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Abstract. A novel technique based on the Bayesian neu-
ral network (BNN) theory is developed and employed to
model the temperature variation record from the Western
Himalayas. In order to estimate an a posteriori probability
function, the BNN is trained with the Hybrid Monte Carlo
(HMC)/Markov Chain Monte Carlo (MCMC) simulations al-
gorithm. The efficacy of the new algorithm is tested on the
well known chaotic, first order autoregressive (AR) and ran-
dom models and then applied to model the temperature vari-
ation record decoded from the tree-ring widths of the West-
ern Himalayas for the period spanning over 1226–2000 AD.
For modeling the actual tree-ring temperature data, optimum
network parameters are chosen appropriately and then cross-
validation test is performed to ensure the generalization skill
of the network on the new data set. Finally, prediction result
based on the BNN model is compared with the conventional
artificial neural network (ANN) and the AR linear models
results. The comparative results show that the BNN based
analysis makes better prediction than the ANN and the AR
models. The new BNN modeling approach provides a viable
tool for climate studies and could also be exploited for mod-
eling other kinds of environmental data.

1 Introduction

1.1 General information on predicting temperature

Tree rings provide information about the past natural cli-
mate variation at decade to century time scales. This often
uses dendroclimatic reconstruction to extend the length of
an instrumental climatologically record (Cook, 1985; Briffa
et al., 2001; Cook et al., 2003; Esper et al., 2003). The
study of tree-ring temperature variation data is useful for
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understanding the past seasonal temperatures or precipi-
tation/drought changes (Crowley, 2000; Jones and Mann,
2004; Woodhouse, 1999; Helama et al., 2009). The physi-
cal implications of these studies are discussed in details by
several researchers (Cook, 1985; Briffa et al., 2001; Cook et
al., 2003; Esper et al., 2003; Jones and Mann, 2004; Boreux
et al., 2009; Helama et al., 2009). However the key problem
of understanding the nonlinear climate system and predicting
the future and/or characterizing the model on the basis of col-
lected data, assumes immense significance both for science
and society.

Various techniques of time series analysis have invariably
been applied to predict the future behavior of climate by ex-
tracting the knowledge from the past. In particular there are
basically two approaches that have been applied for climate
modeling as well as nonlinear time series analyses (Zhang et
al., 1998; Tiwari and Srilakshmi, 2009). The first one is a
construction of a dynamical model using a set of non-linear
ordinary differential equations which can be solved by ap-
plying a well specified initial and boundary condition. The
second approach has been mainly focused on to the search
of some possibility of empirical regularities in the under-
lying time series using the modern spectral and the nonlin-
ear forecasting approaches (Zhang et al., 1998; Tiwari and
Srilakshmi, 2009). However in case of nonlinear dynamic
modeling, the available information is often partial and in-
complete. In the time series analysis, evidence for empirical
regularities or periodicities is not always possible and can of-
ten be masked by a significant amount of noise (Zhang et al.,
1998; Mihalakakou et al., 1998; Mongue-Sanz and Medrano-
Marqúes, 2002; Tiwari and Srilakshmi, 2009). Furthermore,
prediction based on these models and techniques crucially
depends on the assumption made about the underlying data
trend (Mihalakakou et al., 1998). The existing techniques,
therefore, either fail in delivering accurate results in most
of the cases or at best give vague results that are hardly
ever acceptable (Mihalakakou et al., 1998; Mongue-Sanz and
Medrano-Marqúes, 2002).
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Nonlinear relationships between the tree growth and the
temperature change have long been recognized by den-
dochronologists (Fritts, 1969, 1991; Gramlich and Brubaker,
1986). However several earlier studies have shown that
the tree growth-climate relationships derived from dendro-
climate signal becomes complicated owing to population
dynamics (Lindholm et al., 2000; Helama et al., 2009).
Thus the decoded temperature variations from the tree rings
would most likely pose the complex nonlinear problem.
The tree ring growth is further controlled by multiple fac-
tors that include the temperature and the precipitations be-
sides having several other influences (Helama et al., 2009).
Variations in seasonal precipitation could influence the tree
ring growth as well and can be to some extent indepen-
dent of temperature variations too. Hence long-term trends
in the underlying data sets could result in nonstationar-
ity/nonlinearity in the width temperature relationship involv-
ing different time scales (Helama et al., 2009). The presence
of nonstationarity/non-linearity in the data could thus invali-
date linear modeling approaches.

During the recent years the techniques based on ANNs
have been applied for the analyses of various kinds of non-
stationary and nonlinear time series data and have proved
quite effectual in extracting the useful information from such
records (Zhang et al., 1998; Mihalakakou et al., 1998; Maiti
and Tiwari, 2010a). The ANN based techniques have fa-
vorably fair advantages over the traditional methods in deal-
ing with nonlinearities and noisy input signals. There are
many algorithms that have been proposed for ANN learning.
Among them the back-propagation (BP) method (Rumel-
hart, 1986) is more popular which uses the gradient decent
scheme for network optimization. It is slow and often gets
trapped in one of the many local minima of complex er-
ror surface. Consequently to evade this problem, many im-
provements have been put forward, such as the inclusion of
momentum variable, adaptive learning rate (Poulton, 2001;
Maiti et al., 2007), conjugate gradient (Bishop, 1995), scaled
conjugate gradient (Bishop, 1995; Maiti and Tiwari, 2010b),
Levenberg-Marquaard (Bishop, 1995; Poulton, 2001).

