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Abstract. In the second half of the 90s interest grew on
the complex features of the magnetospheric dynamics in re-
sponse to solar wind changes. An important series of pa-
pers were published on the occurrence of chaos, turbulence
and complexity. Among them, particularly interesting was
the study of the bursty and fractal/multifractal character of
the high latitude energy release during geomagnetic storms,
which was evidenced by analyzing the features of the Auroral
Electrojet (AE) indices. Recently, the multifractal features of
the small time-scale increments of AE-indices have been crit-
icized in favor of a more simple fractal behavior. This is par-
ticularly true for the scaling features of the probability den-
sity functions (PDFs) of the AE index increments. Here, after
a brief review of the nature of the fractal/multifractal features
of the magnetospheric response to solar wind changes, we in-
vestigate the multifractal nature of the scaling features of the
AE index increments PDFs using the Rank Ordering Mul-
tifractal Analysis (ROMA) technique. The ROMA results
clearly demonstrate the existence of a hierarchy of scaling
indices, depending on the increment amplitude, for the data
collapsing of PDFs relative to increments at different time
scales. Our results confirm the previous results byConsolini
et al.(1996) and the more recent results byRypdal and Ryp-
dal (2010).

1 Introduction

Over the last two decades there has been a steady increase
in the investigation of the nonlinear response of the Earth’s
magnetosphere to solar wind changes. Mainly, these studies
have been focused on the magnetospheric response during
magnetic storms and substorms, and have been essentially
carried out analyzing time series of some geomagnetic in-
dices, for example the auroral electrojet AE indices or the Dst
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index. These indices can be indeed considered as proxies of
magnetospheric processes related to the occurrence of storms
and substorms, and allow us to monitor some of the most rel-
evant current systems, which are activated during magnetic
storms and substorms.

Among them the AE-indices (AU, AL, AO, and AE), in-
troduced byDavis and Sugiura(1966), are certainly a conve-
nient proxy of the magnetospheric substorm activity. In par-
ticular, the AE index describes the total intensity of two elec-
trojets (eastward and westward), which are almost perma-
nently observed in the auroral ionosphere and are enhanced
during magnetic auroral substorms. For this reason, this in-
dex has been usefully employed both qualitatively and quan-
titatively as a correlative index in studies of substorm mor-
phology and of coupling between the interplanetary magnetic
field and the Earth’s magnetosphere.

In this framework, a first study was done byTsurutani et
al. (1990) at the beginning of 90s. The authors compared the
power spectra of the AE index and of the southward compo-
nentBz of the Interplanetary Magnetic Field (IMF) for the
same time interval, demonstrating that the Earth’s magneto-
sphere response to the solar wind energy input was neither
periodic nor quasiperiodic, and that the magnetosphere acted
essentially as a low pass filter on the IMF spectrum. This re-
sult suggested that the magnetospheric response to the solar
wind might be nonlinear.

Successively, the analyses of the AE index seemed to in-
dicate that the magnetospheric disturbance data had a low
correlation dimension in the range between 2.4 and 4.2 (Vas-
siliadis et al., 1990; Sharma et al., 1993; Takalo et al., 1993)
suggesting that the dissipative organized response of the
magnetosphere to the solar wind input might be described
by a low-order system of equations. It was proposed that the
global geomagnetic system was a low dimensional, possibly
chaotic, nonlinear system.
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In the same period, it was also investigated if the dynamics
of the magnetosphere could be described in terms of stochas-
tic colored or bicolored noise (Shan et al., 1991; Roberts,
1991; Pavlos et al., 1992). Takalo and coauthors, in an im-
portant series of works (Takalo et al., 1993, 1994; Takalo and
Timonen, 1994), studied this hypothesis extensively, con-
cluding that a stochastic process, not a chaotic one, gener-
ated AE data. A primary motivation in the careful search for
low-dimensional features in the magnetospheric activity was
the hope of becoming capable of constructing physically rel-
evant low-dimensional models for magnetospheric dynam-
ics. These models could be of great value for understanding
the solar wind-magnetosphere-ionosphere interaction and for
forecasting the magnetosphere response to changing solar
wind conditions. However, soon after the first estimates of
the correlation dimension of the magnetosphere,Prichard
and Price(1992, 1993) showed that the estimates of low di-
mension of the magnetosphere were caused by the long auto-
correlation times of the system rather than by the low dimen-
sional magnetospheric dynamics. Consequently, there was
no evidence for the presence of a low-dimensional attractor
in the AE data that they had studied.

Later on,Consolini et al.(1996) investigated the possible
multifractal nature of the AE index and recognized the ne-
cessity of introducing a hierarchy of dimensions (the Renyi
dimensionsDq ) to characterize the intermittent character of
the small-scale increments (sometime named asfluctuations)
of this index. This result suggested that turbulence had to be
considered as a much more relevant phenomenon than low-
dimensional chaos in the magnetospheric dynamics. Con-
sequently, the magnetospheric dynamics seemed to be char-
acterized by many degrees of freedom and/or by stochastic
fluctuations. Furthermore, the multifractal character of the
AE index increments indicated that intermittency might play
a relevant role in dissipation mechanisms related to the au-
roral electrojet. The occurrence of intermittency was suc-
cessively confirmed by the departures of the probability dis-
tribution functions (PDFs) of the AE index small time-scale
increments from the Gaussian shape both in quiet and dis-
turbed periods (Consolini and De Michelis, 1998). We note
that nowadays the crucial role of turbulence in several mag-
netospheric/ionospheric phenomena/processes is well docu-
mented (e.g.,Zimbardo et al., 2010).

