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Abstract. We present a new model of fault nucleation and
growth based on the Weibull theory, already widely used in
fracture research engineering. We propose that, according to
a birth-and-growth process, germs (nuclei) are born at ran-
dom instants at random spatial locations and then grow with
time. This leads to a satisfactory formulation of fault length
distribution, different from classical statistical laws. Espe-
cially, this formulation reconciles previous analyses of fault
datasets displaying power-law and/or exponential behaviors.
The Weibull parameters can be statistically estimated in a
simple way. We show that the model can be successfully fit-
ted to natural data in Kenya and Ethiopia. In contrast to ex-
isting descriptive models developed for geological fault sys-
tems, such as fractal approaches, the Weibull theory allows
to characterize the strength of the material, i.e. its resistance
to deformation. Since this model is very general, we expect
that it can be applied in many situations, and for simulations
of geological fracture processes. The model is independent
of deformation intensity and type and therefore allows a bet-
ter constraint of the seismic risk in threatened regions.

1 Introduction

Distributions of fault dimensions, such as displacement and
length, have been used for decades to understand the evo-
lution of fault systems (e.g.,Watterson, 1986; Marrett and
Allmendinger, 1991; Cowie and Scholz, 1992). Their rela-
tions have implications for rupture mechanics and dynamics,
and they provide links to empirical earthquake scaling rela-
tions (e.g.,Cowie and Scholz, 1992). Various statistical dis-
tributions such as gamma (Cardon, 1999), log-normal (Davy,
1993; Castaing et al., 1995), exponential (e.g.,Villemin and
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Sunwoo, 1987), or power-law (e.g.,Velde et al, 1990; Velde
and Dubois, 1991) have been fitted to fault populations.

The power-law is of specific interest since the exponent
can be interpreted as a fractal dimension, and tools of frac-
tal theory can be used to quantitatively describe the datasets.
Until now, the statistical distributions have only a descriptive
value and do not allow inferences about mechanical proper-
ties of the deformed medium. None of the statistical laws
describes fault distributions at all scales (e.g.,Gloaguen et
al., 2007).

In this paper we propose to use the Weibull theory to de-
scribe fault nucleation and growth. It is based on a stochastic
model, which has successful applications in fracture theory
of engineers. It leads to a simple distribution function for
the lengths of faults. A model parameterm, called Weibull
modulus, controls this distribution. Its values are known
for many engineering materials, and the present paper now
yields values for geological materials. The Weibull approach
allows a direct quantification of rock resistance to stress (e.g.,
Lochmann et al., 2007). Until now, and as far as we know,
this approach has only been used for 1-D problems in Earth
Sciences (Lochmann et al., 2007). We now generalize this
formalism to 2-D datasets of faults. Algorithms based on
the automatic classification procedure given inMarpu et al.
(2006) are used to process remote sensing data.

2 Geological setting

The Magadi trough, located in southern Kenya, is considered
as the termination of the Kenya rift before it cuts the north-
Tanzanian Craton (e.g.Baker, 1958) (Fig. 1, right). The
southern Kenya Rift cuts through a gneissic basement mainly
covered by post-Miocene lavas (Gloaguen, 2000). The
Ethiopian rift system lies on the Ethiopian-Yemen plateau
that likely developed above a mantle plume (e.g.,Schilling
et al., 1992; Ebinger and Sleep, 1998; Keranen et al., 2004)
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Fig. 1. Localization of the geological area. Left: The Main Ethiopian Rift. Right: The Magadi trough.

(e.g., Wolfenden et al., 2004; d’Acremont et al., 2005). The
Main Ethiopian Rift (MER) connects to the North to the Gulf
of Aden and the Red Sea via the Afar triple junction. To
the south it connects to the Kenya Rift through a compli-
cated set of basins. Recent geodetic measurements indicate
a 108◦ opening direction between Nubia and Somalia. Qua-
ternary tectono-magmatic segments are superposed on older
Red Sea and Aden rift structures within the Afar depression
(Kurz et al., 2007; Casey et al., 2006). The crust thickness
decreases from 35 km in Kenya to 20-25 km in Afar (Tiberi
et al., 2005).

3 Data

We use orthorectified and speckle filtered Radarsat Fine
Beam data (Kenya) as well as SPOT and Landsat data
(Ethiopia). Field controls showed that the resolution of the
Synthetic Aperture Radar (SAR) and the optical data is suffi-
cient to measure a large amount of the faults that breach the
surface. The radar data are acquired in ascending and de-
scending orbits, allowing for a precise measurement of faults
otherwise in shadow on images acquired by optical sensors.
By virtue of the geometry of side-looking imaging radar, the
same scene imaged in opposite directions can be used to ef-
fectively map the faults (Henderson and Lewis, 1998). Most
of the faults within the Kenya Rift are oriented N-S and are
consequently almost orthogonal to the radar beam. Within
such a context, it is obvious that SAR images significantly
enhance the mapping of the fault systems compared to opti-
cal data. The pre-processing step involves a reduction of the
speckle in the SAR data using a Gamma filter (Lopes et al.,
1993(@).

As the faults are characterized by steep slopes, a Digital
Elevation Model (DEM) can also be used for identification.
A DEM can be generated by numerous techniques, the most
commonly being based on the stereoscopic potential of opti-

cal and radar stereo-pairs. Radar data are one of the sources
for generating DEMs and hence are the basic input in the
process of fault mapping. The pre-processing step here in-
volves generating new image layers from the DEM with the
slope and aspect information. The orientation of the pixels
in their corresponding neighborhood gives the direction of
the slopes. The gradient of the DEM and the direction infor-
mation are the input for the extraction algorithm. We used
DEMs derived from ASTER data with a spatial resolution of
15 m.

