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Abstract. The climate belongs to the class of non-
equilibrium forced and dissipative systems, for which most
results of quasi-equilibrium statistical mechanics, including
the fluctuation-dissipation theorem, do not apply. In this pa-
per we show for the first time how the Ruelle linear response
theory, developed for studying rigorously the impact of per-
turbations on general observables of non-equilibrium statisti-
cal mechanical systems, can be applied with great success to
analyze the climatic response to general forcings. The crucial
value of the Ruelle theory lies in the fact that it allows to com-
pute the response of the system in terms of expectation values
of explicit and computable functions of the phase space aver-
aged over the invariant measure of the unperturbed state. We
choose as test bed a classical version of the Lorenz 96 model,
which, in spite of its simplicity, has a well-recognized pro-
totypical value as it is a spatially extended one-dimensional
model and presents the basic ingredients, such as dissipa-
tion, advection and the presence of an external forcing, of
the actual atmosphere. We recapitulate the main aspects of
the general response theory and propose some new general
results. We then analyze the frequency dependence of the re-
sponse of both local and global observables to perturbations
having localized as well as global spatial patterns. We derive
analytically several properties of the corresponding suscep-
tibilities, such as asymptotic behavior, validity of Kramers-
Kronig relations, and sum rules, whose main ingredient is the
causality principle. We show that all the coefficients of the
leading asymptotic expansions as well as the integral con-
straints can be written as linear function of parameters that
describe the unperturbed properties of the system, such as
its average energy. Some newly obtained empirical closure
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equations for such parameters allow to define such properties
as an explicit function of the unperturbed forcing parameter
alone for a general class of chaotic Lorenz 96 models. We
then verify the theoretical predictions from the outputs of the
simulations up to a high degree of precision. The theory is
used to explain differences in the response of local and global
observables, to define the intensive properties of the system,
which do not depend on the spatial resolution of the Lorenz
96 model, and to generalize the concept of climate sensitivity
to all time scales. We also show how to reconstruct the linear
Green function, which maps perturbations of general time
patterns into changes in the expectation value of the consid-
ered observable for finite as well as infinite time. Finally,
we propose a simple yet general methodology to study gen-
eral Climate Change problems on virtually any time scale
by resorting to only well selected simulations, and by tak-
ing full advantage of ensemble methods. The specific case of
globally averaged surface temperature response to a general
pattern of change of the CO2 concentration is discussed. We
believe that the proposed approach may constitute a mathe-
matically rigorous and practically very effective way to ap-
proach the problem of climate sensitivity, climate prediction,
and climate change from a radically new perspective.

1 Introduction

A crucial goal in the study of general dynamical and statisti-
cal mechanical systems is to understand how their statistical
properties are altered when we introduce a perturbation re-
lated to changes in the external forcing or in the value of
some internal parameters. The ability to compute the re-
sponse of the system is of great relevance for purely math-
ematical reasons as well as in many fields of science and
technology.
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The climate system is an outstanding example of a non-
equilibrium, forced and dissipative complex system, forced
in first instance by spatial differences and temporal variabil-
ity in the net energy flux at the top of the atmosphere. On a
macroscopic level, as a result of being far from equilibrium,
the climate system behaves as an engine, driven by the tem-
perature difference between a warm and a cold thermal pool,
so that the atmospheric and oceanic motions are at the same
time the result of the mechanical work (then dissipated in a
turbulent cascade) produced by the engine, and are processes
which re-equilibrate the energy balance of the climate sys-
tem (Lorenz, 1967; Peixoto and Oort, 1992; Johnson, 2000;
Lucarini, 2009a).

A primary goal of climate science is to understand how the
statistical properties – mean values, fluctuations, and higher
order moments – of the climate system change as a result of
modulations to some crucial external (e.g. solar irradiance)
or internal (e.g. atmospheric composition) parameters of the
system occurring on various time scales. A large class of
problems – those involving climate sensitivity, climate vari-
ability, climate change, climate tipping points – fall into this
category. In a system as complex and as extended as the cli-
mate, where lots of feedbacks are active on a variety of spa-
tial and temporal scales, this is in general a very difficult task.
The need for scientific advance in this direction is outstand-
ing as one considers that even after several decades of intense
scientific efforts, the accurate evaluation of the climate sensi-
tivity par excellence, i.e., the change of the globally averaged
surface temperature for doubling of CO2 concentration with
respect to pre-industrial levels (280 ppm to 560 ppm circa), is
a tantalizing endeavor, and large uncertainties are still present
(IPCC, 2007).

Such efforts have significant relevance also in the context
of the ever-increasing attention paid by the scientific commu-
nity to the quest for reliable metrics to be used for the valida-
tion of climate models of various degrees of complexity and
for the definition of strategies aimed at the radical improve-
ment of their performance (Held, 2005; Lucarini, 2008a).
The pursuit of aquantum leapin climate modelling – which
definitely requires new scientific ideas rather than just faster
supercomputers – is becoming more and more of a key issue
in the climate community (Shukla et al., 2009).

A serious, fundamental difficulty in the analysis of the non
equilibrium systems is that the fluctuation-dissipation rela-
tion (Kubo, 1966), cannot be applied (Ruelle, 1998a). This
greatly limits the ability of understanding the response of the
systems to external perturbations by looking at its variabil-
ity. In the specific case of climate, this can be rephrased by
saying that climate change signals need not project on the
natural modes of climate variability. The non-equivalence
between free and forced climate fluctuations had been sug-
gested byLorenz(1979). The basic reason for this behav-
ior is that, since the dynamics is forced and dissipative, with
the asymptotic dynamics taking place in a strange attractor,
natural fluctuations and forced motions cannot be equiva-

lent. Whereas natural fluctuations of the system are restricted
to the unstable manifold, because, by definition, asymptot-
ically there is no dynamics along the stable manifold, ex-
ternal forcings will induce motions – of exponentially de-
caying amplitude – out of the attractor with probability one.
The fluctuation-dissipation relation can be recovered only if
we consider perturbations with the somewhat artificial prop-
erty of being everywhere tangent to the unstable manifold or,
in a more fundamental way, if we add a stochastic forcing,
which has the crucial effect of smoothing the invariant mea-
sure (Lacorata and Vulpiani, 2007; Marini Bettolo Marconi
et al., 2008). Potential links to these issues can be found in
recent papers proposing new algorithms for three (Trevisan
and Uboldi, 2004) and four (Trevisan et al., 2010) dimen-
sional variational data assimilation, where it is shown that
the quality of the procedure improves if the increment of the
variables due to the assimilation is performed only along the
unstable manifold.

Recently, Ruelle (1998a, 2009) introduced a rigorous
mathematical theory allowing for computing analytically,
ab initio, the response of a large class of non-equilibrium
systems to general external perturbations featuring arbitrary
time modulation. The crucial result is that the changes in
the expectation value of a physical observable can be ex-
pressed as a perturbative series in increasing powers of the
intensity of the external perturbation, where each term of the
series can be written as the expectation value of some well-
defined observable over the unperturbed state. In a previ-
ous paper (Lucarini, 2008b) we showed that the Ruelle the-
ory is, thanks to this property, formally analogous to usual
Kubo response theory (Kubo, 1957), which applies for quasi-
equilibrium system. The crucial difference lies on the math-
ematical properties of the invariant measure, which is abso-
lutely continuous in the quasi-equilibrium case and singular
in the non-equilibrium case.

Ruelle’s analysis applies for non-equilibrium steady state
systems (Gallavotti, 2006) possessing a Sinai-Ruelle-Bowen
(SRB) invariant measure, often referred to as Axiom A sys-
tem (Eckmann and Ruelle, 1985; Ruelle, 1989). This class
of systems, even if mathematically non-generic, includes on
the other hand excellent models for general physical systems,
as made clear by the chaotic hypothesis (Gallavotti and Co-
hen, 1995; Gallavotti, 1996), which can be interpreted as an
extension of the ergodic hypothesis to non-equilibrium sys-
tems (Gallavotti, 2006). We also remind that any time in an
numerical integration we assume that the time average of a
given observable, after discarding an initial transient, basi-
cally coincides with its average over the invariant measure
giving the attractor of the system, we are actually assuming
Axiom A-like hypothesis. SeePenland(2003) for an original
geophysical perspective.

The Ruelle response theory, with the support of chaotic
hypothesis, has interesting conceptual implications for cli-
mate studies. In fact, the possibility of defining a response
function basically poses the problem of climate response to
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forcings and of climate change in a well-defined context, and,
when considering the procedures aimed at improving climate
models, justifies rigorously the procedures of tuning and ad-
justing the free parameters. Moreover, the response theory
allows to compute the climate sensitivity, in the special case
when static perturbations to the system parameters are con-
sidered.

Previously, a response formula was proposed by Cacuci
for evaluating the linearized change of the solution of a time-
independent generic system of nonlinear equations as a result
of a change in the system’s parameters (Cacuci, 1981a,b).
This can be interpreted as a special case of Ruelle’s theory,
where the unperturbed attractor is constituted by a fixed point
and a static perturbation to the system evolution equation is
considered. Cacuci proposed to study this problem using the
adjoint operator to the original system, which provided an
efficient way to determine the impact of small perturbations.
Interestingly, early prominent applications of the so-called
adjoint method and its extension to time-dependent prob-
lems, which allowed for evaluating all possible linear sen-
sitivities of an evolving model in just one simulation, were
been proposed for climate related problems. In particular, it
was used to evaluate the sensitivities of a simple radiative-
convective model possessing an attractor constituted by just
one fixed point (Hall et al., 1982; Hall and Cacuci, 1983),
and later, in an inherently heuristic way, for studying the re-
sponse of a (chaotic) simplified general circulation model to
doubling of the CO2 concentration (Hall, 1986). Whereas
the adjoint method did not find much space in further cli-
matic studies, mostly due to early discouragement for the
computational burden of constructing the suitable operators
for evaluating the sensitivities, it subsequently reached great
success in data assimilation problems for geophysical fluid
dynamics (Ghil and Malanotte-Rizzoli, 1991; Errico, 1997),
to the point that a tangent and adjoint model compiler able
to automatically generate adjoint model code was has been
introduced (Giering and Kaminski, 1998). More recently, a
link between advanced adjoint techniques and the Ruelle the-
ory has been proposed (Eyink et al., 2004).

Majda and collaborators (Abramov and Majda, 2007; Ma-
jda and Wang, 2010) have taken a different approach for
analysing the response of a system to external perturbation.
Using the formalism of the Fokker-Planck equation, they
have developed a response theory which is analogous to Ru-
elle’s. These authors have especially emphasized the pos-
sibility of splitting the response into the components rela-
tive to the projection of the perturbation vector flow onto the
stable, unstable and neutral components of the unperturbed
flow, as already discussed inRuelle (1998a), and have in-
troduced algorithms to compute efficiently all of these com-
ponents. Their approach has very recently been extended
to take into account stochastic and time-periodic perturba-
tions (Majda and Wang, 2010). Somewhat confusingly, they
mostly refer to the rather interesting applications of their the-
ory and algorithms to specific dynamical systems as resulting

from the use of the fluctuation-dissipation theorem in a non-
equilibrium context. As discussed above, this just cannot be
rigorously the case. Since they use, albeit in a convolute way,
the forcing term to compute (or at least to parameterise) the
response of the system, what they do is actually to compute
(or at least estimate) the linear response. Whereas it is in the
very nature of a perturbation theory the possibility of com-
puting the response starting only from the statistical proper-
ties of the unperturbed state (as done also inAbramov and
Majda, 2007; Majda and Wang, 2010), the specific property
of the systems where the fluctuation-dissipation theorem can
be applied is that the linear Green function can be written in
the specific form of a correlation of two observables of the
system. See the discussion inRuelle(1998a, 2009).

