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Abstract. Solitary electrostatic pulses have been observed in
numerous places of the magnetosphere such as the vicinity
of reconnection current sheets, shocks or auroral current
systems, and are often thought to be generated by energetic
electron beams. We present results of a series of experiments
conducted at the UCLA large plasma device (LAPD) where
a suprathermal electron beam was injected parallel to a static
magnetic field. Micro-probes with tips smaller than a Debye
length enabled the detection of solitary pulses with positive
electric potential and half-widths 4–25 Debye lengths (λDe),
over a set of experiments with various beam energies, plasma
densities and magnetic field strengths. The shape, scales and
amplitudes of the structures are similar to those observed in
space, and consistent with electron holes. The dependance
of these properties on the experimental parameters is shown.
The velocities of the solitary structures (1–3 background
electron thermal velocities) are found to be much lower than
the beam velocities, suggesting an excitation mechanism
driven by parallel currents associated to the electron beam.

1 Introduction

Debye-scale electrostatic solitary structures with dipolar
electric fields have been abundantly observed in various
boundary layers and regions supporting large-scale current
systems or intensive energy dissipation. Examples include
the auroral acceleration region (Temerin et al., 1982), the
plasma sheet boundary layer (Matsumoto et al., 1994) and
polar cap boundary layer (Tsurutani et al., 1998), the vicinity
of magnetic reconnection X-lines at the magnetopause
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(Cattell et al., 2002; Matsumoto et al., 2003) or in the
magnetotail (Cattell et al., 2005), the magnetosheath (Pickett
et al., 2003) or the quasi-perpendicular Earth bow shock
(Bale et al., 2002). They have also been observed
in a laboratory magnetic reconnection experiment where
they were statistically found to be associated with large
inductive electric fields and energetic electron bursts (Fox
et al., 2008). Kinetic numerical simulations of guide-
field magnetic reconnection have also shown the generation
of this type of solitary structures, interpreted as electron
phase-space holes (see e.g.Schamel, 2000 for a review),
in association with energetic electron populations (Drake
et al., 2003; Pritchett, 2005; Goldman et al., 2008). Their
generation mechanism and what determines their properties
remain however in some cases not fully understood, nor is
the role they might play in particle scattering and energy
dissipation.

To our knowledge the only laboratory experiments
dedicated to electron holes were conducted in a strongly
magnetized Q-machine (Saeki et al., 1979; Lynov et al.,
1979; see alsoGuio et al., 2003 for a review). The
holes were generated by an externally applied voltage pulse
and propagated into a plasma column 3–10 Debye lengths
(λDe) in diameter, severely limiting their perpendicular
extension. These experiments were able to reproduce
electron hole properties discovered in early 1-D electrostatic
PIC simulations (Roberts and Berk, 1967; Berk et al., 1970),
such as propagation over long distances (a few hundreds
of λDe) and occasional coalescence. At the time of these
experiments it was known that 2- and 3-D electron holes
are unstable in unmagnetized plasmas (Morse and Nielson,
1969), but it was later found that a magnetic field allows
the existence of long-lived electron hole-like structures in
higher dimensions (Miyake et al., 1998; Muschietti et al.,
1999; Oppenheim et al., 1999).
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In this paper we report observations of Debye-scale
solitary structures generated by injection of a supra-thermal
electron beam in a laboratory experiment at UCLA’s Large
Plasma Device (LAPD). The purpose of this experiment is
to study in a controlled environment the properties of beam-
generated solitary structures unconstrained by the size of the
plasma chamber.

2 Experimental setup

The experiment was conducted at the upgraded Large Plasma
Device (LAPD) (Gekelman et al., 1991), a helium plasma
column 17.1 m long with a 60 cm diameter. The discharge
was pulsed at 1 Hz and pulses lasted several milliseconds. In
our experiments the plasma density ranged from 1.1 to 5.7×

109 cm−3 and the plasma was permeated by a static magnetic
field parallel to the column axis whose intensity was set
from 100 to 750 G. An electron beam from 0.4 to 1 cm in
diameter was injected for 140 µs in the direction parallel to
the magnetic field. The beam density 5 cm from the source
was found to be approximately 25% of the background
electron density. Floating potentials are measured at 20 GHz
by a micro-probe (Chiang, 2010) with 10 µm wide tips
separated by 40 to 130 µm. The probe tips were aligned
with the magnetic field, allowing estimation of the parallel
electric field. The distance between tips is comparable to the
Debye length. The probe was located on the column central
axis, 6–24 cm away from the beam source. Therefore in this
experiment only a small fraction of the plasma chamber was
used, far away from any boundary. The electron mean-free
path ranged from 11 to 42 cm, and therefore at these scales
the plasma can be considered essentially collisionless. See
Lefebvre et al.(2010) for more details.

