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Abstract. To quantify solar wind turbulence, we consider a
generalized two-scale weighted Cantor set with two differ-
ent scales describing nonuniform distribution of the kinetic
energy flux between cascading eddies of various sizes. We
examine generalized dimensions and the corresponding mul-
tifractal singularity spectrum depending on one probability
measure parameter and two rescaling parameters. In partic-
ular, we analyse time series of velocities of the slow speed
streams of the solar wind measured in situ by Voyager 2
spacecraft in the outer heliosphere during solar maximum at
various distances from the Sun: 10, 30, and 65 AU. This al-
lows us to look at the evolution of multifractal intermittent
scaling of the solar wind in the distant heliosphere. Namely,
it appears that while the degree of multifractality for the solar
wind during solar maximum is only weakly correlated with
the heliospheric distance, but the multifractal spectrum could
substantially be asymmetric in a very distant heliosphere be-
yond the planetary orbits. Therefore, one could expect that
this scaling near the frontiers of the heliosphere should rather
be asymmetric. It is worth noting that for the model with two
different scaling parameters a better agreement with the so-
lar wind data is obtained, especially for the negative index of
the generalized dimensions. Therefore we argue that there is
a need to use a two-scale cascade model. Hence we propose
this model as a useful tool for analysis of intermittent turbu-
lence in various environments and we hope that our general
asymmetric multifractal model could shed more light on the
nature of turbulence.
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1 Introduction

Multifractality is commonly related to a probability measure
that may have different fractal dimensions on different parts
of the support of this measureMandelbrot(1989). In this
case the measure is multifractal. Here we propose a notion
of multifractality based on an extended self-similarity that
depends on scale. We consider the concept of the multiscale
multifractality in the context of scaling properties of inter-
mittent turbulence in astrophysical and space plasmas (Men-
eveau and Sreenivasan, 1987, 1991). To quantify scaling of
this turbulence, we use a generalized weighted Cantor set
with two different scales describing with various probabil-
ities nonuniform intermittent multiplicative process of dis-
tribution of the kinetic energy between cascading eddies of
various sizes (Macek, 2007; Macek and Szczepaniak, 2008).

The question of multifractality is of great importance for
space plasmas because it allows us to look at intermittent
turbulence in the solar wind (Burlaga, 1991, 2001; Carbone,
1993, 1994; Carbone and Bruno, 1996; Marsch et al., 1996;
Marsch and Tu, 1997; Bruno et al., 2003). Starting from
Richardson’s (1922) scenario of turbulence, many authors try
to recover the observed scaling exponents, using some simple
and more advanced fractal and multifractal models of turbu-
lence describing distribution of the energy flux between cas-
cading eddies at various scales, see for a review (e.g.,Bruno
and Carbone, 2005). In particular, the multifractal spectrum
has been investigated using Voyager (magnetic field fluctua-
tions) data in the outer heliosphere (Burlaga, 1991, 2001) and
using Helios (plasma) data in the inner heliosphere (Marsch
et al., 1996). The multifractal scaling has also been investi-
gated using Ulysses observations, e.g., (Horbury and Balogh,
2001; Wawrzaszek and Macek, 2010) and with Advanced
Composition Explorer (ACE) and WIND data, e.g., (Hnat
et al., 2003; Szczepaniak and Macek, 2008).
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In general, the spectrum of generalized dimensionsDq as
a function of a continuous index,−∞ < q < ∞, with a de-
gree of multifractality1 = D−∞ −D∞, quantify multifrac-
tality of a given system (e.g.,Ott, 1993). The degree of mul-
tifractality is simply related to the deviation from a simple
self-similarity. That is why1 is also a measure of intermit-
tency, which is in contrast to self-similarity (Frisch, 1995,
ch. 8). The related multifractal singularity spectrumf (α) as
a function of a singularity strengthα is also often used.

In addition, a chaotic strange attractor has been identified
in the solar wind data byMacek (1998) and examined by
Macek and Redaelli(2000). We have considered theDq

spectrum for the solar wind attractor using a multifractal
model with a measure of the self-similar weighted Cantor
set with two parameters describing uniform compression in
phase space and the probability measure of the attractor of
the system. The spectrum ofDq is found to be consistent
with the data, at least for positive indexq (Macek, 2002,
2003, 2006; Macek et al., 2005, 2006). However, the full
spectrum is necessary to estimate the degree of multifractal-
ity. Notwithstanding of the well-known statistical problems
with negativeq (Macek, 2006), we have succeeded in es-
timating the entire spectrum for solar wind attractor using
a generalized weighted Cantor set with two different scales
describing nonuniform compression (Macek, 2007).