It is also important to note that, following the pioneer-
ing study byLeith (1975), several recent studies (Langen
and Alexeev, 2005; Gritsun and Branstator, 2007; Ring and
Plumb, 2008; Gritsun et al., 2008) have attempted with a
certain (and sometimes good) degree of success to recon-
struct the climate response to external perturbations start-
ing from the internal fluctuations of the system by using a
severely simplified version of the fluctuation dissipation the-
orem, based upon the assumption of a quasi-gaussian proba-
bility distribution for the system (see discussion inAbramov
and Majda, 2007). The overall good results seem to suggest
that, at least for the considered models, observables (typi-
cally very large scale ones) and baseline climate conditions,
the fractal nature of the invariant measure of the system and
the role of the stable direction of the flow seem not to be ex-
ceedingly relevant. This may be related to the specific choice
of the observable or to the fact that internally generated nu-
merical noise mimics the effect of stochastic perturbations,
but further studies are surely necessary.

In the last decade on one side a great effort has been
directed at extending the Ruelle response theory for more
general classes of dynamical systems (see, e.g.,Dolgopyat,
2004; Baladi, 2007), and recent studies (Lucarini, 2008b)
have shown that, thanks only to the causal nature of the re-
sponse, it is possible to apply all the machinery of the the-
ory of Kramers-Kronig (KK) relations (Nussenzveig, 1972;
Peiponen et al., 2005; Lucarini et al., 2003, 2005) for linear
and nonlinear processes to study accurately and rigorously
the susceptibilities describing in the frequency domain the
response of a general observable to a general perturbation.

Moreover, the actual applicability of the theory has been
successfully tested in a number of simple dynamical systems
case for the linear (Reick, 2002; Cessac and Sepulchre, 2007)
and nonlinear (Lucarini, 2009b) response. Such numerical
investigations have clarified that even in systems which are
not Axiom A, like the Lorenz 63 system (Lorenz, 1963), it is
possible to successfully use the response theory to construct
linear (Reick, 2002) and nonlinear susceptibilities (Lucarini,
2009b) which obey all of the constraints imposed by the KK
theory up to a high degree of precision.
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These investigations definitely motivate further studies
aimed at understanding to what extent the response theory
is an efficient tool for analyzing complexand complicated
systems. In this paper, we take up such a challenge and con-
sider the Lorenz 96 (L96) system (Lorenz, 1996; Lorenz and
Emanuel, 1998; Lorenz, 2004), which provides an excellent
and celebrated prototypical model of a one dimensional at-
mosphere. The variables of the L96 model can be thought
as generic meteorological quantities extending around a lat-
itudinal circle and sampled at a regular interval. In spite of
not being realistic in the usual sense, the L96 model presents
the basic ingredients, such as dissipation, advection and the
presence of an external forcing, of the actual atmosphere. For
this reason, L96 has quickly become the standard model to
be used for predictability studies (Orrell, 2003; Haven at al.,
2006; Hallerberg et al., 2010), when testing data assimila-
tion techniques (Trevisan and Uboldi, 2004; Trevisan et al.,
2010; Fertig et al., 2007), and new parameterizations (Wilks,
2006). The L96 model had already been taken as test-bed for
studying the linear response (the applicability of the fluctua-
tion dissipation theorem, in their language) inAbramov and
Majda(2007).

Although we are unable to prove that the unperturbed L96
is an Axiom A system, in general and for the specific choice
of parameters used in our numerical simulations in particular,
we adopt the chaotic hypothesis and present the first thor-
ough investigation of a spatially extended system by using
the rigorous statistical mechanical methodologies presented
in Ruelle(1998a, 2009) andLucarini (2008b, 2009b). More-
over, since L96 is a spatially extended system, we also ex-
plore the applicability of the response theory in all possi-
ble combinations of global/local observables and global/local
perturbations. We compute rigorously the corresponding lin-
ear susceptibilities, verify the KK relations and the related
sum rules, and find an empirical power law. This, as in the
case of discussed inLucarini et al.(2007), supports the valid-
ity of the chaotic hypothesis, allowing to extend the results
obtained for our specific choice of model’s parameters to a
rather general class of L96 systems. We also show how to
go from the frequency back to the time domain, thus deriv-
ing from the susceptibility the Green function, which acts as
time propagator of the considered perturbation for the con-
sidered observable. The Green function allows to predict,
in an ensemble mean sense, the change in the observable at
any time horizon as a result of a perturbation with the same
spatial patter as that considered in the calculation of the sus-
ceptibility but featuring a general time modulation.

Finally, building upon the results presented here, we pro-
pose a simple yet general methodology to study general Cli-
mate Change problems on virtually any time scale by resort-
ing to only well selected simulations, and by taking full ad-
vantage of ensemble methods. The specific case of globally
averaged surface temperature response to a general pattern of
change of the CO2 concentration is discussed.

Whereas the paper aims at proposing new methods for
tackling classical problems of climate science, most of the
results and of the methodologies proposed are of more gen-
eral interest. In this paper we limit our attention to the linear
response. We refer toLucarini (2008b, 2009b) for a theoreti-
cal and numerical studies of higher-order effects of perturba-
tions.

The paper is organized as follows. In Sect.2 we briefly
analyze the general theoretical background of the linear re-
sponse theory and of the properties of the frequency depen-
dent susceptibility and present some new useful results. In
Sect.3 we present the main features of the L96 system, in-
troduce the considered perturbations to the forcing, derive
some basic properties of the response of various observables,
and present the theoretical predictions. In Sect.4 we present
the results of our numerical investigations and describe how
they can be generalized to the entire family of L96 models.
In Sect.5 we provide a relevant example to illustrate how the
results presented in this paper can be used to devise simple
yet rigorous methods to study the climate response at all time
scales on models of any degree of complexity. In Sect.6 we
discuss the conclusions and present perspectives for future
work.

2 Theoretical background: Ruelle theory and
dispersion relations

2.1 Definition of the linear susceptibility

We consider an Axiom A dynamical system described by the
evolution equatioṅx = F(x), so that the invariant probabil-
ity measureρ0 of the associated flow is of the SRB type
(Ruelle, 1998a). Let 〈8〉0 be the expectation value of the
general observable8 defined as

∫
ρ0(dx),8(x). We perturb

the flow of the system by adding a on the right hand side of
the evolution equation a vector fieldX(x)f (t), whereX(x)

defines the pattern of the perturbation, andf (t) is its time
modulation. The resulting evolution equation results to be
ẋ = F (x)+X(x)f (t). Following Ruelle (1998a), we ex-
press the expectation value of8(x) in the perturbed system
using a perturbative expansions as:

〈8〉(t)= 〈8〉0+

∞∑
n=1

〈8〉
(n)(t). (1)

Each term of the perturbative series can be expressed as an
n-convolution integral of thenth order causal Green function
with n delayed time perturbation functions (Ruelle, 1998b;
Lucarini, 2008b). Limiting our attention at the linear case
we have:

〈8〉
(1)(t)=

∫
+∞

−∞

dσ1G
(1)
8 (σ1)f (t−σ1) (2)
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The first order Green function can be expressed as follows:

G
(1)
8 (σ1)=

∫
ρ0(dx)2(σ1)350(σ1)8(x), (3)

where3(•)= X(x) ·∇(•) takes into account the effects of
the perturbative vector field,2 is the usual Heaviside dis-
tribution and50 the unperturbed time evolution operator so
that50K(x)=K(x(t)) for any functionK, with x(t) fol-
lowing the unperturbed flow. Note that it is possible to ex-
press the Green function as the expectation value of a non-
trivial but computable observable over the unperturbed SRB
measureρ0. Therefore the knowledge of the unperturbed fea-
tures of the flow is sufficient to define the effects of any ex-
ternal perturbation over any observable of our system. In the
frequency domain we find that the first term of the perturba-
tive series can be written as:

〈8〉
(1)(ω)=

∫
+∞

−∞

dω1χ
(1)
8 (ω1)f (ω1)×δ(ω−ω1)

=χ
(1)
8 (ω)f (ω), (4)

where the Dirac delta implies that we are analyzing the im-
pact of perturbations in the frequency-domain at the fre-
quencyω. The linear susceptibility is defined as:

χ
(1)
8 (ω)=

∫
+∞

−∞

dtG(1)8 (t)exp[iωt]. (5)

It is important to underline with a thought experiment the
computational relevance of the last equations and the impor-
tance of the susceptibility function.

Let’s suppose we introduce a time dependent perturbation
fα(t) to a given pattern of forcingX(x), simulate the sys-
tem and observe the time response of an arbitrary observ-
able〈8α〉

(1)(t). We now compute the Fourier transform of
the observed signal and of the forcing modulation. Invert-
ing Eq. (4), we can find the linear susceptibilityχ (1)8 (ω).
Let’s now consider a different time-modulating function of
the forcingfβ(t) and its corresponding Fourier transform
fβ(ω). Taking into account Eq. (4), if we multiply fβ(ω)

times the previously computed functionχ (1)
8̄
(ω) we directly

obtain〈8β〉
(1)(ω), the frequency-dependent response of the

observable8 to the forcingX(x) modulated by the new
function. By applying the inverse Fourier transform we ob-
tain the time-dependent response〈8β〉

(1)(t) without needing
any additional simulation.

Moreover, the knowledge of the susceptibility function al-
lows us to reconstruct theG(1)8 (t) by inverting Eq. (5). Oth-
erwise, the Green function can be obtained directly from
observing the response signal by performing a simulation
wheref (t)= δ(t): in this case (see Eq. (2)) we simply have
〈8〉

(1)(t)=G
(1)
8 (t).

2.2 Kramers-Kronig relations and sum rules

As we see from Eq. (3), for an arbitrary choice of the ob-
servable and of the perturbation the corresponding linear

Green function is causal. Assuming, on heuristic physical ba-
sis, thatG(1)8 (t)∈L

2, we can apply the Titchmarsh theorem
(Nussenzveig, 1972; Peiponen et al., 2005; Lucarini et al.,
2003, 2005) and deduce that the linear susceptibilityχ (1)8 (ω)

is a holomorphic function in the upper complexω-plane and
the real and the imaginary part ofχ(ω) are connected to each
other by Hilbert transform.