4 Extraction of faults

The procedure for automatic object-based classification de-
scribed in Marpu et al. (2006) and used in Gloaguen et al.
(2007) is used to extract the faults. The automatic classifica-
tion procedure starts with segmenting the image (dividing the
image in to smaller homogenous regions). Based on the iden-
tified features which characterize the classes, an approximate
normal distribution is generated using a minimum-distance
clustering. Besides determining which features best sepa-
rate the object classes from each other, it is essential to know
which decision threshold allows maximum separability.The
approximate distributions are then corrected using the thresh-
olds of separation for every feature to get the final distribu-
tion. The thresholds are determined by Bayes’ rule (Nuss-
baum et al., 2005). Individual fault geometries are resolved
accurately. We use manual extraction to validate the datasets.

5 Faults

At the field scale, a fault may be composed of segments that
are formed by sub-segments, and usually, direct observation
is limited to infra-metric fault planes. The resolution cell of
the different types of remotely sensed data will therefore af-
fect the ranking of objects. Thus, depending on the size of

Fig. 1. Localization of the geological area. Left: the Main Ethiopian Rift. Right: the Magadi trough.

(Fig. 1, left). 40Ar/39Ar data show that flood basalts were
erupted across a 1000 km diameter region at 31 Ma (e.g.,
Hofmann et al., 1997; Pik et al., 2003), prior to or coeval with
the initiation of NE-SW extension in the Red Sea and Gulf of
Aden (e.g.,Wolfenden et al., 2004; d’Acremont et al., 2005).
The Main Ethiopian Rift (MER) connects to the North to the
Gulf of Aden and the Red Sea via the Afar triple junction.
To the south it connects to the Kenya Rift through a compli-
cated set of basins. Recent geodetic measurements indicate
a 108◦ opening direction between Nubia and Somalia. Qua-
ternary tectono-magmatic segments are superposed on older
Red Sea and Aden rift structures within the Afar depression
(Kurz et al., 2007; Casey et al., 2006). The crust thickness
decreases from 35 km in Kenya to 20–25 km in Afar (Tiberi
et al., 2005).

3 Data

We use orthorectified and speckle filtered Radarsat Fine
Beam data (Kenya) as well as SPOT and Landsat data
(Ethiopia). Field controls showed that the resolution of the
Synthetic Aperture Radar (SAR) and the optical data is suffi-
cient to measure a large amount of the faults that breach the
surface. The radar data are acquired in ascending and de-
scending orbits, allowing for a precise measurement of faults
otherwise in shadow on images acquired by optical sensors.
By virtue of the geometry of side-looking imaging radar, the
same scene imaged in opposite directions can be used to ef-
fectively map the faults (Henderson and Lewis, 1998). Most
of the faults within the Kenya Rift are oriented N-S and are
consequently almost orthogonal to the radar beam. Within
such a context, it is obvious that SAR images significantly
enhance the mapping of the fault systems compared to opti-
cal data. The pre-processing step involves a reduction of the

speckle in the SAR data using a Gamma filter (Lopes et al.,
1993).

As the faults are characterized by steep slopes, a Digital
Elevation Model (DEM) can also be used for identification.
A DEM can be generated by numerous techniques, the most
commonly being based on the stereoscopic potential of opti-
cal and radar stereo-pairs. Radar data are one of the sources
for generating DEMs and hence are the basic input in the
process of fault mapping. The pre-processing step here in-
volves generating new image layers from the DEM with the
slope and aspect information. The orientation of the pixels
in their corresponding neighborhood gives the direction of
the slopes. The gradient of the DEM and the direction infor-
mation are the input for the extraction algorithm. We used
DEMs derived from ASTER data with a spatial resolution of
15 m.

4 Extraction of faults

The procedure for automatic object-based classification de-
scribed inMarpu et al.(2006) and used inGloaguen et al.
(2007) is used to extract the faults. The automatic classifica-
tion procedure starts with segmenting the image (dividing the
image in to smaller homogenous regions). Based on the iden-
tified features which characterize the classes, an approximate
normal distribution is generated using a minimum-distance
clustering. Besides determining which features best sepa-
rate the object classes from each other, it is essential to know
which decision threshold allows maximum separability.The
approximate distributions are then corrected using the thresh-
olds of separation for every feature to get the final distribu-
tion. The thresholds are determined by Bayes’ rule (Nuss-
baum et al., 2005). Individual fault geometries are resolved
accurately. We use manual extraction to validate the datasets.
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5 Faults

At the field scale, a fault may be composed of segments that
are formed by sub-segments, and usually, direct observation
is limited to infra-metric fault planes. The resolution cell of
the different types of remotely sensed data will therefore af-
fect the ranking of objects. Thus, depending on the size of
pixels there may be confusion between fault and fault zone
or fault and segment. The homogeneity of the spatial reso-
lution of the different sensors used in the present study min-
imizes potential misclassification and guarantees a homoge-
neous data set. We did not observe measurable differences
between the statistics obtained from SAR and optical data.

