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Abstract. Rank-Ordered Multifractal Analysis (ROMA) Recently, Chang and Wu (2008) introduced the rank-
was introduced by Chang and Wu (2008) to describe theordered multifractal analysis (ROMA) for analyzing in-
multifractal characteristic of intermittent events. The pro- termittent fluctuations to describe the explicit multifractal
cedure provides a natural connection between the rankeharacteristics and indicated how they were distributed by
ordered spectrum and the idea of one-parameter scaling fqgparametrically separating the fluctuations according to their
monofractals. This technique has successfully been appliedanks. The technique retains the spirit of the traditional struc-
to MHD turbulence simulations and turbulence data observedure function analysis and combines it with the idea of one-
in various space plasmas. In this paper, the technique iparameter scaling of monofractals. It was first applied to
applied to the probability distributions in the inertial range the results of a large-scale two-dimensional magnetohydro-
of the turbulent fluid flow, as given in the vast Johns Hop- dynamic (MHD) turbulence simulation. It has also been suc-
kins University (JHU) turbulence database. In addition, acessfully applied to in-situ solar wind observations (Chang
new way of finding the continuous ROMA spectrum and et al., 2008), the broadband electric field oscillations from
the scaled probability distribution function (PDF) simulta- the auroral zone (Tam et al., 2010), the magnetosphere cusp
neously is introduced. turbulence (Lamy et al., 2008), and the AE index over ap-
proximately a complete solar cycle (Consolini and Michelis,
2011). A brief review of ROMA and its applications to some
of these studies were provided in Chang et al. (2010).
1 Introduction In this paper, to show that ROMA can also be useful in
the analysis of the fluid turbulence, we apply the technique
It is well-known that fully developed turbulent fluid flows to the Johns Hopkins University (JHU) large-scale direct nu-
are intermittent and multifractal (Frisch, 1995 and referencegnerical simulation turbulence database (Perlman et al., 2007;
therein). The intermittent turbulence and associated multi-and Li et al., 2008). With the huge number of data points, a
fractal characteristics are also evident in the analyses of spaddetailed study can be conducted. This paper is structured as
plasmas observations (e.g., Sorriso-Valvo et al., 1999; Confollows: in Sect. 2, we first provide a brief description of the
solini and Chang, 2001; Bruno et al., 2001, 2003; FormanJHU turbulence data set and present the PDF of longitudinal
and Burlaga, 2003; Tam et al., 2005; Weygand et al, 2005yelocity fluctuations. The PDFs are shown to be well fitted
and Chang, 2009). Through the analysis of probability distri-with a modified version of the Castaing et al. (1990) model.
bution functions (PDFs) for field fluctuations, intermittency In Sect. 3, ROMA is applied to these PDFs and two invari-
in turbulence is characterized by a strong non-Gaussian beant functions in the ROMA analysis are obtained. In this
havior of PDF at small scales. The multifractal characteris-section, a “new” method of the ROMA analysis is also intro-
tics have generally been analyzed with structure functions oduced. The method provides a way of obtaining the multi-
singular spectra based on the partition functions of the probfractal spectrum and the scaled PDF as continuous functions
ability measures (Halsey et al., 1986). of a rank-ordered local scale invariant. In Sect. 4, this new
approach is applied to fluctuations of the solar wind turbu-
lence and of 2-D MHD simulations. A summary is given in
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2 JHU turbulence flow database and a modified e 10
Castaing et al. model (a) '

(b)

