Nonlin. Processes Geophys., 1828-2011 4 "* .
www.nonlin-processes-geophys.net/18/7/2011/ GG Nonlinear Processes

doi:10.5194/npg-18-7-2011 in Geophysics
© Author(s) 2011. CC Attribution 3.0 License. -

A statistical mechanical approach for the computation of the
climatic response to general forcings

V. Lucarini 123and S. Sarng

1Department of Meteorology, University of Reading, Reading, UK
2Department of Mathematics, University of Reading, Reading, UK
3Walker Institute for Climate System Research, University of Reading, Reading, UK

Received: 4 August 2010 — Revised: 18 November 2010 — Accepted: 4 December 2010 — Published: 12 January 2011

Abstract. The climate belongs to the class of non- equations for such parameters allow to define such properties
equilibrium forced and dissipative systems, for which mostas an explicit function of the unperturbed forcing parameter
results of quasi-equilibrium statistical mechanics, includingalone for a general class of chaotic Lorenz 96 models. We
the fluctuation-dissipation theorem, do not apply. In this pa-then verify the theoretical predictions from the outputs of the
per we show for the first time how the Ruelle linear responsesimulations up to a high degree of precision. The theory is
theory, developed for studying rigorously the impact of per- used to explain differences in the response of local and global
turbations on general observables of non-equilibrium statisti-observables, to define the intensive properties of the system,
cal mechanical systems, can be applied with great success tohich do not depend on the spatial resolution of the Lorenz
analyze the climatic response to general forcings. The crucia®6 model, and to generalize the concept of climate sensitivity
value of the Ruelle theory lies in the fact that it allows to com- to all time scales. We also show how to reconstruct the linear
pute the response of the system in terms of expectation valueSreen function, which maps perturbations of general time
of explicit and computable functions of the phase space averpatterns into changes in the expectation value of the consid-
aged over the invariant measure of the unperturbed state. Wered observable for finite as well as infinite time. Finally,
choose as test bed a classical version of the Lorenz 96 modelye propose a simple yet general methodology to study gen-
which, in spite of its simplicity, has a well-recognized pro- eral Climate Change problems on virtually any time scale
totypical value as it is a spatially extended one-dimensionaby resorting to only well selected simulations, and by tak-
model and presents the basic ingredients, such as dissip#g full advantage of ensemble methods. The specific case of
tion, advection and the presence of an external forcing, ofglobally averaged surface temperature response to a general
the actual atmosphere. We recapitulate the main aspects @attern of change of the G@oncentration is discussed. We
the general response theory and propose some new genellzlieve that the proposed approach may constitute a mathe-
results. We then analyze the frequency dependence of the renatically rigorous and practically very effective way to ap-
sponse of both local and global observables to perturbationproach the problem of climate sensitivity, climate prediction,
having localized as well as global spatial patterns. We deriveand climate change from a radically new perspective.
analytically several properties of the corresponding suscep-
tibilities, such as asymptotic behavior, validity of Kramers-
Kronig relations, and sum rules, whose main ingredientis the; |ntroduction

causality principle. We show that all the coefficients of the

leading asymptotic expansions as well as the integral conA crucial goal in the study of general dynamical and statisti-
straints can be written as linear function of parameters thatal mechanical systems is to understand how their statistical
describe the unperturbed properties of the system, such gsroperties are altered when we introduce a perturbation re-
its average energy. Some newly obtained empirical closurdgated to changes in the external forcing or in the value of
some internal parameters. The ability to compute the re-
sponse of the system is of great relevance for purely math-
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The climate system is an outstanding example of a nondent. Whereas natural fluctuations of the system are restricted
equilibrium, forced and dissipative complex system, forcedto the unstable manifold, because, by definition, asymptot-
in first instance by spatial differences and temporal variabil-ically there is no dynamics along the stable manifold, ex-
ity in the net energy flux at the top of the atmosphere. On aternal forcings will induce motions — of exponentially de-
macroscopic level, as a result of being far from equilibrium, caying amplitude — out of the attractor with probability one.
the climate system behaves as an engine, driven by the ten¥he fluctuation-dissipation relation can be recovered only if
perature difference between a warm and a cold thermal poolve consider perturbations with the somewhat artificial prop-
so that the atmospheric and oceanic motions are at the san@ty of being everywhere tangent to the unstable manifold or,
time the result of the mechanical work (then dissipated in ain a more fundamental way, if we add a stochastic forcing,
turbulent cascade) produced by the engine, and are processesich has the crucial effect of smoothing the invariant mea-
which re-equilibrate the energy balance of the climate sys-sure (acorata and Vulpiani2007 Marini Bettolo Marconi
tem (Lorenz 1967 Peixoto and Oort1992 Johnson200Q et al, 2008. Potential links to these issues can be found in
Lucarini, 20093. recent papers proposing new algorithms for three\isan

A primary goal of climate science is to understand how theand Uboldj 2004 and four {Trevisan et al.2010 dimen-
statistical properties — mean values, fluctuations, and highesional variational data assimilation, where it is shown that
order moments — of the climate system change as a result dhe quality of the procedure improves if the increment of the
modulations to some crucial external (e.g. solar irradiance)ariables due to the assimilation is performed only along the
or internal (e.g. atmospheric composition) parameters of thainstable manifold.
system occurring on various time scales. A large class of Recently, Ruelle (1998a 2009 introduced a rigorous
problems — those involving climate sensitivity, climate vari- mathematical theory allowing for computing analytically,
ability, climate change, climate tipping points — fall into this ab initio, the response of a large class of non-equilibrium
category. In a system as complex and as extended as the ckystems to general external perturbations featuring arbitrary
mate, where lots of feedbacks are active on a variety of spatime modulation. The crucial result is that the changes in
tial and temporal scales, this is in general a very difficult task.the expectation value of a physical observable can be ex-
The need for scientific advance in this direction is outstand-pressed as a perturbative series in increasing powers of the
ing as one considers that even after several decades of intenggensity of the external perturbation, where each term of the
scientific efforts, the accurate evaluation of the climate sensiseries can be written as the expectation value of some well-
tivity par excellencgi.e., the change of the globally averaged defined observable over the unperturbed state. In a previ-
surface temperature for doubling of @@oncentration with  ous paperl{ucarini, 20085 we showed that the Ruelle the-
respect to pre-industrial levels (280 ppm to 560 ppm circa), isory is, thanks to this property, formally analogous to usual
atantalizing endeavor, and large uncertainties are still preserKubo response theor)K(ibo, 1957, which applies for quasi-
(IPCC, 20079). equilibrium system. The crucial difference lies on the math-

Such efforts have significant relevance also in the contexematical properties of the invariant measure, which is abso-
of the ever-increasing attention paid by the scientific commu-utely continuous in the quasi-equilibrium case and singular
nity to the quest for reliable metrics to be used for the valida-in the non-equilibrium case.
tion of climate models of various degrees of complexity and Ruelle’s analysis applies for non-equilibrium steady state
for the definition of strategies aimed at the radical improve-systems Gallavotti 2006 possessing a Sinai-Ruelle-Bowen
ment of their performanceHgld, 2005 Lucarini, 20083. (SRB) invariant measure, often referred to as Axiom A sys-
The pursuit of quantum leapn climate modelling — which  tem Eckmann and Ruellel985 Ruelle 1989. This class
definitely requires new scientific ideas rather than just fastef systems, even if mathematically non-generic, includes on
supercomputers — is becoming more and more of a key issuthe other hand excellent models for general physical systems,
in the climate communityShukla et al.2009. as made clear by the chaotic hypothe&sl{avotti and Co-

