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Abstract. Rank-Ordered Multifractal Analysis (ROMA)
was introduced by Chang and Wu (2008) to describe the
multifractal characteristic of intermittent events. The pro-
cedure provides a natural connection between the rank-
ordered spectrum and the idea of one-parameter scaling for
monofractals. This technique has successfully been applied
to MHD turbulence simulations and turbulence data observed
in various space plasmas. In this paper, the technique is
applied to the probability distributions in the inertial range
of the turbulent fluid flow, as given in the vast Johns Hop-
kins University (JHU) turbulence database. In addition, a
new way of finding the continuous ROMA spectrum and
the scaled probability distribution function (PDF) simulta-
neously is introduced.

1 Introduction

It is well-known that fully developed turbulent fluid flows
are intermittent and multifractal (Frisch, 1995 and references
therein). The intermittent turbulence and associated multi-
fractal characteristics are also evident in the analyses of space
plasmas observations (e.g., Sorriso-Valvo et al., 1999; Con-
solini and Chang, 2001; Bruno et al., 2001, 2003; Forman
and Burlaga, 2003; Tam et al., 2005; Weygand et al, 2005;
and Chang, 2009). Through the analysis of probability distri-
bution functions (PDFs) for field fluctuations, intermittency
in turbulence is characterized by a strong non-Gaussian be-
havior of PDF at small scales. The multifractal characteris-
tics have generally been analyzed with structure functions or
singular spectra based on the partition functions of the prob-
ability measures (Halsey et al., 1986).
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Recently, Chang and Wu (2008) introduced the rank-
ordered multifractal analysis (ROMA) for analyzing in-
termittent fluctuations to describe the explicit multifractal
characteristics and indicated how they were distributed by
parametrically separating the fluctuations according to their
ranks. The technique retains the spirit of the traditional struc-
ture function analysis and combines it with the idea of one-
parameter scaling of monofractals. It was first applied to
the results of a large-scale two-dimensional magnetohydro-
dynamic (MHD) turbulence simulation. It has also been suc-
cessfully applied to in-situ solar wind observations (Chang
et al., 2008), the broadband electric field oscillations from
the auroral zone (Tam et al., 2010), the magnetosphere cusp
turbulence (Lamy et al., 2008), and the AE index over ap-
proximately a complete solar cycle (Consolini and Michelis,
2011). A brief review of ROMA and its applications to some
of these studies were provided in Chang et al. (2010).

In this paper, to show that ROMA can also be useful in
the analysis of the fluid turbulence, we apply the technique
to the Johns Hopkins University (JHU) large-scale direct nu-
merical simulation turbulence database (Perlman et al., 2007;
and Li et al., 2008). With the huge number of data points, a
detailed study can be conducted. This paper is structured as
follows: in Sect. 2, we first provide a brief description of the
JHU turbulence data set and present the PDF of longitudinal
velocity fluctuations. The PDFs are shown to be well fitted
with a modified version of the Castaing et al. (1990) model.
In Sect. 3, ROMA is applied to these PDFs and two invari-
ant functions in the ROMA analysis are obtained. In this
section, a “new” method of the ROMA analysis is also intro-
duced. The method provides a way of obtaining the multi-
fractal spectrum and the scaled PDF as continuous functions
of a rank-ordered local scale invariant. In Sect. 4, this new
approach is applied to fluctuations of the solar wind turbu-
lence and of 2-D MHD simulations. A summary is given in
Sect. 5.
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2 JHU turbulence flow database and a modified
Castaing et al. model

A detailed description of the JHU turbulence database can be
found in Perlman et al. (2007) and Li et al. (2008). Briefly,
the data is obtained from a direct numerical simulation of
forced isotropic turbulence on a 10243 periodic grid in a
physical domain of 2π × 2π × 2π , using a pseudo-spectral
parallel code. Energy is injected by keeping constant the to-
tal energy in modes such that their wave-number magnitude
is less or equal to 2. After the simulation has reached a statis-
tically stationary state, 1024 frames of data, which includes
the 3 components of the velocity vector and the pressure, are
generated and stored into the database. The duration of the
stored data is about one large-eddy turnover time. The frames
are stored at every 10 time-steps of the numerical simulation,
for time t between 0 and 2.048. In this duration, the time-
average Taylor-scale Reynolds number is 433 and the large-
eddy turnover time is 2.02. The radial energy spectrum aver-
aged over this duration indicates an inertial range of approx-
imately from the wave number 8 to 60, which corresponds to
a spatial range from 171 to 1281, with 1 denoting the grid
spacing, which is 2π /1024.