According to a general property of Fourier transform we
know that the short term behavior ofG(1)8 (t) determines the

asymptotic properties ofχ (1)8 (ω). We shall obtain a more
quantitative result by exploiting that:∫

+∞

−∞

dt2(t)tkexp[iωt] = (−i)k
dk

dωk

(
P

i

ω
+πδ(ω)

)
≈ k!

i(k+1)

ω(k+1)
(6)

where in the second equality we have neglected the fact that
the solution is a distribution and consideredω 6= 0. There-
fore, if the Taylor expansion of the Green function in the
limit t→ 0+ is of the form:

G
(1)
8 (t)≈ ᾱ2(t)t

β
+o(tβ) (7)

the high frequency behavior of the linear susceptibility, i.e.
the limitω→ ∞, is:

χ
(1)
8 (ω)≈αω−β−1

+o(ω−β−1) (8)

whereα= ᾱi(β+1)β!. The parametersβ (which is an integer
number) and̄α depend on the observable8, on the specific
features of the unperturbed system, and on the forcing un-
der consideration. Taking into account Eq. (5) and assuming
thatω is real, we obtain thatχ (1)8 (ω)= [χ

(1)
8 (−ω)]∗, so that

Re[χ ] is an even function while Im[χ ] is odd function ofω.
Thusα=αR is real ifβ is odd, whereasα= iαI is imaginary
if β is even.

Taking into account the Titchmarsch theorem, using that
χ
(1)
8 (ω)= [χ

(1)
8 (−ω)]∗, and considering the asymptotic be-

havior of the susceptibility, it is possible to show that the real
and imaginary part of the linear susceptibility obey the fol-
lowing set of general KK dispersion relations (Lucarini et al.,
2005):

−
π

2
ω2p−1Im[χ

(1)
8 (ω)] =P

∫
∞

0
dν
ν2pRe[χ (1)8 (ν)]

ν2−ω2
(9)

π

2
ω2pRe[χ (1)8 (ω)] =P

∫
∞

0
dν
ν2p+1Im[χ

(1)
8 (ν)]

ν2−ω2
(10)

with P indicating integration in principal part andp =

0,...,(β−1)/2 if β is odd andp= 0,...,β/2 if β is even.
Note that the faster the asymptotic decrease of the suscepti-
bility, the higher the number of independent constraints due
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to KK relations it has to unavoidably obeys. As thoroughly
discussed inKubo (1966), in the case of quasi-equilibrium
system, the fluctuation-dissipation theorem ensures that the
imaginary part of the susceptibility describing the response
of a given observable to a perturbation is proportional to
a suitably defined power spectrum in the unperturbed sys-
tem. Therefore, observing the unperturbed system and using
Eq. (10) it is possible to reconstruct the entire linear suscepti-
bility, and so know everything about the response properties
of the system. In the case of a non-equilibrium system, as
discussed in the Introduction, this procedure is not possible.

It is possible to use the KK relations to define specific self-
consistency properties of the real and imaginary part of the
susceptibility. We first consider the following application:
we setp= 0 in Eq. (10) and take the limitω→ 0. We obtain
that for any observable:

Re[χ (1)(0)] =
2

π
P

∫
dν

Im[χ (1)(ν)]

ν
, (11)

which says that the static susceptibility (i.e., in a more com-
mon language, the linear sensitivity of the system) is related
to the out-of-phase response of the system at all frequencies.
In other terms, Eq. (11) is an exact formula for the linear sus-
ceptibility of the system. Note that the static susceptibility
is a real number because, thanks to the symmetry proper-
ties discussed above, Im[χ (1)(0)] = 0. Moreover, we know
that Re[χ (1)(0)] is finite because the susceptibility function
is analytic (and so in particular non singular). This is con-
sistent with the fact that asω→ 0, the imaginary part of the
susceptibility goes to zero at least as fast as a linear func-
tion, as only odd positive integer exponents can appear in
its Taylor expansion aroundω= 0), so that the integrand in
Eq. (11) is not singular. Similarly, we obtain that forω∼ 0
the real part of the susceptibility is in general of the form
c1+c2ω.

2
+o(ω3), wherec1 andc2 are two constants andc1

is exactly given by Eq. (11).
By exploring theω→ ∞ limit in Eqs. (9–10) we obtain

further integral constraints. By applying the superconver-
gence theorem (Frye and Warnock, 1963), we obtain the fol-
lowing set of vanishing sum rules (seeLucarini et al., 2003):∫

∞

0
dνν2p+1Im[χ

(1)
8 (ν)] = 0

0≤p≤β/2−1, β even
0≤p≤ (β−3)/2, β odd

. (12)

∫
∞

0
ν2pRe[χ (1)8 (ν)]dν= 0

0≤p≤β/2−1, β even
0≤p≤ (β−1)/2, β odd

. (13)

Note that ifβ = 0 no vanishing sum rules can be written for
the susceptibility, whereas ifβ = 1 only Eq. (13) provides a
zero-sum constraint. For each set of KK relations, an addi-
tional, non-vanishing sum rule can be obtained. Ifβ is odd,
the non-vanishing sum rule is:∫

∞

0
νβ Im[χ

(1)
8 (ν)]dν= −

π

2
αR, (14)

while if β is even, we have:

∫
∞

0
νβRe[χ (1)8 (ν)]dν=

π

2
αI , (15)

where theα constants are defined in Eq. (8). These sum rules
provide additional general constraints that must be obeyed by
any system and can be used to test the quality of the output of
any model wishing to describe it. If we are not in the perfect
model scenario (e.g., we use a simplified representation of
some degrees of freedom) the sum rules can in principle be
used to provide a fit for the parametrization.

We underline that it is possible to generalize the KK the-
ory for specific classes of nonlinear susceptibilities for both
quasi-equilibrium and non-equilibrium systems. Such re-
sults, which are particularly suited for studying the funda-
mental properties of harmonic generation processes, are thor-
oughly discussed inLucarini (2008b) and will not be re-
ported here.

2.3 A practical formula for the linear susceptibility and
consistency relations between susceptibilities of
different observables

As discussed above, the definition of the linear susceptibility
does not depend on the functionf (t) modulating the addi-
tional forcing, so that it is possible to draw general conclu-
sions on its properties even by choosing a specific function
f (t).

Let’s considerf (t)= 2εcos(ωt). The impact of the per-
turbation on the evolution of a general observable8(x) is
defined as:

δ8ε(t,t0,x0)=8ε(t,t0,x0)−80(t,t0,x0) (16)

where x0 and t0 are the initial condition and the initial
time, and we associate the lower indexε to the strength
of the forcing. The Ruelle’s response theory ensures that
δ8ε(t,t0,x0)=O(ε). FollowingReick(2002) andLucarini
(2009b) the linear susceptibility results to be:

χ
(1)
8 (ω)≡ lim

ε→0
lim
T→∞

χ
(1)
φ (ω,x0,ε,T ) (17)

where:

χ
(1)
8 (ω,x0,ε,T )=

1

T

1

ε

∫ T

0
dtδ8ε(t,x0)exp(iωt) (18)

is the total susceptibility, affected by the finite time and finite
size response of the system. This quantity depends on the
initial condition and in principle contains information about
the response of the system at all order of nonlinearity.

Since d(δ8ε(t,x0))/dt = δ(d8ε(t,x0))/dt , thanks to the
linearity of the time derivative, by considering Eqs. (17–18)
and performing an integration by parts, we obtain that (Re-
ick, 2002):

χ
(1)
8̇
(ω)= −iωχ (1)8 (ω). (19)
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Let’s now find a different expression forχ (1)
8̇
(ω). The time

derivative of8 in the unperturbed system is

8̇(x)=0(x), (20)

where0 = F ·∇8. Similarly, the time derivative for8 in
the case of the perturbed motion described byẋ = F (x)+

X(x)f (t)= F (x)+2εcos(ωt)X(x) is:

8̇(x)=0(x)+2εcos(ωt)4(x), (21)

where4= X ·∇8. From Eqs. (20–21) we obtain that

δ8̇ε(t,x0)= δ0ε(t,x0)+2εcos(ωt)4(t,x0), (22)

where all terms are ofO(ε). Furthermore, we integrate each
term in Eq. (22) as in Eq. (18), take the limitsε → 0 and
T → ∞, and obtain:

lim
ε→0

lim
T→∞

1

T

1

ε

∫ T

0
dtδ8̇ε(t,x0)exp(iωt)

= lim
ε→0

lim
T→∞

1

T

1

ε

∫ T

0
dtδ0ε(t,x0)exp(iωt)

+ lim
ε→0

lim
T→∞

1

T

1

ε

∫ T

0
dtε4ε(t,x0)[ exp(iωt)

+exp(−iωt) ]exp(iωt). (23)

Using the definition in Eq. (17) and the identity given in
Eq. (19), we derive:

−iωχ (1)8 (ω)=χ
(1)
0 (ω))+ lim

ε→0
lim
T→∞

1

T

∫ T

0
dt4ε(t,x0)

+ lim
ε→0

lim
T→∞

1

T

1

ε

∫ T

0
dtε4ε(t,x0)exp(2iωt).

(24)

The first limit in Eq. (24) gives, by definition,〈4〉0, whereas
the second limit vanishes as the expression under integral is
O(ε2), since it is related to second order harmonic gener-
ation nonlinear process (Lucarini, 2009b). Concluding, we
obtain the following general consistency relation for the lin-
ear susceptibility:

χ
(1)
8 (ω)=

i

ω
χ
(1)
0 (ω)+

i

ω
〈4〉0. (25)

Such an identity related the susceptibility of an observable
8 to the susceptibility of the projection of its gradient along
the unperturbed flow0 and to the average value in the unper-
turbed state of the projection of its gradient along the pertur-
bation flow. Note that the two terms on the right hand side
are radically different. Whereas the first term is related to the
projection of the dynamics along the unstable manifold, the
second term depends on the structure of the forcingX(x),
which may be entirely unrelated to that of the unstable man-
ifold. This is the fundamental reason why the fluctuation-
dissipation theorem does not apply in the non-equilibrium
case.

Moreover, since, as shown in Eq. (7–8), the susceptibility
of a generic observable decreases to zero at least as fast as
ω−1, for large values ofω we have thatχ (1)8 (ω)≈ i/ω〈4〉0
unlessω〈4〉0 = 0. If ω〈4〉0 6= 0, we also have that the lead-
ing order of the short-time expansion of the Green function
is of the form:

G
(1)
8 (t)=2(t)〈4〉0+o(t0), (26)

in agreement with what can be found by direct inspection of
Eq. (3).

3 Application of the response theory to the Lorenz
96 model

3.1 Statistical properties of the unperturbed Lorenz
96 Model

The Lorenz 96 model (Lorenz, 1996; Lorenz and Emanuel,
1998; Lorenz, 2004) describes the evolution of a generic at-
mospheric variable defined inN equally spaced grid points
along a latitudinal circle and provides a simple, unrealistic
but conceptually satisfying representation of some basic at-
mospheric processes, even if such one-dimensional model it
cannot be derivedab-initio from any dynamic equation via
subsequent approximations. The evolution equations can be
written in a scaled form as follows:

dxi
dt

= xi−1(xi+1−xi−2)−xi+F (27)

wherei= 1,2,.....,N , and the indexi is cyclic so thatxi+N =

xi−N = xi . The quadratic term in the equations simulates
advection, the linear one represents thermal or mechanical
damping and the constant one is an external forcing. The
evolution equations are invariant underi→ i+1, so that the
dynamics is the same for all variable. The time scale of the
system is given by the damping time, which corresponds to
five days. The L96 system shows different features, as dif-
ferent choices ofF andN may strongly alter the topology of
the attractor, alternating periodic, quasi-periodic and chaotic
behavior in a non trivial way. However with a suitable choice
of the parametersN andF , the system is markedly chaotic.
In particular, asF controls the energy input into the system,
we expect that for relatively high values of this parameter
the system should simulate a turbulent behavior and live on
a strange attractor. As an example, settingN = 40 andF = 8
the system possesses 13 positive Lyapunov exponents, the
largest corresponding to a doubling time of 2.1 days, while
the fractal dimension of the attractor (Ruelle, 1989) is about
27.1 (Lorenz and Emanuel, 1998).