Therefore, to quantify scaling of solar wind turbulence,
we have developed a generalized weighted two-scale Cantor
set model using the partition technique (Macek and Szczepa-
niak, 2008). This model and the rank-ordered multifractal
analysis lead to complementary information about the multi-
fractal nature of the fluctuations (cf.Lamy et al., 2010). We
have already studied the inhomogeneous rate of the trans-
fer of the energy flux indicating multifractal and intermittent
behavior of solar wind turbulence in the inner (Helios and
ACE) and outer heliosphere (Voyager) using fluctuations of
the velocity of the flow of the solar wind at various scales.
We have investigated the resulting spectrum of generalized
dimensions and the corresponding multifractal singularity
spectrum depending on the model parameters (Macek and
Szczepaniak, 2008; Macek and Wawrzaszek, 2009). By us-
ing the cascade model with two different scaling parameters
we have shown that the degree of multifractality of the ve-
locity fluctuations of the solar wind in the inner and outer
heliosphere is different for slow and fast streams. More-
over, during solar minimum both the degree of multifractality
and the degree of asymmetry of the singularity spectrum are
correlated with the heliospheric distance, and we have ob-
served the evolution of multifractal scaling in the heliosphere
(Macek and Wawrzaszek, 2009).

In this paper, we would like to investigate the degree of
multifractality and asymmetry of the multifractal scaling pro-
vided by a deep space mission also during solar maximum.
Namely, we further consider in fuller detail the question of
scaling properties of intermittent turbulence using velocities
of the slow speed streams of the solar wind measured in situ

by Voyager 2 at various distances from the Sun. Namely, by
using our cascade model with two different scaling parame-
ters we investigate the degree of multifractality of the slow
solar wind in the outer heliosphere during solar maximum
looking at the evolution of multifractal scaling in the outer
heliosphere (cf.Burlaga, 1991; Burlaga et al., 2003; Burlaga,
2004). We show that in contrast to the solar minimum both
the degree of multifractality and asymmetry are only weakly
correlated with the heliospheric distance.

This paper is organized as follows. In Sect.2 a generalized
two-scale Cantor set model is summarised, and the data are
presented in Sect.3. The methods related the concept of the
generalized dimensions and the singularity spectrum in the
context of turbulence scaling are reviewed in Sect.4. The
results of our analysis are presented and discussed in Sect.5.
The importance of our new more general asymmetric multi-
fractal cascade model is underlined in Sect.6.

2 Two-scale Cantor set cascade model

The Cantor set with weightp and two scales is an exam-
ple of multifractals, as discussed in several textbooks (e.g.,
Falconer, 1990; Ott, 1993). Namely, at each stage of con-
struction of this generalized Cantor set we have two rescal-
ing parametersl1 andl2, wherel1+ l2 ≤ L = 1 (normalized)
and two different probability measurep1 = p andp2 = 1−p.
To obtain the generalized dimensionsDq ≡ τ(q)/(q −1) for
this multifractal set we use the following partition function
(a generator) at then-th level of construction (Hentschel and
Procaccia, 1983; Halsey et al., 1986)

0
q
n(l1,l2,p)=

(
pq

l
τ(q)

1

+
(1−p)q

l
τ(q)

2

)n

= 1. (1)

Namely, we see thatτ(q) does not depend onn, and after
n iterations we have

(
n
k

)
intervals of widthl = lk1ln−k

2 , where
k = 1,...,n, visited with various probabilities. The resulting
set of 2n closed intervals (more and more narrow segments
of various widths and probabilities) forn → ∞ becomes the
weighted two-scale Cantor set.