Recently several researchers have applied the ANN-based
techniques for dendroclimatic reconstructions (Woodhouse,
1999; Helama et al., 2009; D’Odorico et al., 2000) and
suggested that the ANN techniques are remarkably advanta-
geous over the linear methods for such paleo-climate data re-
construction. Helama et al. (2009) compared different types
of transfer functions, such as multiple linear regression, lin-
ear scaling and artificial neural network to paleoclimate re-
constructions. Their comparative results showed a more re-
liable reconstruction via the ANN and the multiple regres-
sions techniques than the linear regression analysis. The
authors have concluded that the ANN based methods ap-
pear a potential tool for analyzing not only the tree ring
record reconstruction but also for the other complex environ-
mental data. However in some other comparative analysis
the result showed a potential danger of over fitting by the

ANN (Woodhouse, 1999). To circumvent the above prob-
lems Boreux et al. (2009) employed a Bayesian based hierar-
chal model to extract a common high frequency signal from
the Northern Quebec black spruce tree ring record. The con-
cept of the Bayesian dynamic modeling has also been used
for the long lead prediction of Pacific sea surface temper-
ature record. The results based on the Bayesian approach
combined with the ANN algorithm provided stable results
since the weights are chosen from a probability distribution
(Bishop, 1995; Maiti and Tiwari, 2009, 2010a, b).

The goal of the present study is to asses the robustness of
nonlinear neural network in the Bayesian framework for re-
constructing the variation of temperature from the tree rings
record. We apply the new technique to the tree ring record
of the Western Himalayas and compare results with the re-
sults of the linear and the conventional neural network mod-
els. However prior to the actual application of the new Hy-
brid Monte Carlo (HMC)-based BNN scheme we model and
predict the data generated from the simple autoregressive,
chaotic and random models involving different degree of
complexities and discuss the efficacy of the method. In this
approach first a posteriori distribution of network parame-
ter is estimated following the Bayes’ rule and then an in-
tractable posterior integral is evaluated via the Hybrid Monte
Carlo (HMC) numerical method. The network parameter un-
certainty is taken into account with the help of the Bayesian
probability theory. We apply here the above method to newly
reconstructed tree-ring temperature variation, record to test
the predictive skills of the method within the record.

1.2 Different models for simulation of tree-ring
temperature series

In order to assess the nature of our data we compared the
phase-space characteristics of the actual temperature data
with the data generated by well known theoretical models.
We generate three different types of synthetic data e.g. the
logistic model/logistic map (May, 1976), AR (1)/autoregres-
sive and the white noise model (Fuller, 1976). More detailed
characteristics of these models are given elsewhere (Fuller,
1976).

1.2.1 Chaotic model/logistic map

A deterministic chaotic system can be defined using the
equation of the form ofXt+1 = BXt (1−Xt ) whereXt and
Xt+1 are, respectively, the previous and the future values of
the generating process.B is a coefficient (control parameter)
whose value can be generated between 0 and 4 to represent
the complex system. The Logistic map represents determin-
istic system, which tends to evolve towards a well behaved
chaotic “attractor”. The nature of chaotic dynamics depends
on the complexity of system’s evolution and its dimension
(Fig. 1a).
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Fig. 1. (a–c)show phase diagram of non-stationary, nonlinear and
random characteristics of different types of synthetic time series, re-
spectively.(d) 3-D scatter plot of actual tree-ring temperature time
series. The data characteristics apparently show that the tempera-
ture record is non stationary (between stochastic and chaotic).

1.2.2 First order auto-regressive/AR (1) model

A first order autoregressive AR (1) model (Fuller, 1976) can
be defined using the equation of the form ofXt = AXt−1 +

εt ; wheret = 1,2,3,.............N denotes the discrete time in-
crement,A is a constant which can be estimated using the
maximum likelihood method. Lag one autocorrelation coef-
ficient describes the degree of signal correlation in the noise
and is calculated from the data. If|A|=1, then the model re-
duces to random walk model; however, when|A| < 1, then
it can be shown that the process is stationary. The parame-
terεt represents a purely random process (normal Gaussian),

Xt depends partly on theXt−1 and partly on the random
distributionεt . A 3-D phase-space characteristic is a plot of
current observationsX(t) on the X-axis,X(t +1) on the Y-
axis andX(t +2) on the Z-axis. AR (1) model exhibits the
tendency to cluster towards low values (Fig. 1b).