Approximately in the same period, the near-criticality dy-
namics of magnetospheric response during magnetic sub-
storms, as early hypothesized byChang(1992), was evi-
denced by investigating the power-law distribution for the
AE index activity bursts (Consolini, 1997, 2002) and its
low frequency stochastic variations of the 1/f β power spec-
trum (Uritsky and Pudovkin, 1998). Successively, several
attempts were made to model such a near-criticality behavior
by means of Self-Organized Criticality models (e.g.,Chap-
man et al., 1998; Consolini and De Michelis, 2001). Based
on the assumption that the observed scaling invariant distri-
bution of the AE index burst sizes might be the counterpart

of sporadic reorganization processes among multiscale mag-
netic coherent structures near a critical state,Chang(1999)
coined the termForced and/or Self-Organized-Criticality.

Coming back to the multifractal features of the AE index,
in the last decade some works (Hnat et al., 2002, 2005; Chap-
man et al., 2005; Watkins et al., 2005) have suggested, in
contrast with previous papers, that the auroral electrojet time
series present a very weak multifractality and that the multi-
fractal features of the AE index variations may be an artifact
of statistically poorly resolved behavior of the largest fluc-
tuations. It has also been suggested that the AE index can
be modeled as a fractionalα-stable motion (also called frac-
tional Lévy flight) on time scales< 102 min (Watkins et al.,
2005).

Recently, the possible role that stochastic fluctuations may
play in the AE index fluctuations during magnetospheric
substorms, has been carefully investigated (Pulkkinen et al.,
2006; Anh et al., 2008). The results of these studies have
again suggested that the description of the complex nature of
AE index requires to adopt novel approaches based on frac-
tional calculus.

In this framework, where the multifractality of the AE in-
dex variations remains an open issue, a work byRypdal and
Rypdal(2010) has been recently introduced. In their paper,
the authors explore the implications of modeling the AE in-
dex as a smoothly truncated Lévy flight and demonstrate that
although such processes seem to capture some of the prop-
erties of the AE index, there are some inconsistencies which
lead the authors to believe that the multifractal model pro-
vides a more accurate description of the AE index variations.

In this paper we investigate the scaling collapse of the
PDFs of AE index increments at different time scales us-
ing the approach based on theRank-OrderedMultifractal
Analysis (ROMA) introduced byChang and Wu(2008) (see
alsoChang et al., 2010, for a review). This method will allow
us to analyze and confirm the multifractal characteristics of
the auroral electrojet AE index, thus supporting all previous
findings related to the occurrence of time-intermittency, tur-
bulence and/or criticality in the magnetospheric dynamics in
response to solar wind changes.

This paper is structured as follows: in Sect. 2, we briefly
review the concept of multifractality and introduce the
ROMA technique; in Sect. 3 we proceed to explore how test
the existence of a multifractal structure of the AE index in-
crements applying such technique to more than 10 yr data of
the AE index; finally in Sect. 4 we discuss and summarize
our results.

2 Multifractality and ROMA: a brief introduction

The concept of multifractal set and the term multifractal mea-
sure date back more than 30 yr, and have been extensively
applied to model the anomalous scaling features, which
are responsible for intermittency in the framework of fully
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developed turbulence (see e.g.Mandelbrot, 1974; Benzi et
al., 1984; Frisch and Parisi, 1985; Halsey et al., 1986; Pal-
adin and Vulpiani, 1987) and space plasma turbulence (see
e.g.Burlaga, 1991a,b; Carbone, 1993; Marsch et al., 1996;
Macek et al., 2005). According to the traditional represen-
tation “a multifractal measure can be thought as the union
of a continuous infinity of intertwined sets, each of which is
an infinitesimalunifractal measure, characterized by a single
value of the Ḧolder scaling exponentα and supported by a
fractal set of dimensionf (α)”(Mandelbrot, 1989, p. 23).

A slightly different definition of multifractality was pro-
vided byMandelbrot(1989): “In one phrase, the generaliza-
tion from fractal sets to multifractal measures involves the
passage from geometric objects characterized primarily by
one number, to geometric objects characterized primarily by
a function. This function can be a probability distribution
that has been renormalized and plotted suitably. In a differ-
ent single phrase, the generalization from fractal sets to mul-
tifractal measures involves the passage from a finite number
of fractal dimensions to an infinite number of dimensions”.

One of the traditional approaches to multifractal measure
ε(x) (see e.g.Paladin and Vulpiani, 1987) consists of intro-
ducing an appropriate partition{δx} of the measure, of defin-
ing a coarse-grained weightpi(δx), and of investigating the
scaling features of the associated partition functionZq(δx)

of moment orderq (Paladin and Vulpiani, 1987). The pres-
ence of an anomalous scaling of the scaling exponentsγ (q)

of theZq(δx) as a function ofq i.e.,γ (q) ∼ Dq(q −1) with
Dq a convex function of (q) is the signature of the multi-
fractal nature of the measureε(x). As a consequence of
the anomalous behavior of the scaling exponentsγ (q), the
description of the measure distribution over the support re-
quires a hierarchy of fractal dimensions.