6 Fault statistics

The scaling relationships of fault and fractures have already
been used in previous studies for (i) estimation of the relative
number of faults whose sizes are smaller than the resolution
of the detection method, (ii) determination of the conditions
for aggregation of populations of faults, (iii) understanding
the evolution of faults in time and space, and (iv) deducing
the physical parameters governing the process of fault prop-
agation (e.g.Cowie and Scholz, 1992; Walsh et al., 2002,
2003). Statistical analyses have been successfully applied in
low-strain regions where power-law scaling fits the data well
(e.g.,Scholz et al., 1991) and in higher strain areas where
exponential laws seem to describe the fault distribution (e.g.,
Cowie et al, 1993).

The fit of statistical laws to empirical fault distributions is
difficult. This difficulty can be illustrated by the number of
laws used to describe fault process in the literature:

– power (e.g.Velde et al, 1990; Velde and Dubois, 1991);

– exponential (e.g.Villemin and Sunwoo, 1987);

– log-normal (e.g.Davy, 1993; Castaing et al., 1995);

– gamma (Cardon, 1999; Bonnet et al., 2001).

There is no consensus on the distribution laws of the vari-
ous parameters characterizing faults. Some authors have sug-
gested that an exponential law of the form

Np = αe−λp (1)

characterizes populations of faults (a) in the early stages of
their evolution, when the nucleation of new faults exceeds the
growth of existing faults (Cowie et al., 1995), but also (b) af-
ter the most important faults reached the boundary of the brit-
tle layer thickness (Ackermann and Schlische, 1997; Bonnet
et al., 2001). Np is the number of elements for which the
measured parameter is larger than or equal to a given value
of p andα is a constant andλ is a scaling parameter. Be-
tween these extremes (a) and (b) it is assumed that a power
law type

Np = βp−ν (2)

describes the distribution (Gupta and Scholz, 2000). ν is the
exponent of the power law andβ a constant. A distribution
that describes a power law implies a growth factor and a
self-similar scaling (Main, 1996; Yielding et al., 1996), the
exponent of the power law represents the fractal dimension.
This dimension is large when the relative population of small
faults is important.Sornette and Davy(1991); Cowie et al.
(1995); Cladouhos et al.(1996) have suggested that the expo-
nentν decreases during the evolution of fracturing and thus
localisation of deformation onto faults of large size.

None of these statistical distributions allows a complete
representation of the fault distributions nor are they based
on mechanical properties of the system under stress. The
fractal dimension gives a measure of the complexity of the
system. Nonetheless, these models rely only on descriptive
statistics and do not relate to intrinsic physical properties of
the deformed medium. Despite the large number of available
tools and robustness the fractal formalism it leads then to
non-uniqueness of the interpretation (Shahzad and Gloaguen,
2011a,b).

7 Fault model

The complexity of fault systems arises from the interaction
and connection of elements during fault growth, and thus the
formation of interconnected networks. Based on a fractal
analysisGloaguen et al.(2007) proposed that the fault net-
work can be modeled as an Iterated Function System (IFS)
(Barnsley, 1988). The processus starts with small nucleii
whose locations are distributed according to a Poisson law.
Faulting starts with the asynchronous appearance of seg-
ments respecting a given spacing, related to the zone of in-
fluence of each fault. In order to compensate stress, faults
grow longitudinally. In this process the growing segments
connect and form complex fault systems, which are fractal
(e.g.,Gloaguen et al., 2007; Shahzad et al., 2010). This be-
havior is attested by observations on very high resolution im-
agery. The flexures of the foot-wall create depocenters, much
smaller than the fault length would suggest. The growth of
the depocenter, linked to the vertical displacement, is there-
fore late with respect to longitudinal growth. The horizontal
displacement is controlled by longitudinal growth. As the
segments grow longitudinally and perpendicular to the min-
imum compression stress vector (depending on the hetero-
geneity of the hosting rock), they enter the zone of influence
of other segments and faults. The growth of each segment is
random and the increments tend to create longer alignments
(in order to allow larger vertical offset). The maximum hor-
izontal displacement along one segment being related to its
length, the generation of long linear faults is preferred. It im-
plies that, despite a complex mechanism of formation, fault
lengths are good descriptors of the state of deformation in a
given region.
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8 Nucleation model

Following Jeulin (1994), we propose the ensuing model,
which describes only nucleation and length growth and is
not in contradiction to the preceding section. We consider
a regionB of the Earth’s surface of arbitrary shape and size.
In B fault germ points (short: germs) are distributed ran-
domly. (Their spatial distribution does not matter for our
length modelling.) Each germ has some strength (resistance
against load), i.e. if the strength isσ and the load inB is
≥ σ , the germ is activated and fault growth starts. The ran-
dom number of germs inB with a strength≤ σ follows a
Poisson distribution of mean3(σ) with

3(σ) =

∫ σ

0
λ(s)ds for σ ≥ 0. (3)

For the strength rateλ(σ) various forms are possible, but we
consider here the special case

λ(σ) = cσm−1 for σ ≥ 0 andm ≥ 1. (4)

Herec is a constant, which depends on shape and size ofB

and on the spatial distribution of the germs withinB; m is
another parameter, called theWeibull modulus.

Note that forσ → ∞ 3(σ) → ∞, i.e. the total number of
all germs inB is infinite. However, of relevance are only the
germs of a strength smaller that a givenσ , which is of course
finite.

9 Weibull distribution

We explain briefly, why the termWeibull theoryis used. The
theory in Sect. 8 is the fundamental of what some authors
call theWeibull theory. The name “Weibull theory” is used
since it leads to theWeibull distributionas in (Weibull). The
Weibull distributionfunction has the form

F(σ) = 1−exp(−(
σ

σ0
)m) for σ ≥ 0, (5)

whereσ0 is a scale parameter andm the Weibull modulus,
see for example (Evans et al., 1993; Mann et al., 1974; Munz
and Fett, 2001).

