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Abstract. A fault with two asperities is modelled as a sys- deeper understanding of the long-term behaviour of the sys-
tem made of two blocks coupled by a spring and sliding ontem itself.
a plane under the same values of static and dynamic friction. Low-order analogs of seismic sources can be represented
An analytical solution is given for the simultaneous motion as spring-block systems and were first introducedBhy-
of the blocks and the corresponding orbits are plotted in theridge and Knopof{1967. Different numbers of blocks and
phase space. It is proven that, whichever the initial state isfriction laws have been considered by following auth@wg-(
the long-term behaviour of the system is one of an infiniteerlee 1978 Dieterich 1981 Ruing 1983 Rice and Tse
number of limit cycles, characterized by a particular pattern1986 Gu and Wong 1991 Belardinelli and Belardinelli
of forces. The region where the system is located when the 996 Erickson et al.2008 showing that spring-block mod-
blocks are stationary can be divided into narrow stripes correels can simulate several features of seismic actividy (
sponding to different orbits of the points belonging to them. eterich 1972 Rundle and Jacksod977 Cohen 1977 Cao
This implies that the system is sensitive to perturbations ancand Aki, 1984 1986 Gu et al, 1984 Carlson and Langer
has relevant implications for a fault, which is subject to stress1989ab; Huang and Turcottel 990k Carlson et al.1994).
transfers from earthquakes generated by neighbouring faultSpring-block systems are nonlinear, dissipative, piecewise-
In this case, the fault may experience a larger earthquakesmooth dynamical systemdi@Bernardo et a}.2008.
with the simultaneous failure of the two asperities, which  The simplest fault system is made of two distinct fault
restores a stress distribution compatible with periodic be-segments or of two asperities on the same fault and can be
haviour. The seismic moment associated with simultaneousimulated by two coupled blocks pulled at constant velocity.
asperity failure is always greater than the maximum valueTwo-block systems were considered Kyssbaum and Ru-
that can be released in a limit cycle. For strongly coupledina (1987; Huang and Turcott¢1990a 1992; McCloskey
asperities, the moment can be several times larger. and Bean(1992); de Sousa Vieirg1995; He (2003. Gal-
vanetto(2009 studied a similar system made of two blocks
connected by a spring and placed on a moving belt.
Turcotte(1997 showed numerically that a symmetric two-
1 Introduction block system can exhibit limit cycles in the phase space, rep-
resenting the alternate motion of the blockSragoni and
The long-term behaviour of seismic sources can be usefulysantini(2010 solved analytically the equations for the mo-
studied by means of dynamical models with a finite numbertion of one block at a time, showing that there exists a region
of degrees of freedom. Such models include the essential feg in the phase space, from which the system enters imme-
tures of seismic sources, i.e. a stick-slip mechanism activatediately a limit cycle. There is an infinite number of such
by applied forces, but avoid the detailed field description of cycles, the shapes of which are determined by the position of
continuum mechanics. The advantage is that we can followthe representative point ib. Such a position is related to the
the evolution of the system in the phase space and obtain mhomogeneity of the stress applied to the fault.
The present paper completes the study of Dragoni and
Santini (2010) by considering the evolution of the system

Correspondence tdS. Santini when the representative point is outsitl@nd showing that
BY (santini@fis.uniurb.it) in this case the motion of one block can trigger the motion
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Y+(1+a)Y =e+aX (6)

when the blocks are moving. Here dots indicate differentia-
tion with respect tdr".

We study the evolution of the system in the phase space
and precisely on the plan&Y, where the representative
point of the system is located for most time. The projec-
tion of the phase space on this plane is the unit square with
vertices af(0,0), (1,0), (1,1), (0,1). The conditions for the
onset of motion of blocks 1 and 2 are represented respec-

tively by lines
1 1
y=""%x_= v
o o
Fig. 1. The two-block system. o 1
Y= X ®
1+« 1+«

of the other. We present an analytical solution for the simul-that we call line 1 and line 2. Accordingly, the points cor-
taneous motion of the blocks and show that it represents théesponding to stationary blocks belong to a quadrilatgral
occurrence of the largest earthquakes that can be producétdith vertices at pointg0,0), (A,0), (1,1), (0, A), where

by the fault. 1
=1 ©)
+o
2 The model As initial point of the orbit, we choose a poiny =