When computing the time derivative of the total energy of
the system, defined asE = 1/2

∑
i x

2
i , the advection terms

cancel. The evolution equation forE results to be:

Ė= −2E+F
∑
i

xi . (28)
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As the dynamics takes place inside a compact set,
9(xi,...,xN ) is bounded for any choice of the function9.
Therefore the ensemble mean with respect theρ0 (or time
average) of the temporal derivativė9 vanishes. Therefore,
definingM =

∑
i xi as the total momentum of the system,

we obtain the following identity:

2〈E〉0 =

∑
i

〈
x2
i

〉
0
=F

∑
i

〈xi〉0 =F 〈M〉0. (29)

Similarly, we can deduce an additional consistency relation
by investigating the expression of the time derivative ofM:

〈M〉0 =NF +〈C2〉0−〈C3〉0 (30)

where 〈C2〉0 =
∑
i 〈xixi−2〉 and 〈C3〉0 =

∑
i 〈xixi−3〉0.

Higher order consistence relations can be obtain in a simi-
lar fashion.

The equivalence of all the variables implies that over the
unperturbed flow each observableO of the whole system sat-
isfies

∑
i 〈O(xi)〉0 =N

〈
O(xj )

〉
0 ∀j . Therefore, we define

the average energy per grid pointe(N,F ) and the average
momentum per grid pointm(N,F) as:

e =

〈
x2
i

〉
0

2
=

〈E〉0

N
, (31)

m= 〈xi〉0 =
〈M〉0

N
, (32)

where the choice ofi is arbitrary and theN and F -
dependence is dropped for shortness. Definingci =

〈Ci〉0/N , c0 = 2e, we can rewrite Eqs. (29–30) as follows:

2e=Fm, (33)

m=F +c2−c3. (34)

Expressing either the average energye or the average mo-
mentumm per grid point as a function of the two free pa-
rametersN andF would allow to get a closure equation for
the statistical properties of the unperturbed Lorenz 96 sys-
tem. We have computede(N,F ) andm(N,F) by performing
long integrations for values ofF ranging from 6 to 50 with
step 1 and for values ofN ranging from 10 to 200 with step
10. In all of these cases, chaotic motions are observed. We
have consistently found that, within 0.5%,e(N,F )= e(F )

andm(N,F)=m(F), so that they can be considered inten-
sive quantities. Therefore, we can interpret Eqs. (33–34) as
equations providing a definition of the thermodynamics of
this simple one-dimensional model of atmosphere.

The F -dependence ofe andm can be closely approxi-
mated in terms of simple power laws. We obtain, within a
precision of about 1% in the considered domain, that

m(F)= λF γ , (35)

and, consistently with Eq. (33),

e(F )=
λ

2
F 1+γ , (36)

with λ≈ 1.15 andγ ≈ 0.35. Such a smooth dependence of
the intensive energy and momentum with respect to the forc-
ing parameterF is indeed in agreement with the hypothesis
that the invariant measure is deformed in a very regular fash-
ion not only locally, but over a large range of the parameter’s
space.

Note that, at the fixed point of the system corresponding to
a purely zonally symmetric dynamics (xi = F , ∀i) we have
m=F ande=F 2/2. These formulas give much higher val-
ues for bothm and e than what found with our empirical
power laws for the attractor in the chaotic regime. In fact,
at such an equilibrium, which is unstable in the parametric
range explored here, the energy dissipation is much weaker
than in the co-existing chaotic attractor, which corresponds to
the case where breaking nonlinear waves and turbulent mo-
tions are present. Interestingly, the presence of well-defined
scaling laws with respect to the forcing parameters for the
energy and momentum of the system with different charac-
teristic exponents in the chaotic regime and in the co-existing
unstable equilibrium is in agreement with previous finding
recently obtained in a simple baroclinic quasi-geostrophic
model (Lucarini et al., 2007).

3.2 Asymptotic properties of the linear susceptibility

We perturb the L96 model by adding a small perturbation
modulated byf (t) = 2εcos(ωt). The resulting evolution
equation is:

dxi
dt

= xi−1(xi+1−xi+2)−xi+F +2εcos(ωt)Xi (37)

whereXi = Xi(x1,...,xN ) is a generic function of vari-
ablesxi . We adopt the chaotic hypothesis (Gallavotti, 1996;
Gallavotti and Cohen, 1995) and we follow the theory pro-
posed byRuelle (1998a) and discussed in Sect.2 in order
to study the linear response of suitably defined observables
to the perturbation. We first propose to study the high-
frequency, response by analyzing in detail the asymptotic
properties of the resulting susceptibilities. As discussed in
Sect.2, this constitutes a crucial step for constructing the set
of applicable KK relations and for computing the value of the
sum rules.

We consider two different forcing pattersXi . In the first
case, we apply the perturbation over all the grid points and
we chooseXi = 1∀i. Given an observable8, we refer to the
linear Green function and linear susceptibility resulting from
this choice ofXi asG(1)8,N andχ (1)8,N , respectively, where the
lower indexN indicates that the perturbation acts over all
the variablesxi . We refer to this pattern of forcing asglobal
perturbation. In the second case, we apply the perturbation
only on the variablexj of the L96 model, and we choose
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X1 = 0∀i 6= j , Xj = 1. Since all the points are equivalent in
the unperturbed case, the choice ofj is arbitrary. In this case,
when referring to the linear Green function and the linear
susceptibility, the lower index 1 substitutes theN , indicating
that the perturbation is localized to one point. We refer to
this pattern of forcing aslocal perturbation.

3.2.1 Global perturbation

We consider perturbations with spatial pattern given byXi =

1∀i and analyze the response of the observableE. Following
Eq. (3), the linear Green functionG(1)E,a(t) can be explicitly
written as:

G
(1)
E,N (t)=

∫
ρ0(dx)2(t)350(t)E(x)

=

∫
ρ0(dx)2(t)1·∇E(x(t))

=

∫
ρ0(dx)2(t)

∑
i

∂i(E(x(t))) (38)

wherex(t) satisfies the unperturbed evolution Eq. (27). Tak-
ing into account Eq. (7) and Eq. (8), in order to obtain the
asymptotic behavior of the susceptibility, we need to study
the short time behavior of the Green function. Therefore, we
expressE(x(t)) as a Taylor series aboutt = 0 considering
the unperturbed flow, compute the integral of each coeffi-
cient of thet-expansion overρ0, and seek the lowest order
non-vanishing term (Lucarini, 2009b). The first two terms of
the Taylor expansion ofE in Eq. (38) give:

G
(1)
E,N (t)=

∫
ρ0(dx)2(t)

∑
i

∂i

(
E|t=0+ tĖ|t=0+o(t)

)
=

∫
ρ0(dx)2(t)

[∑
i

xi−
(∑

i

2xi−NF
)
t+o(t)

]
. (39)

Using Eqs. (7–8), the leading terms of the asymptotic behav-
ior of linear susceptibility can be written as:

χ
(1)
E,N (ω)= i

(∑
i

〈xi〉0

)
/ω+

(∑
i

〈2xi〉0−NF
)
/ω2

+o(ω−2)= iN
m

ω
−N

F −2m

ω2
+o(ω−2) (40)

Since the symmetry with respect the indexi is valid also in
the perturbed case, given our choice of the forcing pattern,
the linear susceptibility of the total energy is given the sum
of N identical contributions, each corresponding to the sus-
ceptibility of the observableε= 1/2x2

i for each of theN vari-
ablesxi of the system. Therefore, it is possible to define an
intensive linear susceptibilityχ (1)ε,N = 1/Nχ (1)E,N , whereχ (1)ε,N
describes the response of the local energy to the external per-
turbation. In particular in the limitω→ ∞ we have:

χ
(1)
ε,N (ω)= i

m

ω
−
F −2m

ω2
+o(ω−2). (41)

Equations (40) and (41) imply that the imaginary part
dominates the asymptotic behavior of the susceptibility, so
that at high frequency the response is shifted by aboutπ/2
with respect the forcing. Observing that the leading term of
asymptoticχ is of orderω−1 just one sum rules apply for
either susceptibilities. Limiting our attention to the intensive
quantitye, by applying Eq. (15) we obtain:∫

∞

0
Re[χ (1)ε,N (ω)]dω=

π

2
m. (42)

Along similar lines, if we select as observable the total mo-
mentumM, we derive that the asymptotic behavior of its lin-
ear susceptibility is:

χ
(1)
M,N (ω)=Nχ

(1)
µ,N (ω)= i

N

ω
+
N

ω2
+o(ω−2), (43)

where we have defined the intensive susceptibilityχ
(1)
µ,N (ω),

whereµ is the intensive momentum of the system. As in
Eq. (41), the asymptotic behavior is determined by the imag-
inary part ofχ , and the real part of the susceptibility provides
the following sum rule:∫

∞

0
Re[χ (1)µ,N (ω)]dω=

π

2
. (44)

We now wish to go back to the general consistency equation
for linear susceptibilities given in Eq. (46). Considering that
in the perturbed system the time derivative of the total energy
of the system can be written as:

Ė= −2E+FM+2εcos(ωt)M (45)

the general result given in Eq. (25) can be written as follows:

χ
(1)
E,N (ω)=

F

2− iω
χ
(1)
M,N (ω)+

1

2− iω
〈M〉0, (46)

since in this case0 = −2E+FM and4=M. It is easy
to check that the asymptotic behavior for the susceptibilities
given in Eqs. (40–43) is in agreement with Eq. (46), which is
valid at all frequencies.

