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Almeŕıa, Spain

Received: 10 December 2010 – Revised: 11 July 2011 – Accepted: 11 July 2011 – Published: 18 July 2011

Abstract. On 18 September 2004, an earthquake of mag-
nitude mbLg= 4.6 was recorded near the Itoiz dam (North-
ern Spain). It occurred after the first impoundment of the
reservoir and has been catalogued by some authors as in-
duced seismicity. We analyzed the seismicity in the re-
gion as weighted complex networks and tried to differenti-
ate this event from others that occurred nearby. We calcu-
lated the main topological features of the networks formed
by the seismic clusters and compared them. We compared
the results with a series of simulations, and showed that the
clusters were better modelled with the Epidemic-Type Af-
tershock Sequence (ETAS) model than with random mod-
els. We found that the properties of the different clusters are
grouped according to the magnitude of the main shocks and
the number of events in each cluster, and that no distinct fea-
ture could be obtained for the 18 September 2004 series. We
found that the nodes with the highest strength are the most
important in the networks’ traffic, and are associated with
the events with the highest magnitude within the clusters.

1 Introduction

Earthquakes are one of the most interesting natural phenom-
ena that can be described as complex systems. A key ingredi-
ent of a complex system is the non-linear interaction between
its constituents, which under special circumstances can give
rise to coherent, emergent, complex behaviour patterns with
a very rich structure. A way to study these structures is to
describe the system as a complex network, and analyze the
topological characteristics it forms.
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In the past few years, much attention has been focused
on the study of complex networks, such as the World Wide
Web (WWW), the Internet, scientific collaboration networks,
worldwide airport networks, etc. Researchers have mainly
focused on unweighted networks, that is, networks in which
every pair of nodes in the network are either connected or
not connected, with weights of 1 or 0, respectively. How-
ever, many technological, biological and social systems are
best described by weighted networks, whose properties and
dynamics depend not only on their structures but also on
the weight of the connections between the nodes (Chen and
Chen, 2007). Even for purely unweighted graphs, edge
weights naturally emerge as dynamical properties, when
transport, random walks or other processes take place on the
network (Tadic et al., 2007; Barrat et al., 2008).

In seismology, several models based on complex networks
have been proposed (Abe and Suzuki, 2004a, b, 2006; Baiesi
and Paczuski, 2004, 2005; Davidsen, 2008; Jiménez et al.,
2008, 2009). However, these models are unweighted com-
plex networks. In our research we have used a weighted
complex network, which describes the seismicity in a more
realistic way than an unweighted network, and provides more
characteristics from which to gain a more complete picture of
the seismicity.

The network model we propose is as follows: each earth-
quake represents a node, and the link weight between nodes
is a distance based on the ETAS model (Ogata, 1988, 1998,
1999). In this research, we analyzed a small region centred
on the Itoiz dam (Northern Spain), which has been exten-
sively studied since the 18 September 2004 earthquake that
occurred nearby. For example, Ruiz et al. (2006) analyzed
the seismic series corresponding to the 18 September 2004
earthquake; Luźon et al. (2009, 2010) and Durá-Gómez and
Talwani (2010) studied the effect of the pore pressure due to
the impoundment of the reservoir; Santoyo et al. (2010) cal-
culated the stress produced by the reservoir near Itoiz. They
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showed that the aftershock sequence was indeed produced by
the stress transfer caused by the 18 September 2004 earth-
quake. Rivas-Medina et al. (2011) calculated the seismic
hazard near the Itoiz dam. In a previous work (Jiménez et
al., 2009), we studied the seven main seismic clusters near
the Itoiz dam by modelling them as unweighted complex
networks. We obtained seven clusters with small-world be-
haviour of the complex networks they formed. We did not
find any difference between the 18 September 2004 cluster
and the others, except for a higher fractal dimension of the
epicentre distribution.

2 Methods

In this work, we improve on the study in Jiménez et
al. (2009), because we obtain the values for the parameters of
the ETAS model in the region. These are real values which
allow us to use an appropriate distance between earthquakes
to decluster the catalogue.

We then analyzed each cluster as a weighted complex net-
work, with the inverse of the ETAS distance as the weight
between two events. This distance depends on the magni-
tude, spatial separation and time between them. We char-
acterized the networks by their average path length and the
clustering coefficient. Afterwards, we classified the clusters
according to these two features by means of ak-means al-
gorithm (Teknomo, 2007). We also calculated the distribu-
tion of weights, strength and distances, and the betweenness
(Gleich, 2007). We then compared the results with the aver-
age values produced by several simulations, both with a ran-
dom model (Garlaschelli, 2009) and the ETAS model (Ogata,
1998, 1999; Helmstetter and Sornette, 2002).