(Xo,Yo) € Q. When the blocks are stationary, the orbit is

We model the fault as a system made of two blocks havinga segment of line
equal mass: and placed on a horizontal plane (Fig. 1). Each ,, _

. . . i Y=X+p (10)
block is connected by a horizontal spring of rigidiky to
a driving mechanism moving at constant velocityn the ~ Where
horizont_al diref:ti_on. The blocks are connected to each other, _ y, — x, —A<p<A (11)
by a spring of rigidityK .. We assume that the motion of each ) . i
block is resisted by a static frictiofs and a dynamic friction !N Dragoni and Santinf2010 we defined the sets

fd- We define Li={Pye Q;—b<p < —a)} (12)

=10 gt 1) L2={PocQia<p<b) (13)
fs where

where O< ¢ <1 ande > 0. It is shown below that the seis- o 1+« 1—¢

mological application of the model requires- 1/2. “=100 b= 20 U= 21+a (14)

Letx(¢) andy(¢) be the extensions of the springs connect- With a+b = U. If Py belongs toL = LU Ly, the system

ing respectively blocks 1 and 2 to the driver as functions of. . e g .
. ) . . " is in a limit cycle or enters it immediately. Such cycles are
timet. We introduce the nondimensional quantities

characterized by the alternate motion of the blocks with an
Kx Ky K /Km amountU of slip. In the next section we consider the general
- Y=— T=\/—1t, V= v (2)  solution of the equations of motion, including the case when
fs fs m fs .

the blocks move simultaneously.
If f1and f> are the forces applied to blocks 1 and 2 respec- Observations show that the direction of tectonic stress ap-

X =

tively, we define nondimensional forces plied to a fault is stable: following fault slip, a decrease in
f f shear stress is observed, but not an inversion of its direc-

F1=>—, Fp=*= 3) tion. The seismological application of the model requires
fs fs thenFy <0andF, <0, or

In nondimensional form, the equations of motion of the SYs-y - 0, Y>0 (15)

tem are - -

. . At the beginning of a slip event, the representative point of
X=0, Y=0 (4)  the system belongs to line 1 or 2. For points belonging to
such lines, the smallest value &fandY respectively isA.
Conditions (5) are then satisfied it — U > 0, whence: >

X+A+a)X=€+aY (5)  1/2from Egs. §) and (14).

when the blocks are stationary and

Nonlin. Processes Geophys., 18, 709% 2011 www.nonlin-processes-geophys.net/18/709/2011/
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3 Motion of a single block X=X, Y=Y, X=V, Y=0 (23)
A block can move from a stationary state or after a segment/vhere)_( andY are related by Eq8). The solution is
in which it moves simultaneously to the other block. The = = - = =
. 4 ) - 2«—X-Y V. X-Y
solution for the former case was giverDmagoni and Santini X (7) = ¢ — cosT + —sinT + co2T
(2010. More generally, for the motion of block 1 we assume _ 2 2
as initial conditions +% SinQT (24)
X(0) =X, X0)=V (16)
During the motion of block 1Y has a constant valug. Y(T) = e— ZE_X_YcosT+KSinT_ — cosT
Hence the motion is solution of Ep)(with ¥ =Y 2 2
v .
Y _ Y Vo ———sinQT (25)
X(T)=€+a (%= comoT + ~sinwT (17) 2Q
w? w? w
where
where
Q=+v1+2a (26)
w=vlte (18) In order to find which block stops earlier and at what time,
The velocityX (7') vanishes wheff is equal to we must solve the equations
1 Vv X=0, Y=0 (27)
1= —arctan% (29)
1) w?X —e—aY giving the trigonometric equations
'Il;he point at which the motion stops is th&n= X (71), Y = (2¢ — X — V)sinT + V cosT — (X — V) QsinQT
The solution for the motion of block 2 is analogous. We T V02T =0 (28)
assume as initial conditions o ~ o
_ . _ (2e =X -Y)sinT +VcosT + (X —Y)QsinQT
Y(0) =7, Y=V (20)  _ Veoser =0 (29)

During the motion of block 2X has a constant valug.
Hence the motion is solution of E¢f)(with X = X:

o

The velocityY (T) vanishes wheff is equal to

6+ai
C()2

6+ai
w2

Y —

v
Y(T)= )co&uT—|——sma)T (21)
w

1 oV
T = —arctan———— 22
2= w?Y —e—aX (22)

The point at which the motion stops is theh= X, ¥ =
Y(To).

