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Abstract. Data assimilation is routinely employed in me-
teorology, engineering and computer sciences to optimally
combine noisy observations with prior model information for
obtaining better estimates of a state, and thus better forecasts,
than achieved by ignoring data uncertainties. Earthquake
forecasting, too, suffers from measurement errors and par-
tial model information and may thus gain significantly from
data assimilation. We present perhaps the first fully imple-
mentable data assimilation method for earthquake forecasts
generated by a point-process model of seismicity. We test
the method on a synthetic and pedagogical example of a re-
newal process observed in noise, which is relevant for the
seismic gap hypothesis, models of characteristic earthquakes
and recurrence statistics of large quakes inferred from paleo-
seismic data records. To address the non-Gaussian statistics
of earthquakes, we use sequential Monte Carlo methods, a
set of flexible simulation-based methods for recursively esti-
mating arbitrary posterior distributions. We perform exten-
sive numerical simulations to demonstrate the feasibility and
benefits of forecasting earthquakes based on data assimila-
tion.

1 Introduction

In dynamical meteorology, the primary purpose of data as-
similation has been to estimate and forecast as accurately as
possible the state of atmospheric flow, using all available ap-
propriate information (Talagrand, 1997). Recent advanced
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methods of data assimilation attempt to include the effects
of uncertainties explicitly in the estimation by taking proba-
bilistic approaches.Kalnay(2003) defines data assimilation
as a statistical combination of observations and short-range
forecasts. According toWikle and Berliner(2007), data as-
similation is an approach for fusing data (observations) with
prior knowledge (e.g., mathematical representations of phys-
ical laws or model output) to obtain an estimate of the distri-
bution of the true state of a process. To perform data assimi-
lation, three components are required: (i) a statistical model
for observations (i.e., a data or measurement model), (ii) an
a priori statistical model for the state process (i.e., a state or
process model), which may be obtained through a physical
model of the time-evolving system, and (iii) a method to ef-
fectively merge the information from (i) and (ii).

Both data and model are affected by uncertainty, due to
measurement and model errors and/or stochastic model el-
ements, leading to uncertain state estimates that can be de-
scribed by probability distributions. Data assimilation is
therefore a Bayesian estimation problem: the prior is given
by model output (a forecast from the past) and the likelihood
by the measurement error distribution of the data. The poste-
rior provides the best estimate of the true state and serves as
initial condition for a new forecast. The essence of data as-
similation is to inform uncertain data through the model, or,
equivalently, to correct the model using the data. The cycle of
predicting the next state and updating, or correcting this fore-
cast given the next observation, constitutes sequential data
assimilation (seeDaley, 1991; Ghil and Malanotte-Rizzoli,
1991; Ide et al., 1997; Talagrand, 1997; Kalnay, 2003, for in-
troductions to data assimilation andTarantola, 1987; Miller
et al., 1999; Pham, 2001, andWikle and Berliner, 2007, for
a Bayesian perspective).
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Although data assimilation is increasingly popular in me-
teorology, climatology, oceanography, computer sciences,
engineering and finance, only a few partial attempts, re-
viewed in Sect.2.1, have been made within the statistical
seismology community to use the concept for seismic and
fault activity forecasts. But earthquake forecasting suffers
from the same issues encountered in other areas of fore-
casting: measurement uncertainties in the observed data and
incomplete, partial prior information from model forecasts.
Thus, basing earthquake forecasting on data assimilation
may provide significant benefits, some of which we discuss
in Sect.2.2.

There are perhaps two major challenges for developing
data assimilation methods for earthquake forecasts: seismic-
ity models differ from standard models in data assimilation,
and earthquake statistics are non-Gaussian. We briefly dis-
cuss each of the two issues.

First, seismicity models that are capable of modeling en-
tire earthquake catalogs (i.e., occurrence times, locations and
magnitude) generally belong to the class of stochastic point
processes, which, loosely speaking, are probabilistic rules
for generating a random collection of points (seeDaley and
Vere-Jones, 2003, for formal definitions). Examples of these
seismicity models can be found in the works ofVere-Jones
(1970, 1995), Kagan and Knopoff(1987), Ogata(1998), Ka-
gan and Jackson(2000), Helmstetter and Sornette(2002),
Rhoades and Evison(2004), and Werner et al.(2010a,b).
This class of models is different from the class that is usually
assumed in data assimilation, which is often cast in terms of
discrete-time state-space models, or Hidden Markov models
(HMMs), reflecting the underlying physics-based stochastic
differential equations (Daley, 1991; Kalnay, 2003; Künsch,
2001; Capṕe et al., 2005; Doucet et al., 2001). An HMM is,
loosely speaking, a Markov chain observed in noise (Doucet
et al., 2001; Durbin and Koopman, 2001; Künsch, 2001;
Robert and Casella, 2004; Capṕe et al., 2005, 2007): an
HMM consists of an unobserved Markov (state) process and
an associated, conditionally independent observation process
(both processes being potentially nonlinear/non-Gaussian;
see Sect.3.1 for precise definitions). The Kalman filter is an
archetypical assimilation method for such a model (Kalman,
1960; Kalman and Bucy, 1961). In contrast, earthquake cat-
alogs have many features which make them uniquely distinct
from the forecast targets in other disciplines and hence the
models are completely different from the noisy differential
or finite difference equations decorated by noise of standard
data assimilation methods. There seems to exist little statis-
tical work that extends the idea of data assimilation or state
filtering to point processes, which model the stochastic point-
wise space-time occurrence of events along with their marks.

The second challenge, that of non-Gaussian probability
distributions, has been solved to some extent by recent Monte
Carlo methods, at least for models with a small number of
dimensions (Evensen, 1994; Liu, 2001; Doucet et al., 2001;
Robert and Casella, 2004). In particular, Sequential Monte

Carlo (SMC) methods, a set of simulation-based methods for
recursively estimating arbitrary posterior distributions, pro-
vide a flexible, convenient and (relatively) computationally-
inexpensive method for assimilating non-Gaussian data dis-
tributions into nonlinear/non-Gaussian models (Doucet et al.,
2001; Durbin and Koopman, 2001; Künsch, 2001; Robert
and Casella, 2004; Capṕe et al., 2005, 2007). Also called
particle filters, SMC filters have been particularly success-
ful at low-dimensional filtering problems for the family of
HMMs or state-space models. The Kalman-Lévy filter (Sor-
nette and Ide, 2001) provides an analytic solution extend-
ing the Kalman filter for Ĺevy-law and power-law distributed
model errors and data uncertainties. We present an overview
of SMC methods in Sects.3.3and3.4.

The main purpose of this article is to develop an imple-
mentable method for forecasting earthquakes based on data
assimilation. We test this sequential method on a pedagogical
and synthetic example of a simulated catalog of “observed”
occurrence times of earthquakes, which are not the “true”
event times because of observational errors. We specifically
use a point-process as our model of seismicity. To estimate
arbitrary posterior distributions of the “true” event times, we
use the SMC methods we just mentioned. To benchmark
their performance, we compare the results against those ob-
tained by a simple Kalman filter and an ensemble Kalman
filter.

Our technique offers a step towards the goal of develop-
ing a “brick-by-brick” approach to earthquake predictabil-
ity (Jordan, 2006; Jackson, 1996; Kagan, 1999), given the
enormous difficulties in identifying reliable precursors to im-
pending large earthquakes (Geller, 1997; Geller et al., 1997;
Kagan, 1997). With suitable adaptations and extensions, our
approach should find its natural habitat in the general test-
ing framework developed within the Regional Earthquake
Likelihood Models (RELM) Working Group (Field, 2007a;
Schorlemmer et al., 2007, 2010) and the international Col-
laboratory for the Study of Earthquake Predictability (CSEP)
(Jordan, 2006; Werner et al., 2010c; Zechar et al., 2010), in
which forecast-generating models are tested in a transparent,
controlled, reproducible and fully prospective manner.

The importance of data uncertainties in earthquake pre-
dictability experiments was highlighted by several recent
studies. Werner and Sornette(2008) showed that measure-
ment errors in the magnitudes of earthquakes have seri-
ous, adverse effects on short-term forecasts that are gener-
ated from a general class of models of clustered seismic-
ity, including two of the most popular models, the Short
Term Earthquake Probabilities (STEP) model (Gerstenberger
et al., 2005) and the Epidemic-Type Aftershock Sequence
(ETAS) model (Ogata, 1988). Moreover,Werner and Sor-
nette(2008) showed that the RELM evaluation tests are not
appropriate for the broadened forecast distributions that arise
from taking into account uncertainties in data and recom-
mended that forecasts should be replaced by a full distribu-
tion. Schorlemmer et al.(2010) confirmed and supported this
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recommendation after examining first results from the five-
year RELM forecast competition. The methods used in this
article for evaluating point-process forecasts when the obser-
vations are noisy provide an alternative to the current forecast
evaluation method used in RELM and CSEP.

Data and parameter uncertainties also play a crucial role
in the ongoing debate about the relevance of the seismic
gap hypothesis (McCann et al., 1979; Nishenko, 1991; Ka-
gan and Jackson, 1991, 1995; Rong et al., 2003; McGuire,
2008), of models of characteristic earthquakes (Wesnousky,
1994; Bakun et al., 2005; Scholz, 2002; Kagan, 1993) and of
recurrence statistics of earthquakes on a particular fault seg-
ment inferred from paleoseismic data records (Biasi et al.,
2002; Bakun et al., 2005; Davis et al., 1989; Rhoades et al.,
1994; Ogata, 1999, 2002; Sykes and Menke, 2006; Parsons,
2008). The data are often modeled using renewal processes,
and studies investigating data and parameter uncertainty con-
firmed that any model inference or forecast must take into ac-
count uncertainties (Davis et al., 1989; Rhoades et al., 1994;
Ogata, 1999, 2002; Sykes and Menke, 2006; Parsons, 2008).

In this article, we focus on the class of renewal processes
as models of seismicity. On the one hand, renewal processes
are extensively used to model paleoseismic data records,
characteristic earthquakes, seismic gaps and seismic hazard,
as mentioned above. On the other hand, renewal processes
are the point-process analog of Markov chains, thereby en-
abling us to use sequential Monte Carlo methods developed
for state-space models. In other words, renewal processes
are the simplest class of point process models relevant to sta-
tistical seismology. By developing rigorously a data assimi-
lation procedure for renewal processes, we aim at providing
the building blocks for more complicated models. In addition
to the obvious relevance to earthquake forecasts, we hope
to generate interest among statisticians to tackle the general
problem of state filtering for point processes, for which the
Markovian state-space model framework seems too restric-
tive.