A serious, fundamental difficulty in the analysis of the non hen 1995 Gallavotti 1996, which can be interpreted as an
equilibrium systems is that the fluctuation-dissipation rela-extension of the ergodic hypothesis to non-equilibrium sys-
tion (Kubo, 1966, cannot be appliedRuellg 19983. This tems Gallavott] 2006. We also remind that any time in an
greatly limits the ability of understanding the response of thenumerical integration we assume that the time average of a
systems to external perturbations by looking at its variabil-given observable, after discarding an initial transient, basi-
ity. In the specific case of climate, this can be rephrased bycally coincides with its average over the invariant measure
saying that climate change signals need not project on thgiving the attractor of the system, we are actually assuming
natural modes of climate variability. The non-equivalence Axiom A-like hypothesis. SeBenland2003 for an original
between free and forced climate fluctuations had been suggeophysical perspective.
gested byLorenz(1979. The basic reason for this behav-  The Ruelle response theory, with the support of chaotic
ior is that, since the dynamics is forced and dissipative, withhypothesis, has interesting conceptual implications for cli-
the asymptotic dynamics taking place in a strange attractonmate studies. In fact, the possibility of defining a response
natural fluctuations and forced motions cannot be equivafunction basically poses the problem of climate response to
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forcings and of climate change in a well-defined context, andfrom the use of the fluctuation-dissipation theorem in a non-
when considering the procedures aimed at improving climatesquilibrium context. As discussed above, this just cannot be
models, justifies rigorously the procedures of tuning and ad+igorously the case. Since they use, albeit in a convolute way,
justing the free parameters. Moreover, the response theorthe forcing term to compute (or at least to parameterise) the
allows to compute the climate sensitivity, in the special caseresponse of the system, what they do is actually to compute
when static perturbations to the system parameters are corfer at least estimate) the linear response. Whereas it is in the
sidered. very nature of a perturbation theory the possibility of com-
Previously, a response formula was proposed by Cacugputing the response starting only from the statistical proper-
for evaluating the linearized change of the solution of a time-ties of the unperturbed state (as done alsédlmamov and
independent generic system of nonlinear equations as a resuMajda 2007 Majda and Wang2010, the specific property
of a change in the system’s parametefagucj 1981ab). of the systems where the fluctuation-dissipation theorem can
This can be interpreted as a special case of Ruelle’s theornfye applied is that the linear Green function can be written in
where the unperturbed attractor is constituted by a fixed pointhe specific form of a correlation of two observables of the
and a static perturbation to the system evolution equation isystem. See the discussionRuelle(1998a2009.
considered. Cacuci proposed to study this problem using the It is also important to note that, following the pioneer-
adjoint operator to the original system, which provided aning study byLeith (1975, several recent studietgngen
efficient way to determine the impact of small perturbations.and Alexeey 2005 Gritsun and BranstatpP007 Ring and
Interestingly, early prominent applications of the so-called Plumh 2008 Gritsun et al. 2008 have attempted with a
adjoint method and its extension to time-dependent prob-certain (and sometimes good) degree of success to recon-
lems, which allowed for evaluating all possible linear sen- struct the climate response to external perturbations start-
sitivities of an evolving model in just one simulation, were ing from the internal fluctuations of the system by using a
been proposed for climate related problems. In particular, itseverely simplified version of the fluctuation dissipation the-
was used to evaluate the sensitivities of a simple radiativeorem, based upon the assumption of a quasi-gaussian proba-
convective model possessing an attractor constituted by judbility distribution for the system (see discussiordbhramov
one fixed point Hall et al, 1982 Hall and Cacuci1983, and Majda2007. The overall good results seem to suggest
and later, in an inherently heuristic way, for studying the re-that, at least for the considered models, observables (typi-
sponse of a (chaotic) simplified general circulation model tocally very large scale ones) and baseline climate conditions,
doubling of the CQ concentration lall, 1986§. Whereas the fractal nature of the invariant measure of the system and
the adjoint method did not find much space in further cli- the role of the stable direction of the flow seem not to be ex-
matic studies, mostly due to early discouragement for theceedingly relevant. This may be related to the specific choice
computational burden of constructing the suitable operator®f the observable or to the fact that internally generated nu-
for evaluating the sensitivities, it subsequently reached greamerical noise mimics the effect of stochastic perturbations,
success in data assimilation problems for geophysical fluidout further studies are surely necessary.
dynamics Ghil and Malanotte-Rizzalil991; Errico, 1997, In the last decade on one side a great effort has been
to the point that a tangent and adjoint model compiler abledirected at extending the Ruelle response theory for more
to automatically generate adjoint model code was has beegeneral classes of dynamical systems (see, Bagopyat
introduced Giering and Kaminski1998. More recently, a 2004 Baladi 2007, and recent studied (carini, 2008h
link between advanced adjoint techniques and the Ruelle thehave shown that, thanks only to the causal nature of the re-
ory has been proposeRyink et al, 2004). sponse, it is possible to apply all the machinery of the the-
Majda and collaboratorg®\pramov and Majda2007 Ma- ory of Kramers-Kronig (KK) relationsNussenzveigl972
jda and Wang2010Q have taken a different approach for Peiponen et al2005 Lucarini et al, 2003 2005 for linear
analysing the response of a system to external perturbatiorand nonlinear processes to study accurately and rigorously
Using the formalism of the Fokker-Planck equation, theythe susceptibilities describing in the frequency domain the
have developed a response theory which is analogous to Ruesponse of a general observable to a general perturbation.
elle’s. These authors have especially emphasized the pos- Moreover, the actual applicability of the theory has been
sibility of splitting the response into the components rela- successfully tested in a number of simple dynamical systems
tive to the projection of the perturbation vector flow onto the case for the lineaReick 2002 Cessac and Sepulch2907)
stable, unstable and neutral components of the unperturbeand nonlinear l{ucarini, 20098 response. Such numerical
flow, as already discussed Ruelle (19983, and have in- investigations have clarified that even in systems which are
troduced algorithms to compute efficiently all of these com-not Axiom A, like the Lorenz 63 systenb.¢renz 1963, it is
ponents. Their approach has very recently been extendepossible to successfully use the response theory to construct
to take into account stochastic and time-periodic perturbadinear Reick 2002 and nonlinear susceptibilitiekcarini,
tions (Majda and Wang2010. Somewhat confusingly, they 20098 which obey all of the constraints imposed by the KK
mostly refer to the rather interesting applications of their the-theory up to a high degree of precision.
ory and algorithms to specific dynamical systems as resulting
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These investigations definitely motivate further studies Whereas the paper aims at proposing new methods for
aimed at understanding to what extent the response theorackling classical problems of climate science, most of the
is an efficient tool for analyzing compleand complicated  results and of the methodologies proposed are of more gen-
systems. In this paper, we take up such a challenge and comral interest. In this paper we limit our attention to the linear
sider the Lorenz 96 (L96) systerhdrenz 1996 Lorenz and  response. We refer taucarini (2008h 20091 for a theoreti-
Emanuel 1998 Lorenz 2004, which provides an excellent cal and numerical studies of higher-order effects of perturba-
and celebrated prototypical model of a one dimensional attions.
mosphere. The variables of the L96 model can be thought The paper is organized as follows. In Seztwe briefly
as generic meteorological quantities extending around a latanalyze the general theoretical background of the linear re-
itudinal circle and sampled at a regular interval. In spite of sponse theory and of the properties of the frequency depen-
not being realistic in the usual sense, the L96 model presentdent susceptibility and present some new useful results. In
the basic ingredients, such as dissipation, advection and th8ect.3 we present the main features of the L96 system, in-
presence of an external forcing, of the actual atmosphere. Fdroduce the considered perturbations to the forcing, derive
this reason, L96 has quickly become the standard model teome basic properties of the response of various observables,
be used for predictability studie®©(rell, 2003 Haven at al. and present the theoretical predictions. In Séete present
2006 Hallerberg et al.2010, when testing data assimila- the results of our numerical investigations and describe how
tion techniquesTrevisan and Uboldi2004 Trevisan et al.  they can be generalized to the entire family of L96 models.
201Q Fertig et al, 2007, and new parameterizationg/iks, In Sect.5 we provide a relevant example to illustrate how the
2006. The L96 model had already been taken as test-bed foresults presented in this paper can be used to devise simple
studying the linear response (the applicability of the fluctua-yet rigorous methods to study the climate response at all time
tion dissipation theorem, in their language)ibramov and  scales on models of any degree of complexity. In Sguete
Majda(2007). discuss the conclusions and present perspectives for future

Although we are unable to prove that the unperturbed L96work.
is an Axiom A system, in general and for the specific choice
of parameters used in our numerical simulations in particular, .
we adopt the chaotic hypothesis and present the first thor? 1 heoretical background: Ruelle theory and
ough investigation of a spatially extended system by using dispersion relations
the rigorous statistical mechanical methodologies presente
in Ruelle(1998a 2009 andLucarini (2008 2009h. More-

over, since L96 is a spatially extended system, we also Xy consider an Axiom A dynamical system described by the
plore the applicability of the response theory in all possi- o\ o|ytion equation: = F(x), so that the invariant probabil-
ble combinations of global/local observables and gIobaI/IocaIity measurepg of the associated flow is of the SRB type
perturbations. We compute rigorously the corresponding "”'(Ruelle 19983. Let (®), be the expectation value of the

ear susceptibilities, verify the KK relations and the related general observabie defined asf’ po(dx), @ (x). We perturb

sum rules, and find an empirical power law. This, as in thegq fio of the system by adding a on the right hand side of
case of discussed lrucarini et al.(2007), supports the valid- 4 evolution equation a vector fieKi(x) f (1), whereX (x)

ity of the chaotic hypothesis, allowing to extend the results yofines the pattern of the perturbation, and) is its time

obtained for our specific choice of model's parameters t0 8y ,qyation. The resulting evolution equation results to be
rather general class of L96 systems. We also show how tq. _ F(x)+ X(x)f(1). Following Ruelle (19983, we ex-

go from the frequency back to the time domain, thus deriv-eqq the expectation value @fx) in the perturbed system
ing from the susceptibility the Green function, which acts aSysing a perturbative expansions as:

time propagator of the considered perturbation for the con-

sidered observable. The Green function allows to predict, 00

in an ensemble mean sense, the change in the observable @) (1) = (®)g+ Y ()™ (1). (1)
any time horizon as a result of a perturbation with the same n=1

spatial patter as that considered in the calculation of the SUszch term of the perturbative series can be expressed as an
ceptibility but featuring a general time modulation. n-convolution integral of the™ order causal Green function

Finally, building upon the results presented here, we proyith , delayed time perturbation functionRelle 1998h

pose a simple yet general methodology to study general Cliy carinj 20088. Limiting our attention at the linear case
mate Change problems on virtually any time scale by resorty, o have:

ing to only well selected simulations, and by taking full ad-
vantage of ensemble methods. The specific case of globally . (1) . +oo @

averaged surface temperature response to a general pattern)((c)li£> 0)= > dnGo (1) f (1 —01) 2)
change of the C®concentration is discussed.

9.1 Definition of the linear susceptibility
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The first order Green function can be expressed as follows: Green function is causal. Assuming, on heuristic physical ba-
@ sis, thatGEbl) (1) € L?, we can apply the Titchmarsh theorem

Gy (Ul)=/po(dx)@)(Ul)AHo(Gl)@(x)s (3)  (Nussenzveig1972 Peiponen et 31,2005 Lucarini et al,

2003 2005 and deduce that the linear susceptibib’t&) (w)

is a holomorphic function in the upper complexplane and

the real and the imaginary part gfw) are connected to each

other by Hilbert transform.

whereA(e) = X (x) - V(o) takes into account the effects of
the perturbative vector field? is the usual Heaviside dis-
tribution andITg the unperturbed time evolution operator so
thatITpK (x) = K (x(¢)) for any functionk, with x(¢) fol- . .
lowing the unperturbed flow. Note that it is possible to ex- According to a general property of )Founer transform we
press the Green function as the expectation value of a norkNOW that the short term behavior ofy’ () determines the
trivial but computable observable over the unperturbed SRBASymptotic properties oy’ (@). We shall obtain a more
measurgyo. Therefore the knowledge of the unperturbed fea-quantitative result by exploiting that:

tures of the flow is sufficient to define the effects of any ex- ., 4

ternal perturbation over any observable of our system. In the/ drO (1)t expiot] = (— ,)k (p +n3(w)>
frequency domain we find that the first term of the perturba-/-

tive series can be written as: 1D

@ +oo 1 MR ED Dk+D ©)
(@)~ (w)= / dw1x§’ (@1) f (@1) X §(@—w1) _
—00 where in the second equality we have neglected the fact that
= ch)(w)f(w) (4)  the solution is a distribution and consider@d 0. There-
fore, if the Taylor expansion of the Green function in the

where the Dirac delta implies that we are analyzing the IM-i it £ — 0+ is of the form:

pact of perturbations in the frequency-domain at the fre-

quencyw. The linear susceptibility is defined as: ngl) (1) ~a®)t? +o(tP) @)
+00
1 1 .
x$ (@) =/ drGy (1) explior]. (5)  the high frequency behavior of the linear susceptibility, i.e.
—00

. . ) . the limit w — oo, is:
It is important to underline with a thought experiment the

computational relevance of the last equations and the |mporX<1> (W ~aw P row P (8)
tance of the susceptibility function.