4  Simultaneous block motion

It may happen that, while a block is moving, the condition
for the motion of the other block is attained. In this case we
have the simultaneous motion of the two blocks and Eg)s. (
and @) must be solved simultaneously. Two different initial
conditions are possible.

If the motion of block 1 triggers that of block 2, initial
conditions are

www.nonlin-processes-geophys.net/18/709/2011/

that must be solved numerically. If we cdll and T, the
smallest positive solutions of EqQ28) and @9) respectively,
the duration of simultaneous block motion is

Tszmin(Tx, Tv) (30)

The result depends on the valueafthere exists a positive
numberc such thatls = T, or Ts= T, according to whether
p <—corp>—c (AppendixA).

If the motion of block 2 triggers that of block 1, initial
conditions are

X=X, Y=Y, X=0, Y=V (31)
whereX andY are related by Eq7). The solution is
2c—X-Y V. X —Y
X(T) = €= =5 ——cosT + Z sinT + cosQT
1%
——sinQT 32
) (32)
e—X—Y V. -
Y(T)=€¢— > cosT~|—EsmT— coeT
+ v sSinQT (33)
2Q

Equations analogous t@8§), (29) and B0) must be solved in
order to find which block stops earlier and at what time.

Nonlin. Processes Geophys., 78,7720+1
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Fig. 2. Projection of the phase space in the plafié: the regionQ
(@ =1) and its subsetg & 0.7).

5 Orbits in the phase space
The evolution of the system depends on the positiowpf

It results thatQ can be divided into several subsets corre-
sponding to different orbits of the points belonging to them.

These subsets are narrow stripes parallel to the major diago-

nal of Q (Fig. 2). Thanks to the symmetry of the problem,
we may consider only the cage< 0. Accordingly, the part
of Q below the diagonal can be divided into the following
subsets:

J1={Pre Q;—c<p<0} (34)
Ki={Poe Q;—a<p<—c} (35)
Li={Poe Q;—b<p<-—a)} (36)
Mi1={Ppe Q;—U+c< p<—b} (37)
N1={Pye Q;-U <p<—-U-+c} (38)
O1={Poe Q;—U—c<p<-U} (39)
Ri={PoeQ:-U—-a<p<-U~-c} (40)
S1={Poc Q;—A<p<-U~—a} (41)

M. Dragoni and S. Santini: Conditions for large earthquakes

Casep =0. In this particular case the coupling spring is
undeformed and there is no coupling of the blocks. The orbit
begins as a segment of the major diagonalpof When it
reaches the poin?; = (1, 1), the blocks move together. The
initial conditions for block motion are then

X=Y=1, X=Y=0 (42)
From either Egs.44)—(25) or (32)—(33) it follows
X(T)=Y(T)=e+ (1—e)cosT (43)

The solution coincides with that of a single block. The rep-
resentative point goes along the same line backward until
T = 7, when the blocks stop. The coordinates of the arrest
point areX, = Yo = 2¢ — 1. The limit cycle is then the line
segment with end pointd, 1) and(X>, Y2). The states with

p =0 are unstable, because an arbitrarily small perturbation
will move the representative point of the system to regipn

or J», whence the point will follow a completely different
orbit. This is particularly true for a fault, which can not be
considered an isolated system.

CasePp € J1. The orbit intercepts line 1 & and block 1
moves. While block 1 is moving, the orbit intercepts line 2 at
P»: the motion of block 1 triggers the motion of block 2. The
orbit leaves) and becomes curvilinear. For a certain interval
of time the blocks move simultaneously, then block 2 stops
at P3. The coordinates oP3 must be calculated numerically
(AppendixA). Block 1 continues its motion to poiriy. For
most values ofp, P4 is in K1 (Fig. 3a). Only orbits withp
very close to 0 come back th, but with a smaller value of
p (Fig. 3b). From here they readty.

CasePy € K1. The orbit is similar to that previously de-
scribed up to poinP2, when the motion of block 1 triggers
the motion of block 2, the orbit leave® and becomes curvi-
linear. However, in the present case block 1 stops earlier than
block 2: this occurs at poinPs. The coordinates of3 must
be calculated numerically (Appendi). Block 2 continues
it motion to pointPy4. This point is inL1 and the orbit enters
a limit cycle (Fig. 3c).

