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Abstract. A methodology is presented to understand the role
of the statistical self-similar topology of real river networks
on scaling, or power law, in peak flows for rainfall-runoff
events. We created Monte Carlo generated sets of ensem-
bles of 1000 random self-similar networks (RSNs) with ge-
ometrically distributed interior and exterior generators hav-
ing parameterspi andpe, respectively. The parameter val-
ues were chosen to replicate the observed topology of real
river networks. We calculated flow hydrographs in each of
these networks by numerically solving the link-based mass
and momentum conservation equation under the assumption
of constant flow velocity. From these simulated RSNs and
hydrographs, the scaling exponentsβ andφ characterizing
power laws with respect to drainage area, and correspond-
ing to the width functions and flow hydrographs respectively,
were estimated. We found that, in general,φ > β, which
supports a similar finding first reported for simulations in the
river network of the Walnut Gulch basin, Arizona. Theoret-
ical estimation ofβ andφ in RSNs is a complex open prob-
lem. Therefore, using results for a simpler problem associ-
ated with the expected width function and expected hydro-
graph for an ensemble of RSNs, we give heuristic arguments
for theoretical derivations of the scaling exponentsβ(E) and
φ(E) that depend on the Horton ratios for stream lengths and
areas. These ratios in turn have a known dependence on the
parameters of the geometric distributions of RSN generators.
Good agreement was found between the analytically conjec-
tured values ofβ(E) andφ(E) and the values estimated by
the simulated ensembles of RSNs and hydrographs. The in-
dependence of the scaling exponentsφ(E) andφ with respect
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to the value of flow velocity and runoff intensity implies an
interesting connection between unit hydrograph theory and
flow dynamics. Our results provide a reference framework
to study scaling exponents under more complex scenarios of
flow dynamics and runoff generation processes using ensem-
bles of RSNs.

1 Introduction

Several theoretical and observational results have led to the
development of a nonlinear geophysical theory of floods in
river networks (Gupta et al., 2007). The central hypothesis
of the theory states that solutions of coupled mass and mo-
mentum conservation equations under suitable physical pa-
rameterizations in a self-similar river network produce spa-
tial power laws, or scaling relations, between peak flows and
drainage area in the limit of large area. Scaling in peak flows
is an emergent property that is common to many nonlinear
geophysical systems (Lovejoy et al., 2009). A central ob-
jective of the theory, given a space-time rainfall field for a
rainfall-runoff event, is to predict the values of the intercept
and exponent in the power law relation from the physics of
hillslope-link runoff generation and runoff transport, and test
it against observed power law. The flood of June 2008 in
Eastern Iowa is the most recent example that supports the va-
lidity of the main hypothesis of the theory over four orders
of magnitude variation in drainage area (Gupta et al., 2010).
Testing the scaling hypothesis using direct observations re-
quires a large number of streamflow gauges in a river basin
and data for multiple RF-RO events. Unfortunately, avail-
ability of such data sets is rather limited, which poses a great
challenge for future development of the theory. In this paper,
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we take the first step towards developing a multi-step diag-
nostic framework to understand the behavior of the power-
law parameters, which can be compared to observations for
developing suitable physical parameterizations.

Ogden and Dawdy(2003) conducted the first study in the
21 km2 Goodwin Creek experimental watershed (GCEW),
and observed that the slopes and intercepts of the peak-
flow scaling, or power-law, relations vary from one event
to the next. Furey and Gupta(2005) found that the event-
to-event variability in the slopes and intercepts of the peak-
flow scaling relations is connected to rainfall-excess depth
and duration for storms. Building on this finding,Furey
and Gupta(2007) developed a diagnostic framework to pre-
dict slopes and intercepts of peak flow scaling functions in
GCEW.Mantilla et al.(2006) demonstrated, for the 150 km2

Walnut Gulch basin in Arizona, that changes in the dynam-
ics of runoff transport in the river network lead to changes
in the value of the scaling exponent. Recently,Manda-
paka et al.(2009) showed using numerical simulations in the
1100 km2 Whitewater basin, Kansas how different aspects of
rainfall variability affect the scaling exponent. The results of
these studies have already provided significant insights to our
physical understanding of scaling in peak flows. However,
the fact that these studies have been performed on specific in-
dividual river networks leaves open key questions about the
role of self-similar topology of a river network in determin-
ing the value of the exponent and intercept. We address this
issue here.