Let’s suppose we introduce a time dependent perturbationvherex = @i ¢+ g1, The parameterg (which is an integer
fa(t) to a given pattern of forcin (x), simulate the sys- number) andx depend on the observabdg on the specific
tem and observe the time response of an arbitrary observieatures of the unperturbed system, and on the forcing un-
able (®,) P (#). We now compute the Fourier transform of der consideration. Taking into account E§) &nd assuming
the observed signal and of the forcing modulatlon Invert-that is real, we obtain tha;‘((l)(w) [X(l>( )]*, so that
ing Eq. @), we can find the linear Susceptlbllltx (). Rex]is an even function while liry] is odd function ofw.
Let’'s now consider a different time-modulating function of Thuso =« is real if 8 is odd, whereas =i«  is imaginary
the forcing fg(¢) and its corresponding Fourier transform if g is even.
fs(w). Taking into account Eq.4j, if we multiply fg(w) Taking into account the Titchmarsch theorem, using that
times the previously computed functioail)(a)) we directly l) (w) = [X(l)( w)]*, and considering the asymptotic be-

obtain (®4)™® (w), the frequency-dependent response of thehawor of the susceptibility, it is possible to show that the real
observabled to the forcing X (x) modulated by the new and imaginary part of the linear susceptibility obey the fol-
function. By applying the inverse Fourier transform we ob- owing set of general KK dispersion relationsicarini et al,
tain the time-dependent resporiges) ¥ (1) without needing ~ 2009:
any additional simulation. )2 @

Moreover, the knowledge of the susceptibility function al- o ()] = P/"Odv PRe(xg (V)] ©)
lows us to reconstruct the' (+) by inverting Eq. 5). Oth- 2 Ho B V2 —w?

@

erwise, the Green function can be obtained directly from
observing the response signal by performing a simulation

_ L . : 0 ,2p+lm (@h)
where f (1) _?lgt). in this case (see Eq2)) we simply have ZPRe[X(l)(a))] _ P/ d (Xe (W] (10)
(@) =Gy o). 2 V2 —w?
2.2 Kramers-Kronig relations and sum rules with P indicating integration in principal part ang =

L(B—=1/2if Bis odd andp =0,...,8/2 if B is even.
As we see from Eq.3), for an arbitrary choice of the ob- Note that the faster the asymptotic decrease of the suscepti-
servable and of the perturbation the corresponding lineability, the higher the number of independent constraints due
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12 V. Lucarini and S. Sarno: Computation of the climatic response to general forcings

to KK relations it has to unavoidably obeys. As thoroughly
discussed irKubo (1966), in the case of quasi-equilibrium 00 .
system, the fluctuation-dissipation theorem ensures that tfj vﬂRe[fol)(v)]dv =—ay, (15)
imaginary part of the susceptibility describing the response’° 2

of a given observable to a perturbation is proportional towhere thex constants are defined in E@)( These sum rules

a suitably defined power spectrum in the unperturbed sysprovide additional general constraints that must be obeyed by
tem. Therefore, observing the unperturbed system and usingny system and can be used to test the quality of the output of
Eq. (10) itis possible to reconstruct the entire linear suscepti-any model wishing to describe it. If we are not in the perfect
bility, and so know everything about the response propertiesnodel scenario (e.g., we use a simplified representation of
of the system. In the case of a non-equilibrium system, assome degrees of freedom) the sum rules can in principle be
discussed in the Introduction, this procedure is not possible.used to provide a fit for the parametrization.

Itis possible to use the KK relations to define specific self-  We underline that it is possible to generalize the KK the-
consistency properties of the real and imaginary part of theory for specific classes of nonlinear susceptibilities for both
susceptibility. We first consider the following application: quasi-equilibrium and non-equilibrium systems. Such re-
we setp =0in Eq. (10) and take the limito» — 0. We obtain  sults, which are particularly suited for studying the funda-

that for any observable: mental properties of harmonic generation processes, are thor-
2 Im[y® oughly discussed irucarini (20089 and will not be re-
Rex D (0)] = _P/dv Imix =1 (”)], (11) ported here.
T v

which says that the static susceptibility (i.e., in a more com-2.3 A practical formula for the linear susceptibility and

mon language, the linear sensitivity of the system) is related consistency relations between susceptibilities of

to the out-of-phase response of the system at all frequencies.  different observables

In other terms, Eq.A(1) is an exact formula for the linear sus-

ceptibility of the system. Note that the static susceptibility As discussed above, the definition of the linear susceptibility

is a real number because, thanks to the symmetry propedoes not depend on the functigit) modulating the addi-

ties discussed above, [mn® (0)] =0. Moreover, we know tional forcing, so that it is possible to draw general conclu-

that Réx ¥ (0)] is finite because the susceptibility function SIOns on its properties even by choosing a specific function

is analytic (and so in particular non singular). This is con- f (1)

sistent with the fact that as — 0, the imaginary part of the ~ Let's considerf (1) = 2¢cogwr). The impact of the per-

susceptibility goes to zero at least as fast as a linear functurbation on the evolution of a general observablex) is

tion, as only odd positive integer exponents can appear irflefined as:

its Taylor expansion around = 0), so that the integrand in

Eq. (L1) is not singular. Similarly, we obtain that far~ 0

the real part of the susceptibility is in general of the form here xo and 7o are the initial condition and the initial

c1+cow.2+0(w®), wherec andc; are two constants and time, and we associate the lower indexo the strength

is exactly given by Eq.11). of the forcing. The Ruelle’s response theory ensures that
By exploring thew — oo limit in Egs. (9-10) we obtain 5o, (1,10, x0) = O(e). Following Reick (2002 andLucarini

further integral constraints. By applying the superconver-(2009h the linear susceptibility results to be:

gence theorenHrye and Warnockl963, we obtain the fol-

lowing set of vanishing sum rules (skecarini et al, 2003: Xfpl) (w)= IimOTIim xé)l) (w,x0,€,T) a7
e—>0T—o0

o opt1 @ _~0=<p=<p/2—-1, Beven
fo dvv P Imlx g (”)]_OOSps(ﬂ—s)/z, 6 odd" (12)  where:

8P, (t,10,x0) = Dc(t,10,x0) — Po(t, 10, X0) (16)

11 7
(€] .
OEP 56/2_1$ ﬁ even Xo (a),xo,e,T) = ?Z\/O dt(SCI)e(t,xo)eXp(la)t) (18)

0<p<(B-1/2 podd ¥

o
/ UZPquc(Dl)(v)]dv =0
0 is the total susceptibility, affected by the finite time and finite

Note that if = 0 no vanishing sum rules can be written for ;¢ response of the system. This quantity depends on the
the susceptibility, whereas #f =1 only Eq. (L3) provides & initia| condition and in principle contains information about
zero-sum constraint. For each set of KK relations, an addiyj,o response of the system at all order of nonlinearity.

tional, non-yan?shing sum rgle can be obtainedg i odd, Since A8, (1,x0))/df = 8(dd (¢, x0))/dt, thanks to the
the non-vanishing sum rule is: linearity of the time derivative, by considering Eqs7418)
o . : . .
P o = and performing an integration by parts, we obtain tie-(
/ VMg o) 1dv =~ o, (19 ick, 2002:
while if g is even, we have: bel) (@) = —iwx (). (19)
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V. Lucarini and S. Sarno: Computation of the climatic response to general forcings 13

Let's now find a different expression fqré)l) (w). The time Moreover, since, as shown in Eq—8), the susceptibility
derivative of® in the unperturbed system is of a generic observable decreases to zero at least as fast as
. -1 D ()~ i /ol B
b(x)=T(x). (20) w~~, for large values ofv we have thaty,’ (w) ~i/w(E)o

unlessw(E)g=0. If w(E)g # 0, we also have that the lead-
wherel’ = F-V®. Similarly, the time derivative for in ing order of the short-time expansion of the Green function
the case of the perturbed motion describediby F(x)+ IS of the form:

X )=F 2ccoqwt) X (x) is:

$x) =Tx)+2ecodnE(), (21) in agreement with what can be found by direct inspection of
whereE = X - V&. From Eqgs. 20-21) we obtain that Eqg. 3).
8D (t,x0) = 8T (t,x0) + 2 cOSwt) E (1, Xx0), (22)

) 3 Application of the response theory to the Lorenz
where all terms are of) (¢). Furthermore, we integrate each 96 model

term in Eq. 2) as in Eq. 18), take the limitse — 0 and

T — oo, and obtain: 3.1 Statistical properties of the unperturbed Lorenz

T 96 Model

11 . _

lim lim ——/ dté D (1, x0)eXPiwt)
€Jo

€>0T—>00 T The Lorenz 96 modelLorenz 1996 Lorenz and Emanugl
1998 Lorenz 2004 describes the evolution of a generic at-

11T .
= lim lim — g/o drdTe (2, x0) €Xpliwr) mospheric variable defined iN equally spaced grid points

e>0T—o00T
11 (T along a latitudinal circle and provides a simple, unrealistic
+lim_lim ——/ dre Ec (1, x0)[ expliot) but conceptually satisfying representation of some basic at-
e>07T—00T € Jo mospheric processes, even if such one-dimensional model it
+exp(—iot) Jexpliot). (23)  cannot be derivedb-initio from any dynamic equation via

subsequent approximations. The evolution equations can be

Using the definition in Eq.X7) and the identity given in written in a scaled form as follows:

Eq. (19), we derive:

dx;
) I6)) . . 1 (7 —= Xi—1(Xiy1—xi—2) =X+ F (27)
—iwxg’ (@) = xp° (w))+||mOTI|m ?/ dr Ec (1, x0) dr
‘ T 0 wherei =1,2,....., N, and the index s cyclic so that; ; y =
+lim lim 1}/ dre B (1, x0) exp(2iwr). Xi—N = Xi. The_quadratic term in the equations simulatgs
€=>0T—00 advection, the linear one represents thermal or mechanical

