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Abstract. A fault with two asperities is modelled as a sys-
tem made of two blocks coupled by a spring and sliding on
a plane under the same values of static and dynamic friction.
An analytical solution is given for the simultaneous motion
of the blocks and the corresponding orbits are plotted in the
phase space. It is proven that, whichever the initial state is,
the long-term behaviour of the system is one of an infinite
number of limit cycles, characterized by a particular pattern
of forces. The region where the system is located when the
blocks are stationary can be divided into narrow stripes corre-
sponding to different orbits of the points belonging to them.
This implies that the system is sensitive to perturbations and
has relevant implications for a fault, which is subject to stress
transfers from earthquakes generated by neighbouring faults.
In this case, the fault may experience a larger earthquake,
with the simultaneous failure of the two asperities, which
restores a stress distribution compatible with periodic be-
haviour. The seismic moment associated with simultaneous
asperity failure is always greater than the maximum value
that can be released in a limit cycle. For strongly coupled
asperities, the moment can be several times larger.

1 Introduction

The long-term behaviour of seismic sources can be usefully
studied by means of dynamical models with a finite number
of degrees of freedom. Such models include the essential fea-
tures of seismic sources, i.e. a stick-slip mechanism activated
by applied forces, but avoid the detailed field description of
continuum mechanics. The advantage is that we can follow
the evolution of the system in the phase space and obtain a
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deeper understanding of the long-term behaviour of the sys-
tem itself.

Low-order analogs of seismic sources can be represented
as spring-block systems and were first introduced byBur-
ridge and Knopoff(1967). Different numbers of blocks and
friction laws have been considered by following authors (By-
erlee, 1978; Dieterich, 1981; Ruina, 1983; Rice and Tse,
1986; Gu and Wong, 1991; Belardinelli and Belardinelli,
1996; Erickson et al., 2008) showing that spring-block mod-
els can simulate several features of seismic activity (Di-
eterich, 1972; Rundle and Jackson, 1977; Cohen, 1977; Cao
and Aki, 1984, 1986; Gu et al., 1984; Carlson and Langer,
1989a,b; Huang and Turcotte, 1990b; Carlson et al., 1994).
Spring-block systems are nonlinear, dissipative, piecewise-
smooth dynamical systems (di Bernardo et al., 2008).

The simplest fault system is made of two distinct fault
segments or of two asperities on the same fault and can be
simulated by two coupled blocks pulled at constant velocity.
Two-block systems were considered byNussbaum and Ru-
ina (1987); Huang and Turcotte(1990a, 1992); McCloskey
and Bean(1992); de Sousa Vieira(1995); He (2003). Gal-
vanetto(2004) studied a similar system made of two blocks
connected by a spring and placed on a moving belt.

Turcotte(1997) showed numerically that a symmetric two-
block system can exhibit limit cycles in the phase space, rep-
resenting the alternate motion of the blocks.Dragoni and
Santini(2010) solved analytically the equations for the mo-
tion of one block at a time, showing that there exists a region
L in the phase space, from which the system enters imme-
diately a limit cycle. There is an infinite number of such
cycles, the shapes of which are determined by the position of
the representative point inL. Such a position is related to the
inhomogeneity of the stress applied to the fault.

The present paper completes the study of Dragoni and
Santini (2010) by considering the evolution of the system
when the representative point is outsideL and showing that
in this case the motion of one block can trigger the motion
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Fig. 1. The two-block system.

of the other. We present an analytical solution for the simul-
taneous motion of the blocks and show that it represents the
occurrence of the largest earthquakes that can be produced
by the fault.

2 The model

We model the fault as a system made of two blocks having
equal massm and placed on a horizontal plane (Fig. 1). Each
block is connected by a horizontal spring of rigidityK to
a driving mechanism moving at constant velocityv in the
horizontal direction. The blocks are connected to each other
by a spring of rigidityKc. We assume that the motion of each
block is resisted by a static frictionfs and a dynamic friction
fd. We define

ε =
fd

fs
, α =

Kc

K
(1)

where 0< ε < 1 andα > 0. It is shown below that the seis-
mological application of the model requiresε ≥ 1/2.