The article is structured as follows. Section2 provides a
brief literature review of data assimilation in connection with
statistical seismology and points out potential benefits of data
assimilation to earthquake forecasting. Section3 introduces
the methods we believe are relevant in the seismicity context.
Section3.1provides the notation and basic Bayesian estima-
tion problem we propose to solve for renewal processes. Sec-
tion 3.2 defines renewal processes, which serve as our fore-
cast models. Section3.3 explains the basics of Sequential
Monte Carlo methods. In Sect.3.4, we describe a particular
SMC filter. To perform model inference, we must estimate
parameters, which is described in Sect.3.5. In Sect.3.6,
we describe two more filters that will serve as benchmarks
for the particle filter: a simple deterministic Kalman filter
and an Ensemble Kalman filter. Section4 describes numer-
ical experiments to demonstrate how earthquake forecasting
based on data assimilation can be implemented for a particu-
lar renewal process, where inter-event times are lognormally

distributed. Section4.1 describes the set-up of the simula-
tions: we use a lognormal renewal process of which only
noisy occurrence times can be observed. In Sect.4.2we use
the particle and Kalman filters to estimate the actual occur-
rence times, demonstrating that the filters improve substan-
tially on a forecasting method that ignores the presence of
data uncertainties. In Sect.4.3, we show that parameter es-
timation via maximum (marginal) likelihood is feasible. We
conclude in Sect.5.

2 Data assimilation and probabilistic earthquake
forecasting

2.1 Literature on probabilistic earthquake forecasting
and data assimilation

The general concepts of data assimilation or Hidden Markov
models (HMMs) state inference are relatively new to statis-
tical earthquake modeling. The few studies that are related
can be separated into three categories. (i)Varini (2005, 2008)
studied a HMM of seismicity, in which the (unobserved)
state could be in one of three different states (a Poisson pro-
cess state, an ETAS process state and a stress-release pro-
cess state) and the observational data were modeled accord-
ing to one of the three processes. Varini did not consider
measurement uncertainties of the data. (ii)Grant and Gould
(2004) proposed data formats and standards for the assimi-
lation of uncertain paleoseismic data into earthquake simu-
lators. Van Aalsburg et al.(2007) assimilated uncertain pa-
leoseismic data into “Virtual California”, a fixed-geometry
earthquake simulator of large earthquakes: model runs are
accepted or rejected depending on whether simulated earth-
quakes agree with the paleoseismic record. (iii)Rhoades
et al. (1994) calculated seismic hazard on single fault seg-
ments by averaging the hazard function of a renewal process
over parameter and data uncertainties, achieved by sampling
over many parameter and data samples.Ogata(1999) pre-
sented a Bayesian approach to parameter and model infer-
ence on uncertain paleoseismic records, closely related to
our approach. Data uncertainties were represented with ei-
ther a uniform or a triangular distribution. To compute the
integrals, Ogata seems to have used numerical integration,
a process that becomes increasingly difficult as the number
of events increases, in contrast to the particle filters that we
use below.Sykes and Menke(2006) assumed Gaussian data
errors and uncorrelated recurrence intervals, also providing a
maximum likelihood estimation procedure for the parameters
of a lognormal process based on a Monte Carlo integration
approach.Parsons(2008) provided a simple but inefficient
Monte Carlo method for estimating parameters of renewal
processes from paleoseismic catalogs.
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2.2 Why base earthquake forecasting on data
assimilation?

Data assimilation can be used as a framework for likelihood-
based model inference and development, fully accounting for
uncertainties. The current surge in earthquake predictability
experiments (Field, 2007a; Jordan, 2006; Schorlemmer et al.,
2007, 2010; Werner et al., 2010c; Zechar et al., 2010) pro-
vides strong motivational grounds for developing earthquake
forecasting methods that are robust with respect to obser-
vational uncertainties in earthquake catalogs. Dealing with
observational errors is particularly important for operational
earthquake forecasts (e.g.,Jordan and Jones, 2010), as obser-
vations are poorer and scarcer in real-time. Data assimilation
provides a vehicle for correcting an existing forecast without
having to re-calibrate and re-initialize the model on the entire
data set. In its general formulation as a state and parameter
estimation problem, data assimilation may also be viewed
as a method for estimating physical quantities (“states”) and
model parameters, directly related to physics-based models,
such as rate-and-state friction and Coulomb stress-change
models (see, e.g.,Hainzl et al., 2009). In the future, the cou-
pled integration of several types of different data to constrain
estimates of physical states is highly desirable. Numerical
weather prediction has a long history of integrating different
types of data – statistical seismology may be able to adapt
these methods. Finally, the theory of point processes has so
far largely focused on exact data (e.g.,Daley and Vere-Jones,
2003). The development of the statistical theory and practi-
cal methodology for taking into account noisy observations
is therefore interesting for applications beyond earthquake
forecasting.

3 Method: sequential Monte Carlo methods for renewal
processes

3.1 Bayesian data assimilation of state-space or Hidden
Markov Models (HMMs)

In this section, we state the general problem of Bayesian data
assimilation that will be solved for specific model and obser-
vation assumptions in Sect.4. The presentation borrows from
Doucet et al.(2000, 2001) and Arulampalam et al.(2002)
(see alsoKünsch, 2001; Robert and Casella, 2004; Capṕe
et al., 2005, 2007; Wikle and Berliner, 2007, and references
therein).

We use the class of Hidden Markov Models (HMMs),
i.e. Markovian, nonlinear, non-Gaussian state-space models.
The unobserved signal (the hidden states){xt }t≥1 is modeled
as a Markov process (in this article,xt is a scalar). The initial
statex0 has initial distributionp(x0). The transition fromxt

to xt+1 is governed by a Markov transition probability distri-
butionp(xt+1|xt ). The observations{yt }t≥1 are assumed to
be conditionally independent given the process{xt }t≥1 and of

conditional distributionp(yt |xt ) (the observations may also
be vectors, in general of different dimension than the state).
The model can be summarized by

Initial condition: p(x0) (1)

Model forecast:p(xt+1|xt ) t ≥ 0 (2)

Conditional data likelihood: p(yt |xt ) t ≥ 1 (3)

We denotex0:t = {x0,...,xt } and y1:t = {y1,...,yt }. The
problem statement is then as follows: the aim is to estimate
sequentially in time the posterior distributionp(x0:t |y1:t ).
We may also be interested in estimating the marginal dis-
tribution p(xt |y1:t ), also known as the filtering distribution,
and the marginal complete data likelihoodp(y1:t ), which we
will use for parameter estimation.

At any timet , the posterior distribution is given by Bayes’
theorem

p(x0:t |y1:t ) =
p(y1:t |x0:t ) p(x0:t )∫

p(y1:t |x0:t ) p(x0:t )dx0:t

(4)

A recursive or sequential formula can be derived from (i) the
Markov property of the state process and (ii) the indepen-
dence of observations given the state:

p(x0:t+1|y1:t+1) = p(x0:t |y1:t )
p(yt+1|xt+1) p(xt+1|xt )

p(yt+1|y1:t )
(5)

wherep(yt+1|y1:t ) is given by

p(yt+1|y1:t ) =

∫
p(yt+1|xt+1)p(xt+1|xt )p(x0:t |y1:t )dx0:t+1

(6)

The marginal distributionp(xt |y1:t−1) also satisfies the fol-
lowing recursion:

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1 (7)

p(xt |y1:t ) =
p(yt |xt ) p(xt |y1:t−1)∫

p(yt |xt ) p(xt |y1:t−1)dxt

(8)

Expressions (7) and (8) are the essential steps in sequen-
tial data assimilation. Using the last update (the posterior,
also often called analysis) as initial condition, the Chapman-
Kolmogorov (prediction) Eq. (7) is used to forecast the state
at the next time step. When observationsyt become avail-
able, they are assimilated into the model forecast by the up-
date Eq. (8). This cycle constitutes sequential data assimila-
tion of state-space models. The problem appears in other
research fields under different guises, e.g. Bayesian, opti-
mal, nonlinear or stochastic filtering, or online inference and
learning (Doucet et al., 2001; Capṕe et al., 2005).

In general, there may be unknown parameters in the model
forecast distribution that need to be estimated. We assume
that the parameters of the conditional data likelihood are
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known, since they should be characterized by the measure-
ment process and its associated uncertainties. Several param-
eter estimation techniques exist; we will focus on maximiz-
ing the marginal complete data likelihood, the denominator
in Bayes’ theorem:

p(y1:t ) =

∫
p(y1:t |x0:t ) p(x0:t )dx0:t (9)

Equation (9) provides a measure of how successfully a par-
ticular model is explaining the data. The marginal com-
plete data likelihood is the analog of the traditional likelihood
function, but generalized to noisy observational data. This,
in turn, implies that different models may be compared and
tested for their consistency with observed data, while explic-
itly acknowledging data uncertainties. In other words, (earth-
quake) forecasts may be evaluated based on this measure.

Only in very special cases are the prediction and update
Eqs. (7) and (8) amenable to analytical solutions. In the
case of a linear Gaussian state-space model, the widespread
Kalman filter (Kalman, 1960; Kalman and Bucy, 1961) cal-
culates exactly the posterior distributions. Much of filtering
theory and data assimilation has been concerned with iden-
tifying useful, suitable and computationally inexpensive fil-
ters for a variety of particular problems. For instance, the
extended Kalman filter performs a local tangent lineariza-
tion of nonlinear model and observation operators for non-
linear problems. The Kalman-Lévy filter (Sornette and Ide,
2001) generalizes the Kalman filter to Lévy-law and power-
law distributed model and data uncertainties. In other cases,
numerical integration may be possible, or approximate grid-
based methods, e.g. HMM filters, may be convenient. The
ensemble Kalman filter (Evensen, 1994; Tippett et al., 2003)
is a Monte Carlo approach to the nonlinear extension of the
Kalman filter by introducing an ensemble of particles with
equal weights, each evolved individually, to approximate dis-
tributions. The general, nonlinear, non-Gaussian, sequential
Bayesian estimation problem, however, seems best solved
with sequential Monte Carlo methods whenever the model’s
dimensionality is small (usually less than several dozen ac-
cording toSnyder et al., 2008).