(24) damping and the constant one is an external forcing. The

The first limit in Eq. @4) gives, by definition{E)o, whereas ~ €volution equations are invariant undes i +1, so that the

the second limit vanishes as the expression under integral idynamics is the same for all variable. The time scale of the
0(e?), since it is related to second order harmonic gener-SYStém is given by the damping time, which corresponds to
ation nonlinear proces4 (carini, 20098. Concluding, we five days. The L96 system shows different features, as dif-

obtain the following general consistency relation for the lin- féreént choices of” andN may strongly alter the topology of -
ear susceptibility: the attractor, alternating periodic, quasi-periodic and chaotic

_ _ behavior in a non trivial way. However with a suitable choice
@ @ I of the parameter®’ and F, the system is markedly chaotic.
=— —(8)o. 25 ' . .
Xo (@) er @)+ a)< o (25) In particular, asF' controls the energy input into the system,

Such an identity related the susceptibility of an observableVe €xpect that for relatively high values of this parameter
® to the susceptibility of the projection of its gradient along the system should simulate a turbulent behavior and live on

the unperturbed flow and to the average value in the unper- & Strange attractor. As an example, setfing: 40 andF =8
turbed state of the projection of its gradient along the pertur-IN€ Systém possesses 13 positive Lyapunov exponents, the
bation flow. Note that the two terms on the right hand sidel@"gest corresponding to a doubling time of 2.1 days, while
are radically different. Whereas the first term is related to theth® fractal dimension of the attractdrgelle 1989 is about
projection of the dynamics along the unstable manifold, the?”-1 Lorenz and Emanugl99§.

second term depends on the structure of the fordirig), When comput.mg the time derlvaglve of the totgl energy of
which may be entirely unrelated to that of the unstable manihe system, defined as =1/23 ,x7, the advec.tlon terms
ifold. This is the fundamental reason why the fluctuation- €@ncel- The evolution equation farresults to be:

dissipation theorem does not apply in the non-equmbnumE: —2E+F2x,<. (28)
case. -
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14 V. Lucarini and S. Sarno: Computation of the climatic response to general forcings

As the dynamics takes place inside a compact set,

W (x;,...,xy) is bounded for any choice of the functicin. Py

Therefore the ensemble mean with respect ghdor time e(F)==F17, (36)
average) of the temporal derivativie vanishes. Therefore, 2

definingM =), x; as the total momentum of the system, with A ~ 1.15 andy ~ 0.35. Such a smooth dependence of

we obtain the following identity: the intensive energy and momentum with respect to the forc-
ing parametef is indeed in agreement with the hypothesis
2
2(E)o= Z<xi )0 = FZ {xilo=F(M)o. (29)  that the invariant measure is deformed in a very regular fash-
1

i ion not only locally, but over a large range of the parameter’s
Similarly, we can deduce an additional consistency relationspace.

by investigating the expression of the time derivative/of Note that, at the fixed point of the system corresponding to
M= NF 4 (Co)a—(C 30 a purely zonally symmetric dynamics; _(: F, Vi) we have
(Mo (C2)o={Calo (30) m = F ande = F2/2. These formulas give much higher val-

where (C2)o = ) ; (xixi—2) and (Ca)o = > ;(xixi-3)o-  ues for bothm ande than what found with our empirical
Higher order consistence relations can be obtain in a simipower laws for the attractor in the chaotic regime. In fact,
lar fashion. at such an equilibrium, which is unstable in the parametric

The equivalence of all the variables implies that over therange explored here, the energy dissipation is much weaker
unperturbed flow each observattleof the whole system sat-  than in the co-existing chaotic attractor, which corresponds to
isfies Y, (O (xi))o=N(O(x)), Vj. Therefore, we define the case where breaking nonlinear waves and turbulent mo-
the average energy per grid potV, F) and the average tions are present. Interestingly, the presence of well-defined

momentum per grid point(N, F) as: scaling laws with respect to the forcing parameters for the
2 energy and momentum of the system with different charac-
(xi>o_ (E)o o . . . . re
e="om = (32) teristic exponents in the chaotic regime and in the co-existing
N unstable equilibrium is in agreement with previous finding
recently obtained in a simple baroclinic quasi-geostrophic
m = (xj)g= (Mo (32) model Cucarini et al, 2007).
N 9
where the choice ofi is arbitrary and theN and F- 3.2 Asymptotic properties of the linear susceptibility

dependence is dropped for shortness. Defining=

(CiYo/N, co=2e, we can rewrite Eqs20-30) as follows: ~ We perturb the L96 model by adding a small perturbation

modulated byf(#) = 2ecoqwt). The resulting evolution

equation is:
2¢e=Fm, (33)

d .

% =x;_1(xi+1—Xi4+2) —X; + F +2ecoqwt) X; (37)
m=F+4co—cs3. (34)

where X; = X;(x1,...,xy) IS a generic function of vari-
Expressing either the average eneeggr the average mo- ablesx;. We adopt the chaotic hypothes(Sdllavotti 1996
mentumm per grid point as a function of the two free pa- Gallavotti and Cohenl995 and we follow the theory pro-
rametersV and F would allow to get a closure equation for posed byRuelle (19983 and discussed in Se@.in order

the statistical properties of the unperturbed Lorenz 96 sysito study the linear response of suitably defined observables
tem. We have computedN, F) andm (N, F) by performing  to the perturbation. We first propose to study the high-
long integrations for values df ranging from 6 to 50 with  frequency, response by analyzing in detail the asymptotic
step 1 and for values a¥ ranging from 10 to 200 with step properties of the resulting susceptibilities. As discussed in
10. In all of these cases, chaotic motions are observed. W&ect.2, this constitutes a crucial step for constructing the set
have consistently found that, within 0.5%(N, F) = e(F) of applicable KK relations and for computing the value of the
andm(N, F) =m(F), so that they can be considered inten- sum rules.

sive quantities. Therefore, we can interpret EG8-84) as We consider two different forcing patted§. In the first
equations providing a definition of the thermodynamics of case, we apply the perturbation over all the grid points and
this simple one-dimensional model of atmosphere. we chooseX; = 1Vi. Given an observabl®, we refer to the

The F-dependence of andm can be closely approxi- linear Green function and linear susceptibility resulting from

mated in terms of simple power laws. We obtain, within a this choice ofX; ang)N andxé)l)N, respectively, where the

precision of about 1% in the considered domain, that lower index N indicates that the perturbation acts over all
m(F)=AF", (35) the variak_JIesx,». We refer to this pattern of forcing a@gobal _

_ _ perturbation In the second case, we apply the perturbation
and, consistently with Eq38), only on the variablex; of the L96 model, and we choose
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V. Lucarini and S. Sarno: Computation of the climatic response to general forcings 15

X1=0Vi # j, X; =1. Since all the points are equivalentin  Equations 40) and @1) imply that the imaginary part

the unperturbed case, the choicg @ arbitrary. In this case, dominates the asymptotic behavior of the susceptibility, so

when referring to the linear Green function and the linearthat at high frequency the response is shifted by abg@t

susceptibility, the lower index 1 substitutes thieindicating  with respect the forcing. Observing that the leading term of

that the perturbation is localized to one point. We refer toasymptoticy is of ordero~1 just one sum rules apply for

this pattern of forcing alcal perturbation either susceptibilities. Limiting our attention to the intensive
quantitye, by applying Eg. {5) we obtain:

3.2.1 Global perturbation -

(Y] 7
We consider perturbations with spatial pattern giverkby- /o Rel; v (@)1do = 2 (42)
1vi and analyze the response of the observablEollowing

Eq. @), the linear Green functioGg’)a(t) can be explicitly Along similar lines, if we select as observable the total mo-

mentumM , we derive that the asymptotic behavior of its lin-

written as: ear susceptibility is:
GEy (0= / po(dx)© (1) ATTo(1) E (x) N N
EN Ky @ =Nx Oy @) =i —t+— +o(w?), (43)

= | po(dx)O()1-VE(x(1))

/ where we have defined the intensive susceptibﬂ@,\, (w),
. ' where i1 is the intensive momentum of the system. As in
- /po(dx)(a(t)Xi:a,(E(x(t))) (38) Eqg. @1), the asymptotic behavior is determined by the imag-

inary part ofy, and the real part of the susceptibility provides
wherex (¢) satisfies the unperturbed evolution E&7), Tak- the following sum rule:

ing into account Eq.®) and Eqg. 8), in order to obtain the -~
asymptotic behavior of the susceptibility, we need to study Re[x(l) ()] dw = Z' (44)
the short time behavior of the Green function. Therefore, weJo wN 2

expressE (x(t)) as a Taylor series about= 0 considering
the unperturbed flow, compute the integral of each coeffi-
cient of ther-expansion ovepg, and seek the lowest order
non-vanishing terml(ucarini, 2009. The first two terms of
the Taylor expansion of in Eq. (38) give:

We now wish to go back to the general consistency equation
for linear susceptibilities given in Eg46). Considering that

in the perturbed system the time derivative of the total energy
of the system can be written as:

) E =—2E+ FM +2eccoswt)M (45)
Gv )= [ @ Yo (Elimo+ B0 +o(0)

= / po<dx)®<r)[Zx,~ = (ZZx,- ~NF)i+0(0]. (39)

the general result given in EQR%) can be written as follows:

X @ = 5 Dy @)+ 5 (o, (46)

Using Egs. {-8), the leading terms of the asymptotic behav- I I

ior of linear susceptibility can be written as: since in this cas& = —2E+ FM and E =M. It is easy

@ . 5 to check that the asymptotic behavior for the susceptibilities
X n(@) =i (Z(Xi)o)/w+ (Z (2xi)o— NF)/w given in Egs. 40-43) is in agreement with Eq46), which is
i }: o valid at all frequencies.
m _
+o(@™?)= iINZ=—N 02 +o(@™?) 40) 322 Local perturbation