CasePye Lj. Itis the case considered Dragoni and
Santini(2010. The orbit enters immediately a limit cycle,
the shape of which is determined by the valug of

CasePy € M. The orbit intercepts line 1 a&; and block
1 moves to pointP,, which belongs to the regiokio. Hence
the orbit continues as an orbit with> 0, that we do not need
to consider due to the symmetry.

CasePy € N1. The orbit intercepts line 1 a®; and block
1 moves to pointP,, which belongs to the regiosk. Hence
the orbit continues as an orbit wigh> 0.

CasePy € 01. The orbit intercepts line 1 a4 and block

The part above the diagonal can be divided symmetricallyl moves to pointP,, which belongs to the regiosy. Hence

into subsetsly, K2, Lo, M2, N2, O2, Rz, S». We next con-
sider the evolution of the system fro#y to another point
belonging toQ through a slip event which may involve one
or both blocks.

Nonlin. Processes Geophys., 18, 709% 2011

the orbit continues as described above.

CasePp € R1. The orbit intercepts line 1 & and block
1 moves to pointP,, which belongs to the regioki;. Hence
the orbit continues as described above.

www.nonlin-processes-geophys.net/18/709/2011/
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Fig. 3. Orbits of the system in the casés) p =—0.02, (b) p=
—0.005 and(c) p =—0.07 ¢ =0.7,a =1).
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Fig. 4. Functiong (p) giving the position of the system i@ after a
slipevent € =0.7,« =1).

CasePp € S1. This case is present only whent-U < A.
Using Egs. 9) and (L4), we find thatS exists only ife is
greater than

_ 144a
~ 2(1+3a)

As o varies between 0 ando, we have 12 <¢g < 2/3.
Hences; is always present € > 2/3. Itis easy to see that, if
Pp € S1, thenP; € L1 whence the system enters a limit cycle.

In summary, the position of the representative point of the
system in the phase space after a slip event can be expressed
as

€0 (44)

Yo— X2, p=0
q:{Y4—X4, O<|pl<a (45)
Yo—X2, a<|p|<A
In terms ofp,
p p=0
g(p)=1 f(p), O<l|pl<a (46)
ptU, Fa<p<FA

where f (p) is calculated numerically from the Appendix
The functiong (p) is shown in Fig. 4 in the case=1 and
€ =0.7, entailingc ~0.055,a =0.1,6=0.2,U =0.3, A=
0.5. Subsets; is present, sinceg =5/8. The function is
discontinuous ap = +a and=c.

Figure 5 shows a graph af b, U andA as functions ofy,
in the case =0.7. The distance between the curves shows
how the thicknesses of the different subsets change as func-
tions ofw. It is evident that a given poin®y may belong to
different subsets of) according to the value af.

Nonlin. Processes Geophys., 78,7720+1
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Fig. 5. The valuest, b, U and A of | p| as functions of the coupling
degreax (e =0.7).

6 Force distribution

The evolution of the system is controlled by the valueof

M. Dragoni and S. Santini: Conditions for large earthquakes

|AF]

o

Fig. 6. The force difference\ F as a function ofr (¢ =0.7).

simulates the shear stress distribution on the equivalent fault,
implying that slightly different stress distributions may result
in completely different seismic sequences.

If we admit that the system is subject to force perturba-

expressing the difference of forces exerted on the blocks actions, the states of the system are unstable in the proximity

cording to the equatiorDragoni and Santin2010

AF=142a)p (47)

Its magnitudelA F| is plotted in Fig. 6 as a function af.
Curves in this graph are obtained from E4jr), with p equal
toa, b, U, U +a and A respectively. The graph shows how
the position of the representative pointghis related to the
distribution of forces on blocks. For instancepit=1, the
admissible force difference for a limit cycle ranges from 30
to 60 % of static friction. The interval shrinks rapidly as
increases: in the case of strong couplingF| must be close
to 2(1—e¢).

In all cases, the long-term destination of the system is on
of the infinite limit cycles described iBragoni and Santini
(2010. Such cycles represent the alternate motion of the tw
blocks and are reached when the system enters the subset
This implies that the force difference has values in a particu
lar range, given by Eq4({) with a < |p| < b.

If |p| is smaller (O< |p| <a), |AF]| is small as well.

In this case, the system experiences a simultaneous motion

of blocks which shifts the representative point to a differ-
ent subset oD, characterized by larger values pf from
which it can usually reach a limit cycle. However,| ff| is
very small, two such events are necessary|plfis large

(b <|pl < U +a) so that|/AF| is large, the system must go
through a state in whiciA F| is small before it can reach.
But if |p| > U +a the system reachds by the motion of a
single block.