2.1 ETAS model

The ETAS model is the most popular contemporary model
for studying aftershock sequences. It is a stochastic point
process model, which has a number of parameters that are
usually fitted from a training period before the model can
be applied for forecasting purposes. In the framework of
this model, there is no difference between aftershocks, main
shocks or foreshocks (Helmstetter and Sornette, 2002). The
ETAS model is a point process representing the activity of
earthquakes of magnitudem0 and larger in a region over a
given period of time. The model includes background ac-
tivity of constant occurrence rateµ in time (i.e. stationary
Poisson process) and also includes aftershocks as described
below. Each earthquake, including aftershocks of another
earthquake, is followed by its aftershock activity, although
only aftershocks of magnitudem0 and larger are included in
the data. The aftershock activity is represented by a non-
stationary Poisson process according to the modified Omori
formula in such a way that the occurrence rate (νi(t)) of af-
tershocks at timet following the i-th earthquake (ti , m0) is
given by (Ogata, 1998):

νi(t) =
K

(t − ti +c)p
eα(mi−m0) (1)

for t > ti , where the parametersK, α, c, p are constants
common to alli, and m0 is the minimum magnitude that
produces an aftershock sequence. The rate of occurrence
of the whole earthquake series at timet , called the condi-
tional intensity function based on the history of occurrence
Ht={(ti , mi); ti < t}, then becomes:

λ0(t | Ht ) = µ+

∑
{i:ti<t}

νi(t) (2)

whereµ is the background seismicity. As extensions of the
ETAS model we confined ourselves to space-time response
functionsg8(t ,x,y;m) such that the superposed conditional
intensity reads (Ogata, 1998):

λ(t) =

∫ ∫
A

λ(t,x,y)dxdy =

∫ ∫
A

g8(t,x,y : m)dxdy (3)

≈

∫ ∫
R2

g8(t,x,y : m)dxdy =
Keα(m−m0)

(t +c)p

whereA is the area of the study region. Note thatm in
Eqs. (2–3) enters only as a parameter, not a variable. We used
the response function in such a way that spatial dependency
was separable from dependency on magnitude and time. We
did this in order to simulate the seismicity as in Helmstetter
and Sornette (2002), where the terms relating to time, space
and magnitude are independent. For this purpose, we made
the following hypothesis (Ogata, 1998):

g8(t,x,y;m) =
K

(t +c)p

eα(m−m0)

(x2+y2+d)q
(4)

wherex andy are the spatial coordinates of the event in 2-D.
In order to choose the best model we followed the maximum
likelihood procedure described in detail by Ogata (1998).
We used a Genetic algorithm (GA) to maximize the like-
lihood of the model. We improved the method proposed
by Ogata (1998, 1999) to obtain the ETAS parameters, be-
cause the GA is a more efficient way of calculating the op-
timum.GA are methods of global optimization, which have
proved to be effective when the models are described by a
few parameters, the problem is nonlocal (the global opti-
mum is needed, but there are many local optima) and non-
linear, and there is no a priori knowledge of the behaviour of
the function. In geophysics, and particularly in seismology,
many problems often have such features. The GA used in this
paper was implemented in Jiménez et al. (2005). The defini-
tive search strategy chosen was selection by rank wheel,
crossover based on fitness, and replacement by rank wheel.
This strategy is moderately elitist, because the best individ-
uals are easily selected, but there is low selection pressure.
The simple GA was improved with the reinitialization of the
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population when the convergence stays blocked (Jiménez et
al., 2005).

Thanks to the large number of models considered, in ad-
dition to the fittest model, a mean model and its accuracy
were evaluated by means of a statistical approach based on
the estimation of the Marginal Posterior Probability Density
(MPPD) (Dal Moro et al., 2007). The averaged model was
calculated as:

θj =
1

n

n∑
i=1

ρ(i)θij (5)

whereθj is the model parameterj , θij is the value of the
parameter in the evaluated modeli, andρ(i) is the function:

ρ(i) =
efitness(i)∑

j

efitness(j)
(6)

Where the fitness is the log-likelihood calculated for each
model, following Ogata (1998). The standard deviation was
calculated as:

σj =
1

n−1

n∑
i=1

ρ(i)(θij −θj )
2. (7)

2.2 Declustering algorithm

The purpose of declustering the catalogue is to find the main
clusters in it. Window-based or link-based methods are tra-
ditionally used for declustering a seismic catalogue or iden-
tifying earthquake clusters (Baiesi and Paczuski, 2005). The
main problem is to identify which earthquakes are correlated,
because there is no single operational way of distinguishing
between aftershocks and main shocks (Zhuang et al., 2004).
Several methods based on the ETAS model have been pro-
posed for declustering the catalogues (Zhuang et al., 2004;
Jiménez et al., 2009; Console et al., 2010). We followed the
method proposed in Jiḿenez et al. (2009), where the distance
between earthquakes is given by the inverse of the proba-
bility of two earthquakes being correlated. In the present
work, it is given by the functiong8, Eq. (4), with the pa-
rameters obtained previously for the region. We began by
calculating these distances between all pairs of earthquakes
and then used them to create a hierarchical cluster tree where
two events are linked if their correlation is higher than a
certain threshold. In order to group individual earthquakes
to clusters, we used the single linkage method. The single
linkage method is a fundamental agglomerative hierarchical
clustering algorithm. By truncating the resulting cluster tree
at a suitable threshold value for the distance being studied,
a complex network was obtained in which each earthquake
represents a single node. The threshold was chosen in such
a way that the number of clusters was in agreement with the
value obtained for the background seismicityµ. The estima-
tion of the background seismicity following the ETAS model

gives us a natural way of choosing the threshold necessary
to decluster the catalogue. In a previous work (Jiménez et
al., 2009) this step was a little arbitrary, since we chose the
threshold that gave us more than one cluster.

When the number of points is large, this way of finding
the main clusters is less time-consuming than, for example,
thek-means algorithm (MacQueen, 1967). It is also unique,
unlike thek-means algorithm, which depends on the initial
clusters’ centres.

