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Abstract. Space weather is driven by the solar wind and
many geospace storms and substorms are natural hazards
with considerable societal impact. The dynamical and sta-
tistical features of these events are complicated because of
the turbulent nature of their driver, the solar wind. Large-
scale data sets of geospace storms and substorms are anal-
ysed for this study of the inherent statistical characteristics
of extreme events in geospace. The detrended fluctuation
analysis, based on the autocorrelation functions, is used and
yields scaling behavior representing long-term correlations.
The scaling function is represented by two exponents, arising
due mainly to the presence of the largely coherent internal
dynamics of the magnetosphere and the turbulent nature of
the solar wind driver.

1 Introduction

The inherent dynamical and statistical properties of complex
phenomena in geosciences are critical to the understanding
of extreme events, in particular those leading to natural haz-
ards. Many complex driven systems such as the coupled solar
wind – magnetosphere system, are far from equilibrium and
the commonly used techniques of statistical analysis can not
be applied readily, and the nonlinear dynamics and complex-
ity science provide a natural framework for the study of such
systems, in particular in the study of the magnetosphere and
space weather (Sharma, 1995; Klimas et al., 1996; Consolini
and Chang, 2001; Zelenyi and Milovanov, 2004). The im-
portance of this approach arises from the recognition that dy-
namical behaviour, including extreme events, are not isolable
phenomena but must be understood in terms of interactions
among different components, within and without the specific
system.
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It should be noted that extreme events are of both natural
or anthropogenic origin, and are ubiquitous mainly because
of their damaging consequences. However, there is no single
definition, at least in the scientific sense, of extreme events
(Jentsch et al., 2006). The interpretation of the degree of ex-
tremeness often involves the attributes of infrequent occur-
rence, low-probability or unexpected nature, strong impact,
etc. In general, it is not clear that extreme events can be
characterized by one or even a few measures. However, it is
clear that extreme events are rare and in the distribution of
events of all magnitudes they are identified as those outside
the bulk, viz. the tail of the distribution. A main objective in
the analysis of extreme events thus relates directly to the un-
derstanding of the distribution function of the events, in par-
ticular the outliers. Another feature of extreme events is that
they occur suddenly and a well known characteristic of sud-
den transitions, such as phase transitions, is the emergence of
long-range order, i.e. the value of a physical variable at an ar-
bitrary point is correlated with its value at a point located far
away (Dixon et al., 1997). Thus, long-range correlations are
important indicators of the development of extreme events.
In view of these features the dynamical and statistical ap-
proaches of complexiy science provide a natural framework
for the study of extreme events (Sharma et al., 2010).

The dynamical modeling and prediction based on the re-
construction of dynamics from observational time series data
has been used extensively in many natural and laboratory
systems (Abarbanel et al., 1993; Kantz and Schrieber, 1997).
This approach, based on the embedding theorem, has enabled
the reconstruction of dynamical models from observational
data, independent of modeling assumptions. In the studies
of the dynamics of the geospace environment this approach
has provided the first predictive models of geomagnetic ac-
tivity and space weather, enabled by the extensive data from
ground-based and space-borne instruments. These studies,
focused on the dynamical behavior, led to the earliest space
weather forecasting tools (Sharma, 1995).
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The nonequilibrium nature of large scale open systems
limits the predictive capability of the dynamical models. In
particular, for extreme events the statistical properties are
therefore essential for deriving important properties such as
the probabilities of recurrence. Recent developments in the
studies using the data of many natural phenomena such as
floods, climate, earthquakes, etc. have shown long-range in-
teractions to be an inherent feature (Bunde et al., 2004; Alt-
man and Kantz, 2005). The long-range correlations in cli-
mate data is identified as leading to many features such as the
clustering of extreme events (Bunde et al., 2005) and studies
of the data sets of other phenomena are needed to understand
the nature of extreme events in general.