Instead of the huge 10244 data points, 19z-planes of data
points are used in the present analysis. They are arbitrarily
selected at variousz locations and various times: (t ,z) = (0,
91), (0, 4991), (0.5, 0), (0.5, 4991), (1, 0), (1, 4991), (1.5,
0), (1.5, 4991), (2, 0), (2, 991), (2, 4991), (0.25, 2491),
(0.75, 2491), (1.25, 2491), (1.75, 2491), (0.25, 4991),
(0.75, 4991), (1.25, 4991), and (1.75, 4991). This set of
19 million data points provides sufficient statistics.

First, the fluctuations of longitudinal velocity,δv||, are
considered. The fluctuation is defined byδv||(r, δ) =

(v(r+δi)−v(r))·i, with i a unit vector, andδ the spatial
scale. In the analysis,i is either along the x-axis or the y-
axis andδ is in the range of (161, 1601). As an example,
the PDF ofδv|| at scaleδ = 641, denoted byP(δv||,δ), is
shown in Fig. 1. In computing the PDF, the range ofδv||

is divided evenly into 1601 bins, with the bin number ex-
tending from−800 to 800. For the bin numberi, (i −1/2)
1v < δv|| ≤ (i +1/2)1v. The bin size1v is set as 8/1601
because the maximum value of|δv||| is slightly less than 4.
Thus in the figure,δv|| is expressed by its bin numbers; or,
equivalently, it is in units of its bin size. The PDF is not sym-
metric with respect toδv|| = 0. The distribution has a max-
imum atδv|| ∼ 11;P(δv||) > P (−δv||) for |δv||| between 0
and 150, andP(δv||) <P (−δv||) for |δv||| > 150. The skew-
ness of the velocity distributions is well known (Castaing
et al., 1990). The PDF can further be decomposed into a
symmetricP +(δv||) and an asymmetricP −(δv||) as follows
(Chevillard et al., 2006):

(a) (b)

(c) (d)

Fig. 1. PDF of δv|| at δ = 641, with 1 denoting the grid spac-
ing, andδv|| in the units of the bin size, see text. In(a) and (b),
P(δv||,δ) in solid blue curve andP(−δv||,δ) in dash red curve to
show the asymmetry of the PDF with respect toδv|| = 0. (b) is an
enlarged version of(a) for a smaller range ofδv||. The asymmetry
is evident in(c) and(d) usingP+ andP decomposition of the PDF
according to Eq. (1). In this and subsequent figures, the accuracy of
the PDF is indicated by the noise level of the plot. For example, in
this figure, in the region|δv||| < 300, the noise level is very small
– not larger than the thickness of the curves. However, the PDF is
approximatively (3.2± 0.4) 10−6 at δv|| = 400.
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Both P +(δv||) and P −(δv||) are shown in Fig. 1c and d,
respectively. It is noted thatP +(δv||) = 2P(|δv|||), with
P(|δv|||) denoting the PDF of the absolute values of the fluc-
tuations ofδv||.

The following shows that the PDFs from the JHU database
can be fitted quantitatively by a modified Castaing et
al. (1990) model. The original model was developed from the
classical Kolmogorov’s picture of turbulent energy cascade
(Kolmogorov, 1941) and took into account that the energy
transfer rate in the cascade at different scales is not strictly
self-similar. According to the model, for a given scaleδ,
PDF of fluctuationsX, P(X), is a convolution of a Gaussian
and a log-normal distribution:
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Table 1. Values of four parameters in the modified Castaing model,
Eq. (2), used in the fit ofP(δv||,δ) based on the JHU turbulence
data for the scaleδ between 121 and 1281.

δ/1 σ0 X0 λ as

12 45 6.9 0.3 0.4
18 54 8 0.285 0.4
24 61 9 0.27 0.4
48 81 12 0.23 0.4
96 107 15.6 0.17 0.4

128 118 17.6 0.145 0.4
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whereas is a skewness factor to account for the asymmetry,
σ0 is the most probable value ofσ , which is the standard
deviation of a Gaussian distribution, andλ is the width of the
log-normal distribution. The normalization factorA(as) is

included such that
∞∫

−∞

p(X)dX = 1.