2.3 Characterization of weighted complex networks

Here we describe the most important parameters that de-
scribe a complex network. In an unweighted network, an
important feature is the degree distribution,ki :

ki =

N∑
j=1

Ai,j (8)

whereA is the adjacency matrix andN is the number of
nodes. For a weighted network, it is important to know the
distribution of the weights,wi,j , which replace the Boolean
numbersAi,j , and the strengths,si , that replace the degree
of the node. The higher the weight and strength, the more
closely related are the two nodes. We useg8 (Eq. 4) as the
weight between the nodes.

Two of the most important quantities required to charac-
terize a complex network are the average path length and the
clustering coefficient.

The average (or characteristic) path lengthL is the mean
length of the shortest paths (expressed in terms of the number
of edges) connecting any two nodes on the graph. The short-
est path between a pair (i, j) of nodes in a network is con-
sidered as their geodesic distanceGij , with a mean geodesic
distanceL of:

L =
2

N(N −1)

∑
i<j

Gij (9)

whereN is the number of nodes.
In order to calculate the average path length, we used the

distance given by 1/g8, and put it into the Dijkstra algo-
rithm (Dijkstra, 1959). We used the implementation given
in Kay (2001).

The other important quantity, the clustering coefficient,
was calculated as in Onnela et al. (2005):

C =
1

ki(ki −1)

∑
j,k

(ŵij ŵikŵjk)
1/3 (10)

whereŵji = wij/max
i,j

(wij ), andki equalsN if all the nodes

are connected, as is the case here. With this definition,C

has the same value if the weights become binary, it is defined
between 0 and 1, uses a global normalization, takes into ac-
count weights of all edges in the triangle and is invariant to
weight permutation for one triangle (Saramäki et al., 2007).
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To further characterize the complex network, we also cal-
culated the betweenness distribution. This was first proposed
by Freeman (1977), and represents the total number of op-
timal paths between any pairs of nodes passing through one
node (Park et al., 2004). More succinctly (Freeman, 1977):

B(v) =

∑
s 6=v 6=t

σst (v)

σst

(11)

whereσst is the number of shortest paths froms to t , and
σst (v) is the number of shortest paths froms to t that pass
through a vertexv. We used the code implemented by Gle-
ich (2007) in order to calculate it.

2.4 Network model: random weighted networks and
ETAS simulation

In order to classify the seismic networks derived in this
work according to their main topological features, they can
be compared with the corresponding values of characteristic
network theoretic measures obtained for comparable model
networks, i.e. model networks with the same number of
nodes as the original seismic networks. For this purpose,
we will use particularly weighted random networks and sim-
ulations of the ETAS model. Since the particular network
pattern of both types of models depends on random realiza-
tions of links, the properties of the resulting networks may
differ between individual realizations. In order to consider
this in our analysis, 100 realizations were studied in each
case to obtain estimates for the expectation values and 95 %
confidence levels (the latter were approximated by±1.96
times the standard deviation of the respective values of the
network-theoretic measures obtained for the individual real-
izations).

The Erds-Ŕenyi (ER) random graph (Erdős and Ŕenyi,
1959, 1960, 1961) is the prototype of all unweighted network
models: in a graph withN vertices, an unweighted edge is
drawn independently between any pair of vertices with equal
probabilityP . The ER model provides a fundamental refer-
ence for the properties of real networks. The increasing inter-
est in complex networks originates precisely because of the
striking difference between the observed properties of real
networks and the behaviour of the ER model (Garlaschelli,
2009). So, we needed a random reference model to enable us
to compare its properties with those of the networks we ob-
tained. Garlaschelli (2009) proposed a procedure to construct
a weighted random model as follows: the number of nodes is
fixed. For each pair of vertices, we start a series of Bernoulli
trials with success probabilityP , which depends on the num-
ber of links and the sum of edge weights in the real network.
Each success implies that the weight is increased between
the same two vertices in one unit. As soon as a failure occurs
for the first time, the sequence of trials stops and a new pair
of vertices is selected. The process is repeated until all pairs
have been considered.

Fig. 1. Location of the main events corresponding to the main
clusters. NPZ= North Pyrenean Zone; PAZ = Palaeozoic Axial
Zone; SPZ= South Pyrenean Zone; NPF= North Pyrenean Fault;
PF = Pamplona Fault; Palaeozoic Basque Massifs: CV= Cinco
Villas Massif; A = Aldudes-Quinto Real Massif. AB= Aquitaine
Basin; EB= Ebro Basin; JPB= Jaca-Pamplona Basin; IR= Itoiz
Reservoir (Modified from Santoyo et al., 2010).

We needed a more realistic simulation of the complex net-
works. In order to achieve this, we simulated a network with
the same number of nodes by using the ETAS model. The al-
gorithm for the simulation is described in Ogata (1998, 1999)
and Helmstetter and Sornette (2002). We assumed a decou-
pling between magnitude, space and time, because of its sim-
plicity. Starting with the main event in each cluster, events
were simulated sequentially. First, we calculated the condi-
tional seismic rateλ(t) defined by:

λ(t) =

∑
ti≤t

K

(t − ti +c)p
eα(mi−m0). (12)

The time of the following event was then determined accord-
ing to the nonstationary Poisson process of conditional in-
tensityλ(t), and its magnitude was chosen according to the
Gutenberg-Richter (1956) distribution with parameterb. To
determine the position in space of this new event, we first
chose its mother randomly among all preceding events with
a probability proportional to their rate of aftershocks evalu-
ated at the time of the new event. Once we had chosen the
mother, we generated the distancer between the new earth-
quake and its mother according to the spatial part of the dis-
tribution given in Eq. (4). The location of the new event was
determined assuming an isotropic distribution of aftershocks.