A detailed description of the JHU turbulence database can be
found in Perlman et al. (2007) and Li et al. (2008). Briefly,
the data is obtained from a direct numerical simulation of
forced isotropic turbulence on a 1@2eriodic grid in a
physical domain of 2 x 27 x 27, using a pseudo-spectral f
parallel code. Energy is injected by keeping constant the to- /8 ———-— —- T ool L A
tal energy in modes such that their wave-number magnitude ] ]
is less or equal to 2. After the simulation has reached a statis-  _.10*
tically stationary state, 1024 frames of data, which includes (c)
the 3 components of the velocity vector and the pressure, are 4
generated and stored into the database. The duration of the
stored data is about one large-eddy turnover time. The frames -
are stored at every 10 time-steps of the numerical simulation, = 2
for time ¢ between 0 and 2.048. In this duration, the time-
average Taylor-scale Reynolds number is 433 and the large-
eddy turnover time is 2.02. The radial energy spectrum aver- e
aged over this duration indicates an inertial range of approx- v,
imately from the wave number 8 to 60, which corresponds to
a spatial range from 14 to 128A, with A denoting the grid ~ Fig. 1. PDF of s, at§ =64A, with A denoting the grid spac-
spacing, which is 2/1024. ing, andsv| in the units of the bin size, see text. (a) and(b),
Instead of the huge 1024lata points, 13-planes of data P (8v};.4) in solid blue curve and’(—8v|,) in dash red curve to
points are used in the present analysis. They are arbitrarilghow the asymmetry of the PDF with respecttq = 0. (b) is an
selected at various locations and various timest,{)=(0,  €nlarged version ofe) for a smaller range ofv)|. The asymmetry
9A), (0, 499, (0.5, 0), (0.5, 498.), (1, 0), (1, 499\), (1.5, is ewde_ntln(c) and(d) usm_gPJr andP- decomposmon of the PDF
0), (1.5, 499\), (2, 0), (2, 9Q\), (2, 49R), (0.25, 24%0), accordlng tq Eg. (2). Inthis an(_j subsequent figures, the accuracy of
(0.75, 24Q\), (1.25, 249\), (L.75, 24), (0.25, 499\). th_e P_DF is |_ndlcated _by the noise level of t_he plot. Eor example, in
. this figure, in the regiomév;| < 300, the noise level is very smalll
(0'75_’ _4993)' (1'2'_5* 4993)'_ and (1'_75_” 493)'_ T_h's setof  _ not larger than the thickness of the curves. However, the PDF is
19 million data points provides sufficient statistics. approximatively (3.2 0.4) 1076 at v, = 400.
First, the fluctuations of longitudinal velocityy,, are
considered. The fluctuation is defined By (r, §) =
(v(r+d8i)—v(r))-i, with i a unit vector, and$ the spatial P(3u||) _
scale. In the analysig, is either along the x-axis or the y- 1
&x{;spagﬁ%;:}n the range_of (18, 160A). As an example, Z[P(svy) — P (=buy)]
| at scales = 64A, denoted byP (8v),é), is 2
shown in Fig. 1. In computing the PDF, the rangesof = P* (v)+ P~ (8vy)
is divided evenly into 1601 bins, with the bin number ex-
tending from—800 to 800. For the bin number (i —1/2)  Both P*(8v)) and P~(sv)) are shown in Fig. 1c and d,
Ay, < 8v < (i +1/2)A,. The bin sizeA, is set as 8/1601 respectively. It is noted thaP™ (§v)) = 2P (|8v) ), with
because the maximum value 6%)| is slightly less than 4. P(|vy|]) denoting the PDF of the absolute values of the fluc-
Thus in the figuregv is expressed by its bin numbers; or, tuations ofévj;.
equivalently, it is in units of its bin size. The PDF is notsym-  The following shows that the PDFs from the JHU database
metric with respect tév; = 0. The distribution has a max- can be fitted quantitatively by a modified Castaing et
imum atév| ~ 11 P(8v) > P(—8v)) for |8v)| between 0  al. (1990) model. The original model was developed from the
and 150, and® (8v)|) < P(—8v))) for |sv)| > 150. The skew-  classical Kolmogorov's picture of turbulent energy cascade
ness of the velocity distributions is well known (Castaing (Kolmogorov, 1941) and took into account that the energy
et al., 1990). The PDF can further be decomposed into dransfer rate in the cascade at different scales is not strictly
symmetricP*(8v)) and an asymmetri®~ (§v|) as follows self-similar. According to the model, for a given scale
(Chevillard et al., 2006): PDF of fluctuationsX, P(X), is a convolution of a Gaussian
and a log-normal distribution:

P(3v, 3)