In the framework of fully developed turbulence the char-
acterization of the multifractal nature of the velocity field
is generally studied by analyzing the scaling features of the
structure function of orderq, Sq(δr||), of the longitudinal ve-
locity increments at the scaleδr|| (Frisch, 1995). In general,
given a signalx(t), we can define a generalized structure
function of orderq as

Sq(τ ) = 〈| x(t +τ)−x(t) |
q
〉. (1)

For self-similar signals the generalized structure function
Sq(τ ) is expected to scale according to a power law (Man-
delbrot, 1989; Paladin and Vulpiani, 1987; Frisch, 1995),

Sq(τ ) ∼ τ ζ(q), (2)

with scaling exponentζ(q). For mono-fractal signals the
scaling exponentζ(q) is generally a linear function of the
moment orderq, so that the knowledge of a single number
H = ζ(q)/q (namedHurst exponent) is sufficient to charac-
terize the scaling features of the signalx(t). However, there
are situations where the dependence ofζ(q) on the moment
order q is not linear. Sometimes, the dependence ofζ(q)

on the moment orderq is indeed a convex function, i.e., it
displays ananomalous scaling. In this case, one single num-
ber is no longer sufficient to characterize the scaling features
of the signalx(t), but a hierarchy of scaling exponentsH is
necessary. This behavior mirrors the complex nature of the
scaling features of the signalx(t), which is related to its mul-
tifractal nature. In the framework of fully developed turbu-
lence the emergence of ananomalous scalingof the scaling
exponentsζ(q) on the moment orderq is read as a signature
of intermittency, which is also related to the departure from
a Gaussian statistics of the longitudinal velocity increments
at the smallest scale.

All the previous properties are also reflected in the statis-
tics of the signal increments,δx(τ ) = x(t +τ)−x(t), at dif-
ferent scales. Given a signalx(t), it is indeed possible to
evaluate the probability distribution functionP(δx;τ) of sig-
nal incrementsδx(τ ) at the time scaleτ , which is generally
scale dependent. For some classes of signals it is possible to
construct amaster curveby simply performing a scale trans-
formation,{

δx −→ τ−sδx

P (δx;τ) −→ τ sP(δx;τ) = Ps(τ
−sδx)

(3)

where s is an appropriate scaling exponent. In this case,
all the PDFs at different time scales will collapse into
an invariant scaling function, themaster curvePs(τ

−sδx),
(Chang et al., 1973) and the observed behavior will bemono-
fractal. Nevertheless, it is not always possible to get a sin-
gle master curve by using one-exponent scaling. Generally,
a continuous change of the shape of the PDFs from small
scales (where PDFs are generallyleptokurtotic) to large ones
(where the statistics is more or less Gaussian) occurs. The
absence of a master curve is the signature of themultifrac-
tal natureof the signal increments. What happens is that the
scaling exponentss may depend on the amplitude of the in-
crements, so that increments of different sizes may be charac-
terized by different scaling exponents. This idea is contained
in ROMA to study the multifractal nature of a signal (Chang
and Wu, 2008; Tam et al., 2010; Chang et al., 2010).

The core of therank-ordered multifractal analysisre-
sides in exploring the singular nature of the fluctuations (in-
crements) by grouping them according to the scaled-size
(Chang and Wu, 2008). This way to proceed is equivalent
to reshuffling the problem related to the dominant popula-
tion of small-amplitude increments. Indeed, the traditional
methods of investigating multifractality (based on partition
function approach, structure function scaling features, statis-
tical moments of PDFs, etc.) are based on the statistics of
the full set of the signal increments, which naturally implies
that small size increments, being generally the most proba-
ble, largely dominate the large size ones, which are by far the
less numerous. This may affect the results and, furthermore,
it can be difficult to provide a good physical interpretation
from the simple examination of the anomalous scaling of the
exponents.
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The idea of ROMA is to partition the domain of the
rescaled increments (Y = τ−sδx) into separate ranges, and
for each range to determine the value of the scaling exponent
s that satisfies the following equation

τ sP(δx;τ) = Ps(τ
−sδx). (4)

Consequently, it will be possible to find a hierarchy of scaling
indicess associated with the different ranges ofY . To find
the scaling exponents for a given range ofY (Y ∈ [Yi,Yi+1])
one has to solve the following functional equation for a
range-limited structure functionS′

q(τ ),

S′
q(| δx |;τ) =

∫ τ sYi+1

τ sYi

| δx(τ ) |
q P(| δx |,τ )d | δx |' τ qs (5)

without making any distinction between positive and nega-
tive increments (thus assuming a symmetry in the PDF). If
a single solution exists fors in the chosenY -range, then the
increments will be characterized by a mono-fractal behavior
with a local Hurst exponents in this range.

3 Data description and results

To analyze the multifractal and intermittency features of the
auroral electrojet (AE) index we consider a continuous time
series with a time resolution of 1 min covering a period of
about 10.5 yr from 1 January 1978 to 30 June 1988 for a total
amount of points of the order of 6×106 points. Data come
from both the National Geophysical Data Center (NGDC,
Boulder, Colorado) – available on a CD-Rom – and the
World Data Center I (Kyoto, Japan). The choice of such a
long time series without any additional assumption is moti-
vated by two different arguments

– to have a good statistics for our analysis,

– to consider a period of the order of the solar cycle to
cover all the possible configurations of the state space
of the magnetospheric system.

As discussed in the Introduction it is known that AE index
is characterized by a power-law spectrum,S(f ) ∼ f −β , with
β ∼ −2 for periods in the interval[2, 240] min (see e.g.Tsu-
rutani et al., 1990; Consolini, 2002). For this reason we limit
our analysis of the scaling features to time scales shorter than
100 min.

In the analysis of the scaling features of the PDFs of the
AE index increments (δAE(τ ) = AE(t+τ)−AE(t)), our first
step is to investigate the existence of a single scale exponent,
as already done by other authors on different time intervals
(Hnat et al., 2002, 2005). We remark that the computation
of incrementsδAE(τ ) at the temporal scaleτ is made us-
ing disjoint time intervals (i.e., not using a moving window
technique). Furthermore, to compute the PDFs we utilize
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a non-parametric estimation method based on kernel tech-
niques (Kaiser and Schreiber, 2002),

P(δAE;τ) =
1

Nε

N∑
n=1

K

(
δAE−δAE(n)

ε

)
(6)

whereδAE(n) is the actual AE-increment time series,ε is
the bin width (chosen as 0.2σ whereσ is the standard devia-
tion of δAE) andK(u), whereu = (δAE−δAE(n))/ε, is the
kernel that we choose to be of a Gaussian type

K(u) =
1

√
2π

exp

(
−

1

2
u2

)
. (7)

The reason why we estimate the PDFs by means of the
above technique is the attempt to reduce as much as possi-
ble the effects of errors coming from the discrete nature of
the AE index. Error bar estimation is done assuming a Pois-
sonian distribution of points in| u |≤ 1, i.e., δP (δAE,τ ) ∼
√

Nu/Nε, with Nu the number of points in the range| u |≤ 1.
This is a conservative assumption for the error bar estimation.