3.2 Renewal processes as forecast models

Data assimilation is an iterative method that involves two
steps, forecast (7) and analysis (8), in each cycle. To formu-
late the data assimilation problem for earthquakes, we use
a renewal point process as the model in the forecast. Re-
newal point processes are characterized by intervals between
successive events that are identically and independently dis-
tributed according to a probability density function that de-
fines the process (Daley and Vere-Jones, 2003). Examples
of such a probability density function (pdf) include the log-
normal, exponential, gamma, Brownian passage time and
Weibull pdf. The time of the next event in a renewal pro-
cess depends solely on the time of the last event:

p(tk|tk−1) = p(tk − tk−1) = p(τ) (10)

whereτ is the interval between events. The time of the event
tk corresponds to the model statexk in data assimilation. Re-
newal point processes provide prior information for the anal-
ysis, which we will discuss in the next section.

The class of renewal processes is widely used in seismol-
ogy and seismic hazard analysis. For example,Field (2007a)
summarized how the Working Group on California Earth-
quake Probabilities (WGCEP), mandated to provide the offi-
cial California seismic hazard map, estimates the occurrence
probability of large earthquakes on major faults in the region
by using various recurrence models, including the lognormal
pdf. While physics-based models of seismicity certainly ex-
ist, the models are non-unique, the physics is far from fully
understood, and we lack basic measurements (e.g. of the state
of stress) to properly calibrate such models. As a result, most
seismic hazard analyses are either entirely time-independent
(i.e., they use an exponential pdf), an approach pioneered by
Cornell(1968) that remains state-of-the-art in many regions.
Or alternatively, only the probabilities of large earthquakes
on major fault segments are estimated with renewal models
calibrated with paleoseismological and more recent instru-
mental data. To infer the most appropriate pdf, seismologists
use likelihood-based inference of renewal models.

Renewal models can also be motivated by the elastic re-
bound theory proposed byReid (1910). According to the
theory, large earthquakes release the elastic strain that has
built up since the last large earthquake. Some seismologists
deduce that the longer it has been since the last earthquake,
the more probable is an imminent event (e.g.Nishenko, 1991;
Sykes and Menke, 2006), while others contend that the data
contradict this view (e.g.Davis et al., 1989; Sornette et al.,
1996; Kagan and Jackson, 1995). Renewal models are of-
ten used to quantitatively demonstrate that earthquakes either
cluster or occur quasi-periodically.

3.3 Sequential Monte Carlo methods

Earthquake statistics often violate Gaussian approximations
in terms of their temporal, spatial and magnitude occur-
rences, so much so that approximate algorithms based on
Gaussian approximations (e.g. the traditional Kalman filter)
are unlikely to produce good results. Furthermore, the con-
tinuous state space of seismicity rules out methods in which
that space is assumed to be discrete (such as grid-based meth-
ods). This leaves us with numerical integration techniques
and Monte Carlo methods. The former are numerically accu-
rate but computationally expensive in problems with medium
to high dimensionality.

Sequential Monte Carlo (SMC) methods bridge the gap
between these cost-intensive methods and the methods based
on Gaussian approximations. They are a set of simulation-
based methods that provide a flexible alternative to com-
puting posterior distributions. They are applicable in very
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general settings, parallelisable and often relatively easy to
implement. SMC methods have been applied in target track-
ing, financial analysis, diagnostic measures of fit, missing
data problems, communications and audio engineering, pop-
ulation biology, neuroscience, and many more. Good in-
troductions were provided byArulampalam et al.(2002),
Capṕe et al.(2005, 2007), Doucet et al.(2000, 2001), Künsch
(2001), Liu (2001), Liu and Chen(1998) and de Freitas
(1999, Chapter 6).

Sequential Monte Carlo filters use the techniques of Monte
Carlo sampling, of (sequential) importance sampling and of
resampling, which we describe briefly below before defining
a particular particle filter which we will use for our numerical
experiments.

3.3.1 Monte Carlo sampling

In Monte Carlo (MC) simulation (Liu, 2001; Robert and
Casella, 2004), a set ofN weighted “particles” (or samples)
x

(i)
0:t are drawn identically and independently from a distribu-

tion, say, a posteriorp(x0:t |y1:t ). Then, an empirical estimate
of the distribution is given by

p̂N (x0:t |y1:t ) =
1

N

N∑
i

δ
x

(i)
0:t

(x0:t ) (11)

whereδ
x

(i)
0:t

(x0:t ) denotes the Dirac mass located atx
(i)
0:t . The

essential idea of Monte Carlo sampling is to convert an in-
tegral into a discrete sum. One is often interested in some
function of the posterior distributions, say, its expectation,
covariance, marginal or another distribution. Estimates of
such functionsI (ft ) can be obtained from

IN (ft ) =

∫
ft (x0:t )p̂N (x0:t |y1:t )dx0:t =

1

N

N∑
i

ft (x
(i)
0:t ) (12)

This estimate is unbiased. If the posterior variance offt (x0:t )

is finite, sayσ 2
ft

, then the variance ofIN (ft ) is equal to

σ 2
ft

/N . From the law of large numbers,

IN (ft )
a.s.

−−−−→
N→∞

I (ft ) (13)

where a.s. denotes almost sure convergence. That is, the
probability that the estimateIN (ft ) converges to the “true”
valueI (ft ) equals one in the limit of infinite number of par-
ticles. Furthermore, if the posterior varianceσ 2

ft
< ∞, then a

central limit theorem holds:

√
N(IN (ft )−I (ft ))

1
−−−−→
N→∞

N (0,σ 2
ft

) (14)

where
1

−−−−→
N→∞

denotes convergence in distribution and

N (0,σ 2
ft

) is the normal (Gaussian) distribution with mean

zero and varianceσ 2
ft

. The advantage of this perfect Monte

Carlo method is therefore that the rate of convergence of the
MC estimate is independent of the dimension of the inte-
grand. This stands in contrast to any deterministic numeri-
cal integration method, whose rate of convergence decreases
with the dimensionality of the integrand.

Unfortunately, because the posterior distribution is usually
highly complex, multi-dimensional and only known up to
a normalizing constant, it is often impossible to sample di-
rectly from the posterior. One very successful solution for
generating samples from such distributions is Markov Chain
Monte Carlo (MCMC). Its key idea is to generate samples
from a proposal distribution, different from the posterior, and
then to cause the proposal samples to migrate, so that their fi-
nal distribution is the target distribution. The migration of the
samples is caused by the transition probabilities of a Markov
chain (see, e.g., Appendix D ofde Freitas, 1999). However,
MCMC are iterative algorithms unsuited to sequential esti-
mation problems and will not be pursued here. Rather, SMC
methods primarily rely on a sequential version of importance
sampling.

3.3.2 Importance Sampling (IS)

Importance Sampling (IS) introduced the idea of generating
samples from a known, easy-to-sample probability density
function (pdf) q(x), called the importance density or pro-
posal density, and then “correcting” the weights of each sam-
ple so that the weighted samples approximate the desired
density. As long as the support of the proposal density in-
cludes the support of the target density, one can make use of
the substitution

p(x0:t |y1:t ) =
p(x0:t |y1:t )

q(x0:t |y1:t )
q(x0:t |y1:t ) (15)

to obtain the identity

I (ft ) =

∫
ft (x0:t )w(x0:t )q(x0:t |y1:t )dx0:t∫

w(x0:t )q(x0:t |y1:t )dx0:t

(16)

wherew(x0:t ) is known as the importance weight

w(x0:t ) =
p(x0:t |y1:t )

q(x0:t |y1:t )
(17)

Therefore, if one can generateN independently and iden-
tically distributed samplesx(i)

0:t from the importance density
q(x0:t |y0:t ), a Monte Carlo estimate ofI (ft ) is given by

ÎN (ft ) =

1
N

∑N
i ft (x

(i)
0:t )w(x

(i)
0:t )

1
N

∑N
j w(x

(j)

0:t )
=

N∑
i

ft (x
(i)
0:t )w̃

(i)
t (18)

where the normalized importance weightsw̃
(i)
t are given by

w̃
(i)
t =

w(x
(i)
0:t )∑N

j=1w(x
(j)

0:t )
(19)
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Thus, the posterior density function can be approximated ar-
bitrarily well by the point-mass estimate

p̂(x0:t |y1:t ) =

N∑
i

w̃
(i)
t δ

x
(i)
0:t

(x0:t ) (20)

In summary, the advantage that IS introduces lies, firstly, in
being able to easily generate samples from the importance
density rather than a potentially complex target density, and,
secondly, in only needing to correct the weights of the sam-
ples from the ratio of the target and importance densities,
eliminating the need to calculate normalization constants of
the target density.

3.3.3 Sequential Importance Sampling (SIS)

In its simplest form, IS is not adequate for sequential esti-
mation. Whenever new datayt become available, one needs
to recompute the importance weights over the entire state se-
quence. Sequential Importance Sampling (SIS) modifies IS
so that it becomes possible to compute an estimate of the
posterior without modifying the past simulated trajectories.
It requires that the importance densityq(x0:t |y1:t ) at time t

admits as marginal distribution at timet −1 the importance
functionq(x0:t−1|y1:t−1):

q(x0:t |y1:t ) = q(x0:t−1|y1:t−1)q(xt |x0:t−1,y1:t ) (21)

After iterating, one obtains:

q(x0:t |y1:t ) = q(x0)

t∏
k=1

q(xk|x0:k−1,y1:k) (22)

Assuming that the state evolves according to a Markov pro-
cess and that the observations are conditionally independent
given the states, one can obtain

p(x0:t ) = p(x0)

t∏
k=1

p(xk|xk−1) (23)

and

p(y1:t |x0:t ) =

t∏
k=1

p(yk|xk) (24)

Substituting Eqs. (22), (23) and (24) into Eq. (19) and us-
ing Bayes’ theorem, we arrive at a recursive estimate of the
importance weights

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt |x
(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1,y1:t )

(25)

where the normalization is provided by
∑N

j=1w̃
(j)
t . Equa-

tion (25) provides a mechanism for sequentially updating the
importance weights. In summary, SIS provides a method

to approximate the posterior density function (20) (or some
function thereof) sequentially in time without having to draw
samples directly from the posterior. All that is required is
(i) sampling from the importance density and evaluating it
up to some constant, (ii) evaluating the likelihoodp(yt |x

(i)
t )

up to some proportionality constant, (iii) evaluating the fore-
castp(x

(i)
t |x

(i)
t−1) up to some constant, and (iv) normalizing

the importance weights via
∑N

j=1w̃
(j)
t . The SIS thus makes

sequential Bayesian estimation feasible.