-5

= 3F

P (8v))) + P (=dvy)] @)
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Table 1. Values of four parameters in the modified Castaing model, 10— 10" b ' T
Eq. (2), used in the fit o (5v,8) based on the JHU turbulence 1073_(a) (b)
data for the scalé between 12 and 12&\.
= 0 a
8/A og Xo A as 2 2
o 0% o
12 45 6.9 0.3 0.4
18 54 8 0.285 0.4 0%
24 61 9 027 0.4 4o A , ,
48 81 12 023 04 19600 -400 -200 63 200 400 600 19200 -100 83 100 200
96 107 156 0.7 04 o o
128 118 17.6 0.145 0.4 (c) (d)
107
= 0 2
g 107 g
10"F
Alas) [ X2 X/o
P(X) = ex - 1+a e —— 2 -7 -9 I 1 1
( ) 2 A 0 P 20'2( S(1+X2/O'2)) ( ) Yoo 400 200 0 200 400 600 %200 -100 80 100 200
Vil Vil
|I’]2(G/O’0) do 107 N 107 , .
exg———5—1— (e) ®
212 o2 w0l
whereas is a skewness factor to account for the asymmetry, [ .
oo is the most probable value of, which is the standard - z
deviation of a Gaussian distribution, ahds the width of the &0 -
log-normal distribution. The normalization factdnas) is ey
o0
included such that/ p(X)dX =1. © , ‘

—00 —;5700 —4(‘)0 —260 (IJ 2(I)0 460 600 19;00 —1(‘)0 0 100 \200
It can be shown that ifis > 0, P(X) has a maximum at % I
X <0. Therefore, in order to account for the fact tigbv|) . . .
has a maximum atv > 0, as shown in Fig. 1, a modified Fig- 2. PDF6v;,5) for § = 12A in (a) and(b); § = 48A in (c) and
Castaing form is introduced as follows: (d); § =128A in (e)and(f). Solid red curves are from JHU data and
blue dash curves are fits with the modified Castaing model, Eq. (3).

Alas) [~
P(X) = 3
0= 2 0 ®) . . . . -
) with o, showing the intermittent characteristic of the turbu-
exp| — (X — Xo) (1+as (X—Xo)/o lence, being Gaussian at large scale and long tails at small
202 (14 (X —X0)?/0?) scale. Further discussion on these scaling relations will be
In2(c / 00) do provided after the presentation of the ROMA analysis.
A LR P

The additional parametefy gives the location ok where 3 ROMA analysis of the JHU turbulence flow
P(X) is a maximum. In this new form, there are four param- . . .
etersas, oo, A andXg. Although there are four parameters to In.th|s ;ectlon, we apply the ROMA ana!yS|s to the PDFs ob-
fit the data to Eq. (3), the fitting procedure is not complicated.tamed in Sgct. 2 for the turbulent' flows in the JHU database.
The parameteKy is given by the data as mentioned above; We start with a summary of th_e idea of ROMA. '_” order to
oo is specified to fit the PDF data distribution in a small rangeunderstand the scallng_ behawo_r among the faf“"y of PDFs
nearXo; 1 is then chosen to fit the wings of the PDF; ang of the turbulent fluctuations, the |Qea (_)f fractals is employed.
is adjusted to account for the asymmetry. If the form of PDFs,P(X.,(S),. is |nva_r|ant as the scalé,

In Fig. 2, P(3v);, 8) is shown to be well fitted by Eq. (3), f:hangesz then Fhe following interesting one parameter scal-
with X representingu;, for several values of. The param- ing form is obtained (Hnat et al., 2002; Chang et al. 2004):

eters employed for the fits férfrom 12A to 128A are given P(X,8)8° = Ps(X/8%) (4)
in Table 1. Also, as shown in Fig. 3, the parameters scale as:
Xo~8%4 o9~ 894 as~ constant, and? ~ 1/(20+4). One It means that the PDFs would collapse onto one scaled

notes that as is increased)? tends to zero; it means that at PDF Pg(Y) whereY = X/8° is a global scale invariant for all
large scale, the PDF is dominated by a Gaussian distributiomanges ofX for a constant scaling exponent The scaling
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Fig. 3. Scaling of the parameters vs. the scale in the modified Castaing model used for thePfigwefs) shown in Fig. 2 and given in