1.2.3 White noise

A white noise process is a fully uncorrelated system and
therefore, these data scatter randomly across the entire phase-
space. A 3-D phase-plot of such data is displayed in Fig. 1c
for comparisons with the similar plots of chaotic, autore-
gressive and actual temperature data respectively shown in
Fig. 1a, b and d. Apparently random data shows entirely dif-
ferent characteristics than the chaotic, autoregressive and the
non-random temperature data.

2 Material and methods

2.1 Bayesian approach to temperature modeling

2.1.1 Multi-Layer Perceptrons (MLP)

Multi-layer Perceptrons (MLPs) networks are parallel com-
putational units composed of many simple processing ele-
ments which mimic the biological neurons (Fig. 2). The pro-
cessing elements/nodes are interconnected layer by layer and
the function of an each node is determined by the connections
weights, biases and the structure of the network (Bishop,
1995; Poulton, 2001). Detailed sequential developments of
the ANN methods are available elsewhere (Poulton, 2001;
Maiti et al., 2007; Maiti and Tiwari, 2010b). In the popular
back-propagation method, an error is usually minimized by
adjusting weights and biases via the gradient based iterative
chain rule from the output layer to the input layer (Rumelhart
et al., 1986). Here in order to obtain global minimum, we use
an optimization scheme which is based on the HMC simula-
tions (also well known as leap-frog discretizations scheme)
in conjunction with the Bayesian probability theory (Bishop,
1995; Nabney, 2004). We represent a geophysical observa-
tion through the following forward model:

x = f (d)+ε (1)

wheref is a nonlinear function relating the model space and
the data space,ε is the error vector,x is the data vector and
d is the model vector. Commonly inversion of modeld in
Eq. (1) is performed via an iterative least square method.
However this does not provide uncertainty measures, which
are very essential for reliable interpretation of geophysi-
cal observations (Tarantola, 1987). For solving the Eq. (1)
in the Bayesian sense, sufficient representative realizations
(model/data pairs) from a finite data sets = {xk,dk }

N
k=1 are

considered. We can write the following equation as (Bishop,
1995; Nabney, 2004)

d = fNN(x;w) (2)
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Fig. 2. Schematic diagram of Multi-Layer Perceptron (MLP). Information flows from input to output layer through connection (synaptic
weight). Weighted sum is passed through nonlinear activation function. Nodes are interconnected to the nodes at the next layer.

whered is the desired model,fNN is the output predicted
by the network andw is the network weight parameter.
In a conventional ANN approach, an error functionES =

1
2

N∑
k

{dk −ok(xk;wk)}
2 is measured wheredk andok are, re-

spectively, the target/desired and the actual output at each
node in the output layer. The error function is measured to
know how close the network outputo(x;w) is to the desired
modeld from the finite data sets = {xk,dk }

N
k=1. One can

include regularization term to modify the misfit function,

E(w) = µES +λER (3)

where,ER =
1
2

R∑
i=1

w2
i andR is total number of weights and

biases in the network.λ, µ are two controlling parameters
known as hyper-parameters. The forward function used in
each node is non-linear transfer function (tansigmoid) which
facilitates to solve the non trivial problems. In the traditional
approach, the training of a network starts with the initial set
of weights and biases and end up with the single best set of
weights and biases given the objective function is optimized.

2.1.2 Developing the BNN algorithm for temperature
record

Here in this scheme a suitable prior probability distribution
P(w) of weights is considered, instead of a single set of
weights. Following the Bayes’ rule, a posteriori probability
distribution for the weightsP(w|s) can be given as follow
(Bishop, 1995; Khan and Coulibaly, 2006),

P(w|s) =
P(s|w)P (w)

P (s)
(4)

whereP(s|w) andP(s) are the data set likelihood function
and the normalization factor, respectively. Since the denom-
inator P(s) in the above equation is inflexible, a direct in-
ference of a posterioriP(w|s) is impossible. The probabil-
ity distribution of outputs following the rules of conditional
probability for a given input vectorx can be given in the form
(Bishop 1995; Khan and Coulibaly, 2006),

P(d|x,s)=

∫
P(d|x,w)P (w|s)dw (5)
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Markov Chain Monte Carlo (MCMC) sampling plays a cen-
tral role for evaluating posterior integrals. Accordingly the
Eq. (5) can be approximated as

P(d|x,s) =
1

N

N∑
n=1

P(d|x,wm) (6)

Where{wm} represents a MCMC sample of weight vectors
obtained from the probability distributionP(w|s), N is the
number of points andw sampled from.