We estimate the Weibull modulus by fitting the fault
lengths histograms by the function derived from the Weibull
theory using a maximum likelihood approach. The Weibull
distribution appears when we ask for the random loadS un-
der which the first germ inB is activated. (In many applica-
tions of the Weibull theory one then says thatB “fails”.) The
distribution function ofS, F(σ), is given by

F(σ) = P(S ≤ σ), (6)

for the nucleation model above

1−F(σ) = P(S >σ) = P (7)

(“no germ activated at loadσ ”)

Table 1. Typical values of the Weibull modulusm.

m Materials

1.8–2.3 oceanic crust;Lochmann et al.(2007)
2–3 glass
2–5 refractories, piemontite, tourmaline
3 compacted cement paste
3–6 human dentin
5 silica gels
5–10 technical ceramics
6–12 SiC
6–25 advanced ceramics
8–16 Si3 N4
12 graphite
>30 metals
38 cast iron

= exp(−3(σ)). (8)

The last term is the Poisson probability that the random num-
ber of activated germs at loadσ in B is zero. Thus we obtain

F(σ) = 1−exp(−3(σ)) (9)

which is equivalent to Eq. (5) withσm
0 =

m
c

.
The Weibull distribution and theory have found many

applications in reliability and fracture theory, see (Bažant
and Planas, 1998; Krajcinovic, 1996; Munz and Fett, 2001).
Many fracture nucleation processes follow the model above
in good approximation with a power law distribution forλ(σ)

as in Eq. (4). A successful application in tectonics, link-
ing the distance between oceanic fracture zones with their
lengths at a given lithosphere strength was presented by
Lochmann et al. (2007).

The dimensionless Weibull modulusm characterizes the
strength of the material. Values ofm for different materials
are given in Table 1, resulting from many experiments of en-
gineers, see (e.g.Munz and Fett, 2001). The following shows
that the Weibull theory also leads to a distribution function of
fault lengths, which is not a Weibull distribution function.

10 Fault growth dynamics

We assume that load increases with time, which implies that
the number of activated germs increases according to Eq. (4).
Each activated germ becomes a fault, the length of which is
growing with time. For simplicity of calculation and expla-
nation we assume that the load increases linearly and that the
average speedv of growth is constant, so that fault length
increases linearly with timet . (We would obtain the same
results if assuming that load and fault growth are coupled in
a suitable manner.) Therefore we speak now instead of load
σ of time t .

Nonlin. Processes Geophys., 18, 529–536, 2011 www.nonlin-processes-geophys.net/18/529/2011/
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Fig. 2. Statistics for the fault lengths and estimation of the Weibull
modulus for the Magadi Faults. The histogram is inserted to high-
light the measured number of faults.

The length of a fault initiated at time u is l = (t − u)v and
thus the probability density function of fault length is

f(l) =
1

v
g(t− l

v
). (11)

With (4) this yields

f(l) =
1

v

m(t− l
v )m−1

tm
for 0 ≤ l ≤ tv. (12)

If we introduce the maximum fault length lmax = vt. (12)
becomes

f(l) = m
(lmax − l)m−1

lmmax

for 0 ≤ l ≤ lmax. (13)

It is f(0) = m
lmax

and f(lmax) = 0 and between 0 and lmax
f(l) is decreasing. An example showing the histogram of
fault lengths and the corresponding fitted distribution accord-
ing to (13) is shown in Figure 2.

11 Statistics

The aim of statistics for the model above is estimation of the
two model parameters lmax and m from fault length data.
The estimation of lmax is a delicate task, while for m, given
lmax, a simple maximum likelihood estimator exists. The
distribution (13) should not directly fitted to fault length data.
Figure 2 shows a typical situation: The model seems to be
suitable for medium values of l, while for small and large l
there are deviations. Usually, there are some very long faults
in a length sample, which should be ignored. Long faults
are not statistically representative as they are extremely rare
and they may result from pre-existing crustal discontinuities.
We recommend to estimate lmax manually in such a way that
it makes sense to fit a function as (13) to the given length
histogram.

Furthermore, the observed number of very short faults is
often small. This has led some researchers to the assumption
that the theoretical length probability density function f(l)
satisfies f(0) = 0, as is the case for log-normal or Gamma.
On the other hand, it is sometimes assumed that f(0) = ∞,
as for the power-law type. An argument which may justify
the latter approach is that many very short faults are simply
not measured due to sensor resolution or because they are
simply not apparent (e.g. buried, covered by vegetation). We
assume that there is a limit length lcens such that faults shorter
than lcens are ignored. The form of the probability density
function for lengths longer than lcens is used to estimate the
power-law exponent by extrapolation to small lengths. lcens

must be estimated visually. We also assume that there is such
censoring, but our model does not lead to f(0) = ∞ but to
f(0) = m

lmax
. For estimating m we have a sample of lengths

l1, l2, . . . , ln between lcens and lmax, where n is the number
of these lengths. The maximum likelihood estimator is

m̂ = − n∑n
i=1 lnxi

(14)

with

xi =
lmax − li
lmax − lcens

. (15)

By means of (15) the data are transformed into the interval
[0,1], and the probability density is then

f(x) = mxm−1

The likelihood function is

L(x1, . . . , xn) = f(x1) · . . . · f(xn)

and the log-likelihood function

lnL(x1, . . . , xn) = n lnm+ (m− 1)
n∑
i=1

lnxi

Equating its first derivative with respect to m to zero yields
(14).