Since the symmetry with respect the indeis valid also in  \ye now perturb the system in a single grid point. The sym-

the perturbed case, given our choice of the forcing pattermeiry of the unperturbed system implies the equivalence of
the linear susceptibility of the total energy is given the SUMevery point of the latitude circle. Indicating withy the grid

of N identical contributions, each corresponding to the sus-qint where forcing is exerted, the pattern of the perturbation

ceptibility of the observable= 1/2xi2 for each of theV vari- vector field isX; = 0Vi # j, X; = 1. We consider the same
ablesx; of the system. Therefore, it is possible to define aN modulating monochromatic functiofi(r) = 2¢ cogwr) as in
intensive linear SUSCGDtibi"th(,lz{/ =1/N X](El)N Wherexg(,lz)v the previous case. We analyze the asymptotic behavior of
describes the response of the local energy to the external pefhe linear susceptibility of the total energy of the systEm

turbation. In particular in the limi& — oo we have: of the total momentum of the systemd, which are global
@ m  F—2m 5 variables, and of the local variables constituted by the energy
Xey(@) =i—— = +o(w™°). (41)  E; =1/2x% and momentumM; = x; of the perturbed grid

point and of its immediate neighbors.
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16 V. Lucarini and S. Sarno: Computation of the climatic response to general forcings

Since we are looking at the linear response and thewe obtain the following asymptotic behavior for the linear
global perturbation is given by spatially shifted copies susceptibility
of the local perturbation, for any observakibeof the form

1 1 y _.m m _
d)(xl,...,xn)=Zf\’:1¢(x,-) we must have(fb’)lzxé/)N’N = Xéj),1=1—+—2+0(a) 2). (54)
¢.N* . .
In the case of the observahiz itis straightforward to ver-  Since, by linearity,x " = " x5’ ;, comparing this result

ify the previous identity at least in the asymptotic regimes. Inwith what obtained in Eq.48), we note that the suscepti-

fact, the short time behavior of the Green function describingbility of the energy at the position of the forcing, pro-

the response of the to the local perturbation results to be:  vides the leading asymptotic term to the susceptibility of the
total energyE. Consequently, in the high-frequency range

G(E]:)]_(t) = /po(dX)®(t)3j (E|t=0+tE|t=0+0(t)) X,%),l A Xél)l and the two susceptibilities obey the same non-
1 , ) vanishing sum rule, so that:
:/po(dx)(a(t)a,[izxi —(Zin —xiF>t] - .
Ry 1(@)]dw=—=m (55)
=00)((2¢))p— (2t = Flot +0)). (47) /o Eit 2
so that the asymptotic behavior of the corresponding lineafNévertheless, by comparing Eqé8(54), we 2di;cover that
susceptibility susceptibility is: contributions to the second leading order« <) in the high
frequency range of the susceptibility of the total energy do
@ —iﬂ _ F—2m Fo(w?) (48) not come just from the response of the energy at the per-
XE1™ 1) w? ’ turbed grid point. perturbed grid point but some other point

. . . —_2 .
which agrees with what found for the intensive energy re-9Ve @ contribution of ordes a Therefore, the asynzlp)totlc
E1

sponse when the global perturbation is applied (see).(  Pehavior of the real part of 7 is not captured by, .
The sum rule for the real part of the susceptibility is exactly The locality of the interaction suggests to look at the energy

the same as in what given in E4.2j: of the closest neighbors af;. Because of the asymmetry of
the nonlinear terms in the L96 evolution equations, we con-
o . .
/ Re[xél)l(w)]dwz T (49) S|der. the observabl¢y =1/2(Ej 1+ Ej2+ Ej_1). ltis
' 2 possible to prove that:
Analogously, we obtain that the asymptotic behavior of (X —xi F_
M : . O LG 7)Y Gl SR
X1 1 €aN be written as: ¥.1 w2 w2
@, 1 1 It is easy to observe that the sum)gf)l andxgl_) 1 provides
Xra(@) =1=+ =, (50) , 1 @ndxg; 1 PrC
' w o the correct leading order to the asymptotic behavior of both
with the corresponding sum rule: the real and imaginary parts qul)l We shall provide an
- argument why this strongly supports the close resemblance
f Re[x,(wl)l(w)]dw - % (51)  ofthetwo functions(é%)l a”ng(),c,lv whereE;,c = E;j+y =
0 ,

1/2x7+1/2x%  +1/24F ,+1/2x¢%_, is the energy of the
in perfect agreement with Eqst3) and @4), respectively. cluster of points centered iry.

It is rather interesting to look into local energy observ-  The analysis of the asymptotic behavior of the susceptibil-
ables. Considering the energy of the perturbed grid point ities related to the local momentum of the system provides
x; we have that its short term Green function can be writtenadditional insights. It is possible to prove that for large fre-
as: guency the linear susceptibility of the momentum of the per-

L 1 turbed grid point is:
Gy ()= f Po@V)O(1)3; [ 5%+ (xj (xj-1xj41

@, _:1 1 2

—xj_1Xj2—x;+F))i+o0)] =00 {x;) Xy (@) =10+ o@D, 7

—(xj-1xj11—xj-1xj 2= xj + Flgt +o(0)]. (52)  which suggests that the response of the local momentum cap-
Since tures the correct asymptotic behavior of both the real and the

imaginary part of the total momentum. Concluding, we

0=(xj)o=Ixj—1xj41—Xj_1xj 2—x; + F), (53)  obtain that the following sum rule can be stablished:
because thgg-average of the temporal derivative of any ob- > A T
servable vanishes, thanks to the compactness of the attracto/O RelX, ,,1(“))]dw o (58)
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Therefore, such a constraint is exactly the same whether we=T = 400t /w, which corresponds to 200 full periods of
analyze the the response of the momentum of a single varithe forcing. The length of the simulations depends on the
able when the perturbation acts over all the grid points, or ofcorresponding period of the forcing because we are inter-
the total momentum in the case of a local perturbation, or, inested in obtaining a frequency-independent quality for the
this latter case, of the momentum of the grid point where thesignal. We have observed that the linear response approxi-
local perturbation is applied. mation is obeyed to a good degree of approximation for up

As we have seen in this section, the coefficients of the leado € ~ 1, which implies that the third order nonlinear effects
ing asymptotic terms and the sum rules are given by simpleare relatively small. Sekeucarini (2008h 20094 for further
linear functions ofn (or equivalently, thanks to Eq38), by clarifications on this latter point.
e) and by F. As we have proposed an efficient parameteri- When considering the susceptibilities describing the re-
zation ofm ande as functions ofF alone in Sect3.1, our  sponse to the global perturbation, we present results obtained
results can be easily applied and numerically verified for ausinge = 0.25 and averaging ovek = 100 random initial
very large class of L96 models. conditions. When assessing the linear response to the local
perturbation, a reasonably clear signal is obtained usiad
and averaging ovek = 300 initial conditions.

Note that, since we are interested in the linear response,
it is could have been possible to compute the susceptibility
using a generic modulating functiofxz) (see Eq4) rather

The accurate calculation of the linear susceptibility of the than having to resort to multiple monochromatic perturba-

general observablé is not as easy task, since the defini- ions. Nevertheless, for reasons of clarity, and for empha-
tion given in Eq. 17) requires the evaluation of two limits, S'ZIN9 thgt chaotic dynamical systems can be analyzed using
whereas we can actually compute only the quantity given inl@0IS typical of spectroscopy, we have used a more cumber-

Eq. (18). Averaging the response over a long tifiallows ~ SOMe but probably more convincing approach. .

cause, due to the chaotic nature of the flow, we have a continusing @ commercial laptop rather than resorting to HPC. This
uous spectral background. Instead, considering small valuegomes from the motivation of showing that the methodology
for the perturbation strength degrades the signal-to-noise presented is robust enough that relatively low-end means al-
ration, but, on the other hand, it is crucial to select a smalllow us to see the physical and mathematical properties of
¢ in order to keep the perturbations as close as possible t8Ur interest. We emphasize that, using HPC, it is rather easy
the linear regime. As discussedlincarini (20095, we can o greatly increase the quality of the signal by increasing
improve the signal-to-noise ratio without needing to performand/orT” by a one or two orders of magnitude.

very long integrations and to consider large valuescfoy
performing an ergodic averaging of the quantity averaging
the quantityxfbl) (w,x;,€,T). Therefore, we choose the best

estimator of the true susceptibili%l) as:

4 Results

4.1 Simulations and data processing

4.2 Global perturbation

We first consideyg(’l]{, = 1/Nxél_)N, wheres = E/N, and fol-
low up from the discussion in Se&.2.1 The measured real
and imaginary parts of the susceptibility are depicted with the
black lines in Figla, b. The imaginary part has a broad spec-
tral feature (with two distinct peaks) spanning fram: 2 to
w ~ 4, which corresponds to about twice the time scald)
where thex; are randomly selected initial conditions chosen of the system and to four times (see BE®) the relaxation
on the attractor of the unperturbed system. time of the energy. This hints at the fact that it is not ob-
The numerical integrations of the Lorenz 96 system havevious to constrain the spectral features of the response an
been performed using the standard configuration widere observable just by performing a scale analysis of its evolu-
the number of degrees of freedom, is set to 40, Andhe  tion equation. For higher values af, the imaginary part
intensity of the unperturbed forcing, is set td®(enz 2004 decreases in a very regular way, so that in the upper range
1996. Equations27) and @7) are solved using the standard a very good agreement with the asymptotic behaviat/w
fourth order Runge-Kutta numerical scheme. presented in Eq.8) is obtained. For low frequencies, the
For a given observabk®, the susceptibility at angular fre- imaginary part appears to decrease towards zero, as expected
quencyw is computed by applying Eq59) to K outputs  from symmetry reasons. Instead, the real part presents a dis-
of Eq. @7), each starting with a different initial condition, persive structure in correspondence with the broad maximum
where the perturbation has the same angular frequency of the imaginary part, and changes signdox 6, so that it is
The angular frequenay ranges fromw; = 0.2 t0 wj, = 207 negative for high values of the frequency range. The asymp-
with steps of 01x. Each simulation performed with a totic decrease to zero in this range is also in excellent agree-
perturbation of angular frequeney runs froms =0 up to ment with the estimate- —(F — 2m)/w? given in Eq. @),

1 K
€] ~ | § : (€] .
Xo (a)) _Klinoo K i:lxq) (a)7xl,6’T)’ (59)

www.nonlin-processes-geophys.net/18/7/2011/ Nonlin. Processes Geophys28.&011



18 V. Lucarini and S. Sarno: Computation of the climatic response to general forcings
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Fig. 2. Linear susceptibility of intensive momentum of the system
M/N with respect to the global perturbation wik; =1 Vi. The

real and the imaginary parts are depicte¢aand(b), respectively.

The measured and extrapolated values are shown in red and black
ﬁhes, respectively. The result of the Kramers-Kronig inversion done
with the measured and with with the extrapolated data are shown in
%Iue and magenta lines, respectively.