It can be shown that ifas > 0,P (X) has a maximum at
X < 0. Therefore, in order to account for the fact thatP(δv||)

has a maximum atδv|| > 0, as shown in Fig. 1, a modified
Castaing form is introduced as follows:
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The additional parameterX0 gives the location ofX where
P(X) is a maximum. In this new form, there are four param-
eters,as, σ0, λ andX0. Although there are four parameters to
fit the data to Eq. (3), the fitting procedure is not complicated.
The parameterX0 is given by the data as mentioned above;
σ0 is specified to fit the PDF data distribution in a small range
nearX0; λ is then chosen to fit the wings of the PDF; andas,
is adjusted to account for the asymmetry.

In Fig. 2,P(δv||, δ) is shown to be well fitted by Eq. (3),
with X representingδv||, for several values ofδ. The param-
eters employed for the fits forδ from 121 to 1281 are given
in Table 1. Also, as shown in Fig. 3, the parameters scale as:
X0 ∼ δ0.4, σ0 ∼ δ0.4, as∼ constant, andλ2

∼ 1/(20+δ). One
notes that asδ is increased,λ2 tends to zero; it means that at
large scale, the PDF is dominated by a Gaussian distribution

(a) (b)

(c) (d)

(e) (f)

Fig. 2. PDF(δv||,δ) for δ = 121 in (a) and(b); δ = 481 in (c) and
(d); δ = 1281 in (e)and(f). Solid red curves are from JHU data and
blue dash curves are fits with the modified Castaing model, Eq. (3).

with σ0, showing the intermittent characteristic of the turbu-
lence, being Gaussian at large scale and long tails at small
scale. Further discussion on these scaling relations will be
provided after the presentation of the ROMA analysis.

3 ROMA analysis of the JHU turbulence flow

In this section, we apply the ROMA analysis to the PDFs ob-
tained in Sect. 2 for the turbulent flows in the JHU database.
We start with a summary of the idea of ROMA. In order to
understand the scaling behavior among the family of PDFs
of the turbulent fluctuations, the idea of fractals is employed.
If the form of PDFs,P(X,δ), is invariant as the scale,δ,
changes, then the following interesting one parameter scal-
ing form is obtained (Hnat et al., 2002; Chang et al. 2004):

P(X,δ)δs
= Ps(X/δs) (4)

It means that the PDFs would collapse onto one scaled
PDFPs(Y ) whereY = X/δs is a global scale invariant for all
ranges ofX for a constant scaling exponents. The scaling
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δ

Fig. 3. Scaling of the parameters vs. the scale in the modified Castaing model used for the fits ofP(δv||,δ) shown in Fig. 2 and given in

Table 1. Circles denote the values used; dash curves are:σ0 = 17δ0.4; X0 = 2.55δ0.4; andλ2
= 3./(20+δ), respectively. In addition,as∼

constant, see Table 1.

exponents may be interpreted as a single fractal (monofrac-
tal) measure that characterizes the fluctuations of all scales
through the scaling relation (Eq. 4). In practical applica-
tions, the scaling law (Eq. 4) is sometimes satisfied for the
full range of the scaling variable and sometimes only for
some restricted ranges of the variableY (Chang et al., 2004,
Podesta et al., 2006, Hnat et al., 2002). When scaling law
(Eq. 4) is satisfied over the full range ofY , the scaling is
called self-similar or monofractal. Otherwise, the fluctuating
phenomenon is multifractal.

For multifractal fluctuations, Chang and Wu (2008) pro-
posed the ansatz of ROMA with the following scaling:

P(X,δ)δs(Y )
= Ps(Y ) with Y = X/δs(Y ) (5)

Here, the scaling exponents(Y ) is now a function ofY ,
meaning that the scaling exponent depends on the rank of the
local scale invariantY . According to the monofractal scal-
ing (Eq. 4), a functionP(X, δ) of two variables is described
by a function of a single variable plus a single number. For
the case of ROMA scaling relations (Eq. 5),P(X, δ) of two
variables is replaced by two functions,s(Y ) andPs(Y ), of a
single variableY and the multifractal nature of the fluctua-
tions are provided by these two functions.

In Chang and Wu (2008), two methods were proposed for
finding s(Y ) andPs(Y ): (a) given a values, one finds values
of Y such that the scaling relations (Eq. 4) are satisfied; (b) by
using the ranked-ordered structure functionsSm(X,δ) for a
small range ofY,Y1 < Y < Y2:

Sm(δ) =

β∫
α

XmP(X,δ)dX (6)

with α = Y1δ
s , β = Y2δ

s , one searches fors such thatSm ∼

δSm ands(Y ) = s (i.e.,P(X,δ) is monofractal) in this range of
Y . These two methods have been successfully applied to the
results of a two-dimensional magnetohydrodynamic (MHD)
turbulence simulation (Chang and Wu, 2008), solar wind
magnetic field fluctuations (Chang et al., 2008), and other
space plasma fluctuations.