Figure 1 reports the PDFsP(δAE;τ) of the AE index
incrementsδAE(τ ) at some different time scalesτ (τ =

4,8,...,64 min).
According to the procedure introduced byHnat et al.

(2002), we look for a single-scaling exponents studying the
probability of returnP(0;τ) as a function ofτ . This quantity
is indeed expected to scale as

P(0;τ) ∼ τ−s, (8)

wheres is the scaling exponent. Figure2 shows the trend
of the probability of returnP(0;τ) plotted versusτ in the
time domain[4; 64] min on a log-log diagram. A very good
power law dependence ofP(0; τ) on τ is found and the ob-
tained value of the scaling exponents = [0.487±0.002] is
quite well in agreement with the previous results (Hnat et
al., 2002). We note that although the observed scaling expo-
nent is very close to that of a Gaussian process (s = 1/2), in
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Fig. 2. The probability of returnP(0; τ) versusτ on a log-log plot.
The dashed line is a power-law with exponents ∼ 0.487.

our case we are clearly in presence of a non-Gaussian pro-
cess as well documented by the shape of the PDFs. A pos-
sible origin of such a value could be related to the relevance
that stochastic Gaussian noise could play in the case of small
amplitude� σδAE increments. In other words, the observed
PDFs could be the superposition of two distribution a more
or less Gaussian distribution for very small values of the in-
crements and a leptokurtotic one for large increments.

We attempt to collapse all the PDFs onto a single universal
master curve moving from the scale-transformation of Eq. (3)
within the selected range ofτs. Figure3 shows the results,
whereY is the scaled variable, defined as

Y =

(
τ

τ0

)−s

δAE(τ ), (9)

whereτ0 is a reference time scale (here we chooseτ0 = 60 s).
We remark that according to the previous definition, the
scaled incrementsY are measured in nT. Data collapsing is
very poor for| Y |> 100 nT. It is not possible to use a single
exponent to collapse all the PDFs onto a single master curve,
and consequently the nature of the AE index is not simply
monofractal, as stated byHnat et al.(2002) using a different
dataset. A possible explanation of the observed discrepancy
between our results and those ofHnat et al.(2002) could be
the different dataset used in the analysis.

Taking into account this result, we attempt to collapse each
corresponding unscaled PDF onto a single master curve us-
ing the ROMA technique. Because there is no reason to as-
sume that the PDFs of the AE index increments are symmet-
ric with respect toδAE = 0, we investigate the scaling fea-
tures of both positive and negativeδAE, modifying Eq. (5)
as follows,

S′
q(δx;τ) =

∫ τ sYi+1

τ sYi

| δx(τ ) |
q P(δx,τ )dδx, (10)
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whereYi is a positive/negative real number (Yi ∈R), and
looking for a solution of the type,

S′
q(δx;τ) ' τ ζ ′(q), → ζ ′(q) = qs (11)

wheres is the local Hurst exponent (s ≡ H ∈ [0,1]). The
analysis of rank-ordered structure function is limited to the
rangeY ∈ [−205,205] nT, using a regular partition of width
1Y = 10 nT. The reason for limiting our analysis to thisY

range is the necessity of correctly estimating the probabil-
ity density function at large values of the scaled variableY

especially for large time intervalsτ .
Figure4 reports an example of the application of ROMA

to the range ofY ∈ [45,55] nT for the moment ordersq = 1
and q = 2, respectively. In this selectedY range, we find
a single solutions(q), which satisfies Eq. (11), for eachq

value. This solution is given by the intersection of the ex-
pected dependence ofζ ′

q = qs and the actual trend ofζ ′
q(s).
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The presence of a single solution (s = s1 = s2 = 0.54 where
sq is the solution for the moment orderq) independent fromq
suggests that a monofractal scaling characterizes the selected
Y range. This hypothesis is confirmed in Fig.5 where we re-
port the solutions ofζ ′(q) obtained by solving numerically
Eq. (11) for q ∈ [−5,5], and compare them withζ ′(q) = qs.
The excellent linear scaling ofζ ′(q) is the signature for a
mono-fractal behavior ofδAE in the selectedY range.

Similarly, we look for solutions of Eq. (11) for otherY
ranges, thus constructing therank-ordered spectrum, s =

s(Y ), of the scaling indices. We find single solutions for each
range ofY except for the case ofY ∈ [−45,+45] nT where a
secondary solution is obtained. This extra solution, that can
be considered as a secondary branch forY ∈ [−45,45] nT,
does not satisfy the requirement of linear scaling with the
moment orderq, as clearly shown in Fig.6 for a particularY
interval. For this reason we consider these extra solutions as
spurious ones and neglect them in what follows.