3.3.4 Choice of the importance density and resampling

The problem encountered by the SIS method is that, ast in-
creases, the distribution of the importance weights becomes
more and more skewed. For instance, if the support of the
importance density is broader than the posterior density, then
some particles will have their weights set to zero in the up-
date stage. But even if the supports coincide exactly, many
particles will over time decrease in weight so that after a
few time steps, only a few lucky survivors have significant
weights, while a large computational effort is spent on propa-
gating unimportant particles. It has been shown that the vari-
ance of the weights can only increase over time, thus it is im-
possible to overcome the degeneracy problem (Kong et al.,
1994). Two solutions exist to minimize this problem: (i) a
good choice of the importance density and (ii) resampling.

– Importance density: The optimal importance density
is given by:

qopt (xt |x0:t−1,y1:t ) = p(xt |x0:t−1,y1:t )

=
p(yt |xt ,x

(i)
t−1)p(xt |x

(i)
t−1)

p(yt |x
(i)
t−1)

(26)

because it can be proven to minimize the variance of the
importance weights (seeKong et al., 1994, and Chap-
ter 6 of de Freitas, 1999). However, using the opti-
mal importance density requires the ability to sample
from p(xt |x

(i)
t−1,yt ) and to evaluate the integral over the

new statep(yt |x
(i)
t−1) (Arulampalam et al., 2002; Doucet

et al., 2001; de Freitas, 1999). In many situations, this is
impossible or very difficult, prompting the use of other
importance densities. Perhaps the simplest and most
common choice for the importance density is given by
the prior:

q(xt |x0:t−1,y1:t ) = p(xt |xt−1) (27)

which, although resulting in a higher variance of the
Monte Carlo estimator, is usually easy to implement.
Many other choices are possible (Arulampalam et al.,
2002; Doucet et al., 2001; Liu, 2001).

– Resampling: Even the optimal importance density will
lead to this “degeneracy” of the particles (few important
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ones and many unimportant ones). One therefore in-
troduces an additional selection or resampling step, in
which particles with little weight are eliminated and
new particles are sampled in the important regions of
the posterior. De Freitas(1999) and Arulampalam
et al. (2002) provide an overview of different resam-
pling methods.

Resampling introduces its own problems. Since parti-
cles are sampled from discrete approximations to den-
sity functions, the particles with high weights are statis-
tically selected many times. This leads to a loss of di-
versity among the particles as the resultant sample will
contain many repeated points. This is known as “sam-
ple impoverishment” (Arulampalam et al., 2002) and is
severe when the model forecast is very narrow or de-
terministic. The various methods that exist to deal with
this problem will not be necessary here because of the
broad and highly stochastic model forecast.

Because of the additional problems introduced by re-
sampling, it makes sense to resample only when the
variance of the weights has decreased appreciably. A
suitable measure of degeneracy of an algorithm is the
effective sample sizeNeff introduced byLiu and Chen
(1998) and defined by

Neff =
N

1+var(w?i
t )

(28)

wherew?i
t = p(x

(i)
t |y1:t )/q(x

(i)
t |x

(i)
t−1,yt ) is referred to

as the true weight. This may not be available, but
an estimateN̂eff can be obtained as the inverse of the
so-called Participation Ratio (Mézard et al., 1987) (or
Herfindahl index (Polakoff and Durkin, 1981; Lovett,
1988)):

N̂eff =
1∑N

i=1(w
(i)
t )2

(29)

Thus, resampling can be applied whenN̂eff falls below
a certain thresholdNthres.

3.4 Numerical algorithms of the Sequential Importance
Resampling (SIR) filter

In this section, we define the Sequential Importance Re-
sampling (SIR) particle filter, which uses the prior given
by Eq. (27) as the (sub-optimal) importance density and in-
cludes a resampling step to counteract the degeneracy of
particles. The prior is obtained by random draw for indi-
vidual particles using the forecast model, i.e. the renewal
point process defined by Eq. (10). The presentation and
the pseudo-codes in this section closely followArulampalam
et al. (2002). More information on other particle filters can
be found inArulampalam et al.(2002), de Freitas(1999),
Doucet et al.(2000, 2001), Liu (2001), and Capṕe et al.
(2005, 2007).

The SIR particle filter is characterized by choosing the
prior p(xt |xt−1) as the importance density:

q(xt |x0:t−1,y1:t ) = p(xt |xt−1) (30)

It can be shown (Arulampalam et al., 2002) that the SIR can
be reduced to the pseudo-code given by Algorithm1, where
the weights are given by:

w
(i)
t ∝ w

(i)
t−1p(yt |x

(i)
t ) (31)

wherep(yt |x
(i)
t ) is simply the likelihood and the weights are

normalized by

w̃
(i)
t =

w
(i)
t∑N

j=1w
(j)
t

(32)

This filter, called the “bootstrap” filter byDoucet et al.
(2001), is simple and easy to implement. If the likelihood
has a much narrower support than the importance density,
then the weights of many particles will be set to zero so that
only few active particles are left to approximate the poste-
rior. To counteract this particle death, a resampling step is
included.

Algorithm 1 SIR particle filter.

[{x
(i)
t ,w

(i)
t }

N
i=1] =SIR[{x

(i)
t−1,w

(i)
t−1}

N
i=1,yt ]

for i=1 toN do
Drawx

(i)
t ∼ p(xt |x

i
t−1)

Assign the particle a weight,w(i)
t , according to Eq. (31)

end for
Calculate total weight:W =SUM[{w

(i)
t }

N
i=1]

for i=1 toN do
Normalize:w(i)

t = W−1w
(i)
t

end for
CalculateN̂eff =

1∑N
i=1(w

(i)
t )2

if N̂eff < Nthresthen
Resample using Algorithm2:

[{x
(i)
t ,w

(i)
t }

N
i=1] =RESAMPLE[{x(i)

t ,w
(i)
t }

N
i=1]

end if

There are many methods to resample from the posterior
(Doucet et al., 2001; de Freitas, 1999; Arulampalam et al.,
2002). The basic idea is to eliminate particles that have small
weights and to concentrate on particles with large weights.
It involves generating a new set of particles and associated
weights by resampling (with replacement)N times from an
approximate discrete representation of the posterior. The re-
sulting sample is an independently and identically distributed
sample so that the weights are reset to 1/N . The method of
choice ofArulampalam et al.(2002) is systematic resampling
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since “it is easy to implement, takesO(N) time and mini-
mizes the Monte Carlo variation.” Its operation is described
in Algorithm 2, whereU [a,b] is the uniform distribution on
the interval[a,b].

Algorithm 2 Systematic resampling.

[{x
(j?)
t ,w

(j)
t }

N
j=1] =RESAMPLE[{x(i)

t ,w
(i)
t }

N
i=1]

Initialize the CDF:c1 = 0
for i=2 toN do

Construct CDF:ci = ci−1+w
(i)
t

end for
Start at the bottom of the CDF:i = 1
Draw a starting point:u1 ∼ U [0,N−1

]

for j=1 toN do
Move along the CDF:uj = u1+N−1(j −1)

while uj > ci do
i = i +1

end while
Assign sample:x(j?)

t = x
(i)
t

Assign weight:w(j)
t = N−1

end for

3.5 Parameter estimation

Parameter estimation techniques within sequential Monte
Carlo methods are discussed by, e.g.,Doucet et al.(2001),
Künsch(2001), Andrieu et al.(2004) andCapṕe et al.(2005,
2007). The methods are either online-sequential or offline-
batch methods. For simplicity, we will restrict this section
to one particular technique, based on the offline or batch
technique of maximizing (an MC estimate of) the complete
marginal data likelihood defined in Eq. (9). The presentation
follows Doucet et al.(2001).

We assume that the Markov transition kernel, defined by
Eq. (2), depends on an unknown, static parameter vectorθ .
Moreover, we assume the marginal likelihoodL(θ |y1:t ) =

pθ (y1:t ) admits a sequential formulation:

L(θ |y1:t ) = pθ (y1:t ) = pθ (y0)

t∏
k=1

pθ (yk|y0:k−1) (33)

where the individual predictive likelihoods are defined as

pθ (yk|y0:k−1) =

∫
pθ (yk,xk|y0:k−1)dxk (34)

These can be estimated from the weighted particles
{(x

(i,θ)
k ,w

(i,θ)
k )}1≤i≤N as

pθ (yk|y0:k−1)

=

∫ ∫
pθ (yk|xk)pθ (xk|xk−1)pθ (xk−1|y0:k−1)dxk−1dxk

(35)

≈

N∑
i=1

w
(i,θ)
k−1

∫
pθ (yk|xk)pθ (xk|x

(i,θ)
k−1 )dxk (36)

≈

N∑
i=1

w
(i,θ)
k (37)

wherew
(i,θ)
k are the unnormalized weights at thekth time

step. Expression (25) is used to go from the second to the
third approximate equality.

The log-likelihood̀ (θ) is therefore given by

`(θ) = log(L(θ |y1:t )) = log

[
t∏

k=1

pθ (yk|y0:k−1)

]

=

t∑
k=1

log
[
pθ (yk|y0:k−1)

]
≈

t∑
k=1

log

[
N∑

i=1

w
(i,θ)
k

]
(38)

Maximizing the sum of the unnormalized weights given by
expression (38) with respect to the parameter setθ results in
the maximum likelihood estimator̂θ :

θ̂ = arg max

[
t∑

k=1

log

(
N∑

i=1

w
(i,θ)
k

)]
(39)

Doucet et al.(2001), Andrieu et al.(2004), Capṕe et al.
(2005, 2007) andOlsson and Ryd́en(2008) consider the es-
timator’s statistical properties. To find the maximum of the
log-likelihood in Eq. (39), one may use the standard opti-
mization algorithms, such as gradient-based approaches, the
expectation-maximization algorithm, or random search al-
gorithms such as simulated annealing, genetic algorithms,
etc. (see, e.g.,Sambridge and Mosegaard, 2002). In our pa-
rameter estimation experiments (see Sect.4.3), we chose a
combination of a coarse direct grid-search method and a pat-
tern search method to refine the coarse estimate (Hooke and
Jeeves, 1961; Torczon, 1997; Lewis and Torczon, 1999).