3 Solitary wave measurements

A 0.3 µs long time series of electric potential and field
containing isolated structures is shown in Fig.1. The
solitary structure time-scale is typically one to three
plasma periodsf −1

pe (f −1
pe = 2 ns in this case), with a

corresponding broadband frequency signature ranging from
roughly fpe/10 to slightly abovefpe. A lower-frequency
wave with frequency about 0.06fpe or 5.3flh (whereflh =(
fcefci/

(
1+f 2

ce/f
2
pe

))1/2
is the lower-hybrid frequency) is

also simultaneously observed. The time-series typically
contain a mixture of waves, localized wavepackets and
solitary structures which range from the lowest frequencies
in the amplifier’s range (5–10flh) to above the electron
plasma frequency.

A solitary structure is shown in more details on Fig.2.
In this experiment the beam voltage was set to 90 V,
the background plasma density to 3.5× 109 cm−3 and the
magnetic field to 600 G, corresponding to a ratio of electron
cyclotron to plasma frequenciesfce/fpe= 3.2. The structure
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Fig. 1. Potential (top panel) and electric field (middle) displaying
isolated structures and electric field wavelet spectrum (bottom). The
horizontal dashed on the lower panel shows the electron plasma
frequency. Wavelet coefficients are shown on a logarithmic scale.
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Fig. 2. A solitary positive hump with corresponding dipolar parallel
electric field measured on the two most distant probe tips. Here and
elsewhere, the parameters used for normalization correspond to the
background electron populations prior to the beam injection.

Nonlin. Processes Geophys., 18, 41–47, 2011 www.nonlin-processes-geophys.net/18/41/2011/



B. Lefebvre et al.: Debye-scale solitary structures in a beam-plasma laboratory experiment 43

�0.2

0.0

0.2

0.4

e

�/
k
B
T
e

1

4

0 1 2 3 4 5 6

tfpe

�0.08

�0.04

0.00

0.04

eE

�D
e/
k
B
T
e

Fig. 3. A structure with a tripolar electric field.

consists of an isolated positive potential hump reaching 10%
of the background electron thermal energy and a dipolar
electric field. The potential hump has a very similar profile
on probe tips separated by 2.3λDe. From the time-delay
between the tips the structure parallel velocity is estimated
to bev‖ = 1.5vTe, wherevTe is the thermal velocity of the
background electrons, and its parallel half-width isL‖ =

7λDe. The shape and properties of this potential pulse are
consistent with an electron hole. The structure velocity is
much smaller than the beam velocity,vb ∼ 28vTe.

While the majority of the structures have a shape similar to
the one just described, some differ. Approximately 30% of
the structures have an electric field which is predominantly
tripolar. An example is shown on Fig.3. In this experiment
the beam voltage is 120 V, the background plasma density is
5.7× 109 cm−3 and the magnetic field is 750 G (fce/fpe=

3). The structure displays a negative potential dip down to
−0.2Te followed by a positive one reaching 0.4Te. Across
the region of large electric fields a net potential drop of
about 0.2Te is observed. From the time delay between
probe tips one findsv‖ = 2.6vTe and a half-width for the
positive potential humpL‖ = 15λDe. The scale, velocity and
amplitude of the structure are therefore larger but comparable
to the previous one which suggests they could be of a similar
nature. However the short delay between the probe tips do
not allow to find out if this structure conserves it shapes as
it propagates or whether it is only transitory. Nevertheless
the tripolar electric field and potential drop are reminiscent
of observations in the auroral region (Temerin et al., 1982;
Bostrom et al., 1988; Pickett et al., 2004b) or the solar wind
(Mangeney et al., 1999) which were interpreted as weak
double layers. Tripolar structures have also been interpreted
in terms of nested ion and electron holes (Pottelette and
Treumann, 2005), although the estimated velocity of the
structure is here probably too large for such an interpretation.
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Fig. 4. Histograms of the probability of occurrence of the structure
parallel half-widths (top), parallel velocities (middle) and electric
potential amplitude (bottom).