3 Tectonical setting and data

The study area (Fig. 1) is located in a region with a complex
thin-skinned structure belonging to the South Pyrenean Zone

Nonlin. Processes Geophys., 18, 477–487, 2011 www.nonlin-processes-geophys.net/18/477/2011/
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(SPZ), and takes the form of a square of 2◦
×2◦ with its cen-

tre in the 111 m high Itoiz dam (42.8◦ N, 1.35◦ W). The SPZ
forms the external part of the Pyrenean belt and is a Tertiary
unit overriding to the south of the Ebro foreland basin. This
unit is north-bounded by the Palaeozoic Axial Zone (PAZ),
which outcrops here as a series of individual massifs, known
as the Palaeozoic Basque Massifs (PBM). The North Pyre-
nean Fault (NPF) is located between the PAZ and the North
Pyrenean Zone – a Mesozoic unit overthrusting the Aquitaine
foreland basin to the north. This fault is a major tectonic su-
ture running east-west along the Pyrenean range that is inter-
preted as the superficial expression of the Iberian and Euro-
pean plate boundaries. Palaeomagnetic data, seismic profiles
and seismicity studies suggest that the structural boundary
associated with the NPF is prolonged westward through the
Basque-Cantabrian basin along the Leiza Fault. Another rel-
evant structure in the area is the Pamplona Fault (PF) that
runs NNE-SSW from the Ebro basin to the PBM. It has been
interpreted as a deep transverse structure separating two dif-
ferent structural zones, the SPZ to the east, where the most
important structures mainly trend south, and the Basque-
Cantabrian basin to the west, with a thicker lower Cretaceous
sequence, where most structures trend northward. This struc-
ture acted as an extensional transfer fault during the Meso-
zoic extensional period that led to the opening of the Gulf
of Biscay and the separation of the Iberian Peninsula as a
subplate. The PF was subsequently involved in the Tertiary
compression responsible for the Pyrenean belt uplift. The
epicentral region is a Mesozoic and Tertiary cover area, lo-
cated in the NE of the Pamplona basin, and composed of
anticlines and synclines with the axes trending to the east,
but truncated in some places by E–W to ESE–WNW fault
systems (Ruiz et al., 2006).

The present day seismicity of the western Pyrenees, as
reported from permanent networks, is rather moderate and
mainly concentrated on the French side. In the past few
decades it has been characterized by events of magnitudes up
to 5.5. This activity follows an E–W oriented strip 150 km
long and 5 to 15 km wide, starting at the western edge of
the NPF, at a longitude of 0.1◦ W, and continuing through
the PBM along the Leiza Fault. Historical seismicity also
appears concentrated in the border region, along the PAZ
and the PBM. Six destructive events with intensity greater
than VII have been reported in this area over the last 200 yr
approximately. Instrumental catalogues of the westernmost
Pyrenean edge show a sparse and moderate to low magni-
tude activity, mainly concentrated westward of Pamplona,
where events are related to the central segment of the Pam-
plona Fault and to the Aralar thrust. An E–W seismicity belt
is also found related to the Roncesvalles thrust that separates
the Palaeozoic Aldudes massif from the Pamplona basin. The
catalogues also report a few events related to the E–W thrust
systems delineating the contact between the Pamplona and
Ebro basins (Ruiz et al., 2006).

The Itoiz dam (42.80◦ N, 1.36◦ W) is located in Navarre,
Northern Spain, 2 km north of the village of Aoiz and 25 km
east of Pamplona, Construction was completed in 2003. In
January 2004 its impoundment began and 8 months later, on
18 September a clustered seismic series occurred. The epi-
centre was located between the city of Pamplona and the Itoiz
reservoir. The main shock (mbLg= 4.6, 42.85◦ N, 1.45◦ W)
and the largest aftershock (the 30 September 2004 event)
were widely felt in this region causing widespread unease
amongst the general public. The Itoiz reservoir has a max-
imum capacity of 418 hm3 and, once filled, covers a maxi-
mum surface area of 510 km2. It was constructed for irriga-
tion and electricity generation purposes. In September 2004,
the reservoir was only 15 % full, after beginning impounding
water in January 2004 (Ruiz et al., 2006).

The data used were recorded by the Instituto Geográfico
Nacional (IGN, 2010), and cover earthquakes from 1999 to
2008. In total, 2350 earthquakes with a magnitude greater
than 1 were observed. The location of the data does not in-
clude the depth of the earthquakes. The Gutenberg-Richter
distribution (1956) hasb = 1.14, with error bound equal to
0.03. This value differs slightly from that used in Jiménez et
al. (2009). The difference is due to the fact that in the present
work we calculated it by fitting of the cumulative distribu-
tion, and not by using the probability density function as we
did in Jiménez et al. (2009). We did this because we wanted
to simulate the networks as far as possible according to the
method proposed by Ogata (1998).