Gupta et al.(1996) first derived the scaling of peak flow
versus drainage area in a self-similar Peano channel network.
Their derivation was based on analysis of geometric proper-
ties of the network width function, which is defined to be
the number of channel links as a function of distance from
the outlet (Rodŕıguez-Iturbe and Rinaldo, 1997). Denoting
Wω(x) as the width function for a stream of Strahler order
ω, the scaling relationship with respect to the upstream con-
tributing areaAω follows from the fractal structure of the
maximum contributing set and is given by maxx Wω(x) =

cβA
β
ω. Here,β andcβ are constants that depend on the net-

work topology. Under the assumptions of, (i) spatially uni-
form instantaneous inputs to the network, and (ii) movement
through the network at a uniform velocity without attenua-
tion, the streamflow hydrograph at the outlet of any sub-basin
will have the same shape as the width function for that sub-
basin. Therfore, the scaling behavior of peak flows in the
Peano network will be the same as that for the maximum
of the width function. Troutman and Over(2001) general-
ized these results to a wide class of deterministic self-similar
networks. Menabde et al.(2001) considered a more real-
istic physical situation by assuming that flow in a network
is represented by a mass conservation equation (Gupta and
Waymire, 1998), and undergoes attenuation due to a change
in a channel storage under uniform flow velocity. They found
for the Peano and the Mandelbrot-Vicsek networks that, as

A → ∞, the peak flow obeys scaling, maxt hω(t) = cφA
φ
ω.

Herehω(t) is a flow hydrograph. They also observed that
the exponentφ < β. The above analysis was extended
to the class of random self-similar networks (RSNs) with
Bernoulli-distributed generators.Veitzer and Gupta(2000)
introduced RSNs to represent self-similarity and randomness
observed in real river networks.Menabde et al.(2001) found
that φ < β in RSNs. Subsequently,Mantilla et al. (2006)
simulated hydrographs in the Walnut Gulch basin, Arizona
under the same set of physical assumptions thatMenabde
et al. (2001) had used. Surprisingly, the results showed that
φ > β. They conjectured that the qualitative different be-
havior between the two scaling exponents reflects the differ-
ences between the interplay of aggregation and attenuation of
stream flows in a real network.Mantilla (2007) investigated
the generality of this result using an ensemble of RSNs. His
findings supported thatφ > β. Communication of this result
is a major objective of our paper.

RSNs are constructed recursively from random generators,
which are essentially simple order-2 networks with a ran-
dom number of interior nodes (Veitzer and Gupta, 2000).
A distinction is made between interior and exterior gener-
ators, and the probability distribution can be different for
these two types of generators (Troutman, 2005). The class
of RSN models exhibit important topological features of real
networks that other models, such as the random topology
model (Shreve, 1966), or optimal channel networks (Rigon
et al., 1993), do not. These properties include the Horton law
of stream numbers (Veitzer and Gupta, 2000), Hack’s law
(Troutman, 2005), scaling properties of the width function
(Veitzer and Gupta, 2001; Troutman, 2005), and the power-
law tail probabilities of drainage areas (Veitzer et al., 2003).
Tokunaga mean self-similar networks exhibit many proper-
ties of real networks, but do not include any statistical vari-
ability found in real networks (McConnell and Gupta, 2008).
Building on an approach to estimate RSN generators for real
networks thatTroutman(2005) introduced,Mantilla et al.
(2010) carried out an extensive analysis to estimate and test
the properties of RSN generators for 30 river basins in differ-
ent hydro-climatic regions of the United States. In all cases
it was found that the RSN generators could be modeled by a
geometric probability distribution.

In this paper we simulate RSNs using geometric dis-
tributed generators, and analyze the scaling properties of
flow hydrographs that are obtained from solving mass and
momentum conservation equations in each network (Gupta
et al., 2007). Our objective is to test ifφ > β holds under
the assumption of constant flow velocity in space and time
asMantilla et al.(2006) originally reported for the Walnut
Gulch basin, Arizona. Where possible, we compare our nu-
merical results with the analytic expressions thatTroutman
(2005) obtained, which serves as benchmark for the accuracy
of results from numerical simulations.

The rest of the paper is organized as follows. In Sect.2 a
detailed description of the RSN model and the process that is
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Fig. 1. (a)The populations of interior and exterior path-based generators. Generators are labeled by bold letters I (interior) and E (exterior)
followed by an integer that represents number of interior nodes in the generator.(b) Two steps in the construction of an RSN indicating the
replacements made.

used to create the ensemble of river networks are presented.
In addition, the ensemble of flow hydrographs in RSNs that
form the basis of this study are presented in this section. In
Sect.3 we use results from some members of the ensembles
to shed light on the results that were obtained for simulation
in the Walnut Gulch river basin. Later, in Sect.4 we present a
generalization of the results by analyzing the relation of ex-
ponentsβ andφ on the full ensemble of RSNs. In Sect. 5
we present some new analytical results of scaling properties
for RSNs and in Sect. 6 we test the validity of these results
on our ensemble of river networks and flow hydrographs. Fi-
nally in Sect.7 we present the conclusions of this work and
some areas of future research.

2 Generating RSN ensembles and flow routing

RSNs are constructed by replacing, in an iterative fashion,
all the links of a network by randomly sampled generators
(Veitzer and Gupta, 2000). The process is initiated with a
network that consists of only a single link, and this link is re-
placed with a randomly sampled generator. Then the links in
the resulting network are all replaced with randomly sampled
generators, and so on. Thus, at each step of the iteration pro-
cess, the branching structure of the network becomes more
complex. Each link replacement in the iterative process is
done in a manner that depends on whether the link to be re-
placed is interior or exterior, where exterior links are defined
as those with no upstream connecting links. Generators from
one population, known as interior generators, replace interior

^

^

a)

Fig. 2. (a)Parameter space determined by the estimated parameters
pi andpe for generators sampled from different regions in the US.

links and exterior generators constituting a different popula-
tion replace exterior links. Construction of RSNs thus re-
quires specification of two probability distributions govern-
ing the random sampling of the different generator types, and
all sampled generators are assumed to be mutually indepen-
dent. Figure1a illustrates the two populations of generators
to be used in this paper and Fig.1b illustrates two iterations
of the replacement process.