The discontinuities in the function(p) at p = +a and
=+c indicate that, in the proximity of these points, small dif-
ferences in the force distribution may entail very different
evolutions of the system. The force distribution on blocks

Nonlin. Processes Geophys., 18, 709% 2011

of those points. In particular, the system can be driven out of
L. This is easier as the degree of couplings larger, since
the interval[a,b] becomes narrower. The system will come
back toL only after a simultaneous motion of the blocks.

7 Seismic moment release

If we suppose that the displacement of a block corresponds
to the slip of a fault asperity, we can calculate the associ-
ated seismic moment releage Dragoni and Santinji2010

showed that each limit cycle is characterized by two seismic
events separated by interseismic periods of variable duration.

&ach seismic event releases a momépt corresponding to

an amounU of slip of a single asperity. In the particular case
hen one interseismic period is equal to zero, we may assert
that a single event with moment releas@takes place in

the cycle. In fact this is generated by two separate slip events
taking place with zero delay: there is no simultaneous slip of
the two asperities.

We now consider the simultaneous slip of the two asper-
ities occurring whenPg is in regionJ; or K1. When the
system is atPy, the displacements of blocks 1 e 2 are respec-
tively

U =X1— Xy, Uy=Y1—Y4 (48)

where the coordinates of; are calculated in the Ap-
pendixA. The total seismic moment is then

U1+ Uz

M = My (49)

www.nonlin-processes-geophys.net/18/709/2011/
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4 8 Conclusions

The model is a greatly simplified picture of a seismic source,
35 but may shed some light on the mechanics of a fault sys-
tem made of two asperities. Due to the many simplifying
assumptions (in particular that of equal asperity strengths),
the model is not intended to simulate the behaviour of any
real fault, but to highlight the mechanisms that are respon-
§ sible for the aperiodicity of the seismic activity observed in
25 | fault systems.

We have proven that, whichever the initial state is, the
long-term behaviour of the system is a limit cycle with a par-
ticular recurrence pattern of earthquakes. The limit cycle re-
quires a certain stress distribution repeating periodically. If
an external stress transfer alters such a distribution, the fault
Fig. 7. Seismic moment release associated with simultaneous asMay experience a larger earthquake, with the simultaneous
perity failure as a function op (¢ = 0.7, « = 1). The discontinuity ~ failure of the two asperities, which finally restores a stress
isatp=—c. distribution compatible with periodic behaviour.

The fact that the phase space can be divided into narrow
stripes corresponding to very different evolutions of the sys-

Figure 7 shows a graph af as a function op, with—a < tem implies that the system is sensitive to small perturba-
p <0. The moment can be calculated analytically at the endions. Depending on the value of the coupling between asper-
points of this interval. Ifp = —a, we have ities, a stress perturbation in the order of 10 % of static fric-
tion or less can be sufficient to move the system to a different

MIM,

&)

-0.1 -0.08 -0.06 -0.04 -0.02 0
P

Ui=Uz2=U (50) subset of the phase space. This has relevant implications for
and a fault, which can not be considered an isolated system, but

is subject to stress transfers from earthquakes generated by
M =2Mpy (1)  neigbouring faults.

Under the model assumptions, stress transfers from neig-
bouring faults have a key role in the mechanics of the fault
system. The system tends to a periodic behaviour, but its or-
bit is frequently modified by external perturbations, which
have usually recurrence times shorter than those of earth-
guakes generated by the fault in the periodic regime. In many
cases the perturbation will shift the orbit to a different limit
cycle with a different recurrence pattern, but equal seismic

For lower values ofp|, Uy and U, become greater thaii
andM is an increasing function gf, with a discontinuity at

p = —c. The discontinuity is a consequence of the homolo-
gous discontinuity in the fuctiop(p) and means that, in the
proximity of p = —c, a small difference in stress may entail
a remarkable difference in seismic moment. Whes 0,
Egs. @2) and @3) give