In this paper we use the detrended fluctuation analysis to
study the nature of long-range correlations in the coupled so-
lar wind – magnetosphere system. In the next section the
essential features of space weather and the relevant geospace
data are described. The detrended fluctuation analysis with
autocorrelation functions computed from large scale data sets
of geospace are described in Sect. 3. The main results of the
paper are summarized in Sect. 4.

2 Extreme events in space weather

The extreme events in space weather occur during the pe-
riods when the magnetosphere is strongly driven by the
solar wind, which brings the energetic plasma and fields
from the solar eruptive events such as coronal mass ejec-
tions to geospace. Many extreme space weather events in
the recent past have caused serious damages to technologi-
cal systems such as satellites, power transmission systems,
etc. Some well known examples are: the collapse of Hydro
Quebec power grid during the great geomagnetic storm of
March 1989, the Canadian telecommunication satellite out-
age during a period of enhanced energetic electron fluxes at
geosynchronous orbit in January 1994, the electrical break-
downs and satellite malfunctions during the magnetic cloud
event of July 2000 (Bastille Day event), the disabling of GPS
based aviation system during the severe space weather events
of October–November 2003 (Halloween Storms), the distur-
bances in commercial airline traffic during several days of
enhanced geomagnetic activity in January 2005, etc. (NRC,
2008). Although these events may not seem devastating by
themselves, a confluence of natural hazards in the different
regions of the environment of the Earth can make our soci-
ety and its technological systems highly vulnerable because
of their interconnectedness (Baker and Allen, 2000; NRC,
2008). In this aspect the nonlinear dynamical framework for
the study of the extreme events become directly relevant to
the extended Earth and space system.

The modeling of space weather events rely strongly on the
availablity of good geospace data and among the most widely
used data are the geomagnetic indices (Mayaud, 1980). The
data from ground magnetometer stations around the globe

have been monitored for more than one and half centuries
and these data have been used to compute the geomagnetic
indices (Mayaud, 1980; Love, 2008). Among the many in-
dices the auroral electrojet indices (AE, AL and AU) char-
acterize the substorms, and the ring current index Dst repre-
sents the geomagnetic or space storms. The substorms, with
a characteristic time of∼ 1 h, are episodic in nature and are
the essential elements of magnetospheric dynamics. The au-
roral electrojet indices provide the detailed dynamical fea-
tures of the global aspects of substorms. On the other hand,
the geomagnetic storms, with a typical time scale of∼10 h,
are the more global space weather disturbances during which
intense substorms occur.

The auroral electrojet indices are computed from the hor-
izontal component of the magnetic field disturbances at a
dozen or so ground magnetometer stations distributed around
the globe and are readily available with 1 min or longer
resolution. These indices reflect the strengths of the large
scale ionospheric currents driven by the reconfiguration of
the magnetosphere during substorms. They are highly vari-
able during strongly disturbed periods, with peak values of
1000–2000 nT during extreme events cited earlier.

The substorms with AL index values less than−1000 nT
are considered strong disturbances and these will be con-
sidered as extreme events for this study. The geomagnetic
storms with Dst values less than−100 nT are referred to as
intense storms (Gonzalez et al., 1994). The substorms, with
typical time scales of an hour, occur during the storms, with
time scales of 10 h or longer. Although the big substorms
are accompanied by intense storms the relationships between
storms and substorms are not fully resolved (Kamide et al.,
1998; Daglis et al., 2003; Sharma et al., 2003). In this study
the AE/AL data will be used for the analysis of extreme
events in space weather.