3.6 Kalman filters

To provide benchmarks for the SIR particle filter, we use
two Kalman filters. The first is a very simple, determinis-
tic Kalman filter (DKF) based on the approximation that all
distributions are Gaussian (Kalman, 1960). The second is
the Ensemble Square Root Filter (EnSRF) proposed byTip-
pett et al.(2003), a popular instance of the ensemble Kalman
filter (Evensen, 1994). The EnSRF approximates priors and
posteriors with an ensemble of unweighted particles and as-
sumes the measurement errors are Gaussian. This section
defines the filters and derives the relevant equations that we
implemented numerically.
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3.6.1 Deterministic Kalman Filter (DKF)

The forecast of the deterministic Kalman filter for time step
t is given by a Gaussian distribution with mean〈x

f
t 〉 and

varianceP f
t which are determined by

〈x
f
t 〉 = 〈xa

t−1〉+〈dxf
〉

P
f
t = P a

t−1+Qf (40)

where〈xa
t−1〉 andP a

t−1 are the mean and variance, respec-
tively, of the (Gaussian) posterior from the previous time
step, and〈dxf

〉 andQf are the mean and variance, respec-
tively, of the forecast model, which in our case is the renewal
process defined in Eq. (10).

The analysis of the DKF is also given by a Gaussian, with
mean〈xa

t 〉 and varianceP a
t determined by

〈xa
t 〉 = 〈x

f
t 〉+Kt (yt −〈x

f
t 〉)

P a
t = (1−Kt )P

f
t (41)

whereyt −〈x
f
t 〉 is often called the innovation or measure-

ment residual and the Kalman gainKt is determined by

Kt =
P

f
t

P
f
t +Ro

(42)

whereRo is the variance of the observation error distribution.
As for the particle filter, we will use the marginal complete

likelihood function (9), i.e. the denominator of Bayes’ theo-
rem, to estimate the parameters of the forecast model. The
likelihood is given by

pθ (yt |y0:t−1) =

∫
p(yt |xt )p(xt |y0:t−1)dxt

=

∫
N (yt ,R

o)N (〈x
f
t 〉,P

f
t )dxt (43)

whereN (a,b) denotes the normal distribution with meana

and varianceb. Using expressions (40) and (41), Eq. (43)
reduces to

pθ (yt |y0:t−1) =
1

√
2π
√

P a
t−1+Qf +Ro

×

exp

[
−

(
〈xa

t−1〉+〈dxf
〉−yt

)2
2
(
P a

t−1+Qf +Ro
) ]

(44)

where〈dxf
〉 andQf are explicit functions of any parameters

θ of the renewal process. As above, we sum over the loga-
rithms of each individual likelihood and maximize the joint
log-likelihood to estimate parameters.

The DKF only requires two parameters to be tracked, the
forecast mean and variance, making it a very simple and
cheap filter. However, all distributions are assumed to be
Gaussian.

3.6.2 Ensemble Square Root Filter (EnSRF)

Tippett et al.(2003) discussed the Ensemble Square Root Fil-
ter (EnSRF), a particular instance of the Ensemble Kalman
Filter (EnKF) invented byEvensen(1994). The EnKF
uses ensemble representations for the forecast and analy-
sis error covariances. Starting with an unweighted ensem-
ble {x

a,(i)
t−1 }

m
i=1 of m members that represent the analysis of

the previous time step, the (potentially) non-linear and non-
Gaussian dynamics of the modelp(xt |x

(i)
t−1) is applied to

each member to produce the forecast ensemble{x
f,(i)
t }

m
i=1.

The ensemble representation of the forecast produces any re-
quired statistics such as mean〈x

f
t 〉 = 1/m

∑m
i x

f,(i)
t , covari-

anceP f
t or the full pdf of the forecast can be obtained from a

kernel density estimate. The forecast ensemblex
f,(i)
k is thus

obtained from

x
f,(i)
t = x

a,(i)
t−1 +dxf,(i) (45)

X
f,(i)
t = x

f,(i)
t −〈x

f
t 〉 (46)

P
f
t =

1

m−1

m∑
i

(
X

f,(i)
t

)2
(47)

Once an observation is available, the mean〈xa
t 〉 of the anal-

ysis is obtained from

〈xa
t 〉 = 〈x

f
t 〉+Kt (yt −〈x

f
t 〉) (48)

where the Kalman gainKt is obtained as in the classical
Kalman filter from

Kt =
P

f
t

P
f
t +Ro

(49)

whereRo is the covariance of the observation error distribu-
tion.

To obtain the full pdf of the analysis rather than just the
mean, and in the case of observations being assimilated one
by one serially,Tippett et al.(2003) show (their Eq. 10) that
the perturbationsXa,(i)

t of the analysis ensemble about the
analysis mean〈xa

t 〉 are given by

X
a,(i)
t = X

f,(i)
t (1−βtP

f
t ) (50)

whereβt =
(
Dt +

√
RoDt

)−1
, andDt = P

f
t +Ro is the in-

novation (co-)variance.
As before, we also derive the expression for the complete

marginal joint log-likelihood. The observational error dis-
tribution is characterized solely by the covarianceRo, i.e.
the EnSRF implicitly assumes Gaussian measurement errors.
In contrast to the Gaussian model forecast of the DKF, the
EnSRF approximates the model forecast with them mem-
ber ensemble or Monte Carlo representationp

f
t (xt |y0:t−1) ≈
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p̂m(xt ) = (1/m)−1∑m
i δ

x
(i)
t

(xt ). The likelihood is given by

pθ (yt |y0:t−1) =

∫
p(yt |xt )p(xt |y0:t−1)dxt

=

∫
N (yt ,R

o)p
f
t (xt |y0:t−1)dxt (51)

To evaluate Eq. (51), we use Monte Carlo integration (ex-
pression12) to obtain:

pθ (yt |y0:t−1) ≈

∫
N (yt ,R

o)p̂m(xt )dxt

≈
1

m

m∑
i

p(yt −x
(i)
t ) (52)

wherep(yt −x
(i)
t ) is the normal distributionN(yt ,R) evalu-

ated atx(i)
t . As before, we maximize the marginal joint log-

likelihood, i.e. the sum over the logarithms of the individual
likelihood functions, to estimate the parameter setθ .

The EnSRF is thus a Monte Carlo method that allows for
non-Gaussian and non-linear model dynamics to produce ar-
bitrary forecast pdfs. However, unlike the SIR, it is only con-
cerned with the variance of the observational error distribu-
tion during the analysis.

4 Numerical experiments and results

In this section, we present a simple, pedagogical example
of earthquake forecasting based on data assimilation. Our
model is the one-dimensional, temporal lognormal renewal
process (Sect.4.1.1): the simplest point process, which nev-
ertheless draws much interest in earthquake seismology and
seismic hazard, as mentioned above. We assume the pro-
cess is observed in noise, i.e., the unobservable true occur-
rence times are perturbed by (additive) identically and in-
dependently distributed noise (Sect.4.1.2). The aim of this
section is to show an example of how data assimilation pro-
vides better forecasts, as measured by the likelihood gain,
than a forecast (“the benchmark”) which ignores the data er-
rors (assumes the observed times are the true times). We will
compare the performance of the SIR particle filter with that
of the deterministic and ensemble Kalman filters and mea-
sure their skills against the benchmark (Sect.4.2). Finally, in
Sect.4.3 we will use maximum likelihood estimation to ob-
tain parameter estimates using both the filters and the bench-
mark. The results in this section thereby demonstrate that
data assimilation can help make earthquake forecasting and
forecast validation robust with respect to observational data
errors.

4.1 Experiment design

4.1.1 The forecast model: lognormal renewal process

Motivated by its relevance to paleoseismology, seismic haz-
ard and the characteristic earthquake debate, we use a lognor-
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Fig. 1. Visual comparison of the model transition kernel of the (un-
observable) true occurrence times (solid black curves) and the con-
ditional likelihood functions of the noisy observed occurrence time
given the true occurrence time (dashed magenta line).(a) Uniform
error distribution. (b) Gaussian mixture error distribution. Also
shown are a sample true occurrence time (black square) and a sam-
ple observation (magenta star).

mal renewal process as our forecast model. The lognormal
renewal process has a long tradition in modeling the recur-
rences of earthquakes (see, e.g.,Nishenko and Buland, 1987;
Ogata, 1999; Biasi et al., 2002; Sykes and Menke, 2006;
Field, 2007b). According to the lognormal process, the in-
tervalsτ between subsequent earthquakes are distributed ac-
cording to:

flogn(τ ;µ,σ) =
1

τ
√

2πσ
exp(−(logτ −µ)2/2σ 2) (53)

where the parametersµ andσ may need to be estimated. In
the notation of Sect.3, using a physically meaningfultk for
the state variable instead ofxk, the lognormal distribution of
the intervals is the transition kernel defined in Eq. (2):

p(tk|tk−1;µ,σ) =
1

(tk − tk−1)
√

2πσ
×

exp
(
−(log(tk − tk−1)−µ)2/2σ 2

)
(54)

To mimic a realistic process, we use parameters taken from
the study byBiasi et al.(2002), who fit the lognormal pro-
cess to a paleoseismic data set from the San Andreas fault in
California:

µ = −0.245 and σ = 0.7 (55)

where we obtainedµ by normalizing the average recurrence
interval to one, without loss of generality. Figure1 shows the
lognormal distribution (solid black curve) with these param-
eter values.