3.2.2 Local perturbation

We now perturb the system in a single grid point. The sym-
metry of the unperturbed system implies the equivalence of
every point of the latitude circle. Indicating withxj the grid
point where forcing is exerted, the pattern of the perturbation
vector field isX1 = 0∀i 6= j , Xj = 1. We consider the same
modulating monochromatic functionf (t)= 2εcos(ωt) as in
the previous case. We analyze the asymptotic behavior of
the linear susceptibility of the total energy of the systemE,
of the total momentum of the systemM, which are global
variables, and of the local variables constituted by the energy
Ej = 1/2x2

j and momentumMj = xj of the perturbed grid
point and of its immediate neighbors.
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Since we are looking at the linear response and the
global perturbation is given byN spatially shifted copies
of the local perturbation, for any observable8 of the form
8(x1,...,xn)=

∑N
i=1φ(xi) we must haveχ (1)8,1 = χ

(1)
8/N,N =

χ
(1)
φ,N .
In the case of the observableE, it is straightforward to ver-

ify the previous identity at least in the asymptotic regimes. In
fact, the short time behavior of the Green function describing
the response of theE to the local perturbation results to be:

G
(1)
E,1(t)=

∫
ρ0(dx)2(t)∂j

(
E|t=0+ tĖ|t=0+o(t)

)
=

∫
ρ0(dx)2(t)∂j

[1

2

∑
x2
i −

(∑
2x2
i −xiF

)
t
]

=2(t)
(〈

2xj
〉
0−

〈
2xj −F

〉
0t+o(t)

)
, (47)

so that the asymptotic behavior of the corresponding linear
susceptibility susceptibility is:

χ
(1)
E,1 = i

m

ω
−
F −2m

ω2
+o(ω−2), (48)

which agrees with what found for the intensive energy re-
sponse when the global perturbation is applied (see Eq. (41)).
The sum rule for the real part of the susceptibility is exactly
the same as in what given in Eq. (42):∫

∞

0
Re[χ (1)E,1(ω)]dω=

π

2
. (49)

Analogously, we obtain that the asymptotic behavior of
χ
(1)
M,ε,1 can be written as:

χ
(1)
M,1(ω)= i

1

ω
+

1

ω2
, (50)

with the corresponding sum rule:∫
∞

0
Re[χ (1)M,1(ω)]dω=

π

2
, (51)

in perfect agreement with Eqs. (43) and (44), respectively.
It is rather interesting to look into local energy observ-

ables. Considering the energyEj of the perturbed grid point
xj we have that its short term Green function can be written
as:

G
(1)
Ej ,1

(t)=

∫
ρ0(dx)2(t)∂j [

1

2
x2

1 +( xj ( xj−1xj+1

−xj−1xj−2−xj +F ) )t+o(t) ] =2(t)[
〈
xj

〉
0

−
〈
xj−1xj+1−xj−1xj−2−xj +F

〉
0t+o(t) ] . (52)

Since

0=
〈
ẋj

〉
0 =

〈
xj−1xj+1−xj−1xj−2−xj +F

〉
0 (53)

because theρ0-average of the temporal derivative of any ob-
servable vanishes, thanks to the compactness of the attractor,

we obtain the following asymptotic behavior for the linear
susceptibility

χ
(1)
Ej ,1

= i
m

ω
+
m

ω2
+o(ω−2). (54)

Since, by linearity,χ (1)E,1 =
∑
kχ

(1)
Ek,1

, comparing this result
with what obtained in Eq. (48), we note that the suscepti-
bility of the energy at the position of the forcingEj pro-
vides the leading asymptotic term to the susceptibility of the
total energyE. Consequently, in the high-frequency range
χ
(1)
Ej ,1

≈χ
(1)
E,1, and the two susceptibilities obey the same non-

vanishing sum rule, so that:∫
∞

0
Re[χ (1)Ej ,1(ω)]dω=

π

2
m (55)

Nevertheless, by comparing Eqs. (48–54), we discover that
contributions to the second leading order (∝ω−2) in the high
frequency range of the susceptibility of the total energy do
not come just from the response of the energy at the per-
turbed grid point. perturbed grid point but some other point
give a contribution of orderω−2. Therefore, the asymptotic
behavior of the real part ofχ (1)E,1 is not captured byχ (1)Ej ,1.
The locality of the interaction suggests to look at the energy
of the closest neighbors ofxj . Because of the asymmetry of
the nonlinear terms in the L96 evolution equations, we con-
sider the observableψ = 1/2(Ej+1 +Ej+2 +Ej−1). It is
possible to prove that:

χ
(1)
ψ,1(ω)= −

〈
xj−1(xj+1−xj−2)

〉
0

ω2
= −

(F −m)

ω2
+o(ω−2). (56)

It is easy to observe that the sum ofχ (1)ψ,1 andχ (1)Ej ,1 provides
the correct leading order to the asymptotic behavior of both
the real and imaginary parts ofχ (1)E,1. We shall provide an
argument why this strongly supports the close resemblance
of the two functionsχ (1)E,1 andχ (1)Eloc,1, whereEloc =Ej+ψ =

1/2x2
j +1/2x2

j+1 +1/2x2
j+2 +1/2x2

j−1 is the energy of the
cluster of points centered inxj .

The analysis of the asymptotic behavior of the susceptibil-
ities related to the local momentum of the system provides
additional insights. It is possible to prove that for large fre-
quency the linear susceptibility of the momentum of the per-
turbed grid point is:

χ
(1)
xj ,1

(ω)= i
1

ω
+

1

ω2
+o(ω−2), (57)

which suggests that the response of the local momentum cap-
tures the correct asymptotic behavior of both the real and the
imaginary part of the total momentumM. Concluding, we
obtain that the following sum rule can be stablished:∫

∞

0
Re[χ (1)xj ,1(ω)]dω=

π

2
. (58)
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Therefore, such a constraint is exactly the same whether we
analyze the the response of the momentum of a single vari-
able when the perturbation acts over all the grid points, or of
the total momentum in the case of a local perturbation, or, in
this latter case, of the momentum of the grid point where the
local perturbation is applied.

As we have seen in this section, the coefficients of the lead-
ing asymptotic terms and the sum rules are given by simple
linear functions ofm (or equivalently, thanks to Eq. (33), by
e) and byF . As we have proposed an efficient parameteri-
zation ofm ande as functions ofF alone in Sect.3.1, our
results can be easily applied and numerically verified for a
very large class of L96 models.

4 Results

4.1 Simulations and data processing

The accurate calculation of the linear susceptibility of the
general observable8 is not as easy task, since the defini-
tion given in Eq. (17) requires the evaluation of two limits,
whereas we can actually compute only the quantity given in
Eq. (18). Averaging the response over a long timeT allows
for improving the signal-to-noise ratio. Noise is present be-
cause, due to the chaotic nature of the flow, we have a contin-
uous spectral background. Instead, considering small values
for the perturbation strengthε degrades the signal-to-noise
ration, but, on the other hand, it is crucial to select a small
ε in order to keep the perturbations as close as possible to
the linear regime. As discussed inLucarini (2009b), we can
improve the signal-to-noise ratio without needing to perform
very long integrations and to consider large values forε by
performing an ergodic averaging of the quantity averaging
the quantityχ (1)8 (ω,xi,ε,T ). Therefore, we choose the best

estimator of the true susceptibilityχ (1)φ as:

χ
(1)
8 (ω)∼= lim

K→∞

1

K

K∑
i=1

χ
(1)
8 (ω,xi,ε,T ), (59)

where thexi are randomly selected initial conditions chosen
on the attractor of the unperturbed system.

The numerical integrations of the Lorenz 96 system have
been performed using the standard configuration whereN ,
the number of degrees of freedom, is set to 40, andF , the
intensity of the unperturbed forcing, is set to 8 (Lorenz, 2004,
1996). Equations (27) and (37) are solved using the standard
fourth order Runge-Kutta numerical scheme.

For a given observable8, the susceptibility at angular fre-
quencyω is computed by applying Eq. (59) to K outputs
of Eq. (37), each starting with a different initial condition,
where the perturbation has the same angular frequencyω.
The angular frequencyω ranges fromωl = 0.2π toωh= 20π
with steps of 0.01π . Each simulation performed with a
perturbation of angular frequencyω runs from t = 0 up to

t = T = 400π/ω, which corresponds to 200 full periods of
the forcing. The length of the simulations depends on the
corresponding period of the forcing because we are inter-
ested in obtaining a frequency-independent quality for the
signal. We have observed that the linear response approxi-
mation is obeyed to a good degree of approximation for up
to ε≈ 1, which implies that the third order nonlinear effects
are relatively small. SeeLucarini (2008b, 2009b) for further
clarifications on this latter point.

When considering the susceptibilities describing the re-
sponse to the global perturbation, we present results obtained
using ε = 0.25 and averaging overK = 100 random initial
conditions. When assessing the linear response to the local
perturbation, a reasonably clear signal is obtained usingε= 1
and averaging overK = 300 initial conditions.

Note that, since we are interested in the linear response,
it is could have been possible to compute the susceptibility
using a generic modulating functionf (t) (see Eq.4) rather
than having to resort to multiple monochromatic perturba-
tions. Nevertheless, for reasons of clarity, and for empha-
sizing that chaotic dynamical systems can be analyzed using
tools typical of spectroscopy, we have used a more cumber-
some but probably more convincing approach.

We underline that the numerical results have been obtained
using a commercial laptop rather than resorting to HPC. This
comes from the motivation of showing that the methodology
presented is robust enough that relatively low-end means al-
low us to see the physical and mathematical properties of
our interest. We emphasize that, using HPC, it is rather easy
to greatly increase the quality of the signal by increasingK

and/orT by a one or two orders of magnitude.

4.2 Global perturbation

We first considerχ (1)ε,N = 1/Nχ (1)E,N , whereε=E/N , and fol-
low up from the discussion in Sect.3.2.1. The measured real
and imaginary parts of the susceptibility are depicted with the
black lines in Fig.1a, b. The imaginary part has a broad spec-
tral feature (with two distinct peaks) spanning fromω≈ 2 to
ω≈ 4, which corresponds to about twice the time scale (= 1)
of the system and to four times (see Eq.28) the relaxation
time of the energy. This hints at the fact that it is not ob-
vious to constrain the spectral features of the response an
observable just by performing a scale analysis of its evolu-
tion equation. For higher values ofω, the imaginary part
decreases in a very regular way, so that in the upper range
a very good agreement with the asymptotic behavior∼m/ω

presented in Eq. (8) is obtained. For low frequencies, the
imaginary part appears to decrease towards zero, as expected
from symmetry reasons. Instead, the real part presents a dis-
persive structure in correspondence with the broad maximum
of the imaginary part, and changes sign forω≈ 6, so that it is
negative for high values of the frequency range. The asymp-
totic decrease to zero in this range is also in excellent agree-
ment with the estimate∼ −(F −2m)/ω2 given in Eq. (8),
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Fig. 1. Linear susceptibility of intensive energy of the systemE/N
with respect to the global perturbation withXi = 1 ∀i. The real and
the imaginary parts are depicted in(a) and (b), respectively. The
measured and extrapolated values are shown in red and black lines,
respectively. The result of the Kramers-Kronig inversion done with
the measured and with with the extrapolated data are shown in blue
and magenta lines, respectively.

whereas for low frequencies the real susceptibility tends to a
very high value, this suggesting that the strongest response is
obtained for static perturbations.