Figure7 shows the rank-ordered spectrums(Y ) for both
positive and negative values ofY . The rank-ordered spec-
trum s(Y ) can be considered as a discrete version of a con-
tinuous multifractal spectrum for the AE index increments.
The presence of a certain degree of asymmetry is observed
among the scaling exponents of positive and negative AE in-
dex increments in the rangeY ∈ [−25,25] nT. This asymme-
try has to be related to the physical mechanism of auroral
electrojet current increase and decay. We note that the scal-
ing exponents approaches neither 0.5 for Y → 0, as it would
be expected in the case of a Gaussian random process, nor the
scaling exponent of the probability of returnP(0;τ). It tends
to s(0) ∼ 0.685. The finite size of theY range (Y ∈ [−5,5]
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Table 1. Scaling exponents s(0) versus Y range.

Y range [nT] s(0)

[−5,+5] 0.685±0.010

[−4,+4] 0.640±0.010

[−3,+3] 0.585±0.010

[−2,+2] 0.490±0.010

∆Y =Ymax−Ymin = 10 nT) used to determine s(0) could explain this result. To check this point

we reduce the size of the Y range considered to determine s(0), finding that s(0)→ 0.49 for ∆Y = 4280

nT (see Table 1). This value is well in agreement with the single scaling exponent found by us in

our previous analysis and consistent with Hnat et al. (2002).

Another peculiar feature of the rank-ordered spectrum s(Y ) is the decrease of s for increasing Y ,

suggesting a less space filling character of large scaled increments Y . In other words, this result

reflects the sparse nature in time of the occurrence of large amplitude increments.285
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Fig. 7. Profile of the rank-ordered spectrums(Y ) for scaling expo-
nents.

agreement with the single scaling exponent found by us in
our previous analysis and consistent withHnat et al.(2002).

Another peculiar feature of the rank-ordered spectrum
s(Y ) is the decrease ofs for increasingY , suggesting a less
space filling character of large scaled incrementsY . In other
words, this result reflects the sparse nature in time of the oc-
currence of large amplitude increments.

Taking into account that the scaling exponents(Y ) is
equivalent to the Hurst exponentH for the Y scaled incre-
ments and that the Hurst exponentH is related to the degree
of persistency (Hergarten, 2002), the rank-ordered spectrum
s(Y ) could consequently reflect the different persistency de-
gree of small and large (negative and positive) scaled incre-
mentsY . In particular the rank-ordered spectrums(Y ), re-
ported in Fig.7, seems to suggest that the small AE index
scaled increments (| Y |< 70 nT) are persistent (s >½), while
very largeY values are anti-persistent (s <½). Again, this
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Table 1. Scaling exponentss(0) versusY range.

Y range [nT] s(0)

[−5,+5] 0.685±0.010
[−4,+4] 0.640±0.010
[−3,+3] 0.585±0.010
[−2,+2] 0.490±0.010

different character could be the consequence of the bursty
nature of the AE index. We will return on this point in the
next Section. Furthermore, the asymmetry among the scal-
ing exponents of positive and negative AE index increments
in the intervalY ∈ [−25,25] nT is reflected also in a more
persistent character of positiveY .

In Figure8 we report the PDF master curve as obtained
collapsing all the PDFs using Eq. (4) wheres is the rank-
ordered spectrums(Y ) reported in Fig.7. When it is com-
pared with the mono-scaling procedure of Fig.3, the data
collapsing is excellent forY < 0. The slight deviation from
a perfect collapsing observed for positiveY > 120−140 nT
could be due to a nonlinear crossover between different
regimes, as illustrated byTam et al.(2010) using a different
data set. This point is not investigated here.

4 Conclusions

In this work we investigate the multifractal nature of the AE
index by applying the ROMA technique. Our results confirm
the previous findings byConsolini et al.(1996) and the more
recent results byRypdal and Rypdal(2010) that the AE index
has to be described by a multifractal model.

With respect to the previous analyses of AE index features,
the ROMA technique demonstrates that the overall collaps-
ing of the PDFs of AE index increments at different time de-
lays (τ ∈ [4,64] min) requires a spectrum of scaling indices,
the rank-ordered spectrums(Y ), which is a function of the
amplitude of the increments themselves. In other words, the
ROMA technique is capable of identifying the specific fractal
properties for increments of a certain magnitude, providing
the appropriate scaling exponent associated with the collaps-
ing of the PDFs with the scale at that increment magnitude.

In comparison with the previous analyses, the application
of ROMA to positive and negative scaled incrementsY , re-
veals a certain degree of asymmetry of the scaling spectrum
s(Y ). This asymmetry has to be linked to the different physi-
cal properties of positive and negative AE index increments.
As a matter of fact, positive AE index increments are re-
lated to an increase of auroral electrojet (and thus of auro-
ral dissipation) while negative ones are related to the decay
of auroral electrojet current intensity. The different nature
of positive and negative AE index increments is also visible
in the small discrepancy observed in the PDFs collapsing for
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Fig. 8. Collapsing of PDFs using the discrete rank-ordered spectrum s(Y ) of Figure 7.

In Figure 8 we report the PDF master curve as obtained collapsing all the PDFs using Eq.(4)
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deviation from a perfect collapsing observed for positive Y > 120−140 nT could be due to a non-

linear crossover between different regimes, as illustrated by Tam et al. (2010) using a different data300

set. This point is not investigated here.

4 Conclusions

In this work we investigate the multifractal nature of the AE index by applying the ROMA technique.

Our results confirm the previous findings by Consolini et al. (1996) and the more recent results by

Rypdal and Rypdal (2010) that the AE index has to be described by a multifractal model.305

With respect to the previous analyses of AE index features, the ROMA technique demonstrates

that the overall collapsing of the PDFs of AE index increments at different time delays (τ ∈ [4,64]

min) requires a spectrum of scaling indices, the rank-ordered spectrum s(Y ), which is a function

of the amplitude of the increments themselves. In other words, the ROMA technique is capable of

identifying the specific fractal properties for increments of a certain magnitude, providing the appro-310

priate scaling exponent associated with the collapsing of the PDFs with the scale at that increment

magnitude.