4.1.2 The observations: noisy occurrence times

We suppose that thek-th observed occurrence timeto
k is a

noisy perturbation of the “true” occurrence timet tk:

to
k = t tk +εk (56)
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whereε is an additive noise term distributed according to
some distributionpε(ε). For our numerical experiments be-
low, we choose two different distributions: a uniform distri-
bution and a Gaussian mixture model. The uniform distribu-
tion was chosen to mimic measurement errors that are poorly
constrained, so that only a fixed interval is provided without
knowledge of the distribution (e.g.Ogata, 1999). The Gaus-
sian mixture model (GMM), on the other hand, is an illus-
trative example of better-constrained uncertainties that give
rise to more complex distributions with bi- or multi-modal
structures (e.g.,Biasi et al., 2002).

The uniform distribution is given by:

puni(ε) =
1

1
H(ε+

1

2
)H(

1

2
−ε)

=

{
1
1

−
1
2 ≤ ε ≤ +

1
2

0 otherwise
(57)

whereH(·) is the Heaviside step function. Substitutingε =

to
− t t gives the density (conditional likelihood) of the data

given the true occurrence time, defined by Eq. (3):

po
uni(εk) = p(to

k |t tk) = p(to
k − t tk)

=

{
1
1

t tk −
1
2 ≤ to

k ≤ t tk +
1
2

0 otherwise
(58)

We set the parameter to

1 = 0.5 (59)

so that the uncertainty in the measurement is roughly half
of the expected reoccurrence time, mimicking paleoseismic
data sets (Ogata, 1999, 2002). In Fig. 1a), we show the log-
normal model kernel and the uniform error distribution with
our choices of parameters.

The Gaussian mixture modelpGM(ε), on the other hand,
consists for our purposes of two one-dimensional, weighted
and uncorrelated Gaussian distributions

pGM(ε) = p1N (η1,ρ1)+p2N (η2,ρ2) (60)

where the weightsp1 = 0.4 andp2 = 0.6 sum to one and the
normal distributionsN (·,·) are each characterized by their
averagesη1 = −0.2 andη1 = +0.2 and their standard devia-
tions

√
ρ1 = 0.02 and

√
ρ2 = 0.01. These values were chosen

to provide a simple bi-modal distribution that mimics certain
well-constrained uncertainties on earthquake occurrences in
paleoseismic datasets. In Fig.1b), we compare the lognor-
mal model kernel with the GMM error distribution with the
present parameter values.

4.1.3 Initial condition and observation period

We assume for simplicity that the periodT = [a,b] over
which the point process is observed begins with an event at
t0 = 0 = a. We further assume that the true and observed
occurrence times of this first event coincide, so that our ini-
tial conditionp(x0) is a delta functionp(x0) = δ(t0 = 0), and

that the observation period ends with the last observed event
to
n = b. This assumption can be relaxed:Ogata(1999) pro-

vided the relevant equations.

4.1.4 Simulation procedure

In this entirely simulated example, we begin by generating
the “true” (unobservable) process. We generaten random
samples from the lognormal distribution given by Eq. (54) to
obtain the sequence of true event times{t tk}0≤k≤n. Next, we
simulate the observed process by generatingn random sam-
ples from either the uniform or the Gaussian mixture condi-
tional likelihood given by Eqs. (58) and (60) to obtain the
sequence of observed event times{to

k }0≤k≤n.
To perform the particle filtering, we initializeN = 10 000

particles at the exactly knownt0 = 0. To forecastt1, we prop-
agate each particle through the model kernel (54). Given the
observationto

1 and the model forecast, we use the SIR par-
ticle filter described in Sect.3.4 to obtain the analysis oft1.
The approximation of the posterior is then used to forecastt2
according to Eq. (7). This cycle is repeated until the posteri-
ors of alln occurrence times are computed.

The Kalman filters are implemented similarly. Like the
SIR, we initialized the EnSRF withm = 10 000 ensemble
members to adequately represent the forecast and analysis
distributions. The DKF requires only the mean〈dxf

〉 and
varianceQf of the forecast model given by the lognormal
distribution (53):

〈dxf
〉 = exp

(
µ+

1

2
σ 2
)

(61)

Qf
=

(
exp(σ 2)−1

)
exp

[
2

(
µ+

1

2
σ 2
)]

(62)

Both filters require the variance of the observational error
distribution to assimilate observations. The variance of the
uniform error distribution is given by

Ro
= 12/12 (63)

We computed the variance of the Gaussian mixture dis-
tributed errors empirically from numerous samples.

4.2 Data assimilation

This section presents examples of the forecast and posterior
distributions using a large number of particles (N = 10 000).
We compare the SIR particle filter, defined in Sect.3.4, with
the Kalman filters and the benchmark, which entirely ne-
glects the presence of data uncertainties. We assume in this
section that the parameters are known.

4.2.1 Forecast and analysis (priors and posteriors)

In Fig. 2, we present the forecast and analysis distributions
of the filters and of the benchmark for a particular example
event (number 11). Panels (a) and (b) show the forecasts in
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Fig. 2. Illustration of the data assimilation cycle for event 11. Forecasts of the SIR, EnSRF and DKF filters, and the benchmark, which ignores
measurement errors, are shown in(a) and(b) for the case of uniformly and Gaussian mixture distributed measurement errors, respectively.
Analyses (posteriors) are shown in(c) and(d) on the same scale.

the case of uniformly and Gaussian mixture distributed mea-
surement errors, respectively, while (c) and (d) show the cor-
responding posteriors. Concentrating first on the forecasts,
the benchmark assumes that the observed events correspond
to the previous “true” events without data errors. Therefore,
the forecast distribution of the next occurrence time is sim-
ply the lognormal distribution. In contrast, the filter forecasts
are broadened because of the uncertainty in the last occur-
rence time. As a result, the benchmark forecast is artificially
sharper than the filter forecasts. In some cases, the sharper
peak may lead to higher likelihoods – but the benchmark will
pay a price when the observed event is in the tails of its overly
optimistic forecast. In those cases, the broader filter forecasts
will more than recuperate. Section4.2.2compares the like-
lihood scores and gains of the benchmark and the particle
filters.

The SIR forecast is broader than the benchmark forecast
because of the uncertain last occurrence time, but the log-
normal shape can still be identified. The EnSRF forecast
is almost identical to the SIR forecast for the case of uni-
form errors, while differences are clearly visible in the case
of Gaussian mixture distributed noise. Recall that the EnSRF
assumes that measurement noise is Gaussian distributed. Be-
cause the lognormal model kernel is so strongly stochastic,
this approximation to the uniform noise seems acceptable,
while the differences are more apparent if the measurement
error is bi-modal, as in panel (b). The DKF forecast is Gaus-
sian by construction, presenting a poor approximation to the
asymmetric lognormal model kernel. Moreover, irrespective
of the measurement errors, the forecast displays little skill
compared to the SIR and EnSRF forecasts, which are more
strongly peaked.
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Fig. 3. Evolution of the cumulative complete marginal log-
likelihood of the particle and Kalman filters and the benchmark for
the case of(a) uniformly distributed and(b) Gaussian mixture dis-
tributed observational errors. Also shown are the log-likelihoods of
the “true” (unobservable) times using the “true” event times (black)
and the average log-likelihood given by the negative entropy of the
lognormal distribution (solid black line). In(a), the scores of the
SIR and EnSRF are indistinguishable.

After applying Bayes’ theorem, the resulting posteriors
are shown in panels (c) and (d). While the benchmark sim-
ply assumes that the observed event time is “true”, increas-
ingly better approximations to the actual posterior are ob-
tained by the DKF, EnSRF and SIR posteriors. While the
DKF presents a simple Gaussian approximation, the EnSRF
still displays the asymmetry of its forecast. Only the SIR
does not assume the conditional likelihood to be Gaussian
and can therefore recover the posterior more accurately than
the other filters. This is particularly visible in the case of
Gaussian mixture noise.

Having obtained the best possible estimate of the true oc-
currence time using this Bayesian approach, the data assimi-
lation cycle is closed by using the posteriors as initial condi-
tions for the forecast of the next event.

4.2.2 Comparison: likelihood scores and gains

To measure the improvement of the “earthquake” forecasts
based on data assimilation over the naive benchmark, which
ignores data uncertainties, we use the log-likelihood score
and gain. Both are common measures of earthquake forecasts
based on point processes (Daley and Vere-Jones, 2004; Harte
and Vere-Jones, 2005). However, we extend the measures by
taking into account uncertainties (see alsoOgata, 1999), as
suggested byDoucet et al.(2001), Andrieu et al.(2004) and
Capṕe et al.(2005). In particular, we employ the marginal
log-likelihood of the data, defined by Eq. (9), which reflects
both the model forecast and the conditional likelihood func-

tion (the measurement process). This marginal likelihood is
nothing but the denominator in Bayes’ theorem (4), which
judges how well the data are explained, assuming both a
model forecast and a measurement process.

For the SIR particle filter, the marginal log-likelihood of
the data can be approximated by Eq. (38). The marginal
log-likelihoods of the DKF and EnSRF are determined by
Eqs. (44) and (52), respectively. The benchmark effectively
assumes that the measurement process is perfect, such that
any conditional likelihood is replaced by a Dirac function
p(to

k |t tk) = δ(to
k − t tk). The benchmark log-likelihood score is

thus simply obtained by using the lognormal density func-
tion and plugging in the observed occurrence times. Since
this is a stochastic prediction problem, it is also of interest
to compare these forecasts to the ideal case of having access
to the “true” occurrence times. For the “true” process, the
log-likelihood score is obtained by using the lognormal dis-
tribution and plugging in the “true” event times, again replac-
ing the conditional likelihoods by Dirac functions. Since this
will only give the score for one particular realization, we also
calculate the average log-likelihood score per event, given by
the negative entropy of the lognormal distribution, which is
available analytically.

In Fig. 3, we show the evolution of the cumulative (com-
plete) marginal log-likelihood of the data using the parti-
cle and Kalman filters and the benchmark for a simulation
of a 100-event point process. The cases of uniformly and
Gaussian mixture distributed measurement noise are shown
in panels (a) and (b), respectively. The DKF does not perform
well in this experiment. Its Gaussian forecast is too far from
the actual distribution, resulting in overly broad and unskill-
ful forecasts. For these particular parameters, the DKF pro-
vides no better scores than the benchmark. Not surprisingly,
the SIR obtains higher scores than the Gaussian DKF and the
benchmark. However, the EnSRF can compete with the SIR
in the case of uniformly distributed measurement errors: the
likelihood scores are nearly identical. As already mentioned
above, the Gaussian approximation to the uniform distribu-
tion appears sufficient so as not to degrade the scores. This
is no longer true for bi-modally distributed noise (panel b).
Here, the SIR displays the full power of the particle-based
approximation to arbitrary distributions and surpasses the
EnSRF.