Mantilla et al. (2010) demonstrated that the probabil-
ity distribution of external and internal generators of real
river networks follow geometric distributions given by
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w=3 w=5 w=7

Fig. 3. Width functions,Wω(x) and average width functionE[Wω(x)] (solid black line) for RSN with different orderω, and parameters
pi = 0.36 andpe= 0.48. The vertical axis (number of links at distancex from the outlet) has been rescaled by the factor(RC/RA)ω−1 and
the horizontal axis (distance from the outletx) has been rescaled by the factorRω−1

C . RA andRC are the Horton ratios of areas and lengths,
respectively.

w=3 w=5 w=7

Fig. 4. Hydrographs,hω(t) and average hydrographE[hω(t)] (solid black lines) for RSN with different orderω, and parameterspi = 0.36
andpe= 0.48. The vertical axis has been rescaled by the factor(RC/RA)ω−1 and the horizontal axis has been rescaled by the factorRω−1

C ,
with RA andRC given by Eq. (1).

P(Ki = ki) = pi(1−pi)
ki , ki ≥ 0 for interior generators and

P(Ke= ke) = pe(1−pe)
ke−1, ke ≥ 1 for exterior generators,

where the random variableKi is the number of interior nodes
in interior generators and the random variableKe is the num-
ber of interior nodes in exterior generators (see Fig.1 for
node types). They found that the parameterspi andpe are
not equal, but each is constant with respect to iteration step
in the replacement process, indicating scale invariance in real
networks. The geometric parameters are observed to exhibit
significant basin-to-basin variability (Fig.2).

We simulated ensembles of 1000 RSNs for combinations
of pi andpe in the parameter space. A total of 35 combi-
nations of the parameters in the rangepi ∈ [0.36,0.48] and
pe ∈ [0.45,0.53] were selected for a total of 35,000 distinct
topologies. A sampling interval of 0.2 was deemed suffi-
cient after performing several tests of sensitivity of topologi-
cal scaling properties to the parameterspi andpe. We arrived
at the 1000 RSNs per combination by finding a balance be-
tween statistical accuracy of the estimations performed for
the ensemble and computational limits to the number of nu-
merical simulations that can be performed.

Troutman(2005), building on the analyses and results of
Veitzer and Gupta(2000), has shown that, for the family
of RSNs with geometrically distributed interior and exterior
generators with parameterspi andpe, the Horton ratios of
areas and lengthsRA andRC, respectively, are given by,

RA =
pi +pe

pipe
, and RC =

1

pi
. (1)

Note that Eq. (1) holds for the RSN model under the assump-
tion of constant hillslope areas or independent and identically
distributed random hillslope areas (Veitzer and Gupta, 2000).

Estimating scaling exponents requires sets of networks of
different orders. This can be achieved in two ways: (i) by
creating a large network of order� and then sampling width
functionsWω(x) at the end of the embedded complete or-
der streams, or (ii) by creating networks of different orders
ω = 1,2,...,� and sampling the width function at the out-
let of each individual river network. We choose approach
(ii) because it eliminates the possibility of dependencies cre-
ated by the nested structure of a single large order� net-
work. In addition, it is easier to develop statistical tests
when the sample size is equal for different orderω networks
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which are provided by approach (ii). Figure3 shows the es-
timatedE[Wω(x)] (solid black line) for RSNs of different
orderω, with parameterspi = 0.36 andpe = 0.48. Figure3
also shows a few of the sampled width functionsWω(x).

For each of the members of the ensemble of RSNs, we
calculated the flow hydrograph produced by applying an
instantaneous-uniform runoff event over the entire network.
Flow hydrographs are obtained by numerically solving, for
each link in the river network, the link based flow equation,

dq(t)

dt
= K(q(t))[aR(t)+q1(t)+q2(t)−q(t)] (2)

developed byGupta and Waymire(1998) andMenabde and
Sivapalan(2001), whereq(t) is the flow at timet , K() is
in general a non-linear function ofq(t), a is the total hills-
lope area,R(t) is the runoff intensity coming from the hill-
slopes, andq1(t) andq2(t) are flows coming from the up-
stream tributaries when present. We assume that flow veloc-
ity is constant at all times, makingK(q(t)) = v/l wherel

is the link length (Menabde et al., 2001). We letv=1 m s−1,
l = 300 m anda = 0.1 km2 throughout the network. These
values are consistent with observed properties of real river
networks (Mantilla, 2007). R(t) equals 0 for allt , and an
initial conditionq(0)=1 m3 s−1 is imposed for all of the links
in the network. Note that this initial condition is equivalent
to the volume of water generated by a finite duration runoff
event that is applied instantaneously from the hillslope to the
nearest channel, for example a runoff intensity of 36 mm h−1

applied during 5 min or a runoff intensity of 180 mm h−1 ap-
plied during 1 min. The stored water in the channel for the
instantaneous event isS = aits, wherea is the total hillslope
area,i is the runoff intensity andts is the storm duration. Un-
der the assumption that cross sectional area and flow depth
are constant across the link we can writeq =

v
l
S, and it fol-

lows thati =
ql

tsav
. A sample of the hydrographs calculated is

shown in Fig.4.