δ=24
δ=48
δ=96

δ=128

δ=24 δ=48 δ=96

δ=128

(a) (b)

Fig. 4. Finding s(Y ) andPs(Y ) in the ROMA analysis at(a) Y =

10 and(b) Y = 40. For (a), Y = 10, P(δv||,δ) are obtained by
Eq. (7) atδ = (24,48,96,128)1 using five sets of values of (s,
Ps): red circles fors = 0.399,Ps= 2.0510−2; green right-triangles
for s = 0.419, Ps = 2.0510−2; blue left-triangles fors = 0.379,
Ps= 2.0510−2; magenta up-triangles fors = 0.399,Ps= 2.2510−2;
black down-triangles:s = 0.399,Ps= 1.8510−2. Solid black curves
are from JHU data withδ = (24,48,96,128)1. The pair (s, Ps) =

(0.399,2.0510−2) givesP(δv||,δ), shown in red circles, consistent
with the JHU data and is chosen to be the solution forY = 10. Sim-
ilarly for (b) at Y = 40: red circles: (s, Ps) = (0.374,2.210−3);
green right triangles: (0.394, 2.2 10−3); blue left triangles: (0.354,
2.2 10−3); magenta up triangles: (0.374, 2.4 10−3); black down
triangles: (0.374, 2.0 10−3). The pair (s, Ps) = (0.374,2.210−3) is
chosen as the solution atY = 40.

One can rewrite the ROMA scaling relations (Eq. 5) as:

P(X,δ) = Ps(Y )/δs(Y ) with X = δs(Y )Y (7)

These relations suggest a new way of findings(Y ) andPs(Y ).
By using the spectrum,s(Y ), and the scaled PDF function,
Ps(Y ), the distributionsP(X,δ) can be calculated, and can
then be compared directly with PDFs from observations or
simulation results. Figure 4 shows two examples of obtain-
ing s(Y ) andPs(Y ) at Y = 10 and 40 for the fluctuations of
longitudinal velocities of the JHU data.

Figure 5 shows the results fors(Y ) andPs(Y ) for Y be-
tween−200 and 200. It is noted thats(Y ) is symmetric
with respect toY = 0. At small values of|Y | (< 25), s(Y )
is almost constant,s(Y ) ∼ 0.4, indicating monofractal be-
havior, and, at largerY , it decreases monotonically. The
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(b) (c)

(d) (e)

(a)

Fig. 5. ROMA spectrums(Y ) and scaled PDF functionPs(Y ) for
the fluctuations of longitudinal velocities in JHU database.(a) s(Y ),
which is symmetric with respect toY = 0, shows monofractal be-
havior at|Y | < 25 and decreases monotonically at larger|Y |. (b–
c) Ps(Y ), which is asymmetric aboutY = 0. (d–e) P+(Y ) and
P−(Y ) of Ps(Y ), similarly defined as in Eq. (1). In(b–e), open
circles showPs(Y ); solid red curves show a fit with a modified
Castaing form of Eq. (3) withX replaced byY , with σ0 = 18.25,
Y0 = 2.55,λ = 0.425,as= 0.4.

monotonically decreasing trend of the ROMA spectrum and
the antipersistent nature of the fluctuations (i.e.,s(Y ) < 0.5)
are qualitatively similar to those obtained for the solar wind
and MHD numerical simulations. The asymmetric nature of
P(δv||) is reflected in the scaled PDFPs(Y ), as shown in
Fig. 5d and e. Furthermore,Ps(Y ) can be fitted with the
modified Castaing form (Eq. 3) withX replaced byY .

Figures 6 and 7 show the calculatedP(δv||, δ) based on
the scaling relations (Eq. 7) ands(Y ) andPs(Y ) as shown
in Fig. 5a and b for scales fromδ=121 to 1401. The com-
parison with the PDFs from the data is also shown. The re-
sults suggest that in the inertial range (forδ between 201 and
1301), the PDFs of the fluid turbulence in the JHU database
exhibit multifractal scaling that can be described using the
ROMA decomposition/analysis. Conversely, this also means
that the two functionss(Y ) andPs(Y ) faithfully reproduce
all the PDFs in the inertial range.