4 Results

Following the procedure detailed in Sect. 2, we obtained the
main clusters in the region. Afterwards, we translated the
clusters into the language of complex networks: each node
represents an event, and the weight between each pair of
nodes is given by the inverse of the distance between the two
earthquakes. This distance is based upon the ETAS model,
so that it depends on the magnitude of the first earthquake,
the time interval and the spatial separation between events.
A larger distance represents a lower probability of two earth-
quakes being connected, so the weight of the link is lower.

Ruiz et al. (2006) also calculated some of the parame-
ters of the ETAS model related to time and magnitude for
the 18 September 2004 series, but for that cluster only, not
for the region as a whole. Here, we calculated the ETAS
parameters for the region of interest. The intervals of the
search were the following:p = [0.8, 1.2], α = [0.5,1.5],
c = [10−3,10−2], d = [0.1,20],q = [0,2], K = [10−9,10−4],
andµ = [10−6,10−4]. The resolution for each parameter was
(in bits, so 2 to the power of the given resolution), 6, 6, 6,
7, 4, 15, 6, respectively. The intervals were chosen on the
basis of the values obtained by Ogata (1998) for a variety of
regions. The result of the maximization of the log-likelihood
of the model in Eq. (4) Ogata (1998) is shown in Table 1.
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Table 1. Average values and error of the ETAS fit for magnitude higher than 1.

Parameter p α c (days) d (km) q K (shock/day/km2) µ (shock/day/km2)

Value 0.975 0.8438 0.0049 0.1 1.625 7.1323· 10−5 5.6406· 10−6

Error MPPD 9· 10−30 4 · 10−30 2 · 10−32 9 · 10−32 6 · 10−30 9 · 10−39 7 · 10−42

Error simulation (51) 0.31 0.83 0.0062 6.1 0.790 5.6512· 10−5 3.9899· 10−5

Fig. 2. In solid line, the real seismicity, and in dashed line, the
ETAS model.

The Akaike Information Criterion (AIC) (Akaike, 1974) of
the best fit is 1374, which is a low value if we compare it
with the ones obtained in Ogata (1998). The average val-
ues coincide almost completely with the best fit, and are the
same for the resolution given in Table 1. The error is given
by the calculation of the Marginal Posterior Probability Den-
sity (MPPD) error bound (Dal Moro et al., 2007). The best fit
was found in the second generation, and was stable until the
100th generation. In Fig. 2 we can see the difference between
the real data and the model. We can see that the ETAS model
underestimates the number of events. We are very confident
that the GA reaches the best fit, so perhaps even the ETAS
model does not fit our data set sufficiently well.

We now roughly estimated the errors in the simulations,
following Wang et al. (2010). First we generated the spon-
taneous (background) events that are uniformly distributed
in the space-time window. The total number of sponta-
neous events is a Poisson random variable with a mean of
µ T A, and the magnitudes are generated from the truncated
Gutenberg-Richter magnitude distribution. This is the first
generation. We then proceeded to generate the offspring
events, by calculating the aftershock sequence for each event
in the first generation, with a number of events equal to a
Poisson random variable with meanKeα(m−m0)T A. The
events were generated according to the algorithm proposed

Table 2. Main clusters in the catalogue. D2 is the correlation di-
mension.

Main Magnitude Number
shock (mbLg) of shocks

10-Nov-2002 3.3 55
11-Dec-2002 3.6 447
13-Oct-2003 3.3 93
18-Sep-2004 4.6 925
24-Nov-2007 3.3 137
21-Feb-2002 3.8 22
27-Oct-2007 2.4 34
16-Jul-2002 2.8 24

by Ogata (1998). This is the second generation. We then
continued with the next generation until we reached a gener-
ation with no offspring or we reached the maximum number
of events in the real catalogue. We then calculated the errors
of the simulations as in Wang et al.(2010):

error=

√∑
(simulated parameter− real value)2

number of simulations
. (13)

Note that these errors are calculated for the simulations, and
they are not related to the actual error of the fits. They are
shown in Table 1. We could only perform 51 instances of
the catalogue, with a maximum number of generations equal
to 10 for the GA, because of computation limits. We ob-
served that the errors are high, and this is reflected in the
errors found in Table 4 when we use the ETAS simulation to
compare it with the real networks.

With the ETAS model parameters obtained previously, we
proceeded to decluster the catalogue. We wanted to find the
threshold in the distances that gives us a number of groups
in agreement with the quantity tµT A, with T being the time
interval covered by the catalogue,A the area of the region
andµ the background seismicity in the ETAS model. With
our data set, the quantityµT A is 447. We use a simple
link algorithm with the threshold 1/g8 = 2 ·106, that gives
us 440 clusters in our catalogue.

In order to ensure that we had good statistics for the analy-
sis of the weighted complex networks formed, we only chose
the clusters with more than 20 events, which are described
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Table 3. Average values and error of the ETAS fit for magnitude higher than 2.