In comparison with the previous analyses, the application of ROMA to positive and negative

scaled increments Y , reveals a certain degree of asymmetry of the scaling spectrum s(Y ). This

asymmetry has to be linked to the different physical properties of positive and negative AE index315

increments. As a matter of fact, positive AE index increments are related to an increase of auroral

electrojet (and thus of auroral dissipation) while negative ones are related to the decay of auroral

electrojet current intensity. The different nature of positive and negative AE index increments is
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Fig. 8. Collapsing of PDFs using the discrete rank-ordered spec-
trum s(Y ) of Fig. 7.

Y > 120−140 nT (i.e.,δAE(τ ) > 220 nT forτ = 4 min). A
possible interpretation of this discrepancy may be a different
physical origin of very large positive AE index increments.
As well documented in several works (see e.g.,Kamide and
Kokubun, 1996; Consolini and De Michelis, 2005and ref-
erence therein), the AE index is indeed representative of two
different processes: thesolar-wind directly driven convection
and theimpulsive unloading process. These two processes
are expected to be characterized by a completely different
increase of the auroral electrojet current intensity, the for-
mer being characterized by a slow and small increase of the
electrojet current intensity with time, and the latter by a fast
and very large increase of the AE index (Consolini and De
Michelis, 2005). Thus, it is quite reasonable to relate the non
perfect PDFs collapsing forY > 120−140 nT with the possi-
ble occurrence of a crossover behavior (dynamical transition
to a different regime) for these very largeY . This point re-
quires a more detailed analysis that will be done elsewhere
in the future. In contrast, the decay mechanism seems to
be characterized by a single process.This hypothesis is sup-
ported by the excellent PDF collapsing for negativeY values.
In conclusion, we have evidenced that the complex nature
of the AE index is adequetely described in terms of a mul-
tifractal structure also by analyzing the PDF scaling. This
result confirms the previous work byConsolini et al.(1996)
and the recent results byRypdal and Rypdal(2010). Fur-
thermore, we have also provided an excellent example of the
ROMA technique capability of extracting the complex nature
of fluctuations (increments) of different magnitude and signs.

Acknowledgements.We are indebted with T. Chang (MIT –
Cambridge, USA) for the useful discussions and comments on
this work. The authors thank both the National Geophysical Data
Center (NGDC, Boulder, Colorado) and the World Data Center I
(Kyoto, Japan) for providing data used in this work.

Edited by: H. Lamy
Reviewed by: two anonymous referees

www.nonlin-processes-geophys.net/18/277/2011/ Nonlin. Processes Geophys., 18, 277–285, 2011



284 G. Consolini and P. De Michelis: ROMA approach to the AE index

References

Anh, V. V., Yong J. M., and Yu, Z. G.: Stochastic modeling of
the auroral electrojet index, J. Geophys. Res., 113, A10215,
doi:10.1029/2007JA012851, 2008.

Benzi, R., Paladin, G., Vulpiani, A., and Parisi, G.: On the multi-
fractal nature of fully developed turbulence and chaotic systems,
J. Phys. A, Math. Gen., 17, 3521–3531 1984.

Burlaga, M. F.: Multifractal structure of the interplanetary magnetic
field – Voyager 2 observations near 25 AU, 1987–1988, Geophys.
Res. Lett., 18, 69–72, 1991a.

Burlaga, M. F.: Multifractal structure of speed fluctuations in re-
current streams at 1 AU and near 6 AU, Geophys. Res. Lett., 18,
1651–1654 1991b.

Carbone, V.:, Cascade model for intermittency in fully developed
magnetohydrodynamic turbulence, Phys. Rev. Lett., 71, 1546–
1549, 1993.

Chang, T. S.: Low dimensional behaviour and symmetry break-
ing of stochastic systems near criticality-can these effects be ob-
served in space and in the laboratory?, IEEE Trans. Plasma. Sci.,
20, 691–694,doi:10.1109/27.199515, 1992.

Chang, T. S.: Self-organized criticality, multi-fractal spectra, spo-
radic localized reconnections and intermittent turbulence in mag-
netotail, Phys. Plasmas, 6, 4137–4145,doi:10.1063/1.873678,
1999.

Chang, T. S. and Wu, C. C.: Rank-ordered multifractal spec-
trum for intermittent fluctuations, Phys. Rev. E, 77, 045401,
doi:10.1103/PhysRevE.77.045401, 2008.

Chang, T. S., Hankey, A., and Stanley, H. E.: Double-power scal-
ing functions near tricritical points, Phys. Rev. B, 7, 4263–4266,
doi:10.1103/PhysRevB.7.4263, 1973.

Chang, T. S., Wu, C. C., Podesta, J., Echim, M., Lamy, H., and
Tam, S. W. Y.: ROMA (Rank-Ordered Multifractal Analyses) of
intermittency in space plasmas – a brief tutorial review, Nonlin-
ear Proc. Geophys., 17, 545–551,doi:10.5194/npg-17-545-2010,
2010.

Chapman S. C., Watkins, N. W., Dendy, R. O., Helander, P., and
Rowlands G.: A Simple Avalanche Model as an Analogue for
Magnetospheric Activity, Geophys. Res. Lett., 25, 2397–2400,
doi:10.1029/98GL51700, 1998.

Chapman, S. C., Hnat, B., Rowlands, G., and Watkins, N. W.: Scal-
ing collapse and structure functions: identifying self-affinity in
finite length time series, Nonlin. Processes Geophys., 12, 767-
774,doi:10.5194/npg-12-767-2005, 2005.