3 Interpreting simulation results in RSNs
corresponding to the Walnut Gulch, AZ

Our first objective is to use simulated ensembles of hydro-
graphs in RSNs corresponding to the Walnut Gulch basin,
and develop a framework that allows us to test the validity
of the results reported byMantilla et al.(2006). We used the
techniques thatMantilla et al.(2010) explained to estimate
the parameters of the geometric distributions for the frequen-
cies of the interior and the exterior generators in the Walnut
Gulch basin. We found that the two distinct geometric dis-
tributions have parameterspi = 0.345 andpe = 0.462. The
results are shown in Fig.5, where confidence intervals for the
values ofpi andpe are also given.

In order to test the hypothesisφ > β for this type of net-
works we generated an ensemble of 1000 RSNs, and cal-
culated the two scaling exponents for each individual net-
work. Mantilla et al.(2006) used Horton ratios to calculate

the scaling exponents as explained in detail in Sect.4. Furey
and Troutman(2008) have suggested an improved estimation
technique for the Horton ratios involving geometric means
rather than arithmetic means that is routinely used. However,
we did not use this improved technique in our analysis so we
could compare our results withMantilla et al.(2006), but it
is used in Sect.4.

The estimated exponents exhibited a large degree of vari-
ability amongst the individual networks in the ensemble. The
average value ofβ is 0.460 with a standard deviation of
0.0067, which is close to the value of 0.48 thatMantilla et al.
(2006) obtained. Similarly, the average value forφ is 0.485
with standard deviation of 0.0095, which is smaller than the
value of 0.55 inMantilla et al.(2006). The histogram for the
values calculated are shown in Fig.6. The range of the sim-
ulated scaling exponents includes the values observed in the
Walnut Gulch basin.

Although the hypothesisφ > β holds for the average val-
ues, it does not hold for every river network in the ensemble
that was analyzed. In Fig.7 plots comparingβ andφ are
given. It can be seen that the hypothesisφ > β breaks down
for some of the networks.

Our analysis of the data indicates that the hypothesisφ >

β holds for approximately 700 of the 1000 networks in the
ensemble. The histogram of the difference is shown in Fig.8.

The results in this section provide a context to understand
scaling of flows in a more generic family of RSNs thatMan-
tilla et al. (2010) have identified. This knowledge is nec-
essary because only a handful of basins around the world
are as heavily instrumented as the Walnut Gulch. Therefore,
the understanding of these features can come from simula-
tions or analytic work in the solution of the flow equations
on RSNs. In the following section we focus our attention on
how the two scaling exponents compare with each other, and
address issues regarding estimation of scaling exponents in
simulated RSN topologies that are larger than order 6 of the
Walnut Gulch basin.

4 Comparing two scaling exponents for peak flow
prediction on RSN ensembles

The goal of this section is to present the analysis of two
scaling exponentsβ andφ that are estimated for the set of
RSNs with geometrically distributed generators and the cor-
responding flow hydrographs. Specifically, we test the hy-
pothesis that the scaling peak flow exponent under constant
velocity routingφ is larger than the scaling exponent of the
peak of the width functionβ. As indicated in the introduction
our hypothesis is qualitatively different from results obtained
in idealized fractal river networks and for a family of RSNs
with Bernoulli-distributed generators (Menabde et al., 2001).
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Fig. 5. Estimated parameters for a geometric distribution describing generators in Walnut Gulch, AZ.

Fig. 6. Histograms forβ andφ for RSNs with parameter values
pi = 0.345 andpe= 0.462.

4.1 The scaling exponentβ

We use the ensemble of networks to obtain an estimateβ̂ of
the parameterβ defined by,

β = logR2/logRA (3)

where,R2 is the Horton ratio for the maximum of the width
function 2ω = maxx Wω(x). The Horton ratioR2 is esti-
mated as the linear least square regression slope between

Fig. 7. Histograms forβ andφ for RSNs with parameter values
pi = 0.345 andpe= 0.462.

theE[log(2ω)] vs. stream orderω following recommenda-
tions byFurey and Troutman(2008). It leads to a geometric
mean for the Horton ratio rather than the arithmetic mean
that is routinely used. The parameter2ω has been studied by
Veitzer and Gupta(2000) for RSNs and byMantilla et al.
(2006) for real networks as it has a direct bearing on the
scaling relation for peak flows. The random variable2ω is
of particular interest because it has been shown byVeitzer
and Gupta(2001) to exhibit statistical self similarity (SSS);
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Fig. 8. Histogram ofφ−β.

which means that2ω/E[2ω]
d
= 2ω+1/E[2ω+1]. This con-

dition is necessary to assert that maxx Wω(x) = cβA
β
ω when

upstream areasAω obey SSS. Figure9 shows the field of
values estimated over the parameter space being considered
here that is taken fromMantilla et al.(2010). It is interest-
ing to note that the contours have a nearly vertical orienta-
tion, which means that a change inpi has a greater effect on
β thanpe. We conjecture that this feature comes from the
property that peak of the width functions are dominated by
interior generators rather than exterior generators.