The AE index at 1 min resolution for a highly disturbed
period, viz. January 1983, is shown in Fig.1. It should be
noted that AE (= AU–AL) has positive values and tracks the
AL values closely since AU values are usually not large.
The episodic and high variability of the substorms are evi-
dent in the sharp peaks of AE whose distribution reflect the
nonequilibrium nature of the phenomenon. In this case there
are many substorms with AE values above 1000 nT and the
corresponding Dst values were close to−100 nT. As is the
case with extreme events in general, there is no single mea-
sure of the exteme events in space weather, For example, the
Dst for the well known “Carrington” storm of 1–2 Septem-
ber 1859 is estimated to be−1760 nT (Tsurutani et al., 2003),
and its effects were felt across the globe. The more recent
Bastille Day event of 14–16 July 2000 with a Dst minimum
of −300 nT (http://wdc.kugi.kyoto-u.ac.jp/dstfinal/200007/
index.html) was an extreme space weather event which led
to significant damages to satellites and other technological
infrastructure. It should be emphasized here that the main
objective in the studies of extreme events is the nature of their
distribution.
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Fig. 1. The auroral electrojet index AE for January 1983 at 1 min
resolution. The sharp spikes represent substorms and the strong
substorms usually occur during space storms.

For systems with a high degree of complexity, such as the
magnetosphere, functions capable of characterizing the in-
herent features are needed to develop appropriate models.

The auto-correlation function, which is widely used in
these studies, is essentially a linear correlation function.
Given a time series datax(ti) at N points (ti,i = 1,N), the
auto-correlation functionC(τ) is defined as a function of the
delay timeτ :

C(τ) =

N−τ∑
i=1

x(ti)x(ti +τ) (1)

For the AE/AL dataC(τ) yields a correlation time (defined
as the time at which the value ofC(τ) reduces to half of its
peak value) of 50 min (Roberts, 1991). However, the time
scale representing the development of substorms is expected
to be much shorter than its typical duration of 1 h.

The mutual information function (Fraser and Swinney,
1986; Abarbanel et al., 1993) is a measure of correlations
in such systems and provides a suitable generalization of the
auto-correlation function for nonlinear systems. The infor-
mation theoretic basis of the mutual information function
makes it a reliable representation of the linear and nonlinear
dependences and has been used successfully in the studies
of the magnetospheric dynamics to isolate the characteristics
inherent in the data (Chen et al., 2008).

The average mutual information of two given time series
datax(ti) and y(ti) at N points (ti,i = 1,N) is computed
from the corresponding probability functions. The probabil-
ities pi(xi) andpj (yj ), and the joint probabilitypij (xi,yj )

are computed from the time series data, and the average mu-
tual information functionI (x,y) is then defined as:

I (x,y)=

N∑
i=1

N∑
j=1

pij (xi,yj )log(pij (xi,yj )/pi(xi)pj (yj )) (2)

Fig. 2. The mutual information function of the auroral electrojet
index AE for January 1983 at 1 min resolution (Fig. 1). The charac-
teristic time, corresponding to half the peak value, is∼10 min.

In the case of a single time seriesx(ti) the time-delay
variablex(ti −τ) replacesy(ti), and the mutual information
function I (τ ) is expressed as a function of the delay time
τ . This function is the nonlinear counterpart of the auto-
correlation function, and includes correlations of all orders.

The mutual information function of the AE data for Jan-
uary 1983 (Fig.1) is shown in Fig.2. The characteristic
time associated with the average mutual information func-
tion is usually taken as the delay time corresponding to half
the peak value and this yields∼10 min. This value can be
used as the time delay parameter in many studies such as
the reconstruction of magnetospheric dynamics (Sharma et
al., 1993; Chen et al., 2008). In general a system has a time
scale characterizing the inherent correlations and the mutual
information function shows that for the magnetosphere this
basic time scale is∼10 min. For the magnetosphere the Lya-
punov exponent computed from the the AL time series is also
∼10 min (Vassiliadis et al., 1991). Thus the long-range cor-
relations for the magnetosphere thus would emerge on time
scales much longer than∼10 min.

Both the autocorrelation functionC(τ) and mutual infor-
mation functionI (τ ) reflect the inherent correlations and can
be used to derive other physical quantities. In the studies of
long-range correlations the auto-correlation function is the
most widely used function, e.g.Bunde et al.(2005), and the
following analysis of the long-range correlations is based on
this function.