Up=U;=2(1—¢) (52) moments. However, when the system is taken out of the
range of the admissible stress distributions for limit cycles,
and an earthquake is generated with a seismic moment that can

be several times larger. This is an effect of the interaction
between the asperities: the seismic moment is greater than
which is the maximum value of seismic moment. Thereforethe sum of the moments that the two asperities release when

the moment release associated with the simultaneous failur€y slip separately.
of the two asperities is always greater than the maximum

value, equal to 2y, that can be released in a limit cycle.
According to Eq. $3), M depends on the degree of coupling

a. For any value ofr > 0, M is not simply the sum of mo-  \ye calculate here the orbits in the cagies J1 and Py € K1.
mentsMo released by the two asperities when they slip sep-n poth cases, the first segment of the orbit belongs to line

arately. This indicates that the asperities interact during the=q (10), which intercepts line 1 at poirft with coordinates
slip event, with a seismic moment increasing linearly with

If « = 1, the maximum value is as large alfd The earth- X1=1+ap,  Y1=1+0’p (A1)

M =2(14+a)Mp (53)

Appendix A

quakes generated by the simultaneous failures of the two aSrhe second segment belongs to lifie= ¥1. It is given by
perities can be considered as the largest earthquakes that c%:a. (17) with initial conditions
be generated by the fault.

X=X;, V=0 (A2)

www.nonlin-processes-geophys.net/18/709/2011/ Nonlin. Processes Geophys., 78,7/20%1



716

and the substitutiof = ¥;. Then

U
X(T)=X1— E(l—CO&z)T) (A3)
The orbit intercepts line 2 at poi, with coordinates
0)4 2
X2=l+;p, Yo=14+w"p (A4)

From Eq. A3) with X = X2, we obtain the tim&1, taken by
the block to move fromP; to P»:

1 2
Tio=— arcco<1 + —p> (A5)
w a
The velocity of block 1 af" = Ty2 is then
u .
Vo= —Ea)Slna)le (A6)
or, thanks to A5),
w2
Vo=——-/—pla+p) (A7)

The third segment is curvilinear and has the parametri
Egs. @4) and £5) with

X=X2, 17=Y2, VIVZ (A8)
The segment terminates at poiPg where one of the blocks
stops. The shape of the segment depends on the valpe of
which determines which block stops first.
culate the coordinates af3, we solve Eqs.48) and @9)
and obtain the duratiofi,3 of simultaneous motion accord-
ing to Eq. BO). ItresultsToz3=Ty if —c < p <0 (Po € Ju);
To3=T, if —a < p < —c (Pp € K1). The value ot is defined
by the condition tha& (') has a minimum equal to zero at
T =T,. The orbits are therefore different in the two cases.

Al CasePyeJi

In this case block 2 stops first. The coordinatesPgfare
calculated from24) and @5) as

X3=X(Ty), Y3=Y(Ty) (A9)
The velocity of block 1 atPs is

V3= X(Ty) (A10)
or, thanks to 29),

V3 = (2¢ — X2 —Y>)sinTy + VocosTy, (A11)

The fourth segment of the orbit belongs to line- Y3, repre-
senting the motion of block 1. The solution is given Ay
with

X =Xa, Y =7Y3, V=V3 (A12)

Nonlin. Processes Geophys., 18, 709% 2011

In order to cal-
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The segment terminates at poiPf = (X4, Ys). From @9),
block 1 stops after a time

1 wV3
arctan—

T3a= Al3
4= T Xa—c —als (A13)
From (17),
€+aYs €+aYs
X (T3g) = >+ <X3 — 5 ) coswT3g
w w
V3 .
+—33|an34 (A14)
w

or, thanks to A13),

1
X(Tza) = — |:e+ocY3—\/(szg—e—aY3)2+w2V3,2:|
w
(A15)
Then
Xa4=X(T34), Yo=1Y3 (Al6)

A2 CasePye K1

In this case block 1 stops first. The coordinatesPgfare
calculated from24) and @5) as

c

X3=X(Ty), Y3=Y(Ty) (A17)
The velocity of block 2 atPs is

Va=Y(T) (A18)
or, thanks t028),

V3= (2¢ — X2 — Yo)sinTy + VocosT, (A19)

The fourth segment of the orbit belongs to likie= X3, rep-
resenting the motion of block 2. The solution is given B)(
with

X= X3, Y= Y3, V= V3 (A20)

The segment terminates at poiPf = (X4, Ys). From @2),

block 2 stops after a time

1 wV3

T34 = arctan— A21
4= ) Pp—e (A21)
Then

1 2
Y (Tsa) = yle+aXs—/ (@2V3—e —aX3)2+w? V]

w

(A22)

and
X4= X3, Y4 =Y (T34) (A23)
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