Let x(t) andy(t) be the extensions of the springs connect-
ing respectively blocks 1 and 2 to the driver as functions of
time t . We introduce the nondimensional quantities

X =
Kx

fs
, Y =

Ky

fs
, T =

√
K

m
t, V =

√
Km

fs
v (2)

If f1 andf2 are the forces applied to blocks 1 and 2 respec-
tively, we define nondimensional forces

F1 =
f1

fs
, F2 =

f2

fs
(3)

In nondimensional form, the equations of motion of the sys-
tem are

Ẍ = 0, Ÿ = 0 (4)

when the blocks are stationary and

Ẍ+(1+α)X = ε+αY (5)

Ÿ +(1+α)Y = ε+αX (6)

when the blocks are moving. Here dots indicate differentia-
tion with respect toT .

We study the evolution of the system in the phase space
and precisely on the planeXY , where the representative
point of the system is located for most time. The projec-
tion of the phase space on this plane is the unit square with
vertices at(0,0), (1,0), (1,1), (0,1). The conditions for the
onset of motion of blocks 1 and 2 are represented respec-
tively by lines

Y =
1+α

α
X−

1

α
(7)

Y =
α

1+α
X+

1

1+α
(8)

that we call line 1 and line 2. Accordingly, the points cor-
responding to stationary blocks belong to a quadrilateralQ

with vertices at points(0,0), (A,0), (1,1), (0,A), where

A =
1

1+α
(9)

As initial point of the orbit, we choose a pointP0 =

(X0,Y0) ∈ Q. When the blocks are stationary, the orbit is
a segment of line

Y = X+p (10)

where

p = Y0−X0, −A ≤ p ≤ A (11)

In Dragoni and Santini(2010) we defined the sets

L1 = {P0 ∈ Q;−b <p <−a} (12)

L2 = {P0 ∈ Q;a <p <b} (13)

where

a =
α

1+2α
U, b =

1+α

1+2α
U, U = 2

1−ε

1+α
(14)

with a +b = U . If P0 belongs toL = L1 ∪L2, the system
is in a limit cycle or enters it immediately. Such cycles are
characterized by the alternate motion of the blocks with an
amountU of slip. In the next section we consider the general
solution of the equations of motion, including the case when
the blocks move simultaneously.

Observations show that the direction of tectonic stress ap-
plied to a fault is stable: following fault slip, a decrease in
shear stress is observed, but not an inversion of its direc-
tion. The seismological application of the model requires
thenF1 ≤ 0 andF2 ≤ 0, or

X ≥ 0, Y ≥ 0 (15)

At the beginning of a slip event, the representative point of
the system belongs to line 1 or 2. For points belonging to
such lines, the smallest value ofX andY respectively isA.
Conditions (15) are then satisfied ifA−U ≥ 0, whenceε ≥

1/2 from Eqs. (9) and (14).
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3 Motion of a single block

A block can move from a stationary state or after a segment
in which it moves simultaneously to the other block. The
solution for the former case was given inDragoni and Santini
(2010). More generally, for the motion of block 1 we assume
as initial conditions

X(0) = X̄, Ẋ(0) = V̄ (16)

During the motion of block 1,Y has a constant valuēY .
Hence the motion is solution of Eq. (5) with Y = Ȳ :

X(T ) =
ε+αȲ

ω2
+

(
X̄−

ε+αȲ

ω2

)
cosωT +

V̄

ω
sinωT (17)

where

ω =
√

1+α (18)

The velocityẊ(T ) vanishes whenT is equal to

T1 =
1

ω
arctan

ωV̄

ω2X̄−ε−αȲ
(19)

The point at which the motion stops is thenX = X(T1), Y =

Ȳ .
The solution for the motion of block 2 is analogous. We

assume as initial conditions

Y (0) = Ȳ , Ẏ (0) = V̄ (20)

During the motion of block 2,X has a constant valuēX.
Hence the motion is solution of Eq. (6) with X = X̄:

Y (T ) =
ε+αX̄

ω2
+

(
Ȳ −

ε+αX̄

ω2

)
cosωT +

V̄

ω
sinωT (21)

The velocityẎ (T ) vanishes whenT is equal to

T2 =
1

ω
arctan

ωV̄

ω2Ȳ −ε−αX̄
(22)

The point at which the motion stops is thenX = X̄, Y =

Y (T2).