The measured real and imaginary parts ofχ (1)µ,N =

1/Nχ (1)M,N , whereµ=M/N , are depicted in black in Fig.2a,
b. Interestingly, the spectral feature of the imaginary part is
shifted to higher frequencies than in the case of the energy
susceptibility, so that a well-distinct peak centered on value
of ω ≈ 6, which approximately corresponds to the natural
time scale of the system. For low frequencies, the suscep-
tibility has almost exclusively a real component. As opposed
to the previous case, the largest value for the in-phase re-
sponse is not obtained for ultralow frequencies, but rather for
ω≈ 4. The asymptotic behavior of both the real and imagi-
nary parts is in perfect agreement with the theoretical result
given in Eq. (32), so that they are found to decrease asymp-
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Fig. 2. Linear susceptibility of intensive momentum of the system
M/N with respect to the global perturbation withXi = 1 ∀i. The
real and the imaginary parts are depicted in(a) and(b), respectively.
The measured and extrapolated values are shown in red and black
lines, respectively. The result of the Kramers-Kronig inversion done
with the measured and with with the extrapolated data are shown in
blue and magenta lines, respectively.

totically for high frequencies as 1/ω2 and 1/ω, respectively.
We apply the truncated KK relations to the measured data

to test the quality of the data inversion process. The estimates
of the imaginary part (starting from the measured data of the
real part) and of the real part (starting from the measured data
of the imaginary part) obtained by applying Eqs. (9–10) are
shown forχ (1)ε,N in blue in Fig.1a, b and forχ (1)µ,N in Fig. 2a,
b. We observe that whereas agreement is very good for the
real part for both susceptibilities, only a qualitative match is
obtained for the imaginary part, with large discrepancies for
ω. 2. In this latter case, moreover, the well-known problem
of KK divergence at the boundaries of integration (Lucarini
et al., 2003, 2005) is very serious forω=ωl .

It is crucial to test whether the discrepancies are due to the
finiteness of the spectral range or are, instead, due to basic
problems in the applicability of the Ruelle response theory,
related to the fact that the invariant probability measure of the
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unperturbed system actually features large deviations from
an SRB measure.

We proceed testing the first case. In order to widen the
spectral range over which the susceptibility is defined, we
will exploit the asymptotic properties obtained in Sect.3.2
as well as the low frequency behavior of the susceptibility
discussed in Sect.2. We redefine the the imaginary part of
the susceptibility ofχ (1)ε,N as follows

Im[χ
(1)
ε,N (ω)] =


ω
ωl

Im[χ
(1)
ε,N (ωl)], 0≤ω≤ωl,

Im[χ
(1)
ε,N (ω)], ωl ≤ω≤ωh,

m
ω
, ω≥ωh,

(60)

where the measured data are sandwiched between the low
and high frequency limit. Whereas we have a rigorous result
for the high frequency limit, the low frequency limit is com-
puted by making the reasonable assumption that the lead-
ing order of theω→ 0 limit is linear (see discussion after
Eq.11). Similarly, the real part of the susceptibilityχ (1)ε,N can
be redefined as follows:

Re[χ (1)ε,N (ω)] =


Re[χ (1)ε,N (ωl)], 0≤ω≤ωl,

Re[χ (1)ε,N (ω)], ωl ≤ω≤ωh,

−
F−2m
ω2 , ω≥ωh,

(61)

where we have used the fact that at low frequencies the real
part of the susceptibility is constant inω up to a quadratic
term. A corresponding procedure is used to extend the spec-
tral range of theχ (1)µ,N (ω), where the suitable asymptotic be-
haviors described in Sect.3.2.1are adopted. The red lines
in Figs. 1a, b–2a, b present the results of such extrapola-
tions, and the magenta lines show the outcome of the data
inversion of these functions performed via KK relations. We
observe that the agreement is outstanding, with almost per-
fect overlap inside the region where measurement is per-
formed and remarkable agreement also in the low and high
frequency range. This is a very convincing evidence that
the Ruelle response theory can be successfully applied for
this system. Since the KK relations provide, first and fore-
most, consistency tests, the agreement the original and the
KK-transformed susceptibility automatically confirms that
the extrapolation procedure we have adopted is correct. A
still better agreement would be found had we taken into ac-
count value ofω larger than what considered in the extrapo-
lation used here (up to 100π ).

Furthermore, let’s consider the results presented in
Sect.3.1. The slopes of the functionse(F ) andm(F) are
given by

dm(F)

dF
= λγF γ−1, (62)

de(F )

dF
= λ

(1+γ )

2
F γ =m(F)

(1+γ )

2
. (63)

They correspond, by definition, to the static susceptibility
of the observablese and m, respectively, for the global
perturbation withXi = 1 considered here. When evaluat-
ing the derivatives ofe(F ) andm(F) for F = 8 we obtain
(de(F )/dF)F=8 ≈ 1.6 and(dm(F)/dF)F=8 ≈ 0.11. These
values are in good agreement with what found by extrapo-
lating the corresponding real part of the susceptibilities for
ω→ 0 via KK relations and shown in Figs.1a and2a.

Apart from the verification of the validity of KK relations,
we want to provide further support for the quality of the lin-
ear susceptibilities considered.

First, we test the sum rules given in Eqs. (42) and (44) for
the real part of the extrapolated susceptibilitiesχ

(1)
ε,N (ω) and

χ
(1)
µ,N (ω), respectively. Our findings are presented in Fig.3,

where it is shown that an excellent agreement (within 1%) is
found between the theoretical values and the numerical re-
sults. Since Re[χ (1)e,ε,a](ω) is negative in the high-frequency
range, the convergence of the integral to the theoretical value
of the sum rule is from above, whereas the opposite occurs
for Re[χ (1)m,ε,a(ω)]. Extending the integral for even larger val-
ues ofω would bring the numerical results to an almost per-
fect agreement with the theory.

Following the definition given in Eq. (3), the Green func-
tionG(1)8 (τ ) computed for an observable8 and a given pat-
tern of perturbation flowXi(x) (in this caseXi = 1∀i) can
be used to compute the time-dependent linearized impact of
all perturbations with the same spatial patternXi(x) but with
arbitrary time modulation. Whereas the direct estimate of the
Green function from the time dependent dynamics can be ob-
tained by performing an ensemble of simulations where the
time modulation of the perturbation is given by aδ(t) pattern
(see discussion in Sect.2, we take the indirect route by con-
sidering Eq. (5). By applying the inverse Fourier Transform,
we derive the Green functions corresponding toχ

(1)
ε,a (ω) and

χ
(1)
µ,a(ω). The results are presented in Fig.4: for both observ-

ables the Green functions are clearly causal, and their short-
time behavior agrees remarkably well with what be deduced
by looking at the asymptotic properties of the corresponding
susceptibilities (compare Eqs.41and43).

4.3 Local perturbation

The data obtained for the numerical simulations of the re-
sponse to the local perturbation are, given the much weaker
overall strength of the forcing, much noisier that those pre-
sented in the previous section. Nevertheless, we shall see
that all the theoretical predictions are verified to a surpris-
ingly good degree of approximation.

The global observablesE and M are of the form
8(x1,...,xn)=

∑N
i=1φ(xi), whereφ(x)= x2/2 andφ(x)=

x, respectively. We have consistently verified that the iden-
tity χ (1)φ,1 = χ

(1)
φ/N,N = χ

(1)
φ,N discussed in the previous section

applies in the whole spectral range explored by our simula-
tions, compatibly with the (slightly) different signal-to-noise
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Figure 3: Sum Rules for the real part of the linear susceptibility of intensive energy E/N
(black line) and momentum M/N (blue line) of the system with respect to the global per-
turbation with Xi = 1 ∀i. The theoretical values are indicated in the figure.
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Fig. 3. Sum Rules for the real part of the linear susceptibility of
intensive energyE/N (black line) and momentumM/N (blue line)
of the system with respect to the global perturbation withXi = 1 ∀i.
The theoretical values are indicated in the figure.
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Figure 4: Green functions describing the time-dependent response of the observable of in-
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perturbation with Xi = 1 ∀i. For both observables, the short time behavior of the Green
function estimated from the asymptotic behavior of the corresponding susceptibility is shown
in figure.
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Fig. 4. Green functions describing the time-dependent response of
the observable of intensive energyE/N (black line) and momentum
M/N (blue line) with respect to the global perturbation withXi = 1
∀i. For both observables, the short time behavior of the Green func-
tion estimated from the asymptotic behavior of the corresponding
susceptibility is shown in figure.

ratios in the two sets of simulations. See, e.g., Fig.5 for the
comparison between the two susceptibilitiesχ (1)E,1 andχ (1)ε,N .

We then proceed to analyze more in detail the linear
susceptibilities related to local observables. In Fig.6 we
present our results concerning the real and imaginary part
of χ (1)Ej ,1(ω). Analogously to what observed in the previous
subsection, we have that once the measured susceptibility
is extrapolated using the theoretical results obtained via re-
sponse theory and KK relations, we have an excellent agree-
ment between the original real and imaginary parts and those
obtained using the KK inversion. The KK algorithm, instead,
provides only a partially satisfying outcome when only data
from the measured range are considered. Relatively discrep-
ancies are found near the boundaries of the data range, with
an especially serious bias nearωl for the imaginary part of
the susceptibility.
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Fig. 5. Comparison between the linear susceptibility of the intensive
energy for the global perturbation and of the total energy for the
local perturbation. The signals are the same except for the different
level of noise.
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Fig. 6. Linear susceptibility of the energy at the grid point where the
local perturbation is applied. The real and the imaginary parts are
depicted in(a) and(b), respectively. The measured and extrapolated
values are shown in red and black lines, respectively. The result
of the Kramers-Kronig inversion done with the measured and with
with the extrapolated data are shown in blue and magenta lines,
respectively.
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When comparingχ (1)Ej ,1(ω) andχ (1)E,1(ω) (see Fig.5), we
observe that for low frequency the response of the energy
at the grid point where the perturbation is applied accounts
for about half of the response of the total energy, thus im-
plying that the remaining half is redistributed among the re-
mainingN−1 grid points. The relevance of the response of
grid points other than the directly perturbed one also explains
why the peak of Imχ (1)E,1(ω) (and so of Imχ (1)ε,N (ω)) than that

of Imχ (1)Ej ,1(ω) – see the frequency range 2.ω. 4. Slower
perturbations allow other grid pointsxk 6= xj to respond ef-
fectively.

Instead, since the leading asymptotic order ofχ
(1)
Ej ,1

(ω)

andχ (1)E,1(ω) is the same, at high frequencies the local en-
ergy response accounts for most of the energy response of
the whole system. In this case, the incoming perturbation is
so fast that the internal time scales of the system as bypassed,
and mainly a local effect is observed. Nevertheless, the sec-
ond leading order of the asymptotic expansion of the two
susceptibilities has opposite sign (see Eqs.41and54), which
suggests that at any large but finite frequency the local energy
response is only a good approximation to the response of the
total energy. The changeover between the two regimes oc-
curs around the frequency of the peak of Imχ (1)Ej ,1(ω), which
corresponds to a perturbation with period close to 1.

Thanks to the asymptotic equivalence betweenχ
(1)
Ej ,1

(ω)

andχ (1)E,1(ω) (andχ (1)ε,N (ω)), they must obey the same sum
for the real part of the susceptibility (see Eqs.42–55), even if
the two real parts, as discussed above, are rather different in
value in the low frequency range and even in sign in the high
frequency range. Figure8 confirms that this rather counter-
intuitive behavior is actually observed. Note also that sum
rules, resulting from an integration, are less sensitive to noise
in the data, but this occurs if and only if the underlying sig-
nal is correct. Therefore, we understand that inχ

(1)
E,1(ω) and

χ
(1)
ε,N (ω) the strong static and quasi-static response and the

(rather odd) negative sign for high frequencies of the real part
of the linear susceptibility, which are crucially related to the
behavior for the grid points different from the perturbed one)
compensate each other to guarantee agreement with the sum
rule obtained from the real part ofχ (1)Ej ,1(ω), which instead
has a smaller range and more regular (monotonic) behavior
with frequency.