Parameter p α c (days) d (km) q K (shock/day/km2) µ (shock/day/km2)

Value 1.1563 1.25 0.0069 0.1 1.125 3.8618· 10−5 2.5469· 10−6

Error MPPD 4· 10−31 5 · 10−32 7 · 10−36 2 · 10−33 2 · 10−31 2 · 10−40 2 · 10−42

in Table 2. The clusters are named after the earthquake
with the highest magnitude. In Fig. 1 we show the main
shocks of the clusters analyzed. The clusters corresponding
to the 18 September 2004 and the 24 November 2007 earth-
quakes coincide with two of the three clusters with more than
50 events described in Jiménez et al. (2009). The other one,
corresponding to the 2 April 2007,m = 3.1 earthquake does
not appear in the present work, probably because of its lower
magnitude. We can also see that the cluster corresponding to
the 21 February 2002,m = 3.8 earthquake has fewer events.
In our previous research (Jiménez et al., 2009) this cluster
contained 34 events, instead of the 22 it has here. As can be
seen from the results, only the three major earthquakes are
listed in both works. The other clusters found in Jiménez et
al. (2009) seem to be less important in the new approach.

Ruiz et al. (2006) found different families within the
18 September 2004 series, based upon the different charac-
teristics of the waves in the recorded seismogram. We did
not find these families, mainly because we did not use the
waveforms and instead used the spatio-temporal distribution
of the earthquakes in the catalogue. Ruiz et al. (2006) used
a spatio-temporal window in order to decide if an event be-
longs to the aftershock sequence or not. In contrast, we used
a distance based on the ETAS model obtained for the whole
region, which depends on the magnitude, the time interval,
and the spatial separation between events.

In order to test the influence of the threshold magnitude for
the calculation of the clusters, we applied the method to the
same catalogue but taking into account only the events with
a magnitude of more than 2. With that condition, we have a
catalogue with 455 earthquakes. So, we began by calculating
the ETAS parameters that best fit the data and obtained the
values given in Table 3. The AIC is 907. We had to perform
the fitting part again because the values of the ETAS param-
eters vary when different threshold magnitudes are applied
(Ogata, 1998). So, once we had the new values, we applied
the link algorithm with the new distance. Now the quantity
µT A was 167. With a threshold distance equal to 1.5·107, we
obtained 166 clusters. We found two main clusters with more
than 20 events: the 11 December 2002 and the 18 Septem-
ber 2004. These correspond to the two larger clusters found
by using a magnitude threshold of 1. The new clusters have
less events that the number of earthquakes with magnitude
higher than 2 in the original clusters. We observed that 24 %
(18 September 2004) and 33 % (11 December 2002) of the

events in the original clusters were not found in the new clus-
ters. This is due to the fact that there are some earthquakes
linked to others by events with magnitudes of between 1 and
2. If we compare the events in the cluster with this new mag-
nitude threshold and the events with a magnitude higher than
2 in the clusters with a magnitude threshold higher than 1, we
can see that 99 % of them are the same for the 18 Septem-
ber 2004 earthquake, and 76 % for the 11 December 2002
earthquake. This shows that the main influence in the cata-
logue is due to the 18 September 2004 event, and the method
fits this main event better.

We now studied the properties of the weighted complex
networks we obtained, in particular, the distribution of the
distances, weights and strengths of the nodes. The strength
of a node is the sum of all the weights of its connections with
others. It represents the importance of the node in the whole
network.

The distribution of ETAS distances in the clusters seems
to follow a power law distribution, with exponents that range
from −1.6 to 2.6. We used the programs implemented by
Clauset et al. (2009) in order to calculate these exponents
and other values that characterize the goodness of the power
law hypothesis. The results show that the hypothesis of a
power law distance is very plausible. However, the number
of points that follow the power law is very small, and the to-
tal number of points is not enough to allow us to obtain good
statistics. Finite-size bias may be present. The same situa-
tion is found for the weight distribution (the exponents range
from−1.4 to 1.9, but not enough points are available) and for
the strength distribution. We found that the highest strength
corresponds to the main shocks in all cases. Other works that
use unweighted complex networks find power laws for the
degree distributions (Baiesi and Paczuski, 2004, 2005; Abe
and Suzuki, 2004b), a quantity equivalent to strength in these
networks. In Jiḿenez et al. (2009) we did not find power laws
for the same data set. However, in that research we did not
use the method proposed by Clauset et al. (2009) for testing
the power law hypothesis.

Another important characteristic of the nodes is between-
ness, i.e. the total number of optimal paths between all pairs
of nodes passing through one node (Park et al., 2004), in
which an optimal path is the shortest geodetic distance be-
tween two nodes. The highest betweenness does not always
correspond to the highest magnitude. If we take into account
the 10 November 2002 earthquake, the highest betweenness
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Table 4. Values of the network characteristics corresponding to the main clusters in the catalogue.L is the average path length, andC is the
clustering coefficient. For the random model and the ETAS model we also provide the error bounds, below the mean value.