In addition, Komogorov-Smirnov tests confirmed that

2ω/E[2ω]
d
= Z for ω ≥ 4, where the distribution ofZ does

not depend onω. Figure10illustrates this property for RSNs
with parameterspi = 0.36 andpe = 0.48. The collapse of
the rescaled cumulative distributions of the random variable
2ω/E[2ω] into a single common distribution follows from
scale independence (Fig.10a). The same feature is demon-
strated for rescaled basin areasAω/E[Aω] (Fig. 10b). The
convergence of the probability distribution of the quantity
Aω/E[Aω] was proved analytically byVeitzer and Gupta
(2000) and the convergence result is also given by Trout-
man (2005).

4.2 The scaling exponentφ

Using the results from the numerical solutions of Eq. (2) we
calculate the peak flow for each member of the ensemble of
RSNs. These simulations are used to estimate the exponent
φ using the relation,

φ = logRQ/logRA (4)

whereRQ is the Horton ratio for peak flows. Heretofore the
estimator of the exponentφ is labeled̂φ. Results of this es-
timation are presented in Fig.11. Again it is to be noted
that a change inpi has a greater effect onφ thanpe sug-
gesting that peak flows are influenced more by the interior
generators than exterior generators. Comparing the results
in Fig. 11 with those in Fig.9 it is observed that̂φ > β̂ for

Fig. 9. Fitted plane to values for̂β.

the range of parameters considered. Figure12a shows an in-
creasing value of the differencêφ − β̂ as a function of̂β. In
the context of the Walnut Gulch basin, the observed differ-
enceφ −β = 0.025 as discussed in the last section, which is
comparable to the value,̂φ− β̂ = 0.03 shown in Fig.12.

SSS is also observed for rescaled peak flows (Fig.13).1

5 A summary of conjectures regarding two theoretical
scaling exponents in RSN ensembles

Developing theoretical formulas for the exponentsφ andβ

remains an open problem. However, recent developments
in Troutman(2005) allow us to conjecture theoretical rela-
tions for the exponentsβ(E) andφ(E) which are connected
to the scaling properties of the ensemble average width func-
tion and hydrograph, respectively. The accuracy of the theo-
retical formulas is tested in Sect. 6 by comparing theoretical
with estimated values from the ensembles of RSNs used in
this study.

5.1 On topologic network properties

Define

β(E)
=

logR
(E)
2

logRA
(5)

whereR
(E)
2 is the Horton ratio for maxx E[Wω(x)] andRA is

the Horton ration of areas. HereWω(x) is the number of links

1We changed the value of the intensity of the event and we found
that it does not have any effect on the value of the estimated expo-
nents. Modifying the value of intensity is equivalent to rescaling the
discharge axis by a constant. The same result was obtained when
we double the flow velocity value. Modifying the velocity value is
equivalent to rescaling the time axis by a constant.
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a) b)

Fig. 10.The colapste of rescaled distributions indicates statistical self-similarity (SSS) in the(a) value of the maximum of the width function
and(b) the distribution of basin areas.

Fig. 11. Fitted plane to estimated̂φ.

having distance to the outlet equal tox. For RSNs, distance
to the outlet of a given link is simply a count of the number of
links between the downstream end of the given link and the
outlet. Thus,β(E) represents the scaling exponent describ-
ing the power-law behavior of maxx E[Wω(x)] with respect
to drainage area. Note that this scaling exponent is defined
for the maximum of the ensemble average (expected) width
function, which is different from the maxima of individual
random width functions considered so far.

Troutman(2005) presents theoretical results which sug-
gest thatβ(E) is given by

β(E)
= 1−

logRC

logRA
(6)

whereRC andRA are the Horton ratios of channel length and
area respectively. More precisely, the result proved inTrout-
man(2005) gave scaling of the cumulative width function for
RSNs, but a derivation of the scaling exponent in Eq. (6) for

Fig. 12. Differenceφ̂− β̂ as a function ofβ̂.

peak of the width function from the result for the cumulative
width function remained open. In what follows we give a
heuristic argument to support the conjecture in Eq. (6). The
simulation results given in Sect.4 provide further support
that Eq. (6) is the correct expression forβ(E) for RSNs.