Fig. 1. Linear susceptibility of intensive energy of the systemv

with respect to the global perturbation wikh =1 Vi. The real and
the imaginary parts are depicted (@) and (b), respectively. The
measured and extrapolated values are shown in red and black line
respectively. The result of the Kramers-Kronig inversion done with
the measured and with with the extrapolated data are shown in blu
and magenta lines, respectively.

. e totically for high frequencies ag®? and J/w, respectively.
whereas for low frequencies the real susceptibility tends to a We apply the truncated KK relations to the measured data
VE;y.h'g: fv alute,ch|s Sl:ggbest.tlng that the strongest response 13 test the quality of the data inversion process. The estimates
obtained for static perturbations. of the imaginary part (starting from the measured data of the

The measured real and imaginary parts )@f v =  realpart) and of the real part (starting from the measured data
1/N x5y, Wherew = M/N, are depicted in black in Figa, ~ of the imaginary part) obtained by applying Eq8-10) are

. . . . 1 - - 1 .
b. Interestingly, the spectral feature of the imaginary part isshown forx Y. in blue in Fig.1a, b and forxfh)N in Fig. 2a,

shifted to higher frequencies than in the case of the energp. We observe that whereas agreement is very good for the
susceptibility, so that a well-distinct peak centered on valuereal part for both susceptibilities, only a qualitative match is
of w ~ 6, which approximately corresponds to the natural obtained for the imaginary part, with large discrepancies for
time scale of the system. For low frequencies, the suscepw < 2. In this latter case, moreover, the well-known problem
tibility has almost exclusively a real component. As opposedof KK divergence at the boundaries of integratidmugarini

to the previous case, the largest value for the in-phase reet al, 2003 2005 is very serious fow = w;.

sponse is not obtained for ultralow frequencies, but rather for It is crucial to test whether the discrepancies are due to the
o~ 4. The asymptotic behavior of both the real and imagi- finiteness of the spectral range or are, instead, due to basic
nary parts is in perfect agreement with the theoretical resulproblems in the applicability of the Ruelle response theory,
given in Eq. 82), so that they are found to decrease asymp-related to the fact that the invariant probability measure of the
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unperturbed system actually features large deviations fronThey correspond, by definition, to the static susceptibility

an SRB measure. of the observableg and m, respectively, for the global
We proceed testing the first case. In order to widen theperturbation withX; = 1 considered here. When evaluat-

spectral range over which the susceptibility is defined, weing the derivatives o&(F) andm(F) for F =8 we obtain

will exploit the asymptotic properties obtained in Se&R (de(F)/dF)p—g~ 1.6 and(dm(F)/dF)r_g~0.11. These

as well as the low frequency behavior of the susceptibility values are in good agreement with what found by extrapo-

discussed in SecR. We redefine the the imaginary part of lating the corresponding real part of the susceptibilities for

the susceptibility oﬁ(éfl])\, as follows o — 0 via KK relations and shown in Figda and2a.
’ Apart from the verification of the validity of KK relations,
a%lm[xé,l])v (w)], 0w =<y, we want to pk;?_v_ide furth%r sugport for the quality of the lin-
M @)1= imry @ - < 60 ear _suscepu ilities considere L
N m ey (@)1 DI =@O=n, (60) First, we test the sum rules given in Eqg42)and @4) for

w’ w = wp,

the real part of the extrapolated susceptibilitjég,(w) and

where the measured data are sandwiched between the on@/;l;v(w), respectively. Our findings are presented in Big.
and high frequency limit. Whereas we have a rigorous resuliwhere it is shown that an excellent agreement (within 1%) is
for the high frequency limit, the low frequency limit is com- found between the theoretical values and the numerical re-
puted by making the reasonable assumption that the leadsults. Since R[%(’lg,a](w) is negative in the high-frequency
ing order of thew — 0O limit is linear (see discussion after range, the convergence of the integral to the theoretical value
Eq.11). Similarly, the real part of the susceptibiliné,l}, can  of the sum rule is from above, whereas the opposite occurs

be redefined as follows: for Re[x,(nl’)é’a(w)]. Extending the integral for even larger val-
o ues ofw would bring the numerical results to an almost per-
W Re[Xs,lN (@)], 0w =, fect agreement with the theory.
Relx; x(@)]=1 Ry (@)]. w1 <w<w, (61) Following the definition given in Eq:3j, the Green func-
—F;—zz’", W = W, tion Gg)(r) computed for an observabie and a given pat-

tern of perturbation flowX; (x) (in this caseX; = 1vi) can
where we have used the fact that at low frequencies the regle ysed to compute the time-dependent linearized impact of
part of the susceptibility is constant in up to a quadratic g perturbations with the same spatial pattaprix) but with
term. A corresponding procedure is used to extend the speggrpjtrary time modulation. Whereas the direct estimate of the
tral range of th@(,(ﬁv (w), where the suitable asymptotic be- Green function from the time dependent dynamics can be ob-
haviors described in Sec3.2.1are adopted. The red lines tained by performing an ensemble of simulations where the
in Figs. 1a, b-2a, b present the results of such extrapola- time modulation of the perturbation is given by (@) pattern
tions, and the magenta lines show the outcome of the datgsee discussion in Se@, we take the indirect route by con-
inversion of these functions performed via KK relations. We sidering Eq. ). By applying the inverse Fourier Transform,
observe that the agreement is outstanding, with almost pefye derive the Green functions corresponding(j,a (w) and
fect overlap inside the region where measurement is per- (1)

. . xu.a(w). The results are presented in Fg for both observ-
formed and remarkable agreement also in the low and hig bles the Green functions are clearly causal, and their short-

frequency range. This is a very convincing evidence thattime behavior agrees remarkably well with what be deduced

th_e Ruelle response theory can be succ_essfu_lly applied fof)y looking at the asymptotic properties of the corresponding
this system. Since the KK relations provide, first and fore- susceptibilities (compare Eqél and43).

most, consistency tests, the agreement the original and the
KK-transformed susceptibility automatically confirms that 4 3 | 5cal perturbation
the extrapolation procedure we have adopted is correct. A

still better agreement would be found had we taken into ac-The data obtained for the numerical simulations of the re-
count value ofv larger than what considered in the extrapo- sponse to the local perturbation are, given the much weaker
lation used here (up to 106). overall strength of the forcing, much noisier that those pre-
Furthermore, let's consider the results presented insented in the previous section. Nevertheless, we shall see
Sect.3.1 The slopes of the functions(F) andm(F) are  that all the theoretical predictions are verified to a surpris-

given by ingly good degree of approximation.
dm(F) The global observable and M are of the form
=Ay Fr—1, (62) D(x1,...,x5) = Z,N=1¢(xi), whereg (x) = x2/2 andg (x) =
dr x, respectively. We have consistently verified that the iden-
tity X;;l)1 = XﬁN,N = Xq(bl}\, discussed in the previous section
de(F) _ (1+7y) oy (1+7y) qpphes in the_whok_a spectra_l range _explored_ by our S|rr_1ula-
F = =m(F)——. (63) tions, compatibly with the (slightly) different signal-to-noise
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Fig. 5. Comparison between the linear susceptibility of the intensive
energy for the global perturbation and of the total energy for the
local perturbation. The signals are the same except for the different
level of noise.

Fig. 3. Sum Rules for the real part of the linear susceptibility of
intensive energy¥ /N (black line) and momentur /N (blue line)

of the system with respect to the global perturbation ith= 1 Vi.
The theoretical values are indicated in the figure.
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Fig. 4. Green functions describing the time-dependent response of i 07 i " w0 "o 10°
the observable of intensive energy N (black line) and momentum
M/ N (blue line) with respect to the global perturbation wih=1 T
Vi. For both observables, the short time behavior of the Green func- o7p

tion estimated from the asymptotic behavior of the corresponding
susceptibility is shown in figure.
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ratios in the two sets of simulations. See, e.g., bifpr the
comparison between the two susceptibilitj«é?%’)1 and Xe(ll)\,

We then proceed to analyze more in detail the linear o2t
susceptibilities related to local observables. In Fgwe oal
present our results concerning the real and imaginary part

of Xélj),l(w)- Analogously to what observed in the previous

subsection, we have that once the measured susceptibility ‘ ‘
is extrapolated using the theoretical results obtained via re- 2= 07 Rt 10 "o 0
sponse theory and KK relations, we have an excellent agree-

ment between the original real and imaginary parts and thoseig. 6. Linear susceptibility of the energy at the grid point where the
obtained using the KK inversion. The KK algorithm, instead, |ocal perturbation is applied. The real and the imaginary parts are
provides only a partially satisfying outcome when only data depicted in(a) and(b), respectively. The measured and extrapolated
from the measured range are considered. Relatively discrepralues are shown in red and black lines, respectively. The result
ancies are found near the boundaries of the data range, witbf the Kramers-Kronig inversion done with the measured and with
an especially serious bias neay for the imaginary part of with thg extrapolated data are shown in blue and magenta lines,
the susceptibility. respectively.

TImly]

0.3F
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When comparinggélj)’l(w) and Xél,)l(w) (see Fig.5), we o.
observe that for low frequency the response of the energy
at the grid point where the perturbation is applied accounts
for about half of the response of the total energy, thus im-
plying that the remaining half is redistributed among the re-
maining N — 1 grid points. The relevance of the response of oal
grid points other than the directly perturbed one also explains
why the peak of Inxél’)l(w) (and so of Inj(s(l,{, (w)) than that 005
of Imxélj)’l(w) — see the frequency range2» < 4. Slower
perturbations allow other grid poinig # x; to respond ef-
fectively. 08

Instead, since the leading asymptotic orderxcét)’l(a))

a)

0.2

0.15

Re[x]

10

and Xf;}l(w) is the same, at high frequencies the local en-
ergy response accounts for most of the energy response of .
the whole system. In this case, the incoming perturbation is
so fast that the internal time scales of the system as bypassed, ez
and mainly a local effect is observed. Nevertheless, the sec-
ond leading order of the asymptotic expansion of the two
susceptibilities has opposite sign (see Edsand54), which
suggests that at any large but finite frequency the local energy
response is only a good approximation to the response of the = .|
total energy. The changeover between the two regimes oc-
curs around the frequency of the peak of;dﬁil(w), which of
corresponds to a perturbation with period close to 1.
Thanks to the asymptotic equivalence betwezé}jf?,l(w)

and Xél)l(a)) (and Xs(l;, (w)), they must obey the same sum 01 = i - s -

for the real part of the susceptibility (see E4&-55), even if

the two real parts, as discussed above, are rather different ipig. 7. Linear susceptibility of the momentum at the grid point
value in the low frequency range and even in sign in the highwhere the local perturbation is applied. The real and the imaginary
frequency range. Figur@ confirms that this rather counter- parts are depicted ita) and (b), respectively. The measured and
intuitive behavior is actually observed. Note also that sumextrapolated values are shown in red and black lines, respectively.
rules, resulting from an integration, are less sensitive to noisd he result of the Kramers-Kronig inversion done with the measured
in the data, but this occurs if and only if the underlying sig- and with with the extrapolated data are shown in blue and magenta
nal is correct. Therefore, we understand tha;tﬁfl(a)) and lines, respectively.