Note that the xi are smaller than 1 and thus the logarithms
are negative. Therefore m̂ will be positive. The strength
of the brittle crust is completely described by the statistical
measure of the fault length distribution using the Weibull the-
ory.The modulus is a dimensionless number that is related to
the strength of the brittle crust. An increasing Weibull mod-
ulus can thus be associated with increasing crustal strength.
We consider here the strength as the maximum extensional
stress that the crust can withstand without faulting. This as-
sumes a homogeneous strength of the brittle crust, which is
approximative in most cases.

12 Results and Discussion

We applied the model to three fault data sets extracted in
the East African Rift System. We selected these areas be-
cause they have relatively homogeneous and similar compo-
sitions and lithologies. Their brittle crust is predominantly

Fig. 2. Statistics for the fault lengths and estimation of the Weibull modulus for the Magadi Faults. The histogram is inserted to highlight
the measured number of faults.

In our approach, early (or weak) germs become long
faults. New faults, which are more numerous than old faults,
are shorter.

We assume here that there is no interaction of faults.
Now we explain how to derive the fault-length probability

density functionf (l) of the faults existing at timet , when
the load process started at time 0. Only faults initiated before
t count and clearly earlier faults are longer than later ones.

Under our model, the probability density functiong(u) of
the instants of activation is

g(u) =
λ(u)∫ t

0 λ(x)dx
for 0≤ u ≤ t. (10)

The length of a fault initiated at timeu is l = (t −u)v and
thus the probability density function of fault length is

f (l) =
1

v
g(t −

l

v
). (11)

With Eq. (4) this yields

f (l) =
1

v

m(t − l
v
)m−1

tm
for 0≤ l ≤ tv. (12)

If we introduce the maximum fault lengthlmax= vt . Equa-
tion (12) becomes

f (l) = m
(lmax− l)m−1

lmmax
for 0≤ l ≤ lmax. (13)

It is f (0) =
m

lmax
andf (lmax) = 0 and between 0 andlmaxf (l)

is decreasing. An example showing the histogram of fault
lengths and the corresponding fitted distribution according to
Eq. (13) is shown in Fig. 2.

11 Statistics

The aim of statistics for the model above is estimation of the
two model parameterslmax andm from fault length data. The
estimation oflmax is a delicate task, while form, givenlmax,
a simple maximum likelihood estimator exists. The distribu-
tion Eq. (13) should not directly fitted to fault length data.
Figure 2 shows a typical situation: the model seems to be
suitable for medium values ofl, while for small and largel
there are deviations. Usually, there are some very long faults
in a length sample, which should be ignored. Long faults are
not statistically representative as they are extremely rare and
they may result from pre-existing crustal discontinuities. We
recommend to estimatelmax manually in such a way that it
makes sense to fit a function as Eq. (13) to the given length
histogram.

Furthermore, the observed number of very short faults is
often small. This has led some researchers to the assumption
that the theoretical length probability density functionf (l)

satisfiesf (0) = 0, as is the case for log-normal or Gamma.
On the other hand, it is sometimes assumed thatf (0) = ∞,
as for the power-law type. An argument which may justify
the latter approach is that many very short faults are simply
not measured due to sensor resolution or because they are
simply not apparent (e.g. buried, covered by vegetation). We
assume that there is a limit lengthlcenssuch that faults shorter
than lcens are ignored. The form of the probability density
function for lengths longer thanlcens is used to estimate the
power-law exponent by extrapolation to small lengths.lcens
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Fig. 3. Estimation of the Weibull moduli for fault systems in the Magadi (green, m=3.47), the MER (blue, m=4.06) and Afar (red, m=5).

composed by post-Miocene lavas. We thus expect to infer
the thermo-mechanical properties of the brittle crust from
Weibull moduli estimated using the geometrical properties of
the fault system. Those regions are characterized by differ-
ent crustal thicknesses and thermic gradients. We assess the
Weibull modulus as a measure of the distribution of faults
in the brittle crust. The empirical Weibull moduli increase
from Kenya to Afar, i. e. with decreasing crustal thickness
and increasing thermal gradient (Fig. 3). This implies an
increasing crustal strength from Kenya north to Afar.

Here, we tentatively explain the increasing strength of the
brittle crust with an increasing mechanical decoupling be-
tween the brittle and ductile crust from Kenya to Afar as well
as a decrease in structural heritage. The structural heritage
will affect the crust by creating zones of weakness and there-
fore reduce the crust’s maximum strength. The mode of de-
formation also differs between Afar and Kenya. In Afar the
faults are predominantly generated in mode I (tensile stress)
whereas in Kenya the faults are usually expressing mode II
(shear stress) behavior. Materials are usually more resistant
to mode I than mode II failures. Additionally, a large num-
ber of fault are dyke induced in the MER and Afar (e.g. Kurz

et al., 2007; Keranen et al., 2004). More data are required
to infer the specific causes for this behavior. Nonetheless,
an increasing material strength is certainly related to higher
earthquake magnitudes and this fact seems to reflect the re-
ality in the East African Rift (Keir et al., 2006). Thus, the
Weibull model of fault length distributions could be used to
assess the seismic risk in threatened regions.