4 Simultaneous block motion

It may happen that, while a block is moving, the condition
for the motion of the other block is attained. In this case we
have the simultaneous motion of the two blocks and Eqs. (5)
and (6) must be solved simultaneously. Two different initial
conditions are possible.

If the motion of block 1 triggers that of block 2, initial
conditions are

X = X̄, Y = Ȳ , Ẋ = V̄ , Ẏ = 0 (23)

whereX̄ andȲ are related by Eq. (8). The solution is

X(T ) = ε−
2ε−X̄− Ȳ

2
cosT +

V̄

2
sinT +

X̄− Ȳ

2
cos�T

+
V̄

2�
sin�T (24)

Y (T ) = ε−
2ε−X̄− Ȳ

2
cosT +

V̄

2
sinT −

X̄− Ȳ

2
cos�T

−
V̄

2�
sin�T (25)

where

� =
√

1+2α (26)

In order to find which block stops earlier and at what time,
we must solve the equations

Ẋ = 0, Ẏ = 0 (27)

giving the trigonometric equations

(2ε−X̄− Ȳ )sinT + V̄ cosT −(X̄− Ȳ )�sin�T

+ V̄ cos�T = 0 (28)

(2ε−X̄− Ȳ )sinT + V̄ cosT +(X̄− Ȳ )�sin�T

− V̄ cos�T = 0 (29)

that must be solved numerically. If we callTx andTy the
smallest positive solutions of Eqs. (28) and (29) respectively,
the duration of simultaneous block motion is

Ts= min(Tx,Ty) (30)

The result depends on the value ofp: there exists a positive
numberc such thatTs = Tx or Ts = Ty according to whether
p <−c or p >−c (AppendixA).

If the motion of block 2 triggers that of block 1, initial
conditions are

X = X̄, Y = Ȳ , Ẋ = 0, Ẏ = V̄ (31)

whereX̄ andȲ are related by Eq. (7). The solution is

X(T ) = ε−
2ε−X̄− Ȳ

2
cosT +

V̄

2
sinT +

X̄− Ȳ

2
cos�T

−
V̄

2�
sin�T (32)

Y (T ) = ε−
2ε−X̄− Ȳ

2
cosT +

V̄

2
sinT −

X̄− Ȳ

2
cos�T

+
V̄

2�
sin�T (33)

Equations analogous to (28), (29) and (30) must be solved in
order to find which block stops earlier and at what time.
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Fig. 2. Projection of the phase space in the planeXY : the regionQ
(α = 1) and its subsets (ε = 0.7).

5 Orbits in the phase space

The evolution of the system depends on the position ofP0.
It results thatQ can be divided into several subsets corre-
sponding to different orbits of the points belonging to them.
These subsets are narrow stripes parallel to the major diago-
nal of Q (Fig. 2). Thanks to the symmetry of the problem,
we may consider only the casep ≤ 0. Accordingly, the part
of Q below the diagonal can be divided into the following
subsets:

J1 = {P0 ∈ Q;−c <p < 0} (34)

K1 = {P0 ∈ Q;−a <p <−c} (35)

L1 = {P0 ∈ Q;−b <p < −a} (36)

M1 = {P0 ∈ Q;−U +c <p < −b} (37)

N1 = {P0 ∈ Q;−U <p <−U +c} (38)

O1 = {P0 ∈ Q;−U −c <p < −U} (39)

R1 = {P0 ∈ Q;−U −a <p < −U −c} (40)

S1 = {P0 ∈ Q;−A <p < −U −a} (41)

The part above the diagonal can be divided symmetrically
into subsetsJ2, K2, L2, M2, N2, O2, R2, S2. We next con-
sider the evolution of the system fromP0 to another point
belonging toQ through a slip event which may involve one
or both blocks.