Xe(l,)\,(w) the strong static and quasi-static response and the

(rather odd) negative sign for high frequencies of the real part 1€ investigation of the linear susceptibility of the vari-
of the linear susceptibility, which are crucially related to the @P1€x; is not as insightful as that of ;. We find that lin-
behavior for the grid points different from the perturbed one) ear susceptibilitwij?l(w) is quite similar tox () (and
compens_ate each other to guarantei)e agreem_ent Wlth the suy:&)N (), see Fig2) in both the real and imaginary parts at
rule obtained from the real part Q’ffgj,l(w)y which instead gl frequency. The only notable differences are that the static
has a smaller range and more regular (monotonic) behavioresponsex; is slightly larger than than o#, and that the
with frequency. imaginary features a secondary peak at slightly larger fre-
A formally similar — and analogously spectacular — spec-quencies than the main spectral feature. We have verified,as
tral compensation has been observed in a physical process &s the previous cases, the results of the numerical simula-
different from what we are analyzing here as the electromagtions accurately agree with the theoretical results regarding
netically induced transparenc#taliotti et al, 1997). The  the asymptotic behavior of both the real and imaginary part
result obtained here supports previous findings obtained omnd that KK relations map to high degree of precision the
quasi-equilibrium systems suggesting that sum rules do noteal and the imaginary parts into each other. See Figr
depend on many-particle interactiorisu€arini et al, 2003 details.
2005. We present as main finding of the analysis of the observ-
able x; that, as predicted by the theory, the real part of

X;f)l(w) obeys the same sum rule as the real pamf‘;}ﬁ(w)

0.151

Im[x]

-0.05[
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— The first scenario envisioned here pertains to the pair of
Eu linear susceptibilitiesxg?l(w) and X,(wl?l(w), whereas the

' 8 second scenario is related to the pair of linear susceptibili-
ties Xz(slj),l(w) and X,(;l,)l(w)- Note that, taking into account the
asymptotic properties of the susceptibility of the observable
Ejoc=1/2x2+1/2x% | +1/2x2 ,+1/2x7_,, discussed in

1 the previous section we conclude t@}lgc 1 andxfgl)l should

be similar for all values ob.

Obviously, a similar argument applies if the leading order
is real. This discussion further clarifies that the higher the
10 number of independent KK relations and related sum rules

verified by a susceptibility functions, the more stringent are
Fig. 8. Sum rules of the real part of the linear susceptibilities in- the constraints on its properties.
dicated in the legend. The theoretical values are indicated in the
figure. 4.5 Additional properties of the linear susceptibility

; [ E P
L3 S T St R
-

Jo ™ dwRe[x]

Jo

The special mathematical properties of the linear susceptibil-
or of X;l)N (w), because the corresponding imaginary partsities allow to investigate further properties of the response.
feature the same asymptotic behavior. Figdisliows thatin  In particular, we note that for > 1 the function[xé,l)]”’ is
the case of the momentum variables the cumulative integra&nawﬁc in the upper complex-plane just as ag(l) This

is rather s_imilar f(_)r the susgeptibility _of t_he local qnd of the gjlows, as discussed ibucarini et al.(2005 to éber.ive, in
global variable, with small discrepancies in the region aro””dprinciple, an infinite set of integral relations (KK and sum
the peak of the response. rules) deriving just from the holomorphic proprieties of the
susceptibility. As an example, we have considered the square
of the linear susceptibilit)[xg(’l]{,(w)]z. From Eq. 41), it is
easy to prove that the following asymptotic expansion holds
We now show how the knowledge of the asymptotic behav-or large values o
ior of the real and imaginary part and the knowledge of the @ m2  m(F —2m)
validity of the KK relations and related sum rules allow to [x, y (@))*=—— + ——5— +o(@™*). (64)
draw general conclusions on the similarities and differences ) @ @ ) .
between two given linear susceptibility functions. Let's con- AS shown in panel () of Fig9, KK relations are found
sider the case that these two susceptibilities feature the sanf@ cOnnect up to a h'gq degree of approximation the real
first order asymptotic expansion in the high frequency limit. and imaginary part OfXg(,zi/(w)]Z- Moreover, thanks to the
Let's assume that it is an odd powerafso that the real part  asymptotic behavior given in Ecg4), it is possible to estab-
is negligible for high frequencies. Therefore, the two suscepish, thanks to Eqs 13-14), the following sum rules:
tibilities will obey the same sum rule for, e.g. th€ foment oo @ )
of the real part. / dvRe X,y (»)]°=0, (65)

If they agree also in the asymptotic behavior of the real 0
part, they cannot feature large discrepancies in the low fre-
quency range of the real part of the susceptibility either, or dw|m[X€(1]{](v)]2 - Zm{ (66)
otherwise the agreement of the sum rules would be broken/o ' 2
Therefore, the real part of the two susceptibilities are similar, panel (b) of Fig9 shows that the obtained numerical results
and, as a consequence of the KK relations, the two imaginaryre in excellent agreement with the theoretical predictions.
parts will also be similar. Note that these results do not have an obvious physical in-

If, instead, there is a discrepancy in the asymptotic behavigrpretation, as the inverse Fourier Transfornﬁ)g(fll)\, (@)]?

ior of the real part of the two susceptibilities, the two real g given by the convolution product of the Green function
parts will necessarily be rather different in the low frequency )

S _ Y Gy (1) with itself, while they depend only on the formal
range, again in order to comply with thg sum rule ConStra'nt'prdperties of the linear susceptibility.
As the two real parts are different, the imaginary part of the
two susceptibility will also be rather different, except, from
hypothesis, in the high-frequency range. 5 Practical implications for climate change studies

4.4  Further implications of Kramers-Kronig relations
and sum rules

In this paper we have constructed and verified to a high
degree of accuracy the linear response theory for a simple
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From Eg. @), we have that

Rl +00
e (Ts)® (1) = / do1GY, (01) f (1 —01). (67)

In practical terms, the left hand side of this equation is noth-
ing but the ensemble average of the time series of the change
between the globally averaged surface temperature of the
planet at a time after the perturbation has started. Note that
the direct estimate oj?(T? (0) is likely to be overwhelmingly
difficult. Using Eq. @), we have that:

(T9)® () = x5 (@) f (@), (68)

@ which implies that once we compute the Fourier Transform
of the time series mentioned above and we know the modu-
lating function f (t) (and so its Fourier Transforrfi(w)), we

can reconstrucj; )(a)) Let's select a particularly simple
example of modulatlng functioff () = e (O () — O(t — 1)).

" il This is just a rectangular function of width of heighte,

and shifted from the origin by a forward time translatigf2.

In practical terms, this corresponds to changing abruptly the
field CO, concentration by at timer =0 and taking it back

to its original value at = z. we then obtain:

(Ts)D (@) (Ts) D (w)
f@)  Ce(sinr) +i(1—codwr)))’

X5 (@) = (69)

Once we knowx )(a)) as widely discussed in this paper,

o ! \ \
107 10" 10° 10 10° 10°

ma we can computé;;ls) (1), and we know everything about the
Fig. 9. Properties of the square of the linear susceptibwﬁ]{,. response of the system at all time scales, including the static

The real and imaginary parts Dj( ) 12 with their KK transforms ~ 'ésponse. Note that any choice f) is equally valid to
are depicted in the pangd), the vamshmg sum rule for the real part Set up this procedure as long #%) is square integrable.

and the non-vanishing sum rule for the imaginary part are depicted! his implies that, in a very profound way, the kind of forcing
in panel(b). scenarios used in the various assessment Reports of IPCC,

where the CQ concentration typically stabilizes at a differ-
ent value from the preindustrial one (so that) does not
tend to 0 ag — oo) are not necessarily the only nor the best
ones, in spite of what could be intuitively guessed, to study
even the steady state response of the system.

Obviously, a similar set of experiments could be devised
for studying rather thoroughly the response of the climate
system to a variety of forcings, such as changes in the O
. concentration, aerosols, solar radiance, as well as to changes
effectively the currently adopted ensemble runs methods. . oo

in the parameterizations. In the case of uncoupled models of

Let’s consider, for sake of simplicity, that the observable
one subdomain of the climate system (e.g. atmospheric and
® is the time-dependent globally averaged surface temper-
oceanic GCMs, land-surface models), this strategy could be

ature of the planef’, that F(x) represents the whole set

of climate equations in a baseline scenario (e.g., with pre- used to study the impact of perturbations to the boundary

industrial CQ concentration), and that the perturbation field conditions provided by the other subdomains of the climate
X (x) is nothing but a constant field of GQ@oncentration, system.

which directly impacts only the radiative part of the code.