We would like to add two remarks on our model assump-
tions. The form of the strength rate λ(σ) as in (4) is not
the only possible. Also other forms are possible, e.g. semi-
logarithmic or exponential forms. With some mathematical
modifications a given fault length probability density f(l)
can be transformed in a rate function λ(σ). The interaction
between faults and fault growth is more complicated than we
assume. Nonetheless, nucleation processes may still follow
our model by a rate λ(σ), even after the faults start to grow
by linkage to form longer faults or cease propagating by en-
tering the stress shadow of older faults. In further work it
could be tried to combine our model with numerical models
of fault interaction (e.g. Hardacre and Cowie, 2003; Olson,
2004).

Fig. 3. Estimation of the Weibull moduli for fault systems in the Magadi (green,m = 3.47), the MER (blue,m = 4.06) and Afar (red,m = 5).

must be estimated visually. We also assume that there is such
censoring, but our model does not lead tof (0) = ∞ but to
f (0) =

m
lmax

. For estimatingm we have a sample of lengths
l1,l2,...,ln betweenlcensandlmax, wheren is the number of
these lengths. The maximum likelihood estimator is

m̂ = −
n∑n

i=1lnxi

(14)

with

xi =
lmax− li

lmax− lcens
. (15)

By means of Eq. (15) the data are transformed into the
interval [0,1], and the probability density is thenf (x) =

mxm−1 The likelihood function isL(x1,...,xn) = f (x1) ·

... ·f (xn) and the log-likelihood functionlnL(x1,...,xn) =

nlnm+ (m−1)
n∑

i=1
lnxi Equating its first derivative with re-

spect tom to zero yields Eq. (14).
Note that thexi are smaller than 1 and thus the logarithms

are negative. Thereforêm will be positive. The strength
of the brittle crust is completely described by the statistical
measure of the fault length distribution using the Weibull the-
ory.The modulus is a dimensionless number that is related to
the strength of the brittle crust. An increasing Weibull mod-
ulus can thus be associated with increasing crustal strength.
We consider here the strength as the maximum extensional
stress that the crust can withstand without faulting. This as-
sumes a homogeneous strength of the brittle crust, which is
approximative in most cases.

12 Results and discussion

We applied the model to three fault data sets extracted in
the East African Rift System. We selected these areas be-
cause they have relatively homogeneous and similar compo-
sitions and lithologies. Their brittle crust is predominantly
composed by post-Miocene lavas. We thus expect to infer
the thermo-mechanical properties of the brittle crust from
Weibull moduli estimated using the geometrical properties of
the fault system. Those regions are characterized by differ-
ent crustal thicknesses and thermic gradients. We assess the
Weibull modulus as a measure of the distribution of faults in
the brittle crust. The empirical Weibull moduli increase from
Kenya to Afar, i.e. with decreasing crustal thickness and in-
creasing thermal gradient (Fig. 3). This implies an increasing
crustal strength from Kenya north to Afar.

Here, we tentatively explain the increasing strength of the
brittle crust with an increasing mechanical decoupling be-
tween the brittle and ductile crust from Kenya to Afar as well
as a decrease in structural heritage. The structural heritage
will affect the crust by creating zones of weakness and there-
fore reduce the crust’s maximum strength. The mode of de-
formation also differs between Afar and Kenya. In Afar the
faults are predominantly generated in mode I (tensile stress)
whereas in Kenya the faults are usually expressing mode II
(shear stress) behavior. Materials are usually more resistant
to mode I than mode II failures. Additionally, a large num-
ber of fault are dyke induced in the MER and Afar (e.g.Kurz
et al., 2007; Keranen et al., 2004). More data are required
to infer the specific causes for this behavior. Nonetheless,
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an increasing material strength is certainly related to higher
earthquake magnitudes and this fact seems to reflect the re-
ality in the East African Rift (Keir et al., 2006). Thus, the
Weibull model of fault length distributions could be used to
assess the seismic risk in threatened regions.

We would like to add two remarks on our model assump-
tions. The form of the strength rateλ(σ ) as in Eq. (4) is not
the only possible. Also other forms are possible, e.g. semi-
logarithmic or exponential forms. With some mathematical
modifications a given fault length probability densityf (l)

can be transformed in a rate functionλ(σ). The interaction
between faults and fault growth is more complicated than we
assume. Nonetheless, nucleation processes may still follow
our model by a rateλ(σ), even after the faults start to grow
by linkage to form longer faults or cease propagating by en-
tering the stress shadow of older faults. In further work it
could be tried to combine our model with numerical models
of fault interaction (e.g.Hardacre and Cowie, 2003; Olson,
2004).

13 Conclusions

We show that the Weibull theory combined with a natural
length growth model leads to a simple fault length distribu-
tion function which relates to host rock strength. It fits nat-
ural data sets well and combine earlier statistical approaches
which have led either to exponential or power-law distribu-
tions in one theoretical framework. Our model depends on
a parameter, called Weibull modulus, which has the poten-
tial to characterize quantitatively the mechanical-theoretical
properties of the crust under stress. In this way, the geo-
logical fracture behavior can be integrated in the fracture-
mechanical theories developed by engineers. This model has
the advantage to be based on a mechanical-theoretical frame-
work and therefore allows some inferences regarding local
crustal deformability. Parts of our model can be used in sim-
ulations of geological fracture processes, in particular the nu-
cleation part given by the inhomogeneous Poisson process of
germ strengths. If there is a complex interaction between
growing faults, the growth-part of the model will be more
complicated and other fault length distributions will appear.
We are now looking forward to test this model in other tec-
tonic settings.
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Bažant, Z. P. and Planas, J.: Fracture and Size Effect in Concrete
and other Quasibrittle Materials, CRC Press, Washington DC,
640 pp., 1998.