A formally similar – and analogously spectacular – spec-
tral compensation has been observed in a physical process as
different from what we are analyzing here as the electromag-
netically induced transparency (Cataliotti et al., 1997). The
result obtained here supports previous findings obtained on
quasi-equilibrium systems suggesting that sum rules do not
depend on many-particle interactions (Lucarini et al., 2003,
2005).
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Fig. 7. Linear susceptibility of the momentum at the grid point
where the local perturbation is applied. The real and the imaginary
parts are depicted in(a) and (b), respectively. The measured and
extrapolated values are shown in red and black lines, respectively.
The result of the Kramers-Kronig inversion done with the measured
and with with the extrapolated data are shown in blue and magenta
lines, respectively.

The investigation of the linear susceptibility of the vari-
ablexj is not as insightful as that ofEj . We find that lin-

ear susceptibilityχ (1)xj ,1(ω) is quite similar toχ (1)M,1(ω) (and

χ
(1)
µ,N (ω), see Fig.2) in both the real and imaginary parts at

all frequency. The only notable differences are that the static
responsexj is slightly larger than than ofM, and that the
imaginary features a secondary peak at slightly larger fre-
quencies than the main spectral feature. We have verified,as
in the previous cases, the results of the numerical simula-
tions accurately agree with the theoretical results regarding
the asymptotic behavior of both the real and imaginary part
and that KK relations map to high degree of precision the
real and the imaginary parts into each other. See Fig.7 for
details.

We present as main finding of the analysis of the observ-
able xj that, as predicted by the theory, the real part of

χ
(1)
xj ,1

(ω) obeys the same sum rule as the real part ofχ
(1)
M,1(ω)
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Figure 8: Sum rules of the real part of the linear susceptibilities indicated in the legend. The
theoretical values are indicated in the figure.
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Fig. 8. Sum rules of the real part of the linear susceptibilities in-
dicated in the legend. The theoretical values are indicated in the
figure.

or of χ (1)µ,N (ω), because the corresponding imaginary parts
feature the same asymptotic behavior. Figure8 shows that in
the case of the momentum variables the cumulative integral
is rather similar for the susceptibility of the local and of the
global variable, with small discrepancies in the region around
the peak of the response.

4.4 Further implications of Kramers-Kronig relations
and sum rules

We now show how the knowledge of the asymptotic behav-
ior of the real and imaginary part and the knowledge of the
validity of the KK relations and related sum rules allow to
draw general conclusions on the similarities and differences
between two given linear susceptibility functions. Let’s con-
sider the case that these two susceptibilities feature the same
first order asymptotic expansion in the high frequency limit.
Let’s assume that it is an odd power ofω, so that the real part
is negligible for high frequencies. Therefore, the two suscep-
tibilities will obey the same sum rule for, e.g. the 0th moment
of the real part.

If they agree also in the asymptotic behavior of the real
part, they cannot feature large discrepancies in the low fre-
quency range of the real part of the susceptibility either, or
otherwise the agreement of the sum rules would be broken.
Therefore, the real part of the two susceptibilities are similar,
and, as a consequence of the KK relations, the two imaginary
parts will also be similar.

If, instead, there is a discrepancy in the asymptotic behav-
ior of the real part of the two susceptibilities, the two real
parts will necessarily be rather different in the low frequency
range, again in order to comply with the sum rule constraint.
As the two real parts are different, the imaginary part of the
two susceptibility will also be rather different, except, from
hypothesis, in the high-frequency range.

The first scenario envisioned here pertains to the pair of
linear susceptibilitiesχ (1)xj ,1(ω) and χ (1)M,1(ω), whereas the
second scenario is related to the pair of linear susceptibili-
tiesχ (1)Ej ,1(ω) andχ (1)E,1(ω). Note that, taking into account the
asymptotic properties of the susceptibility of the observable
Eloc = 1/2x2

j +1/2x2
j+1 +1/2x2

j+2 +1/2x2
j−1, discussed in

the previous section we conclude thatχ
(1)
Eloc,1

andχ (1)E,1 should
be similar for all values ofω.

Obviously, a similar argument applies if the leading order
is real. This discussion further clarifies that the higher the
number of independent KK relations and related sum rules
verified by a susceptibility functions, the more stringent are
the constraints on its properties.

4.5 Additional properties of the linear susceptibility

The special mathematical properties of the linear susceptibil-
ities allow to investigate further properties of the response.
In particular, we note that form≥ 1 the function[χ (1)8 ]

m is

analytic in the upper complexω-plane just as asχ (1)8 . This
allows, as discussed inLucarini et al.(2005) to derive, in
principle, an infinite set of integral relations (KK and sum
rules) deriving just from the holomorphic proprieties of the
susceptibility. As an example, we have considered the square
of the linear susceptibility[χ (1)ε,N (ω)]

2. From Eq. (41), it is
easy to prove that the following asymptotic expansion holds
for large values ofω:

[χ
(1)
ε,N (ω)]

2
= −

m2

ω2
+
m(F −2m)

ω3
+o(ω−4). (64)

As shown in panel (a) of Fig.9, KK relations are found
to connect up to a high degree of approximation the real
and imaginary part of[χ (1)ε,N (ω)]

2. Moreover, thanks to the
asymptotic behavior given in Eq. (64), it is possible to estab-
lish, thanks to Eqs. (13–14), the following sum rules:∫

∞

0
dνRe[χ (1)ε,N (ν)]

2
= 0, (65)

∫
∞

0
dννIm[χ

(1)
ε,N (ν)]

2
=
π

2
m2, (66)

Panel (b) of Fig.9 shows that the obtained numerical results
are in excellent agreement with the theoretical predictions.
Note that these results do not have an obvious physical in-
terpretation, as the inverse Fourier Transform of[χ

(1)
ε,N (ω)]

2

is given by the convolution product of the Green function
G
(1)
ε,N (t) with itself, while they depend only on the formal

properties of the linear susceptibility.

5 Practical implications for climate change studies

In this paper we have constructed and verified to a high
degree of accuracy the linear response theory for a simple
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Fig. 9. Properties of the square of the linear susceptibilityχ (1)
ε,N

.

The real and imaginary parts of[χ
(1)
ε,N

]
2 with their KK transforms

are depicted in the panel(a), the vanishing sum rule for the real part
and the non-vanishing sum rule for the imaginary part are depicted
in panel(b).

yet prototypical climate model by computing the frequency-
dependent susceptibilities of several relevant observables re-
lated to localized and global patterns of forcings. These re-
sults pave the way for devising a rigorous methodology to
be used by climate models of any degree of complexity for
studying climate change at, in principle, all time scales us-
ing only a very limited set of experiments, and for exploiting
effectively the currently adopted ensemble runs methods.

Let’s consider, for sake of simplicity, that the observable
8 is the time-dependent globally averaged surface temper-
ature of the planetTS , that F (x) represents the whole set
of climate equations in a baseline scenario (e.g., with pre-
industrial CO2 concentration), and that the perturbation field
X(x) is nothing but a constant field of CO2 concentration,
which directly impacts only the radiative part of the code.
The perturbation is modulated by a time-dependent function
f (t) to be specified below. We assume, for simplicity, that
the model does not feature daily or seasonal variations in the
radiative input at the top of the atmosphere.

From Eq. (2), we have that

〈TS〉
(1)(t)=

∫
+∞

−∞

dσ1G
(1)
TS
(σ1)f (t−σ1). (67)

In practical terms, the left hand side of this equation is noth-
ing but the ensemble average of the time series of the change
between the globally averaged surface temperature of the
planet at a timet after the perturbation has started. Note that
the direct estimate ofG(1)TS (σ ) is likely to be overwhelmingly
difficult. Using Eq. (4), we have that:

〈TS〉
(1)(ω)=χ

(1)
TS
(ω)f (ω), (68)

which implies that once we compute the Fourier Transform
of the time series mentioned above and we know the modu-
lating functionf (t) (and so its Fourier Transformf (ω)), we
can reconstructχ (1)TS (ω). Let’s select a particularly simple
example of modulating functionf (t)= ε(2(t)−2(t−τ)).
This is just a rectangular function of widthτ , of heightε,
and shifted from the origin by a forward time translationτ/2.
In practical terms, this corresponds to changing abruptly the
field CO2 concentration byε at timet = 0 and taking it back
to its original value att = τ . we then obtain:

χ
(1)
TS
(ω)=

〈TS〉
(1)(ω)

f (ω)
=ω

〈TS〉
(1)(ω)

ε(sin(ωτ)+ i(1−cos(ωτ)))
. (69)

Once we knowχ (1)TS (ω), as widely discussed in this paper,

we can computeG(1)TS (t), and we know everything about the
response of the system at all time scales, including the static
response. Note that any choice off (t) is equally valid to
set up this procedure as long asf (t) is square integrable.
This implies that, in a very profound way, the kind of forcing
scenarios used in the various assessment Reports of IPCC,
where the CO2 concentration typically stabilizes at a differ-
ent value from the preindustrial one (so thatf (t) does not
tend to 0 ast → ∞) are not necessarily the only nor the best
ones, in spite of what could be intuitively guessed, to study
even the steady state response of the system.

Obviously, a similar set of experiments could be devised
for studying rather thoroughly the response of the climate
system to a variety of forcings, such as changes in the O3
concentration, aerosols, solar radiance, as well as to changes
in the parameterizations. In the case of uncoupled models of
one subdomain of the climate system (e.g. atmospheric and
oceanic GCMs, land-surface models), this strategy could be
used to study the impact of perturbations to the boundary
conditions provided by the other subdomains of the climate
system.
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6 Summary, discussion and conclusions

The climate can be seen as a complex, non-equilibrium
system, which generates entropy by irreversible processes,
transforms moist static energy into mechanical energy
(Lorenz, 1967; Peixoto and Oort, 1992) as if it were a heat
engine (Johnson, 2000; Lucarini, 2009a), and, when the ex-
ternal and internal parameters have fixed values, achieves
a steady state by balancing the input and output of energy
and entropy with the surrounding environment (Ozawa et al.,
2003; Lucarini, 2009a). For such basic reasons, the tool of
equilibrium and quasi-equilibrium statistical mechanics can-
not provide suitable tools for studying the fundamental prop-
erties of the climate system. In particular, the fluctuation-
dissipation theorem, which allows for deriving the properties
of the response of the system to external perturbations from
the observations of its internal variability cannot be applied.

It is reasonable to ask whether is possible to evaluate how
far from equilibrium the climate system actually is. It is pos-
sible to evaluate suchdistancein a mathematically sound
way by assessing the ratio of the dimensionality of the at-
tractor of the system over the total number of degrees of
freedom. Whereas a ratio close to one indicates that only
small deviations from equilibrium are present, a small ratio
suggests that strongly non-equilibrium conditions are estab-
lished. SeePosch and Hoover(1998) for a detailed treatment
of this problem in the classical case of heat conduction. In
the case of a quasi-geostrophic atmospheric model forced by
Earth-like boundary conditions, the dimensionality of the at-
tractor of the model is about one order of magnitude smaller
than the total number of degrees of freedom (Vannitsem and
Nicolis, 1997). While not conclusive, this seems to suggest
that the best framework to interpret the climate is that of a far
from equilibrium system.