To investigate the average performance improvement, we
simulated 100 realizations of a 100-event point process. We
calculated the mean of the log-likelihood scores at each event
index, as shown in Fig.4. Fluctuations are now mostly
smoothed out. The mean “true” likelihood scores now match
the negative entropy predictions exactly. When the observa-
tional errors are uniformly distributed (panel a), the SIR and
EnSRF have essentially identical mean likelihood scores. In
contrast, the SIR’s scores are much higher when the errors
are Gaussian mixture distributed (panel b). The DKF per-
forms worse than the benchmark because its Gaussian ap-
proximation of the forecast is worse than the benchmark’s
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Fig. 4. Evolution of the sample mean of the cumulative complete
log-likelihood, averaged over 100 realizations of a 100-event point
process. Same explanation as for Fig.3.

lognormal forecast that neglects data errors. However, in
rare cases, the benchmark obtains scores of negative infin-
ity, i.e. certain event times are impossible according to the
benchmark. Having excluded these values from the calcula-
tions, we need to interpret the benchmark’s likelihood scores
in Fig. 4 as conditional on “survival”.

To measure the quality of a point process forecast with
respect to a reference forecast, we employ several common
measures. The individual probability gainG

(1)
k measures the

ratio of the likelihoodp1(t
o
k ) of thek-th observed event under

a specific forecast over the likelihood of the same event under
a reference forecastp0(t

o
k ):

G
(1)
k =

p1(t
o
k )

p0(t
o
k )

(64)

The individual probability gainG(1)
k measures how much

better the event is explained by a particle or EnSRF filter
forecast over the naive benchmark forecast (for the remain-
der of this section, we do not consider the poorly performing
DKF). G

(1)
k = 1 corresponds to no improvement. Since usu-

ally log-likelihood scores are used rather than likelihood val-
ues, it is common to use the (individual) log-likelihood ratio,
defined by:

LR
(1)
k = logG

(1)
k = log

(
p1(t

o
k )

p0(t
o
k )

)
= logp1(t

o
k )− logp0(t

o
k ) = LL1(t

o
k )−LL0(t

o
k ) (65)

whereLL(to
k ) is the marginal log-likelihood of eventto

k and

LR
(1)
k = 0 corresponds to no improvement.

The (cumulative) probability gainG(n) per earthquake of
the proposed forecast with respect to a reference forecast
is defined as (Daley and Vere-Jones, 2004; Harte and Vere-
Jones, 2005):

G(n)
= exp

(
LL1(n)−LL0(n)

n

)
(66)

whereLL1(n) andLL0(n) are the cumulative marginal log-
likelihood scores of the proposed model and a reference
model, respectively, for then considered events. This mea-
sure quantifies the cumulative improvement due to the pro-
posed forecast over a reference forecast. The measure is mo-
tivated by its expression as the geometric average of the in-
dividual conditionally independent probability gains:

G(n)
=

[
n∏

k=1

G
(1)
k

] 1
n

=

[
n∏

k=1

p1(t
o
k )

p0(t
o
k )

] 1
n

=

[∏n
k=1p1(t

o
k )∏n

k=1p0(t
o
k )

] 1
n

(67)

where the product over allk = 1,...,n events specifies the
joint probability density of the entire process under a specific
model. In our experiments, the benchmark is the reference
forecast, i.e. we directly measure any improvement of the
SIR and EnSRF over the benchmark.

For a 100-event point-process simulation, we calculated
the individual probability gainsG(1)

k for each eventto
k for the

SIR and EnSRF, as shown in Fig.5. The individual gains
G

(1)
k fluctuate wildly, from about 0.5 to 106 (to display the

variability nearG(1)
k = 1, we set an upper limit to the ordi-

nate axes). There are many events that are better forecast by
the benchmark than by the filters (G

(1)
k < 1), but there are

some events for which the filters outperform the benchmark
by several orders of magnitude. For this particular simula-
tion, the average probability gainsG(100) per earthquake of
the SIR filter and EnSRF filters were 1.26 and 1.25, respec-
tively, in the case of uniform noise. The gains were 1.23 and
1.12 in the case of Gaussian mixture distributed errors.

The seemingly surprising occurrence ofG
(1)
k < 1 forecasts

can be explained by the fact that the benchmark forecasts are
sharper than the particle filter forecasts, since the benchmark
does not take into account the uncertainty in the last occur-
rence time (compare the forecasts in Fig.2). As a result,
if the next observed event actually falls near the peak of the
benchmark forecast, the likelihood of the data is higher under
the benchmark forecast than under the broadened filter fore-
casts. Thus, frequently, the benchmark produces higher like-
lihood scores than the filters. However, precisely because the
benchmark forecast does not take into account data errors,
the forecasts are overly optimistic. When the observed events
fall outside of this artificially narrow window, the filters per-
forms better than the benchmark, and sometimes immensely
better. Such surprises for the benchmark are reflected in the
very large individual likelihood gains of up to 106 and in out-
right “death”, i.e., scores of negative infinity (not shown).

To illuminate the performance of the SIR and EnSRF
against the benchmark further, we simulated a 10 000-event
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Fig. 5. Probability gains of the SIR particle filter and the EnSRF
over the benchmark for each individual earthquake for the case of
(a) uniformly distributed and(b) Gaussian mixture distributed ob-
servational errors. In(a), the gains of the SIR and EnSRF are often
nearly identical.

point-process using uniformly distributed errors and cal-
culated the log-likelihood scores and ratiosLR

(1)
k against

the benchmark for each event. Calculations with Gaussian
mixture distributed noise give the same qualitative results.
The empirical cumulative distribution functions of the log-
likelihood scores are shown in Fig.6. For comparison, we
also show the distribution of log-likelihood scores obtained
by the using the “true” process (lognormal), and by another
distribution, explained below. The log-likelihood distribu-
tion of the “true” process has consistently the highest scores,
up to statistical fluctuations, as expected. The log-likelihood
scores of the SIR and EnSRF, however, are not consistently
better than the benchmark (as already seen in Fig.5). Rather,
the highest scores of the benchmark are higher than those of
the filters (see the inset of Fig.6). These values correspond
to those events that occur near the peak of the overly opti-
mistic and sharp forecast of the benchmark, thus resulting in
a higher score compared with the broadened filter forecasts.
However, the scores of the benchmark quickly become worse
than the filters’, and indeed the lowest scores are orders of
magnitude smaller. The body and tail of the distributions
show the filters’ advantage: the benchmark sometimes pro-
duces terrible forecasts, for which it pays with a poor score.
At the same time, the individual filters’ scores remain rela-
tively close to the scores of the “true” process.

We found it helpful to include another distribution of log-
likelihood scores in Fig.6, labeled LL(lognormal+2∗noise).
To produce it, we simulated lognormally distributed sam-
ples and then perturbed each sample twice by an additive,
uniformly distributed error with the same distribution as the
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Fig. 6. Empirical cumulative distribution functions of the log-
likelihood scores of each event obtained by the SIR particle filter,
the EnSRF, the benchmark and the “true” (lognormal) process in a
10 000-event point-process simulation. Also shown is a distribution
explained in the text. Inset: magnification of the same data.

observational uncertainty that perturbs the lognormal point
process. We calculated their likelihood scores using the orig-
inal lognormal function. The point is to show that the log-
likelihood scores of the benchmark naturally come from the
fact that we assume a lognormal function in the calculation
of the likelihood scores, but that the random variables we ob-
serve are not actually lognormally distributed. In fact, the
benchmark makes two mistakes: (i) the origin point (start
of the interval) is a perturbed version of the last true occur-
rence time, and (ii) the observed next event is again a per-
turbed version of the next true occurrence time. The sim-
ulated LL(lognormal +2*noise) thus corresponds exactly to
the log-likelihood distribution of the benchmark (up to sta-
tistical fluctuations).

Figure7 displays the kernel density estimate of the indi-
vidual log-likelihood ratiosLR

(1)
k , a direct comparison of the

SIR and the benchmark for each event. The vertical black
line at LR(1)

= 0 separates the region in which the bench-
mark performs better (LR

(1)
k < 0) from the one in which the

particle filter performs better (LR
(1)
k > 0). The statistics of

this distribution are particularly illuminating: the median is
LR(1)

= −0.02, and 55% of the time, the benchmark outper-
forms the particle filter. However, the amount by which the
benchmark outperforms the SIR particle filter is never very
much, since the SIR forecast is never much broader than the
benchmark forecast. Thus the potential loss of the SIR par-
ticle filter is limited, as seen by the truncation of the dis-
tribution for low log-likelihood ratios. At the same time,
the tail of the distribution towards large log-likelihood ra-
tios decays much more slowly. Inset 1 of Fig.7 shows the
survivor function in semi-logarithmic axes to emphasize the
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Fig. 7. Cumulative distribution function (cdf) of the individual log-

likelihood ratiosLR
(1)
k

between log-likelihood scores of the SIR
particle filter and the benchmark. Inset 1: Survivor function. In-
set 2: Hill plot of the maximum likelihood estimates of the shape
parameter of a stretched exponential distribution as a function of the
threshold above which the parameter is estimated.

slow decay. We found that a slightly stretched exponential
distribution (Laherr̀ere and Sornette, 1998; Sornette, 2004)
fits the tail adequately, with a shape parameter (exponent)
of about 0.8± 0.3 (see inset 2 of Fig.7). As a result of
the stretched exponential tail of the log-likelihood ratio, the
potential benefit of the SIR particle filter can be enormous,
while its potential disadvantage is limited. As a result, the
average log-likelihood ratio is〈LR(1)

〉 = 0.29, despite the
negative median.