Table 1. Circles denote the values used; dash curves;gﬁe:1780~4; Xo= 2.5580~4; andi? = 3./(20+9), respectively. In additiorys ~
constant, see Table 1.

exponent may be interpreted as a single fractal (monofrac- (a)

tal) measure that characterizes the fluctuations of all scales " — 1
through the scaling relation (Eqg. 4). In practical applica-
tions, the scaling law (Eg. 4) is sometimes satisfied for the
full range of the scaling variable and sometimes only for
some restricted ranges of the varialfléChang et al., 2004,
Podesta et al., 2006, Hnat et al., 2002). When scaling law
(Eq. 4) is satisfied over the full range &f, the scaling is
called self-similar or monofractal. Otherwise, the fluctuating .

=
2
o

E)

107"

phenomenon is multifractal. S
For multifractal fluctuations, Chang and Wu (2008) pro-
posed the ansatz of ROMA with the following scaling: Fig. 4. Findings(Y) and P5(Y) in the ROMA analysis afa) Y =
10 and(b) Y =40. For(a), ¥ =10, P(sv,8) are obtained by
P(X,8)8°Y) = py(y) with ¥ =X/850) (5)  Eq. (7) ats = (24,48,96,128 A using five sets of values ofs(

Ps): red circles fors =0.399, Ps = 2.05102; green right-triangles
Here, the scaling exponertY) is now a function ofY, for $=0.419, Ps=2.0510"2; blue left-triangles fors=0.379,
meaning that the scaling exponent depends on the rank of th&= 2'0510‘2_: magenta up-triangles for= 0-5'399,1?5: 2.251072;
local scale invarian¥. According to the monofractal scal- black down-triangless =0.399,Ps = 1.8510"“. Solid black curves
ing (Eqg. 4), a functionP (X, §) of two variables is described '€ from JHU %ata_ withd = (24,48,96,128 A. The pair §, Ps) =
by a function of a single variable plus a single number. For(0-3992.0510°) givesP(év||.), shown in red circles, consistent
. . with the JHU data and is chosen to be the solutiorntfer 10. Sim-
the_case (.)f ROMA scaling relatlor_ls (Eq. 3)(X, 5) of wo ilarly for (b) at ¥ =40: red circles: {, Ps) = (0.374,2.21073);
variables is replaced by two functiongY) and Ps(Y), of a

. . ; green right triangles: (0.394, 2.218); blue left triangles: (0.354,
single variableY and the multifractal nature of the fluctua- 5 , 10-3): magenta up triangles: (0.374, 2.4R); black down

tions are provided by these two functions. triangles: (0.374, 2.0 16%). The pair §, Ps) = (0.3742.2103) is
In Chang and Wu (2008), two methods were proposed forchosen as the solution Ht= 40.
findings(Y) and Ps(Y): (a) given a value, one finds values ] . )
of Y such that the scaling relations (Eq. 4) are satisfied; (b) by ©One can rewrite the ROMA scaling relations (Eg. 5) as:
using the ranked-ordered structure functighgX,s) for a P(X,8) = PS(Y)/SS(Y) with X = 5@y @)
small range of, Y1 <Y < Y5:
These relations suggest a new way of findiag) and Ps(Y).
B By using the spectrums,(Y), and the scaled PDF function,
S (8) Z/XmP(X73)dX (6) Ps(Y), the distributionsP (X, 8) can be calculated, and can
then be compared directly with PDFs from observations or
simulation results. Figure 4 shows two examples of obtain-
with o = Y18°, B = Y28°, one searches forsuch thats,, ~ ing s(Y) and Ps(Y) atY = 10 and 40 for the fluctuations of
85 ands(Y) =s (i.e.,P(X,8) is monofractal) in this range of  longitudinal velocities of the JHU data.
Y. These two methods have been successfully applied to the Figure 5 shows the results fo(Y) and Ps(Y) for Y be-
results of a two-dimensional magnetohydrodynamic (MHD) tween —200 and 200. It is noted thatY) is symmetric
turbulence simulation (Chang and Wu, 2008), solar windwith respect toy =0. At small values ofY| (< 25), s(Y)
magnetic field fluctuations (Chang et al., 2008), and otheris almost constants(Y) ~ 0.4, indicating monofractal be-
space plasma fluctuations. havior, and, at largek’, it decreases monotonically. The