Bonnet, E., Bour, O., Odling, N. E., Davy, P. , Main, I., Cowie,
P., and Berkowitz, B.: Scaling of fracture systems in geological
media, Rev. Geophys., 39(3), 347–383, 2001.

Cardon, H.: Mecanisme de propagation des reseaux de failles:
l’exemple du Rift Gregory (Kenya), Unpublished PhD thesis,
Univ. Claude Bernard., 1999.

Casey, M., Ebinger, C., Keir, D., Gloaguen, R., and Mohamed, F.:
Strain accommodation in transitional rifts: extension by magma
intrusion and faulting in Ethiopian rift magmatic segments, Geol.
Soc. London Spec. Pub., 259, 143–163, 2006.

Castaing, C., Bourgine, B., Chiles, J. P., Genter, A., Ouilon, G., and
Sornette, D.: Multiscale organization of joints and faults revealed
by geostatistical, multifractal and wavelet techniques, in: EUG8,
Terra Abstracts, Strasbourg, 1995.

Cladouhos, T. T. and Marrett, R. : Are fault growth and linkage
models consistent with power-law distribution of fault length?, J.
Struct. Geol., 18, 281–293, 1996.

Cowie, P. and Scholz, C. H.: Displacement-length scaling relation-
ship for faults: data synthesis and discussion, J. Struct. Geol.,
14(10), 1149–1156, 1992.

Cowie, P., Scholz, C. H., Edwards, M., and Malinverno, A.: Fault
strain and seismic coupling on mid-ocean ridges, J. Geophys.
Res, 98, 17911–17920, 1993.

Cowie, P. A., Sornette, D., and Vanneste, C.: Multifractal scaling
properties of a growing fault population, Geophys. J. Int., 122,
457–469, 1995.

d’Acremont, E., Leroy, S., Beslier, M., Bellahsen, N., Fournier, M.,
and Robin, C.: Structure and evolution of the eastern Gulf of
Aden conjugate margins from seismic reflection data, Geophys.
J. Int., 160(3), 869–890, 2005.

Davy, P.: On the frequency-length distribution of the San Andreas
fault system, J. Geophys. Res., 98(B7), 12141–12151, 1993.

Ebinger, C. J. and Sleep, N. H.: Cenozoic magmatism throughout
east Africa resulting from impact of a single plume, Nature (Lon-
don), 395(6704), 788–791, 1998.

Evans, M., Hastings, N., and Peacock, B.: Statistical Distributions,
Wiley, New York, 221 pp., 1993.

Gloaguen, R.: Analyse quantitative de l’extension continentale par
imagerie satellitale et optique et radar, Application au rift sud-
kenyan, Unpublished PhD thesis, Univ. Bretagne Occidentale.,
2000.

Gloaguen, R., Marpu, P. R., and Niemeyer, I.: Automatic extrac-
tion of faults and fractal analysis from remote sensing data, Non-
lin. Processes Geophys., 14, 131–138,doi:10.5194/npg-14-131-
2007, 2007.

Gupta, A. and Scholz, C. H.: Brittle strain regime transition in
the Afar depression: Implications for fault growth and seafloor
spreading, Geology, 28(12), 1087–1090, 2000.

www.nonlin-processes-geophys.net/18/529/2011/ Nonlin. Processes Geophys., 18, 529–536, 2011

http://dx.doi.org/10.5194/npg-14-131-2007
http://dx.doi.org/10.5194/npg-14-131-2007


536 D. Stoyan and R. Gloaguen: Faults statistics

Hardacre, K. M. and Cowie, P. A.: Variability in fault size scaling
due to rock strength heterogeneity: a finite element investigation,
J. Struct. Geol., 25, 1735–1750, 2003.

Henderson, F. M. and Lewis, A. J. : Principles and Applications
of imaging Radar, manual of Remote sensing, 3rd Edn., Vol. 2,
John Wiley and Sons, 896 pp., 1998.

Hofmann, C., Courtillot, V., Feraud G., Rochette P., Yirgu G.,
Ketefo E., and Pik R.: Timing of the Ethiopian flood basalt
event: implications for plume birth and global change, Nature,
389, 838–841, 1997.

Jeulin, D.: Random structure models for composite media and frac-
ture statistics, in: Advances in Mathematical Modelling of Com-
posite Materials, edited by: Markov, K. Z., World Scientific, Sin-
gapore, 239–289, 1994.

Keir, D., Stuart, G. W., Jackson, A., and Ayele, A.: Lo-
cal Earthquake Magnitude Scale and Seismicity Rate for the
Ethiopian Rift, Bull. Seismol. Soc. Am., 96(6), 2221–2230,
doi:10.1785/0120060051, 2006.

Keranen, K., Klemperer, S., Gloaguen, R., and EAGLE Working
Group: Imaging a proto-ridge axis in the Main Ethiopian rift,
Geology, 39, 949–952, 2004.

Krajcinovic, D.: Damage Mechanics, Appl. Math. Mech., Elsevier,
Amsterdam, 774 pp., 1996.

Kurz, T., Gloaguen, R., Ebinger, C., Casey, M., and Abebe, B.:
Deformation distribution and type in the Main Ethiopian Rift
(MER); a remote sensing study, J. Afr. Earth Sci., 48(2–3), 100–
114, 2007.

Lochmann, K., Gloaguen, R., and Stoyan, D.: Geometrical-
statistical modelling of systems of fracture zones along oceanic
ridges, Geophys. J. Int., 170(2), 605–614, 2007.