Consolini, G.: Sandpile cellular automata and magnetospheric dy-
namics, in: Proc. 8th GIFCO Conference: Cosmic Physics in the
Year 2000: Scientific Perspectives and New Instrumentations,
edited by: Aiello, S., Iucci, N., Sironi, G., Treves, A., and Vil-
lante, U., 123, SIF Bologna, 1997.

Consolini, G.: Self-organized criticality: a new paradigm for the
magnetotail dynamics, Fractals, 10, 275–283, 2002.

Consolini, G. and De Michelis, P.: Non-Gaussian distri-
bution function of AE-index fluctuations: evidence for
time intermittency, Geophys. Res. Lett., 25, 4087–4090,
doi:10.1029/1998GL900073, 1998.

Consolini, G. and De Michelis, P.: A revised forest-fire cellular au-
tomaton for the nonlinear dynamics of the Earth’s magnetotail,
J. Atmos. Solar-Terr. Phys., 63, 1371–1377,doi:10.1016/S1364-
6826(00)00238-8, 2001.

Consolini, G. and De Michelis, P.: Local intermittency

measure analysis of AE index: The directly driven and
unloading component, Geophys. Res. Lett., 32, L05101,
doi:10.1029/2004GL022063, 2005.

Consolini, G., Marcucci, M. F., and Candidi, M.: Multifractal struc-
ture of auroral electroject index data, Phys. Rev. Lett., 76, 4082–
4085,doi:10.1103/PhysRevLett.76.4082, 1996.

Davis, T. N. and Sugiura, M.: Auroral Electrojet Activity Index AE
and its universal time variations, J. Geophys. Res., 71, 785–801,
1966.

Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov, Cam-
bridge University Press, 1995.

Frisch, U. and Parisi, G.: Fully developed turbulence and intermit-
tency, in: Turbulence and Predictability in geophysical Fluid Dy-
namics and Climate Dynamics, edited by: Ghil, M., International
School of Physics “Enrico Fermi” Course 88, (North-Holland,
Amsterdam), p. 84, 1985.

Halsey T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and
Shraiman, B. I.: Fractal measures and their singularities: The
characterization of strange sets, Phys. Rev. A, 33, 1141–1151,
doi:10.1103/PhysRevA.33.1141, 1986.

Hergarten, S.: Self-Organized Criticality in Earth Systems, Springer
Verlag, Berlin-Heidelberg, 2002.

Hnat, B., Chapman, S. C., Rowlands, G., Watkins, N. W., and
Freeman, M. P.: Scaling of solar windε and AU, AL and
AE indices as seen by WIND, Geophys. Res. Lett., 29, 2078,
doi:10.1029/2002GL016054, 2002.

Hnat, B., Chapman, C., and Rowlands, G.: Scaling and Fokker-
Planck model for fluctuations in geomagnetic indices and com-
parison with solar windε as seen by Wind and ACE, J. Geophys.
Res., 110,doi:10.1029/2004JA010824, 2005.

Kaiser, A. and Schreiber, T.: Information transfer in contin-
uous processes, Physica D, 166, 43–62,doi:10.1016/S0167-
2789(02)00432-3, 2002.

Kamide, Y. and Kokubun, S.: Two-component auroral electrojet:
Importance for substorm studies, J. Geophys. Res., 101, 13027–
13046,doi:10.1029/96JA00142, 1996.

Macek, W. M., Bruno, R., and Consolini, G.: Generalized dimen-
sions for fluctuations in the solar wind, Phys. Rev. E, 72, 017202,
doi:10.1103/PhysRevE.72.017202, 2005.

Mandelbrot, B. B.: Intermittent Turbulence in Self Sim-
ilar Cascades; Divergence of High Moments and Di-
mensions of the Carrier, J. Fluid. Mech., 62, 331–358,
doi:10.1017/S0022112074000711, 1974.

Mandelbrot, B. B.: Multifractal measures, especially for geophysi-
cist, Pure Appl. Geophys., 131, 5–42,doi:10.1007/BF00874478,
1989.

Marsch, E., Tu, C.-Y., and Rosenbauer, H.: Multifractal scaling of
the kinetic energy flux in solar wind turbulence, Ann. Geophys.,
14, 259-269,doi:10.1007/s00585-996-0259-4, 1996.

Paladin, G. and Vulpiani, A.: Anomalous scaling laws in mul-
tifractal objects, Phys. Rep., 156, 147–225,doi:10.1016/0370-
1573(87)90110-4, 1987.

Pavlos, G. P., Kyriakou, G. A., Rigas, A. G., Liatsis, P. I., Tro-
choutsos, P. C., and Tsonis, A. A.: Evidence for strange attractor
structures in space plasma, Ann. Geophys., 10, 309–322, 1992.

Prichard, D., and Price, C. P.: Spurious dimension estimates from
time series geomagnetic indices, Geophys. Res. Lett., 19, 1623–
1626,doi:10.1029/92GL00630, 1992.