Troutman(2005) proved that, for allx ≥ 0,

R−ω
A E[Jω(Rω

Cx)] →F(x) as ω → ∞ (7)

where

Jω(x) =

bxc∑
j=0

Wω(j) (8)

is the cumulative width function,bxc denotes the greatest in-
teger less than or equal tox, andF is a scale-independent
function which is continuous and increasing inx, and which
tends to a finite value asx grows large. There are some tech-
nical restrictions on the generator distribution for Eq. (7) to
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Fig. 13. The collapse of the distribution of rescaled peak flows for
networks of different orders imply Statistical Self Similarity.

hold, butTroutman(2005) has shown that these restrictions
are satisfied for geometric generators. Equation (7) is known
as an “integral limit theorem” because it gives a result on
the expectedcumulativewidth function. An important open
problem is to obtain what is known as a corresponding “lo-
cal limit theorem” on the expected width function itself. We
conjecture that such a result would have the form

(RC/RA)ωE[Wω(bRω
Cxc)] → f (x) as ω → ∞ (9)

The scaling on the left hand side is formally obtained by
differentiating Eq. (7) with respect tox, although such an
operation is not justified becauseE[Jω(x)] is discontinuous
in x and therefore it is not differentiable. We would then
expect the maximum of the expected width function to obey
the same scaling, or

(RC/RA)ωmax
j

E[Wω(j)] → const. (10)

This would then lead to Eq. (6) because area scales asRω
A ,

implying

max
j

E[Wω(j)] ∼ const(Rω
A)1−logRC/logRA (11)

Although a rigorous proof of Eqs. (9) and (10) remains
open, the numerical results in Sect.6 lend support to Eq. (6).

5.2 On flows

In this section we give asymptotic results that hold for lin-
ear flow in a RSN. The linear flow model to be used in this
section is essentially the width function formulation of the
geomorphological instantaneous unit hydrograph (GIUH)
(Rodŕıguez-Iturbe and Rinaldo, 1997, Sect. 7.7). Very sim-
ilar linear modeling approaches, but which are grid-based
rather than link-based, are described inOlivera and Maid-
ment(1999), Liu et al. (2003) andOlivera and Koka(2004).
We shall assume here for simplicity that all rainfall excess is

deposited into the upstream end of the link. But the asymp-
totic results below remain essentially the same if the lateral
inflow is distributed over the length of the link. Let the time
distribution of rainfall excess for an event be described by a
functionR(t), which has integral one, and let total volume of
rainfall excess for a link be denoted bySR. Under the linear
flow model, it is assumed that the outflow from each link is
the convolution of the total upstream inflow to the link with
a link response function, sayg(t;5), where5 is a vector
of properties such as length and hydraulic parameters associ-
ated with the link. We may think ofg as a probability density
function of the arrival time at the downstream end of a link
of a unit parcel of water deposited instantaneously at the up-
stream end. The result is that the impulse response function
for a path beginning at any initiating (upstream) link and con-
sisting ofk connected links is thek-fold convolution of the
individual link response functions. By linear superposition,
the response function for the entire network is obtained by
summing over all such initiating links in the network. In this
section we assume that5, R(t), andSR are spatially con-
stant for all links in the network. This assumption allows us
to collect terms in the sum over links in the network so that
paths of a given length are weighted by the value of the width
function at that length. As we shall see below, constancy of
5 is consistent with the constant velocity assumption of this
paper.

We note here several well-known special cases. First,
translation routing would result if5 is a single elementT
representing constant travel time through a link andg is a
delta functiong(t;5) = g(t;T ) = δ(t −T ). Another com-
mon model is the linear diffusion model for which the pa-
rameter5 consists of link lengthl, celerityC, and diffusivity
D. In this caseg is given by

g(t;T ) = g(t;l,C,D) =
l

√
4πDt3

e−(l−Ct)2/4Dt (12)

Finally, for linear storage routing, for which simulation re-
sults are given in Sect.4, the link parameter5 consists of a
single constant element,K, andg is defined to be the expo-
nential probability density function

g(t;5) = g(t;K) = Ke−Kt (13)

One important characteristic ofg is the mean residence time
in a link, given by

t =

∫
∞

0
tg(t;5)dt (14)

For the three special cases,t is given byT , l/C, and 1/K,
respectively.

For a randomly generated order-ω network from the RSN
model, lethω(t) be flow at the outlet and denote the width
function byWω(x), 0≤ x < ∞ (the width function is zero
for x larger than the topological mainstream length of the
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network). Then under our linear flow assumption, the net-
work instantaneous unit hydrographqω(t) is given by

qω(t) =

∞∑
j=0

Wω(j)gj (t;5) (15)

wheregj = g ∗g ∗ ...∗g is the (j +1)-fold convolution ofg
andhω(t) is given bySR(R∗qω)(t). This method of express-
ing flow in terms of the width function is given in a num-
ber of publications in the context of GIUH (see for example
Mesa and Mifflin, 1986; Marani et al., 1991; Rinaldo and
Rodŕıguez-Iturbe, 1996 and Rodŕıguez-Iturbe and Rinaldo,
1997, Eq. 7.112). Next, letVω(t) be the corresponding cu-
mulative flow, or

Vω(t) =

∫ t

0
hω(τ )dτ (16)

Using Eq. (15) we can obtain a convergence result analo-
gous to Eq. (7) for cumulative flow; for everyx ≥ 0

(SRRω
A)−1E[Vω(Rω

Ctx)] →F(x) as ω → ∞ (17)

whereF is the same function as that on the right in Eq. (7).
The proof of this result is very much like that given inTrout-
man and Karlinger(1988) for topologically random networks
and will not be repeated here.