Casep = 0. In this particular case the coupling spring is
undeformed and there is no coupling of the blocks. The orbit
begins as a segment of the major diagonal ofQ. When it
reaches the pointP1 = (1,1), the blocks move together. The
initial conditions for block motion are then

X̄ = Ȳ = 1, Ẋ = Ẏ = 0 (42)

From either Eqs. (24)–(25) or (32)–(33) it follows

X(T ) = Y (T ) = ε+(1−ε)cosT (43)

The solution coincides with that of a single block. The rep-
resentative point goes along the same line backward until
T = π , when the blocks stop. The coordinates of the arrest
point areX2 = Y2 = 2ε −1. The limit cycle is then the line
segment with end points(1,1) and(X2,Y2). The states with
p = 0 are unstable, because an arbitrarily small perturbation
will move the representative point of the system to regionJ1
or J2, whence the point will follow a completely different
orbit. This is particularly true for a fault, which can not be
considered an isolated system.

CaseP0 ∈ J1. The orbit intercepts line 1 atP1 and block 1
moves. While block 1 is moving, the orbit intercepts line 2 at
P2: the motion of block 1 triggers the motion of block 2. The
orbit leavesQ and becomes curvilinear. For a certain interval
of time the blocks move simultaneously, then block 2 stops
atP3. The coordinates ofP3 must be calculated numerically
(AppendixA). Block 1 continues its motion to pointP4. For
most values ofp, P4 is in K1 (Fig. 3a). Only orbits withp
very close to 0 come back toJ1, but with a smaller value of
p (Fig. 3b). From here they reachK1.

CaseP0 ∈ K1. The orbit is similar to that previously de-
scribed up to pointP2, when the motion of block 1 triggers
the motion of block 2, the orbit leavesQ and becomes curvi-
linear. However, in the present case block 1 stops earlier than
block 2: this occurs at pointP3. The coordinates ofP3 must
be calculated numerically (AppendixA). Block 2 continues
it motion to pointP4. This point is inL1 and the orbit enters
a limit cycle (Fig. 3c).

CaseP0 ∈ L1. It is the case considered inDragoni and
Santini (2010). The orbit enters immediately a limit cycle,
the shape of which is determined by the value ofp.

CaseP0 ∈ M1. The orbit intercepts line 1 atP1 and block
1 moves to pointP2, which belongs to the regionK2. Hence
the orbit continues as an orbit withp > 0, that we do not need
to consider due to the symmetry.

CaseP0 ∈ N1. The orbit intercepts line 1 atP1 and block
1 moves to pointP2, which belongs to the regionJ2. Hence
the orbit continues as an orbit withp > 0.

CaseP0 ∈ O1. The orbit intercepts line 1 atP1 and block
1 moves to pointP2, which belongs to the regionJ1. Hence
the orbit continues as described above.

CaseP0 ∈ R1. The orbit intercepts line 1 atP1 and block
1 moves to pointP2, which belongs to the regionK1. Hence
the orbit continues as described above.

Nonlin. Processes Geophys., 18, 709–717, 2011 www.nonlin-processes-geophys.net/18/709/2011/
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Fig. 3. Orbits of the system in the cases(a) p = −0.02, (b) p =

−0.005 and(c) p = −0.07 (ε = 0.7, α = 1).

Fig. 4. Functionq(p) giving the position of the system inQ after a
slip event (ε = 0.7, α = 1).

CaseP0 ∈ S1. This case is present only whena +U < A.
Using Eqs. (9) and (14), we find thatS1 exists only ifε is
greater than

ε0 =
1+4α

2(1+3α)
(44)

As α varies between 0 and∞, we have 1/2 ≤ ε0 < 2/3.
HenceS1 is always present ifε > 2/3. It is easy to see that, if
P0 ∈ S1, thenP2 ∈ L1 whence the system enters a limit cycle.