2.1.3 Hybrid Monte Carlo algorithm (HMCA)

HMCA is used for updating each trajectory by approximating
the Hamiltonian differential equations. HMCA uses Markov
Chain Monte Carlo (MCMC) algorithm to draw an inde-
pendent and identically distributed (i.i.d) sample{w(i)

;i =

1,2,....,N} from the target probability distributionP(w|s)

(Metropolis et al., 1953; Hastings, 1970; Bishop, 1995).
This is done to incorporate information about the gradient
of target distribution and thereby it improves mixing in high
dimension (see Duane et al., 1987; Andrieu et al., 2003).
Markov process forms a sequence of “state” to draw samples
from posterior probability distribution. The states are repre-
sented by a particle in the high dimensional network parame-
ter space whose positions are defined byq ∈ Rw. The Eq. (4)
can be written in the form ofπ(q) ∝ exp{−E(q)} whereπ is
a generic symbol andE(q) is a potential energy function for
optimization problem (Duane et al., 1987). As suggested by
Neal (1993) and further discussed by Bishop (1995) intro-
ducing momentum variablesp with i.i.d standard Gaussian

distributions, one could add a kinetic termV (p) =
1
2

N∑
i=1

p2
i to

the potential term to produce full Hamiltonian (energy) func-
tion. This could be efficiently used to explore the large region
of phase-space by simulating the Hamiltonian dynamics in
fictitious time. Hamiltonian energy function on a fictitious
phase space is given by (Duane et al., 1987; Neal, 1993),

H(q,p) = E(q)+V (p) (7)

The following equation represents the canonical distribution
of Hamiltonian

π(q,p)=
1

QH

exp{−H(q,p)} (8)

Here,π is a generic symbol,q is position andp is momen-
tum. To discretize the equations of motion of particle, we
employ the Metropolis algorithm following Neal (1993) and
the leapfrog discretization scheme to explore the full phase
space(q,p) without destroying time reversibility and volume
preservations.

To simulate the dynamics forward or backward in timeτ ,
we first appropriately decide the step sizeθ and the number
of iterationsL and then consider the following sequence of
steps for further computations.

i. Randomly chose a directionα for the trajectory (Neal
1993; Bishop, 1995) in either +1 or−1 representing
respectively forward and backward trajectory with the
probability 0.5. The transition probability betweenqj

andqi be the same at all times and each pairs of points
maintain a mutual equilibrium.

ii. The iterations start with the current state
[q,p] = [(q(0),p(0)] of energy H (Metropolis et
al., 1953; Hastings, 1970; Duane et al., 1987; Neal,
1993; Bishop, 1995). The momentum termp is ran-
domly evaluated at each step. The algorithm carries out
L steps with a step size ofθ resulting in the candidate
state,[w∗,p∗

] with energyH ∗ (Duane et al., 1987).

iii. The candidate state may be either accepted or re-
jected according to Metropolis theory. The candidate
state is accepted with usual Metropolis probability of
acceptance,min{1,exp[−(H ∗

−H)]}, whereH(.) is the
Hamiltonian energy (Metropolis et al., 1953; Hastings,
1970; Duane et al., 1987; Neal, 1993; Bishop, 1995).
If the candidate state is rejected then the new state will
be the old state. In this way the summation of Eq. (6) is
carried out to estimate the posterior probability distribu-
tion and thus allowing the optimization of the network
(Neal, 1993).

2.1.4 General methodology

We consider a time series in the form of
{x(1),x(2).................x(p)}. In the time series fore-
casting, ANN model is developed to learn a relationship
between the current times series value with the past series
value. Modeling /predicting the tree-ring temperature
series is done to set up a relationship between a tree-ring
temperature anomaly value, sayx(n+p), and its previous
series,x(n + p − 1),x(n + p − 2),.......x(p), as f : Rn

→

R1;x(n+p) = f {x(n+p −1),x(n+p −2),............x(p)};
(p = 1,2,......n), wherex is variable;n is sample number
used to construct the model (Zhang et al., 1998). The
objective of the study in this paper is to derive the nature of
f from the available time series data{x}

N
t=1. In general, the

function f is nonlinear and determined by ANN structure.
If the nature of the time series is fully deterministic, then its
behavior is predictable. However if the nature of the time
series is random, then the prediction is impossible. The
general procedure of the Bayesian neural network based
algorithm for time series modeling is described as follows:

Step 1: The data are pre-processed to scale the in-
put/output series in between [−1 +1] so that the network
can perform nonlinear mapping within the bound. It is
important to arrange the input and corresponding data
pairs in such a way that the network can learn from the
training pairs (input/output) for desired step prediction.
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Step 2: Using the preprocessed data, a suitable prior dis-
tribution for weights and biases of the network is cho-
sen.

Step 3: A noise model is defined and a likelihood func-
tion is derived thereon.

Step 4: Following the Bayes’ theorem, an expression for
the posterior distribution of the weights is developed.

Step 5: Step size, iteration number, simulation direc-
tions etc are set up for starting the hybrid Monte Carlo
learning.

Step 6: In the simulation a candidate state is accepted
or rejected according to the Metropolis acceptance rule.
Thereby most probable samples are chosen in order to
maximize the posterior probability distribution and to
evaluate the posterior integrals.

Step 7: Post-process the predicted data to transform in
original scale. If the optimization satisfies the goal in
terms of error tolerance in data sets of validation and
testing then stop the program and exit otherwise re-
sume the process from the step 1. The flow chart of
the methodology is given in Fig. 3.