We point out several interesting features of the result in
Eq. (17). First, the only property ofg that is of importance
asymptotically is the mean residence timet . (If l is link
length, we may define velocity to bev = l/t .) Secondly, the
form of the rainfall excess time distributionR(t) does not
enter into this result because letting the order of the network
grow large makes this time distribution unimportant. Thirdly,
and most important for this paper, the scaling with respect to
orderω in Eq. (17) is the same as that of the expected cumu-
lative width function in Eq. (7). However, we note that the
result is again for cumulative hydrographs rather than hy-
drograph peaks, and further analysis would be necessary to
obtain rigorously the result for peaks. Using an argument
similar to that above for the width function, we conjecture
that the scaling exponent for peaks would be

φ(E)
= 1−

logRC

logRA
(18)

and that this would hold exactly and generally for any linear
flow model under the restrictions imposed above. Simula-
tions in Sect.4 indicate that Eq. (18) does hold in the case of
linear storage routing.

Equation (1) provides closed analytic expressions to cal-
culate explicit formulas forβ(E) andφ(E) as a function ofpi
andpe. Applying the formulas to the values that we deter-
mine to be our parameter space, produces the fields shown
in Fig. 14. Notice that the contour lines are almost parallel
to each other, implying that a plane can closely approximate
the functional relation between the exponentsβ(E) andφ(E)

and the RSN model parameterspi andpe over our domain.

Fig. 14. Theoretical values forβ(E)
= φ(E) as functions of RSN

parameters.

6 Estimation of two theoretical scaling exponents
in RSN ensembles

6.1 The scaling exponentβ(E)

For every scaleω we estimate the maximum of the mean
width function; labeled̂2(E)

ω . Horton ratios have been shown
to hold for this quantity in an asymptotic sense (Troutman,
2005) which implies that,

2
(E)
ω+1

2
(E)
ω

→ R2(E) as ω → ∞ (19)

This result implies that estimates ofR̂2(E) can be obtained

by taking the ratio of the estimated̂2(E)
ω for networks with

largeω. Our largest simulated networks are of order� = 7.
We found that the estimates of̂R2(E) were strongly biased

by small variations of the valueŝ2(E)
ω . In order to eliminate

this source of error we found that it is convenient to take
the average ratio for the four largest orders. Thus, we define
R̂2(E) in terms of the average ratio given by,

R̂2(E) =
1

3

6∑
ω=4

[
2̂

(E)
ω+1

2̂
(E)
ω

]
(20)

In a similar fashion we use Eq. (5) to calculateβ̂(E). Fig-
ure15a shows the difference between the estimated values of
the exponents and the theoretical value,β(E), computed by
Eq. (6) for some combinations ofpi andpe in our parame-
ter space. We have fitted a plane passing through all those
points using linear regression (Fig.15b), and calculated the
error with respect to the theoretical Eq. (18) (see Fig.15c).

The average value of the differenceβ(E)
− β̂(E) is 0.0047,

and the standard deviation is 3.9× 10−4. This difference is
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Fig. 15. Local error for estimated values, fitted plane and error of the fitted plane for the scaling exponentsβ̂(E).

Fig. 16. (a)Differenceβ̂ − β̂(E) as a function ofβ̂(E) and(b) differenceβ̂ −β(E) as a function ofβ(E).

not statistically significant different from zero (5 % signif-
icance level). Figure15c shows that the larger differences
between the estimated and the theoretical exponents occur
for larger values ofβ(E) however this departure can be at-
tributed to the plane-fitting process since no systematic dif-
ferences are observed in Fig.15a. In addition, it is important
to recall that the theoretical result holds asymptotically and
the networks may not be large enough to achieve a perfect
match.

We find that the differencêβ − β̂(E) has mean 0.074 and
standard deviation 5.5× 10−4. In addition we found that
the value of this difference exhibits a strong dependence on
the estimated and theoretical exponentsβ̂(E) andβ(E). Fig-
ure16a and16b show that the largest deviations are observed
for values ofβ̂(E) andβ(E) near 0.3, while for values near
0.5 the difference is closer to zero. Note that the largest de-
viations are 8 times larger than the bias in estimation of the
scaling exponents. Also note from this figure that the over-
all range ofβ̂(E) values is greater than the overall range of

β̂ values. These differences are significant because the expo-
nentβ has practical implication for flood predictions (Veitzer
and Gupta, 2001; Mantilla et al., 2006).

6.2 The Scaling exponentφ(E)

A fitted plane for the estimated quantities is shown in
Fig.17a. The flow Eq. (2) is equivalent to a linear flow model
defined in Sect.5.2 with exponential link response function
in Eq. (13). Therefore, it is conjectured that an exact ex-
pression for the exponentφ̂(E) is given by Eq. (18). We can
calculate the difference between the theoretical expression
and φ̂(E) (Fig. 17b). The average differenceφ(E)

− φ̂(E) is
−0.0031. The bias is similar to the one encountered for the
parameters of the width function in the previous section.