4.3 Parameter estimation

So far, we have assumed that the parameters of the lognor-
mal distribution are known. In reality, one would like to es-
timate the parameters from the observed occurrence times.
As stated in Sect.3.5, in this article we perform offline max-
imum likelihood estimation of a batch of data at a time. In
particular, we maximize the complete marginal data likeli-
hood, approximated by Eq. (38), to estimate parameters. To
find the maximum, we first perform a coarse grid-search over
the parameter space and then use a pattern search algorithm
(Hooke and Jeeves, 1961; Torczon, 1997; Lewis and Tor-
czon, 1999). In this section, we first describe the estima-
tion and compare the parameter estimates of the particle and
Kalman filters with those of the benchmark for single sim-
ulations of a 200-event and a 10-event point process assum-
ing Gaussian mixture distributed errors (uniform errors give
qualitatively similar results). We then show results for a large
number of 100-event point process simulations to test for sta-
tistical bias in the estimates for both uniform and Gaussian
mixture distributed errors.

In Fig. 8, we show approximate contour levels of the log-
likelihood as a function of the two parametersµ andσ for
a single 200-event point process simulation assuming Gaus-
sian mixture distributed noise. For reference, we include the
“true” constants used for the simulation and the maximum
likelihood estimates based on the “true” occurrence times
along with 95% confidence bounds. The likelihood contours,
all plotted on the same scale in Fig.8, reveal several interest-
ing features. The SIR achieves the highest likelihood values,
and its maximum is well constrained. The likelihood func-
tion of the EnSRF does not attain the scores of the SIR, and
its structure reveals stronger correlations between the param-
eters and a flatter maximum. Nonetheless, its maximum like-
lihood parameter estimates are close to the “true” ones. The
likelihood function of the DKF highlights stronger correla-
tions betweenµ andσ and substantially smaller likelihood
scores than the SIR or EnSRF. Moreover, its parameter es-
timates indicate a slight bias. Finally, the benchmark’s like-
lihood function demonstrates a clear bias towards largerσ ,
which provides the benchmark with better insurance against
unexpected occurrence times. Interestingly, the biased pa-
rameter estimates allow the benchmark to achieve likelihood
scores higher than those of the EnSRF and the DKF. How-
ever, the higher scores come at the cost of obtaining the
wrong values.

We also estimated parameters in simulations of few events,
reflecting the typical size of good paleoseismic records of
earthquakes (e.g.,Biasi et al., 2002). Figure9 shows the ap-
proximate log-likelihood contours of the SIR particle filter
for a simulation of a 10-event point process. The benchmark
estimate is now much closer to the “true” constant, but the
benchmark’s 95% confidence interval still does not include
the target, namely the maximum likelihood estimate based
on the “true” occurrence times. The SIR maximum likeli-
hood estimate, on the other hand, is very close to the “true”
estimate.

To establish that the SIR and Kalman filters consistently
obtain better parameter estimates than the benchmark, we
investigated the statistics of repeated estimates from differ-
ent realizations of the point process. Desirable properties of
parameter estimators include unbiasedness, consistency and
(asymptotic) normality.Olsson and Ryd́en(2008) treat the-
oretical properties of the maximum likelihood estimator of
particle filters. Here, we concentrate on simulations.

We simulated 500 replicas of a 100-event point process
with the usual parameters and using both uniform and Gaus-
sian mixture distributed observational errors. We then es-
timated the parameters of each catalog by maximizing the
likelihood function of the SIR filter, the Kalman filters, the
benchmark and the “true” lognormal process. Because of the
stochastic nature of the estimation problem, this resulted in
a distribution of parameters for each method. In Fig.10, we
compare the distributions of the parameter estimates result-
ing from uniform noise (a and b) and from bi-modal noise
(c and d).
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In the case of uniformly distributed observational errors,
all three filters provide unbiased estimates ofµ, but only the
SIR and the EnSRF on average recover the “true” value ofσ .

The benchmark strongly underestimatesµ and overestimates
σ , as we had already observed for the single simulations dis-
cussed above.

The bi-modally distributed noise makes the estimation
problem harder for all filters. The SIR filter provides the
best estimates, providing an essentially unbiased estimate of
µ and a slightly underestimated value ofσ . The EnSRF and
DKF both overestimateµ and underestimateσ as a result
of the approximations to the likelihood function that the fil-
ters make. As in the case of uniformly distributed errors, the
benchmark provides the worst estimates. It is also interest-
ing to note that the variance of the benchmark estimators is
larger than the filter estimators’ variances.

We also tested how the SIR, EnSRF and DKF compare
to the benchmark in terms of log-likelihood scores when the
parameters are being estimated from an observed (but syn-
thetic) data set, rather than using the exact parameters as
in Sect.4.2.2. Using again the 500 replicas of a 100-event
point process from which we estimated maximum likelihood
parameters, we calculated the log-likelihood ratios between
the filters and the benchmark using the estimated parameters.
We found that in 93% of the 500 replicas, the log-likelihood
score of the SIR particle filter was larger than that of the
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errors. Each boxplot shows the median and its 95% confidence intervals (notches). The boxes mark the 25th and 75th percentile (the
interquartile range) of the empirical distribution. The whiskers mark 1.5 times the interquartile range and the red pluses mark outliers beyond
this range.

benchmark, when the observational errors were uniformly
distributed. That number was 94% for the EnSRF and only
11% for the DKF. In the case of Gaussian mixture distributed
errors, the SIR filter generated higher likelihood scores than
the benchmark in 89% of the simulations. Strikingly, the En-
SRF only outperformed the benchmark in 33% of the sim-
ulations, while the DKF beat the benchmark in only 8% of
the cases. Thus, on average, the SIR retrieves better parame-
ter estimates than both the benchmark and the Kalman filters
in the case of bi-modal measurement errors, and it achieves
higher likelihood scores.

5 Conclusions

In this article, we have shown the potential benefits and the
feasibility of data assimilation-based earthquake forecasting
for a simple renewal process observed in noise. We used se-
quential Monte Carlo methods, a flexible set of simulation-
based methods for sampling from arbitrary distributions, and
both simple and more advanced, ensemble-based Kalman fil-
ters to represent the posterior distributions of the exact event
times given noisy observed event times. We showed that a
particular particle filter, the Sampling Importance Resam-
pling (SIR) filter, which uses the prior as the importance den-
sity to sample the posterior and includes a resampling step to

rejuvenate the particles, can solve this particular pedagogical
example for an arbitrary number of events and even for com-
plex, bi-modal distributions of the observational error distri-
bution. The SIR may thus be useful for realistic problems
such as likelihood-based inference of competing recurrence
models on paleoseismic data sets, fully accounting for com-
plex, multi-modal observational error distributions. In con-
trast, the simple, deterministic Kalman filter (DKF) retrieved
biased parameters and low likelihood scores as a result of its
inadequate Gaussian approximations to the forecast and anal-
ysis. The Ensemble Square Root Filter (EnSRF), which ap-
proximates the forecast and analysis with an ensemble of par-
ticles but assumes Gaussian observational errors, was able to
compete with the particle filter in the case of uniform noise,
but it failed to adequately solve the problem for more com-
plex measurement noise. Thus the EnSRF may be a viable
alternative to the SIR whenever the measurement error dis-
tribution is close to Gaussian, but the problem with arbitrary
data uncertainties is best solved with particle filters.

We measured the improvement of the data assimilation-
based methods over the uncertainty-ignoring benchmark
method by using the marginal complete data likelihood, the
denominator in Bayes’ theorem. The marginal likelihood
generalizes the traditional likelihood by accounting for the
presence of observational errors when judging the quality of
a forecast or estimating parameters. The marginal likelihood
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function explicitly accounts for data uncertainties, and this
desired property makes it a powerful and currently underuti-
lized tool in the analysis of earthquake forecasts and model
inference. In particular, the marginal likelihood could help in
the framework of earthquake predictability experiments such
as RELM and CSEP.

The pedagogical example we presented in this article illus-
trated the power of data assimilation and suggests many av-
enues of future research. As discussed, one application lies
in model inference from paleoseismic data sets with com-
plex conditional likelihood functions that truly capture un-
certainties in the dating process. Another interesting possi-
bility is to extend the present renewal process forecast model
to more advanced, multi-dimensional point-process models
of seismicity. For example, the poorly constrained magni-
tudes of earthquakes and the resulting amount of slip on the
causative fault can be incorporated into renewal processes,
whether for the purposes of modeling paleo-earthquakes (e.g.
Ogata, 2002) or present-day small repeating earthquakes
(Nadeau and Johnson, 1998). Furthermore, formulating and
implementing data-assimilation-based schemes for spatio-
temporal short-term models of clustered seismicity could re-
duce their sensitivity to magnitude uncertainties (Werner and
Sornette, 2008), errors in locating quakes or uncertain stress
calculations (Hainzl et al., 2009). Finally, physics-based
seismicity models, such as models based on static stress
transfer or other earthquake simulators that require estimates
of otherwise unobservable quantities, are particularly likely
to benefit from methods of data assimilation. We hope this
article, by illustrating some of the potential methods, stimu-
lates some interest in this area.
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Künsch, H. R.: State space and hidden Markov models, in: Com-
plex stochastic systems (Eindhoven, 1999), vol. 87 of Monogr.
Statist. Appl. Probab., pp. 109–173, Chapman & Hall/CRC, Boca
Raton, FL, 2001.

Laherr̀ere, J. and Sornette, D.: Stretched exponential distribu-
tions in nature and economy: “Fat tails” with characteristic
scales, European Physical Journal B, 2, 525–539, doi:10.1007/
s100510050276, 1998.

Lewis, R. M. and Torczon, V.: Pattern Search Algorithms for Bound
Constrained Minimization, SIAM J. Optimization, 9, 1082–
1099, doi:http://dx.doi.org/10.1137/S1052623496300507, 1999.

Liu, J. S.: Monte Carlo Strategies in Scientific Computing,
Springer-Verlag, New York, 2001.

Liu, J. S. and Chen, R.: Sequential Monte Carlo Methods for Dy-
namic Systems, J. Am. Stat. Assoc., 93, 1032–1044, 1998.

Lovett, W.: Banking and Financial Institutions Law in a Nutshell,
West Publishing Co., second edn., 1988.

McCann, W., Nishenko, S., Sykes, L., and Krause, J.: Seismic Gaps
and plate tectonics: Seismic Potential for major boundaries, Pure
Appl. Geophys., 117, 1082–1147, 1979.

McGuire, J. J.: Seismic Cycles and Earthquake Predictability on
East Pacific Rise Transform Faults, B. Seismol. Soc. Am., 98,
1067–1084, doi:10.1785/0120070154, 2008.
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