2.2 Quantitative evaluation of models and comparison
with tree-ring temperature record

Before applying the above algorithm to the tree ring temper-
ature record, we tested the method on synthetic time series
generated from the AR (1) and chaotic models and the white
noise data as described in Sect. 1.2 for different values of
coefficientsB and control parameterA. This experiment is
actually done to test the authenticity and the predictive skill
of the developed algorithm on simple known empirical mod-
els. For modeling we considered 256 data point out of which
50 % was used for training and remaining data for valida-
tion and testing. A fourth data set is also prepared by comb-
ing the above three basic time series, to represent the com-
plex time series. Figure 4a–d shows the Pearson’s correla-
tion coefficients between the actual and predicted data using
the Bayesian neural network for all four time series. Fol-
lowing Mihalakakou et al. (1998) the predicted output value
is appended in the input data base to predict next each step
ahead. The BNN shows comparatively better prediction for
the chaotic time series than the autoregressive (1) time series
(Fig. 4a, b). As expected the Pearson’s correlation coefficient
for the actual random data and the predicted data is almost
negligible (Fig. 4c). The network shows average prediction
for the mixed/pooled time series data (Fig. 4d). Obviously
this experiment demonstrates the predictive skill of algorithm
on the different types of time series irrespective of scale-unit.
After a successful testing of the BNN algorithm on complex
synthetic time series, we demonstrate the applicability of the

Fig. 3. Flow chart of the general methodology.

proposed method on the newly constructed tree-ring temper-
ature records over the Western Himalayas, India (Fig. 5).

2.3 Source and characteristics of tree-ring temperature
record

A detailed description of analyzed tree-rings temperature
variation record (Fig. 5) is discussed elsewhere (Yadav et al.,
2004). Accordingly the natural and undisturbed open stands
of Cedrus deodara(Roxb. Ex Lambert) G. Don at different
localities in Uttarkashi and Chamoli in Uttaranchal, India,
where healthy trees were growing on rocky hill slopes, was
selected for the reconstruction of the time series. Samples
were collected from “15 sites the form of increment cores
with open stands” ofCedrus deodara. According to these
authors at least two cores from each tree were taken at breast
height (1.4 m) of the stem. The ring-widths of dated sam-
ples were evaluated against the chronologies created by visu-
ally assigning years to rings with different widths to 0.01 mm
accuracy using the computer program COFECHA (Holmes,
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Fig. 4. (a)Plot of prediction time ahead and correlation coefficient
of theoretical chaotic time series with different Maximum Likeli-
hood Estimator (MLE) values.(b) Stochastic time series (control-
ling parameter coefficient in a range of 3.5–4.0)(c) plot of predic-
tion time ahead and correlation coefficient of random time series
where mean= 0; standard deviation (STD= 1) (d) combined time
series; random series (mean= 0; STD= 1) ;stochastic(Maximum
Likelihood Estimator (MLE) constant= 0.5) and chaotic (control-
ling parameter constant= 3.8).

Fig. 5. Tree-ring temperature variability time series from the West-
ern Himalayas.

1983). Ring-width measurements series were standardized
using the computer program ARSTAN (Cook, 1985).

There are several reasons to focus on the tree-ring data of
the Western Himalayas. Previous studies have shown that the
tree-ring growth is highly sensitive to the variations of sum-
mer temperature. Consequently, these tree-ring chronologies
have served as a proxy record for several paleotemperature
reconstructions and these reconstructions have played vital
role in assessing the reliability of solar and volcanic forcing
on regional and hemispheric climate variations over the past
centuries (Cook, 1985; Woodhouse, 1999; D’Odorico et al.,
2000; Briffa et al., 2001, Cook et al., 2003; Jones and Mann,
2004; Boreux et al., 2009; Helama et al., 2009). Figure 5 ex-
hibits a complex response of inter-decadal and inter annual
pre-monsoon temperature variability for the last 774 yr. Sev-
eral regional and global cooling and warming episodes match
with the temperature variation (Yadav et al., 2004) attesting
its global significance. This implies that the reconstructed
tree ring temperature variation record (Yadav et al., 2004)
analyzed here has been placed aptly both in global and re-
gional context. Visual inspection of the temperature record
exhibits distinct non-random noisy pattern with some signif-
icant oscillations (Tiwari and Srilakshmi, 2009).

2.4 Parameterization and measures of model
performance

It is essential to select an appropriate architecture of the net-
work for modeling as to neural networks are generally sensi-
tive to the number of neurons in their hidden layers. Several
studies have shown that too few neurons in the hidden layer
can lead to under fitting, while too many neurons in the hid-
den layer can also contribute to over fitting, in which all the
training points are got well fit, but the fitting curves take wild
oscillations between these points (Mihalakakou et al., 1998;
Van der Bann and Jutten, 2000; Maiti and Tiwari, 2010b).
During our experiment for searching an appropriate architec-
ture, many network structures were tested (e.g. number of
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Fig. 6. Errors in the prediction of the system with different network
architectures for synthetically generated chaotic(B = 3.8), autore-
gressive(A = 0.5) and random model(a) errors of predictions of
the system with different number of input nodes.(b) Errors of the
system with different numbers of hidden layer node.

input nodes were taken from 1–50, number of hidden nodes
were taken from 2–50) and errors were calculated for differ-
ent architectures. Figure 6 shows the variations of prediction
error, which is defined as an absolute difference between the
observed and the predicted values with different input and
hidden layers nodes. Figure 6 suggests that the best topology
should consist of an input layer of having 5 nodes and a hid-
den layer of having 25 nodes. Following Nabney (2004), we
also appropriately chose the initial prior hyper-parameters
valueλ = 0.01 andµ = 50.0. Since the Gaussian approxima-
tion to the weight posterior depends on being at a minimum
of the error function (Nabney, 2004), we chose a very low
tolerance value (10−7) for the weight optimization.