4 Statistical properties

Times-series from 35 experiments with different magnetic
fields, plasma densities or beam voltages were searched for
isolated structures with positive potential humps exceeding
three times the local standard deviation. Only waveforms
displaying a high degree of correlation between the probe
tips were considered, leaving a total of 363 unique structures.
The propagation time from one probe to another was
determined by cross-correlation analysis.

Histograms of the structure amplitudes, velocities and
half-width are shown on Fig.4. The median electric potential
amplitude is 0.13Te/e. L‖ ranges from 4.5 to 24.4λDe
with a median of 10.2λDe. 80% of the structures have
velocities between 1.3 and 2.3vTe, with a median of 1.8vTe.
These parameters are comparable to those of the solitary
structures typically observed in space.Ergun et al.(1998)
report observations in the auroral regions with an average
half-width of 1.8λDe, and no half-width larger than 8λDe,
amplitudes up to 1.2Te/e and velocities less than 2vTe. In
the cusp and the plasma sheet,Franz et al.(2005) have
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Fig. 5. Amplitude and half parallel width of the solitary structures
from a single experiment, withB = 750 G,ne = 5.8× 109 cm−3,
Te = 0.2 eV and a beam voltage of 120 V. The shaded area
corresponds to a theoretically inaccessible area of the parameter
space for stationary 3-D electron-holes (Chen et al., 2005). The
dotted lines indicate the median values.

found half-width ranging from 0.2 to 40λDe, velocities from
0.05 to 2vTe and amplitudes from 3× 10−4 to 0.3Te/e.
Recently, even larger solitary structures of half-width 10
to 70λDe, amplitudes∼ 0.5Te/e and with a finite parallel
magnetic field perturbation were found in the plasma sheet
(Andersson et al., 2009). The solitary structures measured
in at the Versatile Toroidal Facility reconnection experiment
typically had a velocity 1.5vTe and half-width of 30λDe. The
1-D electron holes in the laboratory experiments bySaeki
et al. (1979) and Lynov et al. (1979) had half-widths 7–
10λDe and amplitudes up to 1.5Te/e. The structures we
observe therefore fill the gap in size between the smaller
and larger observed structures. Their amplitudes are fairly
average, and their velocities are probably a bit larger than
the average but nevertheless comparable to previous space
observations. Let us also note a potential normalization issue
when comparing our results to previous observations, as our
results are normalized with respect to the temperature of the
background electron population and velocities would be a bit
smaller when normalized with respect to the total electron
temperature.

Certain nonlinear waves such as the soliton solutions of the
Kortweg-de Vries equation have a one-to-one relationship
between their width and amplitude. This equation can
be used to describe nonlinear electrostatic fluctuations in
the small-amplitude limit, and predicts solitons whose
amplitudes are a decreasing function of their widths. Figure5
shows a scatter plot of the structure amplitudes and parallel
half-width for a single experiment. In this case,B = 750 G,
ne = 5.8× 109 cm−3, Te = 0.2 eV and the beam voltage is
120 V. Within the limited range of amplitudes and widths
of these structures, no significant relationship can be found.
Since all the structures correspond to a single experiment
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Fig. 6. Parallel velocity of the structures for various beam voltages.
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Fig. 7. Structure amplitudes (electric potential) for various beam
voltages.

with a given set of parameters, the variety of sizes and
amplitudes cannot be attributed to a variability in plasma
parameters. No relationship was found either when plotting
amplitude versus width over the whole set of experiments
(Lefebvre et al., 2010). Using the constraint that the trapped
electron distribution function must remain positive,Chen
et al. (2005) have derived an amplitude-width inequality
for stationary electron-holes in strongly magnetized plasmas
which provides an upper limit to the amplitude for a given
width. This upper limit increases with the parallel width.
Figure5 shows that all of the solitary pulses we observe are
well within the allowed parameter space for electron-holes.

Investigating how the solitary structure properties vary
as a function of the experiment parameters might provide
further clues on their nature and generation mechanism. A
plot of the velocities for various beam voltages is shown on
Fig. 6. The beam voltage is a proxy for the beam energy,
which is typically about 10% smaller. Within the range
investigated (representing a factor two in beam energy) the
velocities do not exhibit any noticeable dependence on the
beam voltage. This observation combined with the fact
that the velocities are much lower than the beam velocities
excludes a generation mechanism by a resonant instability
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Fig. 8. Parallel half-width and amplitude as a function offpe/fce
in the various experiments.

involving the beam (Lefebvre et al., 2010). On the other
hand, the amplitudes reach larger values for larger beam
voltages (Fig.7). This is not very surprising however, since
the beam is ultimately the free-energy source in the system
from which fluctuations grow. But the solitary structures
have to be a secondary product of the instability or be
generated by a non-resonant mechanism.