o
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Fig. 6. Plots of P(8v);, 8): solid curves are from JHU data and mark-
ers are from ROMA scaling relations: red (circles) foe 24A;
green (squares) fér=48A; magenta (diamonds) fér=96A; blue
(triangles) fors = 128A. (a) and(b) are for positivesvy;; (b) is an
enlarged plot fosv)| < 300. (c) and(d) are for negativéy|; (d) is

an enlarged plot fodv); > —300.

P2V

. . . - \ . .
0 50 100 150 200 -200 -100 0 100 200
1Yl Y

Fig. 5. ROMA spectrums(Y) and scaled PDF functioRs(Y) for
the fluctuations of longitudinal velocities in JHU databgs@ s (Y),
which is symmetric with respect t6 = 0, shows monofractal be-
havior at|Y| < 25 and decreases monotonically at larger. (b—
c) Ps(Y), which is asymmetric about =0. (d—e) P*(Y) and
P~ (Y) of Ps(Y), similarly defined as in Eq. (1). Ifb—e), open
circles showPs(Y); solid red curves show a fit with a modified
Castaing form of Eq. (3) wittX replaced byY, with og = 1825,
Yg=2.55,1=0.425,a5=0.4.

monotonically decreasing trend of the ROMA spectrum and
the antipersistent nature of the fluctuations (is€Y;) < 0.5)

are qualitatively similar to those obtained for the solar wind
and MHD numerical simulations. The asymmetric nature of
P(év))) is reflected in the scaled PDPs(Y), as shown in
Fig. 5d and e. Furthermor&is(Y) can be fitted with the
modified Castaing form (Eq. 3) witk replaced byr. Fig. 7. Plots of P(8v),8): solid curves are from JHU data

Figures 6 and 7 show the calculat®dsv;, §) based on and mar.kers are from ROMA scaling relation.s: red (circles) for
the scaling relations (Eq. 7) andY) and Ps(Y) as shown © =124 green (squares) faf = 64A; blue (triangles) fors =
- 140A. (a) and(b) are for positivesv)|; (b) is an enlarged plot for
in F_'g' 5a _and b for scales frof=12A t_o 140A. The com- dv)| < 300. (c) and(d) are for negativév)|; (d) is an enlarged plot
parison with the PDFs from the data is also shown. The rey,, 8v = —300. Note the agreement between the calculated values
sults suggest that in the inertial range (dretween 2@ and from ROMA and data a = 12A and 14Q is not as good as the
130A), the PDFs of the fluid turbulence in the JHU databasegne in Fig. 6 fors from 24A to 128A. This probably is because
exhibit multifractal scaling that can be described using thes = 12A is close to the dissipation range ahe: 140A close to the
ROMA decomposition/analysis. Conversely, this also meansnjection range.
that the two functions (Y) and Ps(Y) faithfully reproduce

all the PDFs in the inertial range.
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Fig. 8. P(8v)|,é) at large scale from ROMA scaling relations: red
(circles) fors = 24A; green (diamonds) fos = 96A; blue (trian-
gles) ford = 640A. The solid blue curve shows a Gaussian distribu-
tion of the following form with an asymmetric factor with=210
andas=0.2:

50 100 150 200
3|

Fig. 10. Fluctuations oh?. (a) and(b): ROMA spectrums(Y) and
1 x2 X/a scaled PDFPs(Y). (c) and(d): plots of P(|§v2|,8): solid curves
P(X)=——exp| ———1+as————) are from JHU data and markers are from ROMA scaling relations:
Vero 20 1+ X2/02 red (circles) for§ = 24A; green (squares) fof = 48A; magenta
(diamonds) fors = 96A; blue (triangles) fos = 128A. (d) is an
enlarged plot fotsv?| < 200.