3 Detrended fluctuation analysis of AL index

The long-range correlations in a system are analyzed using
the scaling behavior of correlation functions. However this
requires careful analysis as trends in the data need to be
eliminated first so that the long-range correlations as gen-
uine features can be determined. The trends in data are usu-
ally caused by external effects, viz. they can be due to the
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Fig. 3. Autocorrelation function of long-range correlated data
(Makse et al., 1996). The correlations are weaker for higher val-
ues of the exponent (0.2, 0.4, 0.6 and 0.8).

driver of the system. Thus, in the case of the solar wind-
magnetosphere system, the long term trends in the solar wind
can potentially show features in the magnetosphere resem-
bling intrinsic long-range correlaions. Among the techniques
for removing trends in the data, the detrended fluctuation
analysis (Peng et al., 1994; Kantelhardt et al., 2001; Gao et
al., 2006) is widely used.

Recent advances in the studies of extreme events using the
detrended fluctuation analysis have shown the role of long-
term memory in the development of extreme events. For ex-
ample, when the memory function is represented by the auto-
correlation function that decays algebraically with an expo-
nent, the probability density function of the return intervals
between events become a stretched exponential characterized
by the same exponent as the autocorrelation function (Bunde
et al., 2005). In the case of uncorrelated data the distribu-
tion decays exponentially. Also, the return intervals them-
selves are long-term correlated, again characterized by the
same characteristic exponent. These results have provided
an approach to the understanding of the clustering of events,
leading to the extreme cases. In the systems in which the
linear correlations vanish long-term memory exists only in
the form of nonlinear correlations, and both the probability
distribution function of the return intervals and their auto-
correlation function decay as a power law (Bogachev et al.,
2007).

The use of auto-correlation function in the detrended fluc-
tuation analysis has the advantage that the scaling rela-
tion can be derived analytically (Taqqu et al., 1995), thus

 

Fig. 4. Average mutual information functionI (τ ) of long-range
correlated data for different values of the exponent (Makse et al.,
1996). The higher the values of the exponent, the weaker are the
correlations.

providing a benchmark in the studies using more complicated
functions. In the ideal case when the data is uncorrelated
C(τ) vanishes forτ > 0. Usually it decays exponentially
with a characteristic timeτc asC(τ) ∼ exp(−τ/τc). In this
case a plot of lnC(τ) vs. τ will show a linear dependence.
In the presence of long-range correlationsC(τ) decays as a
power law, viz.C(τ) ∼ τ−γ , with a linear dependence in a
lnC(τ) vs. ln(τ ) plot.

The nature of auto-correlation functions in a long-term
correlated data can be examined by using the data gener-
ated by modified Fourier filtering of white noise (Makse et
al., 1996). To obtain such a data-set a sequence of random
numbers is generated and then its Fourier components fil-
tered through power law filters. The auto-correlation func-
tions for the data generated with different values of the power
law exponent exponentγ are shown in Fig.3. The power law
behavior expected in the lnC(τ) vs. ln(τ ) plots for the long-
range correlation are clearly seen forγ = 0.2, 0.4, 0.6 and
0.8. The dependence of the values of the correlation function
for different exponents is evident in this figure.

The mutual information functionI (τ ), defined by Eq. (2)
are computed for the same data set and are shown in Fig.4. In
this case again the long-term correlation structure is clearly
depicted byI(τ ) for all values of the exponentγ . This func-
tion however, unlike the autocorrelation function, encom-
passes all nonlinearities, and provides smoother variations
over a wider range of scales.
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Fig. 5. Fluctuation and detrended fluctuation analysis of 1-h aver-
aged AL index data for 1978–1988. The functionF(L) shows a
break in the scaling near 300 min.

4 Long-range correlations in AL index data

The large database of the auroral electrojet index AL pro-
vides a suitable data set for the studies of long-range corre-
lations in the magnetosphere and space weather. In order to
analyze the details of the correlations in AL data different
data sets with different resolutions are used. The first case
is the hourly averaged AL for the period 1978–1988, which
covers a typical solar cycle of 11 yr.