Besides the beam voltage, other important parameters are
the magnetic field strength and the plasma density. Figure8
shows a broad range of widths and amplitudes at any given
value offpe/fce, and tendency for the average widths and
amplitudes to slightly decrease when this ratio increases
although fewer experiments were conducted withfpe/fce>1.
Similar conclusions were found byPickett et al.(2004a) in
their survey of the structure properties in various places of the
Earth’s magnetosphere.Franz et al.(2000) found thatfpe/fce
is an important factor controlling the aspect ratioL‖/L⊥ of
the structures (see alsoBerthomier et al., 2003). Detailed
experimental studies of the perpendicular electric fields are
left for future work.

5 Discussion

Solitary waves with a positive electric potential pulse
detected after the injection of a suprathermal electron beam
have half-widths ranging from 4.5 to 24.4λDe, amplitudes
from 0.02 to 0.75Te/e and velocities from 1.5 to 2.5vTe. The
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Fig. 9. Suprathermal part of the electron distribution function
measured using a swept Langmuir probe 5 and 30 cm away from
the beam source in the direction of the background magnetic field.

majority of them display a single potential pulse and dipolar
electric field of the type shown on Fig.2, corresponding
to a positive charge density perturbation at the center of
the structure (Lefebvre et al., 2010). The shape and scales
of the solitary waves are consistent with electron holes.
Furthermore, their amplitude and width satisfy an inequality
for BGK-type electron holes derived byChen et al.(2005).

Besides solitary pulses, waves and large amplitude
wavepackets in a broad range of frequencies belowfpe were
detected. These fluctuations can be interpreted as quasi-
electrostatic whistler mode waves near the resonance, and
the solitary pulses themselves were found to appear on
the high frequency end of the dispersion curve (Lefebvre
et al., 2010, Fig. 4). Since electron holes shaped as phase-
space tubes have been found to decay into electrostatic
whistlers (Goldman et al., 1999; Oppenheim et al., 1999),
it could be suggested that the holes are the source of the
waves. However in the present experiment the waves and
wavepackets contain more power than the holes and are
observed even in their absence, so it is more likely that a
different generation mechanism is at work.

Essential information about the nature and origin of
the waves and structures can be given by the electron
velocity distributions. The suprathermal part of the electron
distribution function was measured using a swept Langmuir
probe capable of 100 V sweeps by taking the derivative of
the I-V characteristic curve. Measurements were made 5 and
30 cm away from the 66 V beam source (Fig.9). 5 cm away
from the source along the background magnetic field (δz = 5
cm) measurements show a 62 eV beam with temperature
Tb ≈ 5 eV and a density of approximately 25% of the total
density. An energetic tail on the background distribution
extending up to the beam energy is also observed with a 30%
relative density. Atδz = 30 cm no trace of the beam is left
and only a 35 eV tail remains, a likely result of the scattering
of the beam electrons by the waves and solitary structures.
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Most of the solitary structures were detected when the
probes were put approximately 6 cm away from the beam
source rather than at larger distances (no measurements were
made at shorter distances in order to preserve the probes from
melting due to beam electron bombardment). At this distance
the beam is still clearly present. However because the waves
and solitary structures have a much smaller velocity than
the beam velocity (by approximately a factor 10), a resonant
excitation mechanism by the beam electrons can be excluded.
The measured velocities also exclude generation by a two-
stream instability. A more likely generation mechanism is
instead a lower-hybrid instability driven by parallel currents
similar to the one described byMcMillan and Cairns(2006)
(see also the discussion byLefebvre et al., 2010).

Finally, let us note that an alternative interpretation
of the solitary structures might be possible in terms of
electron acoustic solitary waves. Indeed the measured
electron distribution functions may support the type of
electron acoustic solitary waves with a positive potential
hump described byBerthomier et al.(2000). However
the velocities of the structures are inconsistent with beam-
generated electron acoustic waves. By assuming the presence
of two counter-streaming electron beams in addition to a
core background population,Lakhina et al.(2009) derived
a type of electron acoustic solitary structures which can
have properties comparable to those of the structures we
observe. However a single electron beam is present in our
experiments. We therefore favor an interpretation in terms of
electron phase-space holes.