(a) (b)

(c) (d)

Fig. 6. Plots ofP(δv||,δ): solid curves are from JHU data and mark-
ers are from ROMA scaling relations: red (circles) forδ = 241;
green (squares) forδ = 481; magenta (diamonds) forδ = 961; blue
(triangles) forδ = 1281. (a) and(b) are for positiveδv||; (b) is an
enlarged plot forδv|| ≤ 300. (c) and(d) are for negativeδv||; (d) is
an enlarged plot forδv|| ≥ −300.

Fig. 7. Plots of P(δv||,δ): solid curves are from JHU data
and markers are from ROMA scaling relations: red (circles) for
δ = 121; green (squares) forδ = 641; blue (triangles) forδ =

1401. (a) and(b) are for positiveδv||; (b) is an enlarged plot for
δv|| ≤ 300. (c) and(d) are for negativeδv||; (d) is an enlarged plot
for δv|| ≥ −300. Note the agreement between the calculated values
from ROMA and data atδ = 121 and 1401 is not as good as the
one in Fig. 6 forδ from 241 to 1281. This probably is because
δ = 121 is close to the dissipation range andδ = 1401 close to the
injection range.

www.nonlin-processes-geophys.net/18/261/2011/ Nonlin. Processes Geophys., 18, 261–268, 2011



266 C. C. Wu and T. Chang: Rank-Ordered Multifractal Analysis (ROMA) of probability distributions in fluid turbulence

Fig. 8. P(δv||,δ) at large scale from ROMA scaling relations: red
(circles) forδ = 241; green (diamonds) forδ = 961; blue (trian-
gles) forδ = 6401. The solid blue curve shows a Gaussian distribu-
tion of the following form with an asymmetric factor withσ = 210
andas= 0.2:

P(X) =
1

√
2πσ

exp

−
X2

2σ2
(1+as

X
/
σ

1+X2
/

σ2
)


.

Fig. 9. P(δv||,δ) at δ = 481 from ROMA and monofractal scal-
ing relations. Blue curve with squares is based on multifractal
ROMA spectrums(Y ) shown in Fig. 5a; red circles are based on
the monofractal scaling withs = 0.4. Both use the scaled PDF
Ps(Y ) given in Fig. 5b. There are little differences between the
two for |δv||| < 200. However, at larger|δv|||, the value from the
ROMA scaling is smaller than the value from the monofractal scal-
ing. For instance, atδv|| = 400, the value based on the ROMA
scaling, which agrees with the data as shown in Fig. 6a, is smaller
than the value based on the monofractal scaling by a factor of 15.

(a) (b)

(c) (d)

Fig. 10. Fluctuations ofv2. (a) and(b): ROMA spectrums(Y ) and
scaled PDFPs(Y ). (c) and (d): plots of P(|δv2

|,δ): solid curves
are from JHU data and markers are from ROMA scaling relations:
red (circles) forδ = 241; green (squares) forδ = 481; magenta
(diamonds) forδ = 961; blue (triangles) forδ = 1281. (d) is an
enlarged plot for|δv2

| ≤ 200.

Suppose that the ROMA scaling is applicable at larger
scale, a GaussianP(δv||, δ) may result as shown in Fig. 8 for
δ = 6401. However, it should be noted that, at much larger
δ, the scaling relation may break down; becauseX may no
longer increase monotonically withY . Figure 9 shows the
difference in the PDF between monofractal and multifractal
scaling relations. Sinces(Y ) ∼ 0.4 at |Y | < 25, the resulting
P(δv||, δ) shows little difference for|δv||| < 200 atδ = 481.
At larger |δv|||,P (δv||, δ) based on the multifractal ROMA
spectrum is smaller than the values based on the monofrac-
tal scaling; this is becauses(Y ) in ROMA decreases mono-
tonically at largeY and is less thans = 0.4 assumed in the
monofractal scaling.

As was discussed in Sect. 2, the PDFs based on the JHU
data can be fitted with a modified Castaing model, Eq. (3),
with four parameters. Furthermore, the parameters scale in
the following way: X0 ∼ δ0.4, σ0 ∼ δ0.4, as ∼ constant, and
λ2

∼ 1/(20+ δ). This can be understood becauses(Y ) is
monofractal in a small range ofY . It can be shown that if
PDFs satisfy the monofractal scaling (Eq. 4), thenX0 ∼ δs ,
σ0 ∼ δs , as ∼ constant, andλ2

∼ constant. The first three re-
lations are consistent with the fit in Sect. 2. The last relation
for the parameterλ, however, is not. This is because the pa-
rameterλ affects mostly at the wings of the PDFs, which cor-
respond to the region of largeY , wheres(Y ) is multifractal.
The trend ofλ tending to zero at large scale (intermittency)
shown in Sect. 2 is due to the multifractal nature ofs(Y ).
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s Ps 