2.5 “One-lag” predictions

The procedure for one lag prediction is as follows (Miha-
lakokou et al., 1998): the BNN is trained over a certain part
of tree-ring temperature data series, and subsequently val-
idated and tested over the remaining parts of the data se-
ries. The network is used primarily for “one-lag” predic-
tions, where the prediction of future values is based only on
past observed values. For example, we consider a time series
which is represented asx(ti) wherei = 1,2,....,N . For the
first set of 5 inputs say{x(1),x(2),x(3),................,x(5)},
we predict the sixth value atx6. Similarly, for the second set

Fig. 7. One lag temperature anomaly reconstruction in the pe-
riod (AD 1400–1600) using(a) artificial neural network (ANN)
(b) Bayesian neural network (BNN)(c) BNN with confidence level
(CL) of 95 %.

we take inputs as{x(2),x(3),................,x(6)} and predict
the seventh value atx7 and so on. Training continues over all
the training pair (Figs. 7–10). The same data base is also used
for the conventional artificial neural network method and the
autoregressive linear method as discussed above and the pre-
dicted values are compared with the actual tree-ring records
for training, validation and testing (see Table 1). The com-
parative results are presented in Table 1 from which it can be
seen that the HMC-based Bayesian neural network approach
provides better predictive skill than both the ANN and the
linear AR model. Figures 7 and 8 show the result for one lag
prediction of ANN and BNN in the period 1400–1600 AD
and 1800–2000 AD, respectively.
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Fig. 8. One lag temperature anomaly reconstruction in the period
(AD 1800–2000) using(a) artificial neural network(b) Bayesian
neural network(BNN)(c) BNN with confidence level (CL) of 95 %.

2.6 “Multi-lag” predictions

For “multi-lag prediction”, a value is predicted one step into
the future and then this predicted value is used as one of
the lagged inputs for the next prediction of two time steps
into the future (Mihalakokou et al., 1998): similarly, the pre-
dicted values at this second time step as well as the previous
time step are used as lagged inputs for the next prediction
of three time steps into the future. In this way, new pre-
dicted value is included in the input network database and
is used to predict the future values. For instance, if the net-
work is used to predict the sixth valuex6 from the measured
seriesx(1)..........,x(5), then the next neural network predic-
tion x7 is made using as inputsx(2)..........,x(5) andx6 and
the subsequent network predictionx8 is made using the time
series values,x(3),x(4).........,x(5),x6 andx7. In the begin-
ning five measured values are used as inputs for the first pre-
diction. Furthermore, it has been found that more the data
are appended as inputs for the first output, longer the pre-
dictions span (Mihalakokou et al., 1998). This is useful for

Fig. 9. One lag temperature anomaly reconstruction using Bayesian
neural network in the period(a) AD 1232–1488,(b) AD 1489–
1745,(c) AD 1746–2000.

multi-step ahead prediction. However the accuracy is rela-
tively less than the one-lag prediction because every time the
predicted value rather than observed value appended in the
input for future prediction. The standard deviation (STD)
of the predictive distribution for the targetd (see Eq. 6) can
be interpreted as an error bar on the mean valueo(x;wm)

(Figs. 7c and 8c). This error bar represents contribution from
two sources, one is from the intrinsic noise on the target data
and other one is from the width of the posterior distribution
of the network weights (see flow chart). The 95 % confidence
interval of the mean networko(x;wm) has been estimated by
adding and subtracting STD fromo(x;wm) following Nab-
ney (2004).

2.7 Application to tree-ring temperature record

Of the total 774 yr long tree-ring temperature data spanning
over the period of 1226 AD–2000 AD, the first segment com-
prising of 1226 AD–1488 AD is used for the network train-
ing; the second segment spanning over 1489–1745 AD is
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Fig. 10. One lag temperature anomaly reconstruction using Artifi-
cial neural network in the period(a) AD 1232–1488,(b) AD 1489–
1745,(c) AD 1746–2000.

used for validating the network and the last segment from
1746 to 2000 AD is used for testing the network. After suc-
cessful training, validation and testing the network, the re-
sults are presented in figures (Figs. 9 and 10). For reverse re-
construction the neural network based reconstruction is em-
ployed from the most recent tree-ring temperature anomaly
value to the most past tree-ring temperature anomaly value
up to AD 1226. It has been found that reconstruction based
on the BNN methods from the present to the past is better
than from the past to the present since the tree-ring tempera-
ture data from AD 1901 to 2000 were actually observed, the
temperature anomalies before this are reconstructed (Yadav
et al., 2004).