In summary, the position of the representative point of the
system in the phase space after a slip event can be expressed
as

q =

{
Y2−X2, p = 0
Y4−X4, 0< |p| < a

Y2−X2, a < |p| ≤A

(45)

In terms ofp,

q(p) =

{
p, p = 0
f (p), 0< |p| < a

p±U, ∓a <p ≤ ∓A

(46)

wheref (p) is calculated numerically from the AppendixA.
The functionq(p) is shown in Fig. 4 in the caseα = 1 and
ε = 0.7, entailingc ' 0.055,a = 0.1, b = 0.2, U = 0.3, A =

0.5. SubsetS1 is present, sinceε0 = 5/8. The function is
discontinuous atp = ±a and±c.

Figure 5 shows a graph ofa, b, U andA as functions ofα,
in the caseε = 0.7. The distance between the curves shows
how the thicknesses of the different subsets change as func-
tions ofα. It is evident that a given pointP0 may belong to
different subsets ofQ according to the value ofα.
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Fig. 5. The valuesa, b, U andA of |p| as functions of the coupling
degreeα (ε = 0.7).

6 Force distribution

The evolution of the system is controlled by the value ofp,
expressing the difference of forces exerted on the blocks ac-
cording to the equation (Dragoni and Santini, 2010)

1F = (1+2α)p (47)

Its magnitude|1F | is plotted in Fig. 6 as a function ofα.
Curves in this graph are obtained from Eq. (47), with p equal
to a, b, U , U +a andA respectively. The graph shows how
the position of the representative point inQ is related to the
distribution of forces on blocks. For instance, ifα = 1, the
admissible force difference for a limit cycle ranges from 30
to 60 % of static friction. The interval shrinks rapidly asα

increases: in the case of strong coupling,|1F | must be close
to 2(1−ε).

In all cases, the long-term destination of the system is one
of the infinite limit cycles described inDragoni and Santini
(2010). Such cycles represent the alternate motion of the two
blocks and are reached when the system enters the subsetL.
This implies that the force difference has values in a particu-
lar range, given by Eq. (47) with a < |p| < b.

If |p| is smaller (0< |p| < a), |1F | is small as well.
In this case, the system experiences a simultaneous motion
of blocks which shifts the representative point to a differ-
ent subset ofQ, characterized by larger values ofp, from
which it can usually reach a limit cycle. However, if|p| is
very small, two such events are necessary. If|p| is large
(b < |p| < U +a) so that|1F | is large, the system must go
through a state in which|1F | is small before it can reachL.
But if |p| > U +a the system reachesL by the motion of a
single block.

The discontinuities in the functionq(p) at p = ±a and
±c indicate that, in the proximity of these points, small dif-
ferences in the force distribution may entail very different
evolutions of the system. The force distribution on blocks

Fig. 6. The force difference1F as a function ofα (ε = 0.7).

simulates the shear stress distribution on the equivalent fault,
implying that slightly different stress distributions may result
in completely different seismic sequences.

If we admit that the system is subject to force perturba-
tions, the states of the system are unstable in the proximity
of those points. In particular, the system can be driven out of
L. This is easier as the degree of couplingα is larger, since
the interval[a,b] becomes narrower. The system will come
back toL only after a simultaneous motion of the blocks.

7 Seismic moment release

If we suppose that the displacement of a block corresponds
to the slip of a fault asperity, we can calculate the associ-
ated seismic moment releaseM. Dragoni and Santini(2010)
showed that each limit cycle is characterized by two seismic
events separated by interseismic periods of variable duration.
Each seismic event releases a momentM0, corresponding to
an amountU of slip of a single asperity. In the particular case
when one interseismic period is equal to zero, we may assert
that a single event with moment release 2M0 takes place in
the cycle. In fact this is generated by two separate slip events
taking place with zero delay: there is no simultaneous slip of
the two asperities.