Suppose that the ROMA scaling is applicable at larger
scale, a GaussiaR(Sv)|, §) may result as shown in Fig. 8 for
3 = 640A. However, it should be noted that, at much larger
8, the scaling relation may break down; becaXsenay no
4 longer increase monotonically with. Figure 9 shows the
difference in the PDF between monofractal and multifractal
scaling relations. Sincg(Y) ~ 0.4 at|Y| < 25, the resulting
P (8vy}, 8) shows little difference fofdv)|| < 200 ats =48A.
At larger |év)|, P(8v), ) based on the multifractal ROMA
i spectrum is smaller than the values based on the monofrac-
tal scaling; this is becauséY) in ROMA decreases mono-
tonically at largeY and is less than =0.4 assumed in the
600 monofractal scaling.

As was discussed in Sect. 2, the PDFs based on the JHU
data can be fitted with a modified Castaing model, Eq. (3),
Fig. 9. P(8v)).8) ats =48A from ROMA and monofractal scal- ~ with four parameters. Furthermore, the parameters scale in
ing relations. Blue curve with squares is based on multifractalthe following way: Xo ~ §%4, og ~ 894, as~ constant, and
ROMA spectrums(Y) shown in Fig. 5a; red circles are based on }2 ~ 1/(20+48). This can be understood becaus®) is
the monofractal Scaling witk =0.4. Both use the scaled PDF monofractal |n a Sma” range d’f |t can be Shown that |f
Ps(Y) given in Fig. 5b. There are little differences between the PDFs satisfy the monofractal scaling (Eq. 4), th&g~ 8°
two for |§v)|| <200. However, at largelv|, the value from the 00~ 8%, as~ constant, and2 ~ constant. The first three re-
ROMA scaling is smaller than the value from the monofractal scal-, .. ' . T L .

X . lations are consistent with the fit in Sect. 2. The last relation
ing. For instance, afv|| =400, the value based on the ROMA th ter. h . t This is b th
scaling, which agrees with the data as shown in Fig. 6a, is smaIIeIOr € parametex, however, IS no ) IS 1S ecause. € pa-
than the value based on the monofractal scaling by a factor of 15. fameten affects mpstly at the wings of the .PDFS’ .WhICh cor-

respond to the region of largé, wheres(Y) is multifractal.
The trend ofi tending to zero at large scale (intermittency)
shown in Sect. 2 is due to the multifractal nature @f).

P(8v,.3)

Nonlin. Processes Geophys., 18, 2868 2011 www.nonlin-processes-geophys.net/18/261/2011/



C. C. Wu and T. Chang: Rank-Ordered Multifractal Analysis (ROMA) of probability distributions in fluid turbulence 267

o ‘(a) K - ‘(b) ‘(a)l - 1o°-(5) I ]

04f % 1 10
'

0.45F

0.3]

0.2 1 *

o1 | . 0351

0 20 40 60 80 100 120 0 20 40 60 80 100 120 o 5 10 15 20 25 e

_4| e
0 100 200 300 0 20 40 60 80 100

15B2| 3B

10° L ! 1 I 1
-150 -100 -50 0 50 100 150

582

Fig. 11. Fluctuations ofB2 based on a 2-D MHD simulation(a)
and (b): ROMA spectrums(Y) and scaled PDFPs(Y). (c) and
(d): plots of P(|(332|,5) computed PDFs from the ROMA re- Fig. 12. Fluctuations OfBz based on solar wind datala) and
lations with s(Y) and Ps(Y) given in (a) and (b) are shown by  (b): ROMA spectrums(Y) and scaled PDRPs(Y). (c): plots of
markers; PDFs from the MHD simulation are given in solid curves. P(8B?): computed PDFs from the ROMA relations witiiy)
Red circles:§ =32A; green Squaregﬂ =48A; and blue triang|es: and Ps(Y) are shown in solid curves; PDFs from solar wind obser-
8§ =96A. (d) is an enlarged view fofs B2) < 100. A= grid spac- vations are given by markers. Green (0)=1000s; blue (x): 96 s;
ing=27/1024; |5 B?| is in the units of bin size, which is set to be and red (+): 98B is in the units of (nT3. The PDFs from solar
18 B2|max/800. The PDFs from the simulation are from Chang and wind data are from Chang et al. (2008).
Wu (2008).
references cited above and are not included here. Figure 11

