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Abstract. We consider the action of the ponderomotive force
of low-frequency Alfv́en waves on the distribution of the
background plasma. It is assumed that the ponderomotive
force for traveling waves arises as a result of the background
inhomogeneity of medium under study. Expressions for the
ponderomotive force obtained in this paper differ from pre-
vious analogous results. The induced magnetic moment of
medium is taken into account. It is shown that the well-
known Pitayevsky’s formula for the magnetic moment is not
complete. The role of the induced nonlinear thermal pressure
in the evolution of the background plasma is considered. We
give estimations for plasma displacement due to the long-
and short-acting nonlinear wave perturbations. Some discus-
sion of the ponderomotive action of standing waves is pro-
vided.

1 Introduction

A study of the ponderomotive forces induced by the geo-
magnetic pulsations in the magnetospheric plasma has at-
tracted a great attention in past years (e.g. Allan, 1992, 1994;
Guglielmi et al., 1993, 1995; Witt et al., 1995; Pokhotelov
et al., 1996; Feygin et al., 1998). These forces can arise as a
result of nonlinear interaction of pulsations with an inhomo-
geneous background plasma. Ponderomotive forces can play
an important role in the modification of the magnetospheric
plasma. It can be expected that the longitudinal component
(along the background magnetic field) of the ponderomotive
force could significantly influence on the distribution of the
magnetospheric plasma along the magnetic field lines, de-
spite of the relatively small amplitudes of these pulsations
in the magnetosphere (of the order of nT and less). For
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example, the ponderomotive action of geomagnetic pulsa-
tions of the Pc 1 type in the Earth’s magnetosphere has been
considered in Guglielmi et al. (1993, 1995), Pokhotelov et
al. (1996), and Feygin et al. (1998). It is known that the Pc 1
pulsations have the maximum of the magnetic amplitude in
the vicinity of the magnetic equator. Therefore, it should
be expected that the most essential ponderomotive effect on
the state of the background plasma could occur in this re-
gion. In papers by Guglielmi et al. (1993, 1995), it has been
demonstrated that when the amplitude of the Pc 1 pulsations
exceeds some critical value the pronounced maximum of the
plasma density is formed in the vicinity of the equator where
the dipole magnetic field has a minimum. Ponderomotive ef-
fects in the two-ion plasma (H+ and heavy ions, e.g., He+)
have been studied in Feygin et al. (1998). We also note that
observations of the plasma density in the plasmapause region
carried out by the paired satellites DE 1 and DE 2 recording
the magnitude of the plasma density at high and low alti-
tudes simultaneously have revealed the existence of the local
minimum of the cold plasma at the magnetic equator (Olsen,
1992).

However, the Pc 1 pulsations are the narrow packets of the
electromagnetic Alfv́en ion cyclotron waves driven by the
proton cyclotron instability in Earth’s radiation belts. These
packets oscillate along the magnetic field lines between the
conjugate points. It is obvious that such packets can only re-
sult in the finite displacement of plasma due to ponderomo-
tive action of the forward and backward fronts of the packet.
Therefore, it is difficult to wait that this type of pulsations
can considerably modify the magnetospheric plasma.

To cause a considerable modification of the magneto-
spheric plasma, a wave must be sufficiently long along the
magnetic field lines and operate a rather long time. Suitable
candidates for such waves are the PC 4–5 pulsations in the
frequency range 1.5–10 mHz. These pulsations appear to be
a fundamental odd mode of the field line resonances with a
magnetic node at the equator (Singer and Kivelson, 1979).
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The amplitudes of these pulsations can attain from several
nT to several dozens nT. In the conjugate points, they are ob-
served simultaneously. Their amplitude at the level of the
Earth is 3–6 times larger than that in the equatorial plane of
the magnetosphere. A study of the transverse component of
the Pc 4–5 pulsations with the satellite OGO 5 has shown
that they are mainly observed at magnetic latitudes above 10
degrees (Kokubun et al., 1976). Consequently, the equatorial
plane is a nodal point for these pulsations. These results have
been conformed by observations of the long-period waves
with satellites GOES-8 and GOES-10. Both satellite mea-
surements were performed near the magnetic equator, where
the magnetic amplitude of the odd harmonics of the stand-
ing Alfv én waves has a minimum. The magnetic latitude of
GOES-8 was 5 degrees higher than that of GOES-10. The
spectrum amplitude maximum of the transverse waves ob-
served with GOES-8 was 0.25 nT above the measurement of
the second satellite. This fact indicates an increase of the
amplitude of these pulsations with magnetic latitude (Zolo-
tukhina, 2009).