We now consider the simultaneous slip of the two asper-
ities occurring whenP0 is in regionJ1 or K1. When the
system is atP4, the displacements of blocks 1 e 2 are respec-
tively

U1 = X1−X4, U2 = Y1−Y4 (48)

where the coordinates ofP4 are calculated in the Ap-
pendixA. The total seismic moment is then

M = M0
U1+U2

U
(49)
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Fig. 7. Seismic moment release associated with simultaneous as-
perity failure as a function ofp (ε = 0.7, α = 1). The discontinuity
is atp = −c.

Figure 7 shows a graph ofM as a function ofp, with −a ≤

p ≤ 0. The moment can be calculated analytically at the end
points of this interval. Ifp = −a, we have

U1 = U2 = U (50)

and

M = 2M0 (51)

For lower values of|p|, U1 andU2 become greater thanU
andM is an increasing function ofp, with a discontinuity at
p = −c. The discontinuity is a consequence of the homolo-
gous discontinuity in the fuctionq(p) and means that, in the
proximity of p = −c, a small difference in stress may entail
a remarkable difference in seismic moment. Whenp = 0,
Eqs. (42) and (43) give

U1 = U2 = 2(1−ε) (52)

and

M = 2(1+α)M0 (53)

which is the maximum value of seismic moment. Therefore
the moment release associated with the simultaneous failure
of the two asperities is always greater than the maximum
value, equal to 2M0, that can be released in a limit cycle.
According to Eq. (53), M depends on the degree of coupling
α. For any value ofα > 0, M is not simply the sum of mo-
mentsM0 released by the two asperities when they slip sep-
arately. This indicates that the asperities interact during the
slip event, with a seismic moment increasing linearly withα.
If α = 1, the maximum value is as large as 4M0. The earth-
quakes generated by the simultaneous failures of the two as-
perities can be considered as the largest earthquakes that can
be generated by the fault.

8 Conclusions

The model is a greatly simplified picture of a seismic source,
but may shed some light on the mechanics of a fault sys-
tem made of two asperities. Due to the many simplifying
assumptions (in particular that of equal asperity strengths),
the model is not intended to simulate the behaviour of any
real fault, but to highlight the mechanisms that are respon-
sible for the aperiodicity of the seismic activity observed in
fault systems.

We have proven that, whichever the initial state is, the
long-term behaviour of the system is a limit cycle with a par-
ticular recurrence pattern of earthquakes. The limit cycle re-
quires a certain stress distribution repeating periodically. If
an external stress transfer alters such a distribution, the fault
may experience a larger earthquake, with the simultaneous
failure of the two asperities, which finally restores a stress
distribution compatible with periodic behaviour.

The fact that the phase space can be divided into narrow
stripes corresponding to very different evolutions of the sys-
tem implies that the system is sensitive to small perturba-
tions. Depending on the value of the coupling between asper-
ities, a stress perturbation in the order of 10 % of static fric-
tion or less can be sufficient to move the system to a different
subset of the phase space. This has relevant implications for
a fault, which can not be considered an isolated system, but
is subject to stress transfers from earthquakes generated by
neigbouring faults.

Under the model assumptions, stress transfers from neig-
bouring faults have a key role in the mechanics of the fault
system. The system tends to a periodic behaviour, but its or-
bit is frequently modified by external perturbations, which
have usually recurrence times shorter than those of earth-
quakes generated by the fault in the periodic regime. In many
cases the perturbation will shift the orbit to a different limit
cycle with a different recurrence pattern, but equal seismic
moments. However, when the system is taken out of the
range of the admissible stress distributions for limit cycles,
an earthquake is generated with a seismic moment that can
be several times larger. This is an effect of the interaction
between the asperities: the seismic moment is greater than
the sum of the moments that the two asperities release when
they slip separately.