In addition to the fluctuations of the longitudinal veloci- shows the results for the MHD simulation and Fig. 12 is for
ties, the PDFs of the fluctuations of the kinetic energy den-the solar wind data.
sity, v2, as shown in Fig. 10, also satisfy the ROMA scaling

relations. 5 Summary
4 ROMA results for 2-D MHD simulations and solar Traditional structure and partition function methods of mul-
wind data tifractal analysis determine the fractal properties of various

moment orders based on the entire set of fluctuations. Since
ROMA was first applied by Chang and Wu (2008) to the most of the observed or simulated intermittent fluctuations
results of a two-dimensional MHD simulation for homoge- are dominated by those of small amplitudes, the subdomi-
neous turbulence (Chang et al., 2004). It has also been aprant fractal characteristics of the minority fluctuations with
plied to the analyses of turbulence data observed in solatarger amplitudes are easily masked by those characterized
wind (Chang et al., 2008) and other regimes of the space enby the dominant population. Furthermore, these procedures
vironment. In the following, the results of the 2-D MHD are not reversible; i.e., it is not possible to recover from the
simulations and the analysis of the set of solar wind datastructure functions and the singular spectra based on the par-
are revisited. In previous ROMA studies;Y) and Ps(Y) tition functions the original scale dependent PDFs. ROMA,
were obtained by using the ranked-ordered structure funcen the other hand, provides a physically meaningful descrip-
tions S, (X, §) for several small ranges &f (see Eqg. 6); thus, tion of intermittency and is quantitatively accurate because
because of limitation of the statistics;Y) and Ps(Y) were  of the cleanliness of the procedure of statistical sampling.
not continuous or¥. Now, with the new approach follow- By using the ROMA spectrum and the scaled PDF, the distri-
ing Eqg. (7) and the discussion in Sect. 3 for the JHU turbu-butionsP (X, §) of intermittency can be calculated and com-
lence database, continuous functiong @) and Ps(Y) can pared with the PDFs from observations or simulation results.
be obtained. The details of the MHD simulation and the de-Thus, the results are unique. In this paper, we used data from
scription of the set of solar wind data can be found in thethe JHU turbulence database to show that for turbulence in
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incompressible fluids the PDFs of longitudinal velocity fluc- Consolini, G. and de Michelis, P., Rank ordering multifractal anal-
tuations throughout the inertial range can be described using ysis of the auroral electrojet index, Nonlin. Processes Geophys.,
the ROMA technique. We have also used the model of Cas- in review, 2011.

taing et al. (1990) to describe the intermittency of the flow. EChim, M. M., Lamy, H., and Chang, T.: Multi-point observations
The relationship between the intermittency and the multifrac-  ©f intermittency in the cusp regions, Nonlin. Processes Geophys.,
tal nature of the turbulence is discussed. A new way of find—Frégh535._51_3::‘;3":&21%‘{;2?&;33‘;56;\2/2?82@0;'ress Cambridge
ing ROMA spectrum is devised;(Y) and Ps(Y) can now L ' ' ’

. . 5 ) 1995.
be obtained as continuous fun_Ct'onS of the local |.nvarlant Forman, M. and Burlaga, L. F.: Exploring the Castaing distribution
The ROMA spectra for both fluid flows and MHD simulation  fnction to study intermittence in the solar wind at L1 in June
results are qualitatively similar: they both have a decreasing 2000, in: Solar Wind Ten, edited by: Velli, M., Bruno, R., and
trend withY and are antipersistent witt{Y) < 0.5. Malara, F., AIP Conf. Proc. No. 679, AIP, New York, p. 554,

2003.
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