In our model of turbulence we consider a standard scenario
of cascading eddies, each breaking down into two new ones,
but not necessarily equal and twice smaller, as proposed by
Macek and Szczepaniak(2008). In particular, space filling
turbulence could be recovered forl1 + l2 = 1. Naturally, in
the inertial region of the systemη � l � 1 the energy is not
allowed to be dissipated directly, assumingp1+p2 = 1, until
the Kolmogorov scaleη is reached. However, in this range at
eachn-th step of the binomial multiplicative process, the flux
of kinetic energy densityε transferred to smaller eddies (en-
ergy transfer rate) could be divided into nonequal fractionsp

and 1−p (cf. Meneveau and Sreenivasan, 1987).
The multifractal normalized measure (Mandelbrot, 1989)

µ = ε/〈εL〉 on the unit interval generated at the twelfth step
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Fig. 1. (a)The theoretical multifractal measureµ = ε/〈εL〉 on the
unit interval for twelfth step of the construction of the usual one-
scale Cantor set.(b) The multifractal spectrumf (α) obtained di-
rectly for this measure (diamonds) with a fit (dashed line) to the
p-model.

of the construction (n = 12) for the usual one-scalep-model
(Meneveau and Sreenivasan, 1987) is shown in Fig. 1a. The
corresponding measure for the generalized two-scale cas-
cade model with the following assumed parameters:p = 0.4,
l1 = 0.4 andl2 = 0.6 is illustrated in Fig.2a. The multifrac-
tal spectrumf (α) calculated directly (Chhabra and Jensen,
1989; Chhabra et al., 1989) for this measure (diamonds) with
a fit (dashed line) to thep-model and the generalizedp-
model (continuous line) obtained with the similar parameters
are also presented in Figs. 1b and2b, correspondingly.

3 Solar wind data

We have already analysed Helios, ACE, and Voyager data
using plasma parameters measured in the inner and outer he-
liosphere. Namely, to study turbulence cascadeMacek and
Szczepaniak(2008) have selected four-day time intervals of
vx samples in 1976 (solar minimum) for both slow and fast
solar wind streams measured by Helios 2 at various distances
from the Sun. The results for ACE data at 1 AU and de-
pendence on solar cycle are discussed bySzczepaniak and
Macek(2008). We have analysed time series of velocities of
the solar wind measured by Voyager 2 at various distances
from the Sun, 2.5, 25, and 50 AU, selecting longer (13-day)

Fig. 2. (a)The theoretical multifractal measureµ = ε/〈εL〉 on the
unit interval for the tenth step of the construction of the weighted
two-scale Cantor set.(b) The multifractal spectrumf (α) obtained
directly for this measure (diamonds) with a fit (continuous line) to
the generalizedp-model.

time intervals, each of 211 data points, interpolated with sam-
pling time of 192 s for both slow and fast solar wind streams
during the following solar minima: 1978, 1987–1988, and
1996–1997 (Macek and Wawrzaszek, 2009). In this paper
the same analysis is repeated for the Voyager 2 data for the
slow solar wind during the solar maxima: 1981, 1989, 2001,
at 10, 30, and 65 AU, correspondingly. This will allow us to
investigate the dependence of the multifractal spectra on the
phase of the solar cycle.

4 Methods of data analysis

The generalized dimensionsDq as a function of index
q (Grassberger, 1983; Grassberger and Procaccia, 1983;
Hentschel and Procaccia, 1983; Halsey et al., 1986) are im-
portant characteristics ofcomplexdynamical systems; they
quantify multifractality of a given system (Ott, 1993). In the
case of turbulence cascade these generalized measures are re-
lated to inhomogeneity with which the energy is distributed
between different eddies (Meneveau and Sreenivasan, 1991).
In this way they provide information about dynamics of mul-
tiplicative process of cascading eddies: high positive values
of q emphasize regions of intense energy transfer rate, while
negative values ofq accentuate low-transfer rate regions.
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Let us consider the generalized weighted Cantor set, where
the probability of providing energy for one eddy of sizel1 is
p (say,p ≤ 1/2), and for the other eddy of sizel2 is 1−p

as depicted in Fig. 1 of the paper byMacek and Wawrzaszek
(2009). For anyq one obtainsDq = τ(q)/(q −1) by solving
numerically the following transcendental equation (e.g.,Ott,
1993)

pq

l
τ(q)

1

+
(1−p)q

l
τ(q)

2

= 1. (2)

In the inertial range the transfer rate of the energy flux
ε(x,l) is widely estimated by the third moment of structure
function of velocity fluctuations (e.g.,Marsch et al., 1996)

ε(x,l)∼
|u(x + l)−u(x)|3

l
, (3)

whereu(x) andu(x + l) are velocity components parallel to
the longitudinal direction separated from a positionx by a
distancel. Therefore to eachith eddy of sizel in the turbu-
lence cascade (i = 1,...,N = 2n) we associate a probability
measure defined by

pi(l) =
ε(xi,l)∑N
i=1ε(xi,l)

. (4)

This quantity can roughly be interpreted as a probability that
the energy is transferred to an eddy of sizel = vswt .