The detrended fluctuation analysis of the AL time series
data is accomplished in four steps (Kantelhardt et al., 2001).
The first step computes the profile of the data set as:

Y (i) =

i∑
k=1

xk− < x > (3)

The subtraction of the global mean< x > of the dataset how-
ever is not essential as the third step, described below, re-
moves this and other trends. In the second step the profile
Y (i) is divided intoNL = N/L non-overlapping segments
of lengthL. In order to avoid a loss of data in the caseN

is not a multiple ofL, the same process is repeated starting
from the other end of the data set, yielding 2NL segments.
The third step is where the trends in the data are removed by
defining a local trendqj (i) for each segmentj by a fitting
procedure, e.g. a least-squares fit. The detrended time series
for the segment durationL is then defined as:

YL(i) = Y (i)−qj (i) (4)

The local trend is usually represented by a polynomial and in
this study a quadratic function is used, and thus corresponds

Fig. 6. Detrended fluctuation analysis of 5-min averaged data of AL
for 1978. The scaling ofF(L) is similar to the case of 1-h averafed
data (Fig. 5). The fluctuation analysis (FA) shows a different scaling
exponent forL ∼ 300 min.

to DFA2 of Kantelhardt et al.(2001). In the fourth step the
variance of each segmentYL(i) is calculated:

F 2
L(j) = < Y 2

L(i) > =
1

L

L∑
i=1

Y 2
L[(j − 1)L + i] (5)

The detrended fluctuation functionF(L) is then obtained
as

F 2(L) =
1

NL

2NL∑
i=1

F 2
L (6)

If the original data are long–range correlated the fluctuation
function is expected to have a scaling as

F(L) ∝ Lα. (7)

For uncorrelated or short-range correlated data, the exponent
is 0.5 and larger values show the presence of long-range-
correlations (Kantelhardt et al., 2001).

The detrended fluctuation analysis of the 1 h averaged AL
data for 1978–1988 yields a scaling functionF(L) shown in
Fig. 5. Also shown in this figure is the function using the
fluctuation analysis (FA) followingPeng et al.(1994) and
Karnel and Brendel(1993). The DFA functionF(L) yields
an exponent'0.87, thus showing long-range correlations. It
should be noted that this data is hourly averaged and as noted
earlier, the substorms last typically an hour and higher reso-
lution data are required to confirm this result. The detrended
fluctuation analysis using 5 min averaged data yield a similar
picture, as shown in Fig.6. The exponent in this case is 0.90,
very close to the case of 1-h averaged data. Thus the scal-
ing of theF(L) in both the 1 h and 5 min averaged datasets
show the presence of long-range correlations in the AL data,
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and consequently in the magnetospheric dynamics and space
weather. In both the cases there is a break in the function
F(L) at 200–300 min and similar results are obtained in the
case of other data sets of AL for different periods. More de-
tailed studies are needed to reach a clear result on the nature
of this break in the slope of the fluctuation functionF(L).

5 Conclusions

Among the different components of space weather, the mag-
netosphere plays a critical role. The strong driving by the
solar wind is the origin of many extreme geomagnetic events
such as geospace storms and substorms, which are poten-
tial natural hazards. A database of substorms consisting
of more than 5 million events was compiled for this study
of the inherent statistical characteristics of extreme events
in geospace. The detrended fluctuation analysis with auto-
correlation functions is used to obtain the scaling exponents
and they show the presence of long-range correlations, but
with a break in the scaling. The existence of two exponents
due to the break in the scaling ofF(L) is likely to be due to
the turbulent nature of the solar wind.

The autocorrelation function, used in the detrended fluc-
tuation analysis, are widely used as the estimate of the cor-
relations in the data. However for most complex systems
the linear and nonlinear correlations are essential for the de-
termination of their inherent statistical characteristics. The
mutual information function, discussed in Sect. 2, is an in-
formation theoretic measure and has the important feature
that it encompasses all orders of correlations. This function
is thus better suited for the study of long-range correlations
and related properties (Sharma and Veeramani, 2011).
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