Following either explicitly or implicitly the programme of
the Catastrophe theory (Arnold, 1992), many authors have
approached the problem of understanding the fundamental
properties of the climate system by looking at the detailed
structure of the bifurcations of the deterministic dynamical
system constructed heuristically in order to represent the dy-
namics of the main climate modes using as few degrees of
freedom as possible. Such an approach often hardly allows to
efficiently represent the fluctuations and the statistical prop-
erties of the system. The introduction of stochastic forcing
provides a relatively simple but conceptually rich partial so-
lution to some of these draw-backs, even if theHasselmann
programme(Hasselmann, 1976) suffers from the need for a
– usually beyond reach –closure theoryfor the properties
of noise. Therefore, the stochastic component is usually in-
troduced ad hoc, with the ensuing lack of universality and/or
robustness when various levels of truncations are considered.
These strategies have anyway brought to outstanding scien-
tific results and has been suggested the existence of generic
mathematical structures present in hierarchies of CMs (Saltz-
man, 2002). Recently, the unified treatment of chaotic and

stochastic dynamics using the results of the mathematical
theory of random dynamical systems is emerging as new,
promising paradigm for the investigation of the structural
properties of the climate system (Chekroum et al., 2011).

We have proposed a different perspective. In agreement
with the view given above, we have taken as mathematical
framework for the analysis of the climate system that of non-
equilibrium statistical mechanics, and have focused on the
steady state properties of ergodic dynamical systems (Eck-
mann and Ruelle, 1985) possessing the special property of
having an invariant measure of the SRB type (Ruelle, 1989).
As proposed by the chaotic hypothesis (Gallavotti, 1996;
Gallavotti and Cohen, 1995), this mathematical framework
is well suited for analyzing general non-equilibrium physical
systems.

In this context, the impact on the system of general per-
turbation can be treated using the response theory recently
introduced byRuelle(1998a,b, 2009), which allows to com-
pute the change in the expectation value of a generic observ-
able as a perturbative series where each term is given by the
average over the unperturbed invariant measure of a function
of the phase space which depends on the considered observ-
able and on the applied perturbation. In other terms, even if
the internal dynamics of the system is nonlinear and chaotic,
the leading order of the response is in general linear with the
strength of the added perturbation. This approach overcomes
the difficulties related to the singularity of the invariant mea-
sure discussed inThuburn(2005).

At each order, the propagator of the perturbation, i.e. the
Green function, is causal. This allows for applying disper-
sion theory and establish general integral constraints – KK
relations – connecting the real and imaginary parts of the sus-
ceptibility, i.e. the Fourier Transform of the Green function
(Lucarini, 2008b, 2009b)

In this paper we have first recapitulated the main as-
pects of the general response theory and have propose some
new general results, which boil down to consistency rela-
tions between the linear susceptibilities of different observ-
ables. The obtained equation provides the basic idea of why
the fluctuation-dissipation theorem does not apply in non-
equilibrium cases.

We have showed for the first time that the Ruelle linear
response theory can be applied with great success to ana-
lyze the climatic response to general forcings. We have cho-
sen as test bed the L96 model (Lorenz, 1996; Lorenz and
Emanuel, 1998; Lorenz, 2004), which, in spite of its simplic-
ity, has a well-recognized prototypical value as it is a spa-
tially extended one-dimensional model and presents the ba-
sic ingredients, such as dissipation, advection and the pres-
ence of an external forcing, of the actual atmosphere. Such
a model features a different level of complexity with respect
to those adopted in previous numerical investigations of Ru-
elle’s theory (Reick, 2002; Cessac and Sepulchre, 2007; Lu-
carini, 2009b), and has been already tested in terms of linear
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response (albeit with a different methodology and in a differ-
ent theoretical context) inAbramov and Majda(2007).

We have analyzed the frequency dependence of the re-
sponse of the local and global energy and momentum of the
system to perturbations having a global spatial pattern and to
perturbations acting only on one grid point. We have derived
analytically several properties of the corresponding suscep-
tibilities, such as asymptotic behavior, validity of KK rela-
tions, and sum rules. We have shown that all the coefficients
of the leading asymptotic expansions as well as the integral
constraints can be written as linear functions of parameters
that describe unperturbed properties of the system, and in
particular its average energy and average momentum. The
theory has been used to explain differences in the response of
local and global observables, in defining the intensive proper-
ties of the system and in generalizing the concept of climate
sensitivity to all time scales.

We have then verified the theoretical predictions from the
outputs of the simulations up to a high degree of precision,
even if we have used rather modest computational resources
(a total of about 30 cpu days of a mid-range commercial lap-
top). We have verified that the linear response theory holds
for perturbations of intensity accounting to up to about 10%
of the unperturbed forcing terms. Even when local pertur-
bation and local observables are considered it is possible
to achieve a signal-to-noise ratio which permits rather sat-
isfactory comparisons with the theory. We have proved that
the combined use of KK relations and the knowledge of the
asymptotic behavior of the susceptibilities allows for extrap-
olating in a rigorous way the observed data. We also have
shown how to reconstruct the linear Green function, which
can be used to map perturbations of general time modula-
tion into changes in the expectation value of the considered
observable for finite as well as infinite time.

Our numerical experiments have been performed using
one of the standard settings of the L96 model, namely the
version identified by havingN = 40 degrees of freedom and
forcingF = 8. Nevertheless, some newly obtained empirical
closure equations expressing the average energy and the av-
erage momentum of the unperturbed system as simple power
laws ofF (with no dependence onN ) have allowed to ex-
tend our results to the entire class of chaotic L96 models.
The regular scaling of the properties of the system and of its
response withF agrees with what observed inAbramov and
Majda(2007).

In this paper we have only used the KK relations in the
most simplistic framework, i.e., computing the KK trans-
forms and evaluating their agreement with the original data.
Actually, several more sophisticated analysis techniques are
available, such as recursive self-consistent algorithms, where
the measured data are taken as first guess, exploiting the fact
that multiple applications of KK relations, combined with
sum rules, automatically filter our the noise and remove most
of the spurious signal (Lucarini et al., 2005).

We believe that the proposed approach, which we may
dub asspectroscopy of the climate system, may constitute a
mathematically rigorous and practically very effective way
to approach the problem of evaluating climate sensitivity
and climate change from a radically new perspective. In
this regard, we have proposed a rigorous way to compute,
e.g., the surface temperature response to changes in the the
CO2 concentration at all time scales using only a specific
set of simulations, and taking advantage of the theoretical
results presented here. Given the ever-increasing interest
towards decadal and multidecadal climate prediction, these
tools could be of relevant practical interest and their applica-
bility could benefit from technological platform aimed at cre-
ating ensemble simulations comprising of many members.
We underline that our approach takes into account all the
(linear and nonlinear) feedbacks of the system, as they are
included in the definition of the Green function. This, at a
very practical level, is the great advantage of using Ruelle’s
formulas.

At a more basic level, whereas considering more complex
models requires heavier computational resources, the modest
cost of the present set of simulations suggests that, at least for
global or regional climatic observables, it is feasible to test
the theory discussed here for simplified yet Earth-like climate
models without resorting to top-notch computing facilities.
Moreover, while in this paper we have computed the sus-
ceptibilities using, on purpose, a very cumbersome method,
more efficient strategies can be devised, at least when the
linear regime of the response is considered. Apart from the
practical example given for the case of the impact of the CO2
concentration, these include studying the response of the sys-
tem toδ(t) like perturbations, which gives directly the Green
function of the system, and including in the forcing various
monochromatic signals. Of course, in all cases, a Monte
Carlo approach is needed in order to sample effectively the
attractor of the unperturbed system in terms of the initial con-
ditions of the simulations.

These results pave the way for future investigations aimed
at improving and extending the theoretical framework pre-
sented here, at finding results of general applicability in the
context of the modelling of geophysical fluid dynamics, and,
finally at answering specific questions of relevance for cli-
mate dynamics. In this paper we have analyzed the sim-
ple case of the linear response, but, as discussed inRuelle
(1998b) andLucarini (2008b, 2009b), we have the algorithm
to compute higher order terms, so that the treatment of the
nonlinear response in entirely feasible.

In the first direction, we foresee the possibility of writing
out explicitly the linear susceptibility of a general observable
by projecting the perturbation onto the unstable, neutral and
stable manifolds and analyzing separately the contributions
to the total response. This will probably require the adoption
of adjoint techniques, and will benefit from the recent algo-
rithms proposed inAbramov and Majda(2007) andMajda
and Wang(2010). Moreover, we will be testing the radius of
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convergence of the Ruelle response theory in some specific
examples.

Along the second direction, we propose to study the im-
pact of stochastic forcing to deterministic chaotic models by
treating the (additive or multiplicative) noise as a perturba-
tion to be analyzed using the linear and nonlinear Ruelle
response theory and related spectral methods. We will try
to complement the results recently obtained inMajda and
Wang(2010) from an entirely different approach, i.e. bypass-
ing the Fokker-Planck equation formalism and using directly
the first and higher order terms of the Ruelle response for-
mula. Moreover, we shall look into the spectral peaks of the
susceptibilities and try to understand how the amplification
of the response is related to resonances of the system and to
the activation of positive feedbacks. Since at tipping points
the climate response to perturbations is expected to diverge,
the formalism discussed here could be used also for under-
standing the processes leading to large-scale changeovers of
the dynamics of climate.

Along the third direction, we envision the analysis of the
impact of topography on the statistical properties of the cir-
culation in a quasi-geostrophic setting, thus extending in a
climatic perspective what presented inSperanza et al.(1985).
Moreover, we will tackle in an idealized setting the problem
of computing the response of the storm track to changes in
the surface temperature (Brayshaw et al., 2008). Positive re-
sults in this direction, albeit using a different formalism, have
been shown inGritsun et al.(2008). Moreover, we will try to
compute along the way discussed here the climate response
to changes in CO2 and solar irradiance using simplified but
rather valuable climate models like PLASIM (Fraedrich et
al., 2005).

The results of the linear response theory should be com-
pared to those obtained from a simplified application of the
fluctuation-dissipation theorem. The difference between the
two results would inform us on the relevance of the ef-
fect of the external perturbation along the stable direction
of the unperturbed flow, which cannot be precisely captured
by the internal fluctuations of the system and, thus, can-
not be rigorously described in the context of the fluctuation-
dissipation theorem. Moreover, this could also suggest ways
to improve the empirical evaluation and parameterisation
of the corresponding contribution to the response. This
would also be of relevance to understand why, in spite of
all the involved approximations and the theoretically unjusti-
fiable assumptions, previous applications of the equilibrium
fluctuation-dissipation theorem (often in a hyper-simplified
quasi-gaussian setting) have been relatively successful in
predicting the climate response to external forcings.

Finally, we would like to remark that the theory
and the practical recipes proposed here could be of di-
rect interest for all projects aimed at auditing climate
models’ performances and at studying practical problems
connected to climate change, such as PCMDI/CMIP3
(http://www-pcmdi.llnl.gov/), distributed computing initia-

tives such asclimateprediction.net, and the new project
PCMDI/CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/), which
will provide a crucial input for the Fifth Assessment Report
of the IPCC.
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