Now, one can further associate a generalized average prob-
ability measure of cascading eddies

µ̄(q,l)≡
q−1
√

〈(pi)q−1〉av, (5)

and identifyDq as scaling of the measure with sizel,

µ̄(q,l)∝ lDq . (6)

Hence, the slopes of the logarithm ofµ̄(q,l) of Eq. (6) versus
logl (normalized) provides

Dq = lim
l→0

logµ̄(q,l)

logl
. (7)

The singularity spectrumf (α) = qα −τ(q) as a function
of α = τ ′(q) could also be obtained by using Legendre trans-
formation, or directly from the slopes of the generalized mea-
sures (Halsey et al., 1986; Jensen et al., 1987). We can take

1 ≡ αmax−αmin = D−∞ −D∞ (8)

as the degree of multifractality, see (e.g.,Macek, 2006,
2007). Farther, using the value of the strength of singularity
α0 at which the singularity spectrum has its maximum
f (α0) = 1, one can define a measure of asymmetry

A ≡
α0−αmin

αmax−α0
. (9)

5 Results and discussion

In order to estimate the multifractal spectrum for solar wind
turbulence, we should first calculate the multifractal measure
given in Eq. (4). The values obtained using data of the ve-
locity componentsu = vx measured by Voyager 2 spacecraft
during solar minimum (1978, 1987–1988, and 1996–1997)
at 2.5, 25, and 50 AU are presented in Fig. 2 of the paper by
Macek and Wawrzaszek(2009) for the slow (a), (c), and (e)
and fast (b), (d), and (f) solar wind, correspondingly.

In this paper our calculations are repeated for velocity fluc-
tuations measured in the slow wind by Voyager 2 at vari-
ous distances of 10, 30, and 65 AU during solar maximum.
Namely, using the slopes ofµ̄(q,l), given in Eq. (5), the cor-
responding results for the generalized dimensionsDq as a
function of q defined by Eq. (7), with the statistical errors
of the average slopes over the scaling range, are shown in
Fig. 3a, c, and e. In addition, we can calculate the gen-
eralized average logarithmic probability and pseudoproba-
bility µ(q,l) of cascading eddies taken with respect to the
generalized measure〈log10pi(l)〉 and〈log10µi(q,l)〉 versus
log10l, as given in Eqs. (5) and (10) of the paper byMacek
and Wawrzaszek(2009). In this way, the singularity spectra
f (α) are calculated directly from the data as functions of sin-
gularity strengthα. The obtained results are also presented
in Fig. 3b, d, and f. In fact, both values ofDq and f (α)

for one-dimensional turbulence are calculated using the ra-
dial velocity componentsu = vx (in time domain) in Eq. (3)
(cf. Macek and Szczepaniak, 2008, Fig. 3). Admittedly, as is
well known, forq < 0 we have some basic statistical prob-
lems Macek (2006, 2007). Nevertheless, in spite of some
statistical errors in Fig.3, especially forq < 0, the multifrac-
tal character of the measure can still clearly be discerned.
Therefore one can confirm that the spectrum of dimensions
still exhibits the multifractal structure of the solar wind in the
outer heliosphere.

For q ≥ 0 these results agree with the usual one-scalep-
model fitted to the generalized dimensions as obtained ana-
lytically using l1 = l2 = 0.5 in Eq. (2) and the values of the
parameterp ' 0.19, 0.19, and 0.17, for various distances
correspondingly, as shown by dashed lines. The values of pa-
rameterp are related to the usual models, which are based on
thep-model of turbulence (e.g.,Meneveau and Sreenivasan,
1987). On the contrary, in general forq < 0 (right part of the
singularity spectrum in Fig.3) the p-model cannot describe
the observational results. Admittedly, a deviation from one-
scale multifractal scaling can sometimes be attributed to spe-
cial characteristics of turbulence. But here we show that the
experimental values are consistent with the generalized di-
mensions obtained numerically from Eq. (2) for the weighted
two-scale Cantor set using an asymmetric scaling, i.e., us-
ing unequal scalesl1 6= l2, as is depicted in Fig.3 by con-
tinuous lines. Evolution of the parameters of the two-scale
(l1,l2) weighted (p) Cantor set model as a function of the
heliospheric distance is shown in Fig.4 for solar maximum
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Fig. 3. The generalized dimensionsDq (a, c, e)and singularity spectraf (α) (b, d, f) calculated for the one-scalep-model (dashed lines)
and the generalized two-scale (continuous lines) models with parameters fitted to the multifractal measureµ(q,l) using data measured by
Voyager 2 during solar maximum (1981, 1989, 2001) at 10, 30, and 65 AU (diamonds) for the slow solar wind.
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Fig. 4. Evolution of the parameters of the two-scale (l1,l2) weighted
(parameterp) Cantor set model as a function of the heliospheric
distance during solar maximum (dashed lines) and solar minimum
(continuous lines).