Lopes, A., Nezry, E., Touzi, R., and Laur, H.: Structure detection
and statistical adaptive speckle filtering in SAR images, Int. J.
Remote Sens., 14(9), 1735–1758, 1993.

Main, I. G.: Statistical physics, seismogenesis, and seismic hazard,
Rev. Geophys., 34, 433–462, 1996.

Mann, N. R., Schafer, R. E., and Singpurwalla, N. D.: Methods
for Statistical Analysis of Reliability and Life Data, Wiley, New
York, 576 pp., 1974.

Marpu, P. R., Niemeyer, I., and Gloaguen, R.: A procedure for au-
tomatic object-based classification, Proceedings of the 1st Inter-
national Conference on Object-based Image Analysis, 2006.

Marrett, R. and Allmendinger, R. W.: Estimates of strain due to
brittle faulting: sampling of fault populations, J. Struct. Geol.
13, 735–738, 1991.

Munz, D., and Fett, T.: Ceramics – Mechanical Properties, Failure
Behaviour, Materials Selection, Springer, Berlin, 308 pp., 2001.

Nussbaum, S., Niemeyer, I., and Canty, M. J.: Feature Recognition
in the Context of automated Object-Oriented Analysis of Remote
Sensing Data monitoring the Iranian Nuclear Sites, Proceedings
of Optics/Photonics in Security and Defense, SPIE, 2005.

Olson, P.: Predicting fracture swarms the influence of subcritical
crack growth and the crack-tip process zone on joint spacing in
rock, Geol. Soc. Special Publication, 231, 73–88, 2004.

Pik, R., Marty B., Carignan J., and Lave J.: Stability of the Upper
Nile drainage network (Ethiopia) deduced from (U-Th)/He ther-
mochronometry: Implications for uplift and erosion of the Afar
plume dome, Earth Planet. Sci. Lett., 215, 73–88, 2003.

Schilling, J., Kingsley, R. H., Hanan, B. B., and McCully, B. L.:
Nd-Sr-Pb isotopic variations along the Gulf of Aden; evidence
for afar mantle plume-continental lithosphere interaction, J. Geo-
phys. Res., B, Solid Earth and Planets, 97(7), 10927–10966,
1992.

Scholz, C. H., Dawers, N. H., Yu, Y.-Z., Anders, M. H., and Cowie,
P. A. : Fault growth and fault scaling laws: Preliminary results,
J. Geophys. Res., 98, 21951–21961, 1991.

Shahzad, F. and Gloaguen, R.: TecDEM: A MATLAB based tool-
box for tectonic geomorphology, Part 2: Surface dynamics and
basin analysis, Comput. Geosci., 37(2), 261–271, 2011a.

Shahzad, F. and Gloaguen, R.: TecDEM: A MATLAB based tool-
box for tectonic geomorphology, Part 1: Drainage network pre-
processing and stream profile analysis, Comput. Geosci., 37(2),
250–260, 2011b.

Shahzad, F., Mahmood, S. A., and Gloaguen, R.: Nonlinear analysis
of drainage systems to examine surface deformation: an exam-
ple from Potwar Plateau (Northern Pakistan), Nonlin. Processes
Geophys., 17, 137–147,doi:10.5194/npg-17-137-2010, 2010.

Sornette, D. and Davy, P.: Fault growth model and the universal
fault length distribution, Geophys. Res. Lett., 18, 1079–1081,
1991.

Tiberi, C., Ebinger, C., Ballu, V., Stuart, G., and Oluma, B.: Inverse
models of gravity data from the Red Sea-Aden-East African rifts
triple junction zone, Geophys. J. Int. 163, 775–787, 2005.

Velde, B. and Dubois, J.: Fractal analysis of fracture in rocks: The
Cantor’s Dust Method. Reply, Tectonophysics, 198, 112–115,
1991.

Velde, B., Dubois, J., Touchard, G., and Badri, A.: Fractal analysis
of fracture in rocks: The Cantor’s Dust Method, Tectonophysics,
179, 345–352, 1990.

Villemin, T. and Sunwoo, C.: Distribution logarithmique self-
similaire des rejets et longueurs de failles: exemple du Bassin
Houiller Lorrain, C. R. Acad. Sci. Paris Serie II, 305, 1309–1312,
1987.

Walsh, J. J., Nicol, A., and Childs, C.: An alternative model for the
growth of faults, J. Struct. Geol., 24, 1669–1675, 2002.

Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., and Bonson, C.
G.: Formation of segmented normal faults: a 3-D perspective, J.
Struct. Geol., 25, 1251–1262, 2003.

Watterson, J.: Fault dimensions, displacement and growth, Pa-
geoph, 124, 365–373, 1986.

Weibull, W.: A statistical theory of strength materials, Royal
Swedish Institute for Engineering Research, Stockholm, 45 pp.,
1939.

Wolfenden, E., Ebinger C., Yirgu G., Deino A., and Ayalew D.:
Evolution of the northern Main Ethiopian rift: Birth of a triple
junction, Earth Planet. Sci. Letts, 224, 213–228, 2004.

Yielding, G., Needham, T., and Jones, H.: Sampling of fault pop-
ulation using sub-surface data: A review, J. Struct. Geol., 18,
135–146, 1996.

Nonlin. Processes Geophys., 18, 529–536, 2011 www.nonlin-processes-geophys.net/18/529/2011/

http://dx.doi.org/10.1785/0120060051
http://dx.doi.org/10.5194/npg-17-137-2010