Y Y

(a) (b)

(d)(c)

|δB2| |δB2|

Fig. 11. Fluctuations ofB2 based on a 2-D MHD simulation.(a)
and (b): ROMA spectrums(Y ) and scaled PDFPs(Y ). (c) and
(d): plots of P(|δB2

|,δ): computed PDFs from the ROMA re-
lations with s(Y ) and Ps(Y ) given in (a) and (b) are shown by
markers; PDFs from the MHD simulation are given in solid curves.
Red circles:δ = 321; green squares:δ = 481; and blue triangles:
δ = 961. (d) is an enlarged view for|δB2

| ≤ 100. 1 = grid spac-
ing = 2π /1024; |δB2

| is in the units of bin size, which is set to be
|δB2

|max/800. The PDFs from the simulation are from Chang and
Wu (2008).

In addition to the fluctuations of the longitudinal veloci-
ties, the PDFs of the fluctuations of the kinetic energy den-
sity, v2, as shown in Fig. 10, also satisfy the ROMA scaling
relations.

4 ROMA results for 2-D MHD simulations and solar
wind data

ROMA was first applied by Chang and Wu (2008) to the
results of a two-dimensional MHD simulation for homoge-
neous turbulence (Chang et al., 2004). It has also been ap-
plied to the analyses of turbulence data observed in solar
wind (Chang et al., 2008) and other regimes of the space en-
vironment. In the following, the results of the 2-D MHD
simulations and the analysis of the set of solar wind data
are revisited. In previous ROMA studies,s(Y ) andPs(Y )

were obtained by using the ranked-ordered structure func-
tionsSm(X,δ) for several small ranges ofY (see Eq. 6); thus,
because of limitation of the statistics,s(Y ) andPs(Y ) were
not continuous onY . Now, with the new approach follow-
ing Eq. (7) and the discussion in Sect. 3 for the JHU turbu-
lence database, continuous functions ofs(Y ) andPs(Y ) can
be obtained. The details of the MHD simulation and the de-
scription of the set of solar wind data can be found in the

(a) (b)

(c)

Fig. 12. Fluctuations ofB2 based on solar wind data.(a) and
(b): ROMA spectrums(Y ) and scaled PDFPs(Y ). (c): plots of
P(δB2,τ): computed PDFs from the ROMA relations withs(Y )
andPs(Y ) are shown in solid curves; PDFs from solar wind obser-
vations are given by markers. Green (o):τ = 1000 s; blue (x): 96 s;
and red (+): 9 s.δB2 is in the units of (nT)2. The PDFs from solar
wind data are from Chang et al. (2008).

references cited above and are not included here. Figure 11
shows the results for the MHD simulation and Fig. 12 is for
the solar wind data.

5 Summary

Traditional structure and partition function methods of mul-
tifractal analysis determine the fractal properties of various
moment orders based on the entire set of fluctuations. Since
most of the observed or simulated intermittent fluctuations
are dominated by those of small amplitudes, the subdomi-
nant fractal characteristics of the minority fluctuations with
larger amplitudes are easily masked by those characterized
by the dominant population. Furthermore, these procedures
are not reversible; i.e., it is not possible to recover from the
structure functions and the singular spectra based on the par-
tition functions the original scale dependent PDFs. ROMA,
on the other hand, provides a physically meaningful descrip-
tion of intermittency and is quantitatively accurate because
of the cleanliness of the procedure of statistical sampling.
By using the ROMA spectrum and the scaled PDF, the distri-
butionsP(X,δ) of intermittency can be calculated and com-
pared with the PDFs from observations or simulation results.
Thus, the results are unique. In this paper, we used data from
the JHU turbulence database to show that for turbulence in
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incompressible fluids the PDFs of longitudinal velocity fluc-
tuations throughout the inertial range can be described using
the ROMA technique. We have also used the model of Cas-
taing et al. (1990) to describe the intermittency of the flow.
The relationship between the intermittency and the multifrac-
tal nature of the turbulence is discussed. A new way of find-
ing ROMA spectrum is devised;s(Y ) and Ps(Y ) can now
be obtained as continuous functions of the local invariantY .
The ROMA spectra for both fluid flows and MHD simulation
results are qualitatively similar: they both have a decreasing
trend withY and are antipersistent withs(Y ) < 0.5.
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