Appendix A

We calculate here the orbits in the casesP0 ∈ J1 andP0 ∈ K1.
In both cases, the first segment of the orbit belongs to line
Eq. (10), which intercepts line 1 at pointP1 with coordinates

X1 = 1+αp, Y1 = 1+ω2p (A1)

The second segment belongs to lineY = Y1. It is given by
Eq. (17) with initial conditions

X̄ = X1, V̄ = 0 (A2)

www.nonlin-processes-geophys.net/18/709/2011/ Nonlin. Processes Geophys., 18, 709–717, 2011
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and the substitution̄Y = Y1. Then

X(T ) = X1−
U

2
(1−cosωT ) (A3)

The orbit intercepts line 2 at pointP2 with coordinates

X2 = 1+
ω4

α
p, Y2 = 1+ω2p (A4)

From Eq. (A3) with X = X2, we obtain the timeT12 taken by
the block to move fromP1 to P2:

T12=
1

ω
arccos

(
1+

2p

a

)
(A5)

The velocity of block 1 atT = T12 is then

V2 = −
U

2
ωsinωT12 (A6)

or, thanks to (A5),

V2 = −
ω�2

α

√
−p(a+p) (A7)

The third segment is curvilinear and has the parametric
Eqs. (24) and (25) with

X̄ = X2, Ȳ = Y2, V̄ = V2 (A8)

The segment terminates at pointP3 where one of the blocks
stops. The shape of the segment depends on the value ofp,
which determines which block stops first. In order to cal-
culate the coordinates ofP3, we solve Eqs. (28) and (29)
and obtain the durationT23 of simultaneous motion accord-
ing to Eq. (30). It resultsT23 = Ty if −c < p < 0 (P0 ∈ J1);
T23= Tx if −a <p ≤ −c (P0 ∈ K1). The value ofc is defined
by the condition thatẊ(T ) has a minimum equal to zero at
T = Tx . The orbits are therefore different in the two cases.

A1 CaseP0 ∈ J1

In this case block 2 stops first. The coordinates ofP3 are
calculated from (24) and (25) as

X3 = X(Ty), Y3 = Y (Ty) (A9)

The velocity of block 1 atP3 is

V3 = Ẋ(Ty) (A10)

or, thanks to (29),

V3 = (2ε−X2−Y2)sinTy +V2cosTy (A11)

The fourth segment of the orbit belongs to lineY = Y3, repre-
senting the motion of block 1. The solution is given by (17)
with

X̄ = X3, Ȳ = Y3, V̄ = V3 (A12)

The segment terminates at pointP4 = (X4,Y4). From (19),
block 1 stops after a time

T34=
1

ω
arctan

ωV3

ω2X3−ε−αY3
(A13)

From (17),

X(T34) =
ε+αY3

ω2
+

(
X3−

ε+αY3

ω2

)
cosωT34

+
V3

ω
sinωT34 (A14)

or, thanks to (A13),

X(T34) =
1

ω2

[
ε+αY3−

√
(ω2X3−ε−αY3)2+ω2V 2

3

]
(A15)

Then

X4 = X(T34), Y4 = Y3 (A16)

A2 CaseP0 ∈ K1

In this case block 1 stops first. The coordinates ofP3 are
calculated from (24) and (25) as

X3 = X(Tx), Y3 = Y (Tx) (A17)

The velocity of block 2 atP3 is

V3 = Ẏ (Tx) (A18)

or, thanks to (28),

V3 = (2ε−X2−Y2)sinTx +V2cosTx (A19)

The fourth segment of the orbit belongs to lineX = X3, rep-
resenting the motion of block 2. The solution is given by (21)
with

X̄ = X3, Ȳ = Y3, V̄ = V3 (A20)

The segment terminates at pointP4 = (X4,Y4). From (22),
block 2 stops after a time

T34=
1

ω
arctan

ωV3

ω2Y3−ε−αX3
(A21)

Then

Y (T34) =
1

ω2
[ε+αX3−

√
(ω2Y3−ε−αX3)2+ω2V 2

3 ]

(A22)

and

X4 = X3, Y4 = Y (T34) (A23)
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