6 Conclusions

We have studied in a laboratory experiment Debye-scale
solitary structures with a positive electric potential pulse
generated by a suprathermal electron beam. The shape, size
and amplitude of the structures are similar to those observed
in space plasmas and consistent with electron holes. Parallel
velocity measurements and their absence of dependence on
the beam voltage exclude a resonant excitation mechanism
by the beam or a two-stream instability. Instead the electron
holes are conjectured to be driven by the parallel currents
associated to the electron beam.
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A. F., and Pickett, J. S.: A mechanism for electrostatic solitary
structures in the Earth’s magnetosheath, J. Geophys. Res.-Space,
114, 9212, doi:10.1029/2009JA014306, 2009.

Lefebvre, B., Chen, L.-J., Gekelman, W., Kintner, P., Pickett, J.,
Pribyl, P., Vincena, S., Chiang, F., and Judy, J.: Laboratory
Measurements of Electrostatic Solitary Structures Generated by
Beam Injection, Phys. Rev. Lett., 105, 115001, doi:10.1103/
PhysRevLett.105.115001, 2010.

Lynov, J. P., Michelsen, P., Pecseli, H. L., Juul Rasmussen, J., Saeki,
K., and Turikov, V. A.: Observations of solitary structures in a
magnetized, plasma loaded waveguide, Phys. Scripta, 20, 328–
335, doi:10.1088/0031-8949/20/3-4/005, 1979.

Mangeney, A., Salem, C., Lacombe, C., Bougeret, J.-L., Perche,
C., Manning, R., Kellogg, P. J., Goetz, K., Monson, S.
J., and Bosqued, J.-M.: WIND observations of coherent
electrostatic waves in the solar wind, Ann. Geophys., 17, 307–
320, doi:10.1007/s00585-999-0307-y, 1999.

Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, M.,
Nagano, I., and Tsutsui, M.: Electrotastic Solitary Waves (ESW)
in the magnetotail: BEN wave forms observed by GEOTAIL,
Geophys. Res. Lett., 21, 2915–2918, doi:10.1029/94GL01284,
1994.

Matsumoto, H., Deng, X. H., Kojima, H., and Anderson, R. R.:
Observation of Electrostatic Solitary Waves associated with
reconnection on the dayside magnetopause boundary, Geophys.
Res. Lett., 30, 1326, doi:10.1029/2002GL016319, 2003.

McMillan, B. F. and Cairns, I. H.: Lower hybrid turbulence driven
by parallel currents and associated electron energization, Phys.
Plasmas, 13, 052104, doi:10.1063/1.2198212, 2006.

Miyake, T., Omura, Y., Matsumoto, H., and Kojima, H.: Two-
dimensional computer simulations of electrostatic solitary waves
observed by Geotail spacecraft, J. Geophys. Res., 103, 11841–
11850, doi:10.1029/98JA00760, 1998.

Morse, R. L. and Nielson, C. W.: One-, Two-, and Three-
Dimensional Numerical Simulation of Two-Beam Plasmas,
Phys. Rev. Lett., 23, 1087–1090, doi:10.1103/PhysRevLett.23.
1087, 1969.

Muschietti, L., Ergun, R. E., Roth, I., and Carlson, C. W.: Phase-
space electron-holes along magnetic field lines, Geophys. Res.
Lett., 26, 1093–1096, doi:10.1029/1999GL900207, 1999.

Oppenheim, M., Newman, D. L., and Goldman, M. V.: Evolution of
Electron Phase-Space Holes in a 2D Magnetized Plasma, Phys.
Rev. Lett., 83, 2344–2347, doi:10.1103/PhysRevLett.83.2344,
1999.

Pickett, J. S., Menietti, J. D., Gurnett, D. A., Tsurutani, B., Kintner,
P. M., Klatt, E., and Balogh, A.: Solitary potential structures
observed in the magnetosheath by the Cluster spacecraft, Nonlin.
Processes Geophys., 10, 3–11, doi:10.5194/npg-10-3-2003,
2003.

Pickett, J. S., Chen, L.-J., Kahler, S. W., Santolk, O., Gurnett,
D. A., Tsurutani, B. T., and Balogh, A.: Isolated electrostatic
structures observed throughout the Cluster orbit: relationship
to magnetic field strength, Ann. Geophys., 22, 2515–2523,
doi:10.5194/angeo-22-2515-2004, 2004a.

Pickett, J. S., Kahler, S. W., Chen, L.-J., Huff, R. L., Santolk,
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