An interesting result is that the bias observed in estimated
scaling parameters of the max of the mean width function
is the same as the one found for the scaling parameters of
the max of the mean hydrograph. The average value of the
differenceβ̂(E)

− φ̂(E) is −0.0016 which is not statistically
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Fig. 17. (a)Fitted plane to estimated for̂φ(E) for the constant link and hillslope areas case.(b) Magnitude of the error forφ(E)
− φ̂(E).

different from 0 with a 5 % significance level. This result im-
plies that the purely topologic exponentβ̂(E) is an accurate
surrogate for the exponentφ̂(E) which represents the dynam-
ical response of flows to runoff input in the network.

7 Conclusions

In order to understand the role of statistical self-similar topol-
ogy observed in real river networks on spatial scaling statis-
tics of hydrographs, we created Monte Carlo generated en-
sembles of 1000 RSNs with geometrically distributed inte-
rior and exterior generators with parameterspi andpe, re-
spectively (Mantilla et al., 2010). We calculated hydrographs
in each of these networks by numerically solving the link-
based mass and momentum conservation Eq. (2) under the
assumption of constant flow velocity. From these simulated
networks and hydrographs the scaling parametersβ andφ

were estimated. Results showed that, for RSNs with geomet-
rically distributed generators, the scaling exponentφ > β,
which supports the finding thatMantilla et al. (2006) first
reported for the Walnut Gulch basin. However, the use of
ensembles of RSNs enabled us to find that the value ofβ is a
lower bound for the value of the exponentφ. This finding has
important implications for flood prediction in real networks
that are ungauged.

Theoretical estimation ofβ andφ in RSNs is a complex
mathematical problem that remains open. However, progress
has been made on a simpler problem which is the theoretical
derivation of the scaling exponentsβ(E) andφ(E) associated
with the expected width function and expected hydrograph,
respectively. Using rigorous asymptotic scaling results that
Troutman(2005) obtained, we conjectured expressions for
the functional dependence ofβ(E) andφ(E) on the Horton
ratiosRC andRA . These ratios in turn have a known depen-
dence on the parameters of the geometric distributionspi and
pe.

Good agreement was found between the analytically con-
jectured values ofβ(E) and φ(E) and the values estimated
by the generated RSNs and hydrographs. Good agreement
was also found for other geomorphic characteristics such as
the scaling statistics of areas and SSS of maxima of width
function. These results lend support to the correctness of the
conjectured expressions in Eqs. (6) and (18). Our conclu-
sions apply to the parameter space established inMantilla
et al.(2010) for real networks.

It was found that the exponentsφ(E) andφ are different
and thatφ > φ(E). This difference seems to be a direct con-
sequence of the differences observed betweenβ andβ(E).
These differences in the exponents highlight the need to de-
velop analytic results for the exponentsβ andφ, which have
direct bearing in flood prediction for individual events (Man-
tilla et al., 2006).

The independence of the scaling exponentsφ(E) and φ

with respect to the value of flow velocity and runoff inten-
sity implies an interesting connection between unit hydro-
graph theory and flow dynamics. These results make the
unit hydrograph theory fully consistent with the flow dy-
namics pertaining to constant velocity. Thus, a numerical
solution of the link equation of flow can be interpreted as
producing a family of GIUHs corresponding to the width
function for each node in the network. Moreover, an av-
erage GIUH that solely depends on network Strahler order
(e.g.Rinaldo and Rodrı́guez-Iturbe, 1996) is insufficient to
describe flow transport in a river network. This results pro-
vide a reference framework to study scaling exponents under
more complex scenarios of flow dynamics (Mantilla, 2007)
and runoff generation processes (Furey and Gupta, 2007) us-
ing ensembles of RSNs. It also highlights the importance of
combining numerical solutions of the equations along with
analytic developments in order to make progress on this com-
plex mathematical and scientific problem.
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Our results open several questions regarding the correct
estimation of the scaling exponents. As shown byFurey
and Troutman(2008) the estimation technique and pre-
asymptotic effects can impact the correct estimation of the
scaling exponents from ensembles. Thus, all our conclusions
are subject to refinements as simulation of larger networks
and larger ensembles become computationally possible, or
as new analytic results become available.

Appendix A

Notation

A = Basin Area
ω = Strahler stream order
Wω(x) = Width function of a stream of orderω
hω(t) = Hydrograph of a stream of orderω

2ω = maximum of width function maxx Wω(x)

Qω = maximum of hydrograph maxt hω(t)

β = Scaling exponent ofE[2ω] with respect toA
φ = Scaling exponent ofE[Qω] with respect toA
2

(E)
ω = maximum of mean width function maxx E[Wω(x)]

Q
(E)
ω = maximum of mean hydrograph maxt E[hω(t)]

β(E) = Scaling exponent of2(E)
ω with respectA

φ(E) = Scaling exponent ofQ(E)
ω with respectA

i = Runoff intensity
d = Runoff duration
tc = Network concentration time
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