The perturbation is modulated by a time-dependent function

f(¢) to be specified below. We assume, for simplicity, that

the model does not feature daily or seasonal variations in the

radiative input at the top of the atmosphere.

yet prototypical climate model by computing the frequency-
dependent susceptibilities of several relevant observables re
lated to localized and global patterns of forcings. These re-
sults pave the way for devising a rigorous methodology to
be used by climate models of any degree of complexity for
studying climate change at, in principle, all time scales us-
ing only a very limited set of experiments, and for exploiting
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6 Summary, discussion and conclusions stochastic dynamics using the results of the mathematical
theory of random dynamical systems is emerging as new,

The climate can be seen as a complex, non-equilibriumpromising paradigm for the investigation of the structural

system, which generates entropy by irreversible processegroperties of the climate systei@liekroum et a).2011).

transforms moist static energy into mechanical energy \ve have proposed a different perspective. In agreement
(Lorenz 1967 Peixoto and Oort1992) as if it were a heat  yith the view given above, we have taken as mathematical
engine Johnson200Q Lucarini, 20093, and, when the ex-  framework for the analysis of the climate system that of non-
ternal and internal parameters have fixed values, achievegyiliprium statistical mechanics, and have focused on the
a steady state by balancing the input and output of energyieady state properties of ergodic dynamical systefeg-(
and entropy with the surrounding environme@zawa etal.  mann and Ruellel985 possessing the special property of
2003 Lucarini, 20093. For such basic reasons, the tool of having an invariant measure of the SRB typeiélle 1989.
equilibrium and quasi-equilibrium statistical mechanics can-pg proposed by the chaotic hypothes(Baflavott; 1996

not provide suitable tools for studying the fundamental prop-g5jjavotti and Cohenl999, this mathematical framework

erties of the climate system. In particular, the fluctuation-ig we|| suited for analyzing general non-equilibrium physical
dissipation theorem, which allows for deriving the properties systems.

of the response of the system to external perturbations from
the observations of its internal variability cannot be applied.
It is reasonable to ask whether is possible to evaluate ho

fgr from equilibrium the'chmate.: system actual!y IS. Itis pos- pute the change in the expectation value of a generic observ-
sible to evaluate sucHistancein a mathematically sound

. . . ) . able as a perturbative series where each term is given by the
way by assessing the ratio of the dimensionality of the at- b 9 y

tract f 1th A the total b £ d taverage over the unperturbed invariant measure of a function
ractor of the system over the lotal number of degrees ol . phase space which depends on the considered observ-

freedom. Whereas a ratio close 1o one indicates that Onlyable and on the applied perturbation. In other terms, even if

small deviations from eq“"'b”“.”? are preser'1t', a small ratlothe internal dynamics of the system is nonlinear and chaotic,
suggests that strongly non-equilibrium conditions are estab:

i . the leading order of the response is in general linear with the
I|she_d. SeePosch and Hoove_(tlgga fora detailed treatment strength o?the added pertufbation. Thig approach overcomes
of this problem in .the classmgl case of he:_at conduction. 1Ny, gitficulties related to the singularity of the invariant mea-
the case of a quasi-geostrophic atmospheric model forced bgure discussed ifihuburn(2005
Earth-like boundary conditions, the dimensionality of the at- ' .
tractor of the model is about one order of magnitude smaller At €ach order, the propagator of the perturbation, i.e. the
than the total number of degrees of freeddrar(nitsem and Qreen function, is cau;al. This allpws for app'y'”g disper-
Nicolis, 1997). While not conclusive, this seems to suggest sion _theory and es_tabhsh general _mteg_ral constraints — KK
that the best framework to interpret the climate is that of a far'€/alions —connecting the real and imaginary parts of the sus-
from equilibrium system. cepubﬂn_y, i.e. the Fourier Transform of the Green function
Following either explicitly or implicitly the programme of (Lucarini, 2008h 2009
the Catastrophe theonAtnold, 1992, many authors have  In this paper we have first recapitulated the main as-
approached the problem of understanding the fundamentd?ects of the general response theory and have propose some
properties of the climate system by looking at the detailedn€W general results, which boil down to consistency rela-
structure of the bifurcations of the deterministic dynamical tions between the linear susceptibilities of different observ-
system constructed heuristically in order to represent the dyables. The obtained equation provides the basic idea of why
namics of the main climate modes using as few degrees ofhe fluctuation-dissipation theorem does not apply in non-
freedom as possible. Such an approach often hardly allows tgduilibrium cases.
efficiently represent the fluctuations and the statistical prop- We have showed for the first time that the Ruelle linear
erties of the system. The introduction of stochastic forcingresponse theory can be applied with great success to ana-
provides a relatively simple but conceptually rich partial so- lyze the climatic response to general forcings. We have cho-
lution to some of these draw-backs, even if h@sselmann  sen as test bed the L96 modélo(enz 1996 Lorenz and
programme(Hasselmann1976 suffers from the need fora Emanuel1998 Lorenz 2004, which, in spite of its simplic-
— usually beyond reach elosure theoryfor the properties ity, has a well-recognized prototypical value as it is a spa-
of noise. Therefore, the stochastic component is usually intially extended one-dimensional model and presents the ba-
troduced ad hoc, with the ensuing lack of universality and/orsic ingredients, such as dissipation, advection and the pres-
robustness when various levels of truncations are considere@nce of an external forcing, of the actual atmosphere. Such
These strategies have anyway brought to outstanding sciera model features a different level of complexity with respect
tific results and has been suggested the existence of generio those adopted in previous numerical investigations of Ru-
mathematical structures present in hierarchies of CBadt¢-  elle’s theory Reick 2002 Cessac and Sepulchi2007 Lu-
man 2002. Recently, the unified treatment of chaotic and carini, 2009, and has been already tested in terms of linear

In this context, the impact on the system of general per-
turbation can be treated using the response theory recently
ntroduced byRuelle(1998ab, 2009, which allows to com-
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response (albeit with a different methodology and in a differ- We believe that the proposed approach, which we may
ent theoretical context) iAbramov and Majd42007). dub asspectroscopy of the climate systammay constitute a

We have analyzed the frequency dependence of the remathematically rigorous and practically very effective way
sponse of the local and global energy and momentum of théo approach the problem of evaluating climate sensitivity
system to perturbations having a global spatial pattern and tand climate change from a radically new perspective. In
perturbations acting only on one grid point. We have derivedthis regard, we have proposed a rigorous way to compute,
analytically several properties of the corresponding suscepe.g., the surface temperature response to changes in the the
tibilities, such as asymptotic behavior, validity of KK rela- CO, concentration at all time scales using only a specific
tions, and sum rules. We have shown that all the coefficientset of simulations, and taking advantage of the theoretical
of the leading asymptotic expansions as well as the integratesults presented here. Given the ever-increasing interest
constraints can be written as linear functions of parametersowards decadal and multidecadal climate prediction, these
that describe unperturbed properties of the system, and itools could be of relevant practical interest and their applica-
particular its average energy and average momentum. Thbility could benefit from technological platform aimed at cre-
theory has been used to explain differences in the response afting ensemble simulations comprising of many members.
local and global observables, in defining the intensive properWe underline that our approach takes into account all the
ties of the system and in generalizing the concept of climatglinear and nonlinear) feedbacks of the system, as they are
sensitivity to all time scales. included in the definition of the Green function. This, at a

We have then verified the theoretical predictions from thevery practical level, is the great advantage of using Ruelle’s
outputs of the simulations up to a high degree of precision formulas.
even if we have used rather modest computational resources At a more basic level, whereas considering more complex
(a total of about 30 cpu days of a mid-range commercial lap-models requires heavier computational resources, the modest
top). We have verified that the linear response theory holdsost of the present set of simulations suggests that, at least for
for perturbations of intensity accounting to up to about 10%global or regional climatic observables, it is feasible to test
of the unperturbed forcing terms. Even when local pertur-the theory discussed here for simplified yet Earth-like climate
bation and local observables are considered it is possiblenodels without resorting to top-notch computing facilities.
to achieve a signal-to-noise ratio which permits rather satMoreover, while in this paper we have computed the sus-
isfactory comparisons with the theory. We have proved thatceptibilities using, on purpose, a very cumbersome method,
the combined use of KK relations and the knowledge of themore efficient strategies can be devised, at least when the
asymptotic behavior of the susceptibilities allows for extrap- linear regime of the response is considered. Apart from the
olating in a rigorous way the observed data. We also havepractical example given for the case of the impact of the CO
shown how to reconstruct the linear Green function, whichconcentration, these include studying the response of the sys-
can be used to map perturbations of general time modulatem toé(¢) like perturbations, which gives directly the Green
tion into changes in the expectation value of the consideredunction of the system, and including in the forcing various
observable for finite as well as infinite time. monochromatic signals. Of course, in all cases, a Monte

Our numerical experiments have been performed usingCarlo approach is needed in order to sample effectively the
one of the standard settings of the L96 model, namely theattractor of the unperturbed system in terms of the initial con-
version identified by having/ =40 degrees of freedom and ditions of the simulations.
forcing F = 8. Nevertheless, some newly obtained empirical These results pave the way for future investigations aimed
closure equations expressing the average energy and the aat improving and extending the theoretical framework pre-
erage momentum of the unperturbed system as simple powesented here, at finding results of general applicability in the
laws of F (with no dependence oN) have allowed to ex- context of the modelling of geophysical fluid dynamics, and,
tend our results to the entire class of chaotic L96 modelsfinally at answering specific questions of relevance for cli-
The regular scaling of the properties of the system and of itamate dynamics. In this paper we have analyzed the sim-
response with agrees with what observed Abramov and  ple case of the linear response, but, as discuss&lialle
Majda(2007). (1998 andLucarini (2008h 2009, we have the algorithm

In this paper we have only used the KK relations in the to compute higher order terms, so that the treatment of the
most simplistic framework, i.e., computing the KK trans- nonlinear response in entirely feasible.
forms and evaluating their agreement with the original data. In the first direction, we foresee the possibility of writing
Actually, several more sophisticated analysis techniques areut explicitly the linear susceptibility of a general observable
available, such as recursive self-consistent algorithms, wherby projecting the perturbation onto the unstable, neutral and
the measured data are taken as first guess, exploiting the fastable manifolds and analyzing separately the contributions
that multiple applications of KK relations, combined with to the total response. This will probably require the adoption
sum rules, automatically filter our the noise and remove mosbf adjoint techniques, and will benefit from the recent algo-
of the spurious signal{icarini et al, 2005. rithms proposed ilAbramov and Majdg2007) and Majda

and Wang2010. Moreover, we will be testing the radius of
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convergence of the Ruelle response theory in some specifiives such asclimateprediction.netand the new project
examples. PCMDI/CMIP5 (ttp://cmip-pcmdi.linl.gov/icmip3/ which

Along the second direction, we propose to study the im-will provide a crucial input for the Fifth Assessment Report
pact of stochastic forcing to deterministic chaotic models byof the IPCC.
treating the (additive or multiplicative) noise as a perturba- ] _
tion to be analyzed using the linear and nonlinear Ruelle™cknowledgementsvL acknowledges the financial support of‘the
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the formalism discussed here could be used also for under-
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