Table 1. Model comparison statistics for training period (AD 1226–
1488) (subscript tr) and validation period (AD 1489–1745) (sub-
scripted val) and testing period (AD 1746–2000) (subscripted tst).
RMSE = root mean square error; RE = reduction of error statistics;
d = index of agreement.

Statistics Observed ANN BNN AR(1)
Value

Meantr 0.05 0.045 0.05 0.01
Meanval 0.01 0.01 0.06 0.03
Meanttst 0.05 0.05 0.06 0.04
Standard deviationtr 0.48 0.33 0.40 0.45
Standard deviationval 0.59 0.37 0.43 0.47
Standard deviationtst 0.60 0.34 0.44 0.51
RMSEtr 0.40 0.34 0.94
RMSEval 0.45 0.35 0.93
RMSEtst 0.46 0.39 1.00
REtr 0.31 0.50 0.14
REval 0.41 0.63 0.23
REtst 0.42 0.58 0.22
dtr 0.62 0.81 0.07
dval 0.61 0.83 0.04
dtst 0.55 0.80 0.05

3 Results and discussions

3.1 Comparison and statistical evaluation of
predicted temperature and actualtree-ring
temperature records

We have compared the present Bayesian neural network
(BNN) results with the conventional neural network ap-
proach and the traditional statistical linear AR model. We
have used the identical network structures for both the
ANN and the BNN modeling. We have used scaled
conjugate gradient (SCG) algorithm (Bishop, 1995; Van
der Bann and Jutten, 2000), for the optimization process,
which avoids the expensive line-search procedure of the
conventional conjugate gradient technique. Experiments
have shown that this is an efficient algorithm outperform-
ing both the conjugate gradients and the quasi-Newton al-
gorithms (Nabney, 2004). The network is optimized in
500 iteration/cycles with mean square error reaching up to
0.019. The standard AR model used in the present study
is a special case of autoregressive moving average with an
exogenous signal (ARMAX) model (Mihalakakou et al.,
1998). In the AR model the present output signal say

yp{k} =−

n∑
i=1

a(i)y(k− i), wherea = constant, is estimated

as a linear combination of the fixed number of past inputs
samples with(k = 0,1,2,3,4,..................) (Mihalakakou et
al., 1998).yp{k} is scalar output signal at timetk = kτ(τ ) is a
sampling period andk is the time index or the cycle number.
p stands for prediction.
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Fig. 11. Tree-ring temperature anomaly reconstruction using
Autoregressive method (1) in the period (a) AD 1232–1488,
(b) AD 1489–1745,(c) AD 1746–2000.

Comparison and correlation analysis between the ac-
tual and the predicted data shows that most of the pre-
dicted/reconstructed data points lie within the error bar and
match well with the actual data points (Figs. 7c, 8c and 12c).
Comparison of the BNN with the ANN and the AR (1) re-
sults suggests that the BNN shows a better predictive skill
than the ANN and the AR (1) (Figs. 9–11). It may be noted
that the results we have presented here are the mean of sev-
eral hybrid Monte Carlo based simulation i.e. ensemble mean
of more than 1000 simulations.

We have further analyzed the result using different statis-
tical measures. Statistical results show that the BNN per-
forms generally better than the ANN and the AR (1) model
(Figs. 8–12). The mean value and the standard deviation are
quite consistent at some places, duplicative in training, vali-
dation and test period (Table 1). The root mean square error
(RMSE) is a measure of error or the difference between ob-
served(Oi) and predicted(Pi) by the model for sampleN
and is defined by (Woodhouse, 1999)

Fig. 12. The linear regression analysis of predicted value in the
test period (1489 AD–2000 AD) by(a) autoregressive method (1),
(b) artificial neural network,(c) Bayesian neural network.

RMSE=

√√√√√ N∑
i=1

(Oi −Pi)

N
(9)

The RMSE indicates that the BNN model perform well than
the ANN and the AR (1) model in the training, validation and
the test period (smaller RMSE) (Figs. 8–12, Table 1). The
two quantities RE (reduction of error) and the “d” (index of
agreement) in Eqs. (10) and (11) are, respectively, the mea-
sures of the predictive ability of the models. Any positive
value indicates that the reconstruction has some predictive
skill.

RE= 1.0−

N∑
i

(Oi −Pi)
2

N∑
i

O2
i

(10)
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The RE values for all the three models are positive, but the
RE for the BNN is higher than the ANN and the AR (1). The
index of agreementd is suggested by Willmott (1981) as

d = 1.0−

N∑
i

(Oi −Pi)
2

N∑
i

[|Pi −O|+|Oi −O|]2

(11)

whered range from 0 to 1 with a value of 1 indicating a per-
fect association .Thed statistic specifies the degree to which
the observed deviations about the observed mean in magni-
tude and sign correspond to the predicted/reconstructed de-
viations about the observed mean. This also reflects sensitiv-
ity to both the differences in observed and predicted means
and changes in proportionality (Willmott, 1981). All twod
values of the BNN and the ANN may be considered good for
validation and test period. Results also indicate that the BNN
model slightly outperforms the ANN.