Main shock L C LRand
(error)

CRand
(error)

LETAS
(error)

CETAS
(error)

10-Nov-2002 1.2216· 106 8.1· 10−5 3.0938· 1011

2.5386· 1010
2.1304· 10−5

4.6791· 10−5
1.0026· 108

1.3540· 109
1.3555· 10−4

4.6503· 10−5

11-Dec-2002 4.0414· 106 1.1· 10−6 1.6246· 1012

1.0708· 1011
4.9302· 10−8

1.1255· 10−7
7.6461· 107

4.3256· 108
3.3079· 10−6

1.9742· 10−6

13-Oct-2003 2.1470· 106 3.7· 10−5 4.7137· 1010

8.3205· 109
5.7867· 10−6

1.3090· 10−5
4.1232· 107

3.5233· 108
5.1744· 10−5

2.1860· 10−5

18-Sep-2004 9.3911· 105 2.0· 10−7 3.9283· 1012

1.7696· 1010
4.7100· 10−9

1.2092· 10−8
2.0029· 108

1.4636· 109
6.7001· 10−7

1.9297· 10−7

24-Nov-2007 2.5787· 106 2.2· 10−5 2.8067· 1011

2.8649· 1010
1.5394· 10−6

3.1449· 10−6
4.9252· 107

6.0062· 108
1.2899· 10−4

4.3295· 10−5

21-Feb-2002 7.4554· 105 5.6322· 10−4 2.2848· 1010

1.4022· 1010
5.6555· 10−4

1.100· 10−3
1.0046· 108

1.7182· 109
5.6320· 10−4

1.2004· 10−4

27-Oct-2007 4.4715· 103 1.0000· 10−3 2.4751· 106

4.5742· 105
1.2961· 10−4

2.8709· 10−4
2.8843· 108

5.2832· 109
4.8115· 10−4

2.5041· 10−4

16-Jul-2002 2.9116· 105 8.1496· 10−4 1.9220· 109

5.1871· 108
3.3098· 10−4

7.6452· 10−4
5.2226· 107

4.5342· 108
8.1659· 10−4

3.5790· 10−4

corresponds to the 17 April 2007,m = 2 earthquake. For
the 11 December 2002, it corresponds to the 6 April 2006,
m = 2.5 event. For the 24 November 2007, we have both
the highest magnitude and the highest betweenness at the
same event. For the 18 September 2004, event, the highest
betweenness is for the 30 September 2004,m = 3.9 earth-
quake. For the 13 October 2003, it corresponds to the
8 July 2005,m = 2.4 event. The highest betweenness found
for the 21 February 2002 is the 27 February 2002 event. For
the 27 October 2007, this same event had the highest value,
and for the 16 July 2002, the highest betweenness is for the
28 December 2003 earthquake. So, with regard to between-
ness, we have two groups of clusters: one formed by the
18 September 2004, the 24 November 2007, the 21 Febru-
ary 2002, and the 27 October 2007 earthquakes closely con-
centrated around the main event, and the other made up of the
remaining clusters, which seem to cover longer time-spans in
the respective regions. We also tested the power law. The ex-
ponents range from−2.1 to−2.6 for the betweenness distri-
bution. Only a few clusters could be analyzed, due to the low
number of points involved. In any case, the small amount of
data available means that we cannot conclude that the clus-
ters follow a power law.

We further analyzed which links are most important, the
ones with a lower weight or the ones with a higher weight.
For this purpose we used the concept of metaweight (Furuya
and Yakubo, 2008). We calculated the clustering coefficient
following Barrat et al. (2004), as suggested in Furuya and

Yakubo (2008), for the networks with weights equal to the
q-th power of the weight. The behaviour with respect toq

gives us the importance of weak or strong edges. This anal-
ysis can only be provided for weighted complex networks,
and not for unweighted ones. We obtained a clustering co-
efficient (Barrat et al., 2004) very close to 0 forq > 0 and
near 1 forq < 0, which means that the networks are mainly
connected by weak edges (Furuya and Yakubo, 2008), and
sparsely connected by strong edges. Note that this cluster-
ing coefficient is different from that used in Eq. (10). This
is because we wanted to follow the same procedure as Fu-
ruya and Yakubo (2008). Theq power enhances the weak
links whenq < 0, and the strong links whenq > 0. So, when
we obtained a clustering coefficient that was higher forq < 0
than forq > 0, it meant that the nodes had low weights be-
tween them, and only a few strong connections. This may be
related to the high values for the betweenness scaling expo-
nents found. Wang et al. (2008) showed that high values of
this exponent (around 2.3) can be interpreted as a high con-
centration of traffic on the most important links.

We also calculated the values of the average path lengths
and clustering coefficients, shown in Table 4. We provide
the values for the random graph (Garlaschelli, 2009) and the
ETAS model (Ogata, 1998, 1999; Helmstetter and Sornette,
2002), to interpret them. In unweighted networks, it is very
useful to compare the real networks to random models, so
that, by comparing their main characteristics, namely, the
clustering coefficient and the average path length, important
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Fig. 3. Classification of the clusters. We see three clusters, one
formed by the 27-Oct-2007, other formed by the 18-Sep-2004 and
11-Dec-2002 events, and the remaining. We used the logarithm of
the clustering coefficient divided by the sum of the logarithms of
the clustering coefficient, and of the logarithm of the average path
length divided by the sum of the logarithms of the averaged path
lengths.

conclusions can be reached. In our case, we can see that
the values of the average path lengths are lower for the real
networks. For the random graphs, the clustering coefficients
are lower. We can therefore conclude that there is a small
world effect (Watts and Strogatz, 1998) in the clusters be-
cause of the values for the path lengths and clustering coef-
ficients in the real networks. We can also see that the sim-
ulations with the ETAS model give values for the clustering
coefficient close to that of the real networks, but the average
path lengths are larger. This means that any vertex on the
graph can be reached from any other vertex in only a small
number of steps, fewer steps than with the models. In Table 5
we show the result of simulating random networks merely by
shuffling the weights of the real networks. If we take these
values into account, we can see that, in general, the average
path lengths are lower for the random model, and the cluster-
ing coefficients are lower too. Since the average path lengths
of the real networks are higher, no small world behaviour
is found for them. In any case, the ETAS model is better
than the random model (whichever we use) for simulating
the seismicity, as might be expected.