Prichard, D. and Price, C. P.: Is the AE index the result of

Nonlin. Processes Geophys., 18, 277–285, 2011 www.nonlin-processes-geophys.net/18/277/2011/

http://dx.doi.org/10.1029/2007JA012851
http://dx.doi.org/10.1109/27.199515
http://dx.doi.org/10.1063/1.873678
http://dx.doi.org/10.1103/PhysRevE.77.045401
http://dx.doi.org/10.1103/PhysRevB.7.4263
http://dx.doi.org/10.5194/npg-17-545-2010
http://dx.doi.org/10.1029/98GL51700
http://dx.doi.org/10.5194/npg-12-767-2005
http://dx.doi.org/10.1029/1998GL900073
http://dx.doi.org/10.1016/S1364-6826(00)00238-8
http://dx.doi.org/10.1016/S1364-6826(00)00238-8
http://dx.doi.org/10.1029/2004GL022063
http://dx.doi.org/10.1103/PhysRevLett.76.4082
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1029/2002GL016054
http://dx.doi.org/10.1029/2004JA010824
http://dx.doi.org/10.1016/S0167-2789(02)00432-3
http://dx.doi.org/10.1016/S0167-2789(02)00432-3
http://dx.doi.org/10.1029/96JA00142
http://dx.doi.org/10.1103/PhysRevE.72.017202
http://dx.doi.org/10.1017/S0022112074000711
http://dx.doi.org/10.1007/BF00874478
http://dx.doi.org/10.1007/s00585-996-0259-4
http://dx.doi.org/10.1016/0370-1573(87)90110-4
http://dx.doi.org/10.1016/0370-1573(87)90110-4
http://dx.doi.org/10.1029/92GL00630


G. Consolini and P. De Michelis: ROMA approach to the AE index 285

nonlinear dynamics?, Geophys. Res. Lett., 20, 2817–2820,
doi:10.1029/93GL03012, 1993.

Pulkkinen, A., Klimas, A., Vassiliadis, D., and Uritsky, V.: Role of
stochastic fluctuations in the magnetosphere-ionosphere system:
A stocastic model for the AE index variations, J. Geophys. Res.,
111, A10218,doi:10.1029/2006JA011661, 2006.

Rypdal, M. and Rypdal, K.: Stochastic modelling of the AE index
and its relation to fluctuations in Bz of the IMF on time scales
shorter than substorm duration, J. Geophys. Res., 115, A11216,
doi:10.1029/2010JA015463, 2010.

Roberts, D. A.: Is there a strange attractor in the magnetosphere?,
J. Geophys. Res., 96, 16031–16046,doi:10.1029/91JA01088,
1991.

Shan, L. H., Goertz, C. K., and Smith, R. A.: Chaotic ap-
pearance of the AE index, Geophys. Res. Lett., 18, 147–150,
doi:10.1029/90GL02477, 1991.

Sharma, A. S., Vassiliadis, D. V., and Papadopoulos, K.: Re-
construction of low-dimensional magnetospheric dynamics by
singular spectrum analysis, Geophys. Res. Lett., 20, 335–338,
doi:10.1029/93GL00242, 1993.

Takalo, J. and Timonen, J.: Characteristic time scale of au-
roral electrojet data, Geophys. Res. Lett., 21, 641–644,
doi:10.1029/94GL00184, 1994.

Takalo, J., Timonen, J., and Koskinen, H.: Correlation dimension
and affinity of AE data and bicolored noise, Geophys. Res. Lett.,
20, 1527–1530,doi:10.1029/93GL01596, 1993.

Takalo, J., Timonen, J., and Koskinen, H.: Properties of AE
data and bicolored noise, J. Geophys. Res., 99, 13239–13249,
doi:10.1029/94JA00516, 1994.

Tam, S. W. Y., Chang, T., Kintner, P. M., and Klatt, E. M.:
Rank-ordered multifractal analysis for intermittent fluctuations
with global crossover behavior, Phys. Rev. E, 81, 036414,
doi:10.1103/PhysRevE.81.036414, 2010.

Tsurutani, B. T., Goldstein, B. E., Sugiura, M., Iyemori, T., and
Gonzalez, W. D.: The nonlinear response of AE to the IMFBs

driver: a spectral break at 5 hours, Geophys. Res. Lett., 17, 279–
282,doi:10.1029/GL017i003p00279, 1990.

Uritsky, V. M. and Pudovkin, M. I.: Low frequency 1/f -like fluc-
tuations of the AE-index as a possible manifestation of self-
organized criticality in the magnetosphere, Ann. Geophys., 16,
1580–1588,doi:10.1007/s00585-998-1580-x, 1998.

Vassiliadis, D. V., Sharma, A. S., Eastman, T. E., and Papadopou-
los, K.: Low-dimensional chaos in magnetospheric activity
from AE time series, Geophys. Res. Lett., 17, 1841–1844,
doi:10.1029/GL017i011p01841, 1990.

Watkins, N. W., Credgington, D., Hnat, B., Chapman, S. C., Free-
man, M. P., and Greenhough, J.: Towards synthesis of solar wind
and geomagnetic scaling exponents: a fractional Lévy motion
model, Space Sci. Rev., 121, 271–284,doi:10.1007/s11214-006-
4578-2, 2005.

Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z.,
Aburjania, G., Chargazia, K., and Alexandrova, O.: Magnetic
turbulence in the geospace environment, Space Sci. Rev., 156,
89–134,doi:10.1007/s11214-010-9692-5, 2010.

www.nonlin-processes-geophys.net/18/277/2011/ Nonlin. Processes Geophys., 18, 277–285, 2011

http://dx.doi.org/10.1029/93GL03012
http://dx.doi.org/10.1029/2006JA011661
http://dx.doi.org/10.1029/2010JA015463
http://dx.doi.org/10.1029/91JA01088
http://dx.doi.org/10.1029/90GL02477
http://dx.doi.org/10.1029/93GL00242
http://dx.doi.org/10.1029/94GL00184
http://dx.doi.org/10.1029/93GL01596
http://dx.doi.org/10.1029/94JA00516
http://dx.doi.org/10.1103/PhysRevE.81.036414
http://dx.doi.org/10.1029/GL017i003p00279
http://dx.doi.org/10.1007/s00585-998-1580-x
http://dx.doi.org/10.1029/GL017i011p01841
http://dx.doi.org/10.1007/s11214-006-4578-2
http://dx.doi.org/10.1007/s11214-006-4578-2
http://dx.doi.org/10.1007/s11214-010-9692-5