Correlation analysis between the predicted temperature
variability and the actual tree-ring temperature records sug-
gests that the new HMC- based BNN result is consistent with
high correlation coefficient∼0.77 (Fig. 12c). It can be seen
from Table 1 and Fig. 12 that the HMC- based BNN algo-
rithm makes clearly better predictions than those of ANN
and AR model in test period. Better predictive skills of the
BNN methods than the other two approaches suggest that
the method can be used for better prediction not only for
climate/temperature records but also for other environmen-
tal data. We reiterate the fact that the BNN possess more
mathematical soundness to give reliable prediction even if
the data is tamed by some amount of correlated noise (Maiti
and Tiwari, 2009, 2010b). There are many advantage of the
BNN over the ANN. It takes care of the uncertainty of map-
ping from one domain to another in a natural way and thereby
allows for measuring the uncertainty in prediction. Further-
more, the method is naturally parsimonious to prevent over-
fitting which is a very common ailment in any non-Bayesian
ANN modeling. If size of the available data set is less, then
the BNN does not necessarily need to reserve part of the data
set for validation and testing (Bishop, 1995). The only disad-
vantage of the BNN methods is that it takes relatively more
time to optimize the process since the relatively more param-
eters need estimation in the training process. The predicted
result in the Bayesian frame work is reliable and does not
involve any over and under fitting of data and hence more
appropriate method to compare the previous results.

3.2 Physical significance and limitations

The reconstructed temperature variation record shows higher
variability during the recent past since 16th century of the
record as compared to the earlier part of the time series
i.e. (AD 1226–1500). The reconstructed BNN temperatures
record also exhibits unstable climate during the little ice age

(LIA) (Bracuning, 2001; Zhang and Crowley; 1989; Yadav
et al., 2004). Further cooling and warming trend of the re-
constructed variability are also matching more or less with
various regional climate variability of Asian monsoon region
as reported by several workers (Briffa et al., 2001; Esper et
al., 2002; Cook et al., 2003).

The BNN modeling of the underlying temperature data
presented here elucidate some better picture of the inher-
ent trend in the data and its predictive nature. However
there are some limitations too in the present modeling ap-
proach, which needs to be clarified here. The BNN model
utilized in the present work is based on the assumption that
the temperature/ring-width relationshiois remains stationary
over this time. This, however, requires that potential covari-
ates, such as precipitation, also remain stationary over the
same time, which is not true. This implies that the under-
lying temperature time series is nonlinear and nonstationry
in nature. In view of the above, it is somewhat difficult
to conclude, at this stage, that the reconstructed/predicted
record using the underlying technique would provide unique
result for the detailed physical discussion. However the BNN
model shows comparatively better results than the results
of other two methods, particularly in this analysis as also
demonstrated in theoretical applications. We also note here
that the present predicted result is based on data driven ap-
proach without portraying any real physical processes in-
volved in the variability of temperature and hence it is not
prudent to conjecture or evoke any physical mechanism here.
Based on the above statistical evaluations we may, however,
argue that the present model reveal some deterministic pat-
tern for the temperature variability, although it does not elu-
cidate what are the possible sources that are actually involved
in driving these distinct variability. We further note that our
predictive analysis of synthetic data generated by three em-
pirical models clearly distinguishes random and non-random
pattern inherited in the data structures. Hence based on the
best fit between the predicted model and the actual data, we
may conjecture that the source of this variability could possi-
bly emanate from some non-random processes, which is also
evident in the spectra of the temperature records (Tiwari and
Srilakshmi, 2009).

4 Conclusions

The present research suggests the use of BNN approach as
a viable tool for modeling the tree ring temperature varia-
tion data. Its nonlinear character and capability to work with
data make this method particularly appealing for application
to extreme temperature variability. The robustness of BNN
method is first demonstrated on the synthetic data generated
by the well known empirical models and then applied to the
Western Himalayas temperature variation records. Our anal-
ysis provides an instance of the quality of the fitness of BNN
construction to the observed temperature data in comparison
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to the traditional techniques. Even with meager insight of the
physical processes or the dynamics underlying the character-
istics of the present and the past temperature variability, the
BNN approach improves the prediction and could lead a bet-
ter understanding of the basic phenomena. The underlying
BNN approach would not only complement currents meth-
ods being used for prediction but would also help for under-
standing and measuring the uncertainty in network prediction
take place due to the limited and the sparse density data. In-
ference is provided by an MCMC algorithm which provides
a natural method for estimating uncertainty. It may be men-
tioned here that dendroclimate signals commonly become
noisier/corrupted due to population dynamics, which most
likely complicate the tree rings growth – temperature/climate
relationships (Helama et al., 2009). The present results show
that even over an intricate situation Bayesian ANN technique
resolves considerably good temperature signals.
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