To classify the data in Table 4, we grouped them into dif-
ferent classes. The groups were obtained using ak-means
algorithm (Teknomo, 2007), with the logarithm of the clus-
tering coefficient and the logarithm of the average path length
as variables, and taking into account that the mean standard
deviation of the distances within each group was minimized.
We normalized the variables by the sum of the values. We

Table 5. Values of the average path length and clustering coefficient
for the random networks calculated by shuffling the weights.

Main shock LRand2
(error)

CRand2
(error)

10-Nov-2002 1.3667· 104

1.7561· 104
3.4335· 10−5

3.3024· 10−5

11-Dec-2002 6.2977· 104

1.8435· 104
7.3945· 10−8

6.3092· 10−8

13-Oct-2003 1.4501· 104

2.2156· 104
1.0486· 10−5

8.6077· 10−6

18-Sep-2004 1.4854· 102

3.8252· 101
1.5236· 10−8

2.4113· 10−9

24-Nov-2007 3.9554· 102

5.9992· 102
4.5301· 10−6

2.6715· 10−6

21-Feb-2002 1.2015· 104

2.6572· 104
4.3663· 10−4

4.4739· 10−4

27-Oct-2007 4.9800· 102

4.9857· 102
1.0000· 10−3

2.6722· 10−4

16-Jul-2002 3.0688· 103

7.5177· 103
6.8709· 10−4

5.8363· 10−4

used the logarithm because we observed that small num-
bers can be very clustered, since there are different magni-
tude scales in both average path length and clustering co-
efficient. The best choice for three groups is depicted in
Fig. 3, where the clusters are ordered by their magnitude and
number of events. The standard deviation is 0.0106. With
two groups, we have the lowest standard deviation (0.0192)
for the18 September 2004 and the 11 December 2002 in the
same group, and another group with the remaining clusters.
These two clusters are the ones with the highest main-shock
magnitude and the most aftershocks. This analysis indicates
that the topological properties of the clusters depend mainly
on the magnitude of the main event, and not on the mecha-
nism or mechanisms that originate them.

5 Conclusions

We proposed an analysis of the seismic clusters in a region
based on the characteristics of weighted complex networks.
In order to obtain the main clusters in a region, we used a
distance based on the ETAS model (Ogata, 1998). We fit-
ted the data to this model and performed a simple linkage
clustering algorithm to obtain the main clusters. We ana-
lyzed the errors of both the fit and the simulated catalogues.
In our approach, we used the ETAS model, although this is
not the only seismicity–based model. Another option is the
BASS model (Turcotte et al., 2007, Holliday et al., 2008),
for example. The main difference between the ETAS and
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BASS models is that the latter includes Båth’s law (B̊ath,
1965) and is completely self-similar. However, it is normally
used as a forward model, and for simulating one cluster only.
Ogata (1998) provides several fitting functions that are based
on real data, and this is why we used the ETAS model. In
future research, other distances based on the BASS model
could be used by implementing a similar procedure for fit-
ting the data to a proposed BASS model.

We then analyzed and compared the clusters found to some
models (one based on the ETAS model and two random mod-
els). We concluded that the ETAS model better approaches
the seismicity near the Itoiz dam than the two random mod-
els we tried. The different values for the topological fea-
tures analyzed seem to depend on the magnitude of the clus-
ters and the number of events in each series, which are re-
lated. An event with higher magnitude can produce more
aftershocks. We analyzed clusters both before and after the
impoundment, and they were classified by their magnitude
rather than the time interval within which they occurred. So,
we cannot conclude that the 18 September 2004 earthquake
behaves abnormally compared to others. However, only two
global topological features have been analyzed in this clas-
sification. In order to discern the possible difference of this
particular event we must have more clusters to analyze. A
larger area must therefore be studied, with the difficulty in-
herent in analyzing a more complex region. Another option
would be to study a larger time interval. In that case, the
minimum magnitude would have to be increased to have a
complete catalogue, and as a result smaller clusters would be
found.

We found that the nodes with the higher strength are
the most important in the traffic of the networks. The
main shocks are associated with the events with the highest
strength. However, the betweenness does not always coin-
cide with the main events. We analyzed the weight, strength,
and betweenness distributions, but we could not conclude
that they followed a power law, because of the few data points
involved.

We compared the real networks obtained with two random
models in order to study the small-world phenomenon, in the
same sense that it is studied for unweighted complex net-
works. When we used a theoretical random model (Gar-
laschelli, 2009), we found that there was small world be-
haviour. However, when all we did was shuffle the weights,
results showed that the average path length was higher in the
real networks, so no small world was found. No single an-
swer was found for this question.

For future research, more properties based on the graph
theory should be calculated in order to characterize the seis-
mic networks better. We can also use this method in other
places where no induced seismicity exists, and try to under-
stand if we can differentiate the seismicity affected by artifi-
cial processes from that produced naturally.
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M.: Aftershocks series monitoring of the September 18, 2004 3
M = 4.6 earthquake at the western Pyrenees: A case of reservoir-
triggered seismicity?, Tectonophysics, 424, 223–243, 2006.
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