the connectivity in the areas influenced
by NAO is enhanced, however, the patterns are not identical.

5 Conclusion

We have demonstrated that dynamics of time series (e.g. re-
flected by serial correlations) has a marked influence on de-
pendence measures such as the absolute cross-correlations or
mutual information. In particular, processes with lower en-
tropy rates (i.e. processes with higher regularity, or dynam-
ical memory) tend to have their non-negative dependence
measures biased upward. We observe this phenomenon in
the case of surface air temperature anomalies from tropical
areas, which leads to falsely increased connectivity in the
part of the climate network related to the tropical, especially
tropical Pacific areas. After correcting for this bias, the most
connected areas of the climate networks move from the trop-
ical areas influenced by the El Niño Southern Oscillation to
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Fig. 10. Area weighted connectivity for SATA climate networks with density% = 0.005 obtained by thresholding of the absolute correlation
Z-scores related to independent univariate FT surrogate data for negative(a) and positive(b) NAO index.

Fig. 11. Betweenness centrality for SATA climate networks with density% = 0.005 obtained by thresholding of the absolute correlations
Z-scores related to independent univariate FT surrogate data for negative(a) and positive(b) NAO index.
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Fig. 12. Betweenness centrality for SATA climate networks with density% = 0.005 obtained by uniform thresholding of the absolute
correlations for negative(a) and positive(b) NAO index.

Fig. 13.Area weighted connectivity for SATA climate networks with density% = 0.005 obtained by thresholding of the absolute correlations
Z-scores related to independent univariate FT surrogate data for low(a) and high(b) solar activity as measured by the 10.7 cm solar radio
flux.
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the Northern Hemisphere areas dominated by the North At-
lantic Oscillation. Using this corrected connectivity measure
we are able to observe the influence of NAO and solar vari-
ability on the connectivity in the climate networks.

The correction of the bias is done by replacing the absolute
correlations by theirZ-scores based on independent Fourier
transform surrogate data, realisations of processes preserv-
ing the original spectra of the studied process and their en-
tropy rates in the Gaussian approximation. This approach
corrects for the bias due to high regularity of analysed time
series, such as SATA in the tropics. We do not claim, how-
ever, that the proposed approach to measuring connectivity
removes all possible biases. It should also be investigated
whether this compensation is generally applicable and is not
disproportionate under certain circumstances, decreasing the
actual role of El Nĩno influence on the climate network con-
nectivity. Possible distortions of SATA distributions from
Gaussianity do not play an important role when the FT sur-
rogate data are used for the null hypothesis of independence
– see the negligible effect of amplitude adjustment in the
AAFT surrogates in Fig.6. The cross-correlations of the
independent FT surrogates have reasonably normal distribu-
tion (Fig. 6), and theZ-score is a statistical quantity, suit-
able for the thresholding used to construct binary networks.
However, its applicability for weighted networks should be
carefully assessed. Therefore the choice of a proper con-
nectivity measure for constructing climate networks is still a
question of intensive research. Further research is also neces-
sary to distinguish direct from indirect connections (Nawrath
et al., 2010) as well as to assess possible causal influences
(Hlavackova-Schindler et al., 2007; Palǔs, 2007; Vejmelka
and Palǔs, 2008). Such tasks, however, may be computation-
ally intractable, since the large networks consisting of≈ 104

nodes based on correlations of≈ 102 samples lead to singu-
lar, noninvertible matrices. Decreasing of dimensionality by
searching for communities in the climate networks (Tsonis
et al., 2011) or applying some clustering methods (Vejmelka
and Palǔs, 2010) is a desirable step for both the preprocess-
ing of the multivariate atmospheric data as well as for a better
understanding of evolving spatio-temporal structures in the
climate networks.
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