(dashed lines) and solar minimum (continuous lines). We
see that beyond the planetary orbits somewhat different scale
parameters are involved depending on the phase of the solar
cycle.

Table 1. Degree of multifractality1 and asymmetryA for solar
wind data in the outer heliosphere during solar maximum.

Heliocentric distance Slow solar wind
(Year) 1 A

10 AU (1981) 1.88±0.16 1.1±0.18
30 AU (1989) 2.34±0.14 0.96±0.11
65 AU (2001) 1.51±0.10 1.71±0.29

In Fig. 3 we also show the calculated universal multifractal
singularity spectra. We can take the degree of multifractal-
ity 1 and measure of asymmetryA defined in Eqs. (8) and
(9), respectively. Both values of1 andA are presented in
Table 1. As expected the multifractal scaling could some-
times be rather asymmetric, and we can analyse the evolution
of the multifractality in the outer heliosphere (cf.Burlaga,
1991; Burlaga et al., 2003; Burlaga, 2004), which has also
been noticed in the inner heliosphere, e.g., byBruno et al.
(2003). However, it appears that the degree of multifractality
and asymmetry are rather weakly correlated with the helio-
spheric distance. In fact, as we see from Table1 the obtained
values of1 are rather similar for the solar wind in the distant
heliosphere, cf. Fig.3.

In particular, one should note that the degree of multi-
fractality for the slow solar wind during solar maximum is

roughly constant similarly as for the case of solar minimum
(cf. Macek and Wawrzaszek, 2009). Moreover, it seems that
the degree of asymmetry for the slow wind is only weakly
correlated with the moderate heliospheric distances. One can
say that in the slow streams during solar maximum the scal-
ing is rather symmetric within our planetary system. Only
in the very distant solar wind at∼ 65 AU, i.e., beyond the
planetary orbits, the observed spectrum becomes substan-
tially asymmetric withA = 1.7 (cf.Macek and Wawrzaszek,
2010). This is also consistent with the evolution of the pa-
rameters of our model displayed in Fig.4. Apparently, this
shows that also the slow wind can exhibit asymmetric scal-
ing.

6 Conclusions

We have studied the inhomogeneous rate of the transfer of
the energy flux indicating multifractal and intermittent be-
haviour of solar wind turbulence in the outer heliosphere. In
particular, we have demonstrated that for the model with two
different scaling parameters a better agreement with the real
data is obtained, especially forq < 0. One can expect that
the degree of multifractality and asymmetry should be corre-
lated with the heliospheric distance and we can observe the
evolution of multifractal scaling in the outer heliosphere (cf.
Burlaga, 1991; Burlaga et al., 2003; Burlaga, 2004). How-
ever, by investigating the Voyager 2 data we have demon-
strated that the degree of multifractality of the solar wind in
the outer heliosphere does not vary too much with the helio-
spheric distance. It appears that the degree of multifractality
for the slow solar wind during solar maximum is somewhat
similar to that for solar minimum. It is worth noting that the
multifractal scaling could be asymmetric. In particular, the
slow wind during solar maximum exhibits some asymmetric
scaling in the very distant heliosphere, beyond the planets.

Naturally, the generalized dimensions for solar wind are
consistent with the generalizedp-model for both positive and
negativeq, but rather with different scaling parameters for
sizes of eddies, while the usualp-model can only reproduce
the spectrum forq ≥ 0. Hence we hope that our more gen-
eral asymmetric multifractal model could shed light on the
nature of turbulence and we therefore propose this model as
a useful tool for analysis of intermittent turbulence in space
environments.
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