In the present paper, we consider the effect of the pondero-
motive force of low-frequency Alfv́en waves propagating
along the geomagnetic field lines on the background plasma
distribution. We assume that the ponderomotive force arises
due to the background density and magnetic field inhomo-
geneities. Our expression for the ponderomotive force differs
from analogous results obtained in Guglielmi et al. (1993,
1995). We take into account, as in Guglielmi et al. (1993,
1995), the contribution to the ponderomotive force from the
magnetic moment of medium induced by the high-frequency
electromagnetic field (Pitayevsky, 1960). In particular, we
show that the well-known Pitayevsky’s formula for the in-
duced magnetic moment is not complete. This formula takes
into account only one part of the quasi-stationary nonlinear
current and does not include the other part connected with
the quasi-stationary nonlinear velocities. We discuss the in-
fluence of the induced nonlinear thermal pressure on the evo-
lution of the background plasma. We give estimations for the
plasma displacement due to the long- and short-acting non-
linear wave perturbations.

The paper is organized as follows. In Sect. 2, the ba-
sic equations are given. In Sect. 3, we calculate the total
magnetic moment induced by the circularly polarized elec-
tromagnetic waves traveling along the background magnetic
field. The expression for the ponderomotive force of these
waves is deduced in Sect. 4. In Sect. 5, we discuss the role
of the induced nonlinear thermal pressure in the evolution of
the background plasma. The plasma displacement due to the
short-acting waves is given in Sect. 6. The ponderomotive
action of standing waves is shortly discussed in Sect. 7. In
Sect. 8, we summarize our results.

2 Basic equations

We consider the low-frequency finite amplitude electromag-
netic waves propagating or standing along the geomagnetic
field lines. We use the ideal magnetohydrodynamics and
Maxwell’s equations which have the following form:

mi
dvi

dt
= −

∇pi

ni
+mig+e(E0+E)+

e

c
vi ×(B0+B) (1)

and

0=−
∇pe

ne
−e(E0+E)−

e

c
ve×(B0+B) (2)

are the momentum equations,

∂nj

∂t
+∇·njvj = 0 (3)

is the continuity equation,

∂pj

∂t
+vj ·∇pj +γpj∇·vj = 0 (4)

is the pressure equation. Electrodynamic Maxwell’s equa-
tions are

∇×E = −
1

c

∂B

∂t
(5)

and

∇×B =
4π

c
j +

1

c

∂E

∂t
, (6)

where the currentj is

j =e(nivi −neve). (7)

In Eqs. (1)–(7), the indices “i” and “e” denote the ions and
electrons, respectively,j =i,e, e andmi are the ion charge
and mass (−e is the electron charge,me= 0),vj is the hydro-
dynamic velocity,nj is the number density,pj is the thermal
pressure,γ is the adiabatic constant,E andB are the wave
and induced nonlinear electric and magnetic fields,E0 is the
background electric field,B0 is the geomagnetic field,g is
the gravitational force,c is the speed of light in vacuum, and
d/dt ≡ ∂/∂t+vi ·∇. For generality, we take into account the
displacement current in Eq. (6).

3 Diamagnetic field

The first question we would like to discuss is the expression
for the quasi-stationary nonlinear magnetic field induced by
the electromagnetic wave. This field can be found from the
time-averaged Eqs. (5) or (6). Let us consider, for example,
the averaged Eq. (6)

∇×〈B2〉 =
4π

c
〈j2〉, (8)
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where 〈B2〉 is the induced magnetic field (magnetic mo-
ment),〈j2〉 is the quasi-stationary nonlinear current, the an-
gle brackets〈...〉 denote the time-averaging, and the index 2
denotes the nonlinear values. The well-known expression for
the induced magnetic field in a cold plasma is the following
(Pitayevsky, 1960):

〈B21〉 =
1

4

∂εik

∂B0
E∗

10iE10k, (9)

whereE10 is the complex amplitude of the wave electric
field, εik is the tensor of the dielectric permeability, and the
sign ∗ denotes the complex conjugate. This expression has
been used, in particular, in Guglielmi et al. (1993, 1995).
However, we will show below that Eq. (9) describes only one
part of〈B2〉.

We see from Eq. (7) that the nonlinear current〈j2〉 can be
written in the form

〈j2〉 = 〈j21〉+〈j22〉,

where

〈j21〉 = e(〈ni1vi1〉−〈ne1ve1〉),

〈j22〉 = en0(〈vi2〉−〈ve2〉).

Herenj1 andvj1 are linear disturbances of the density and
velocity,

〈
vj2
〉

is the nonlinear time-averaged velocity,n0 is
the background number density (we assume that the back-
ground velocities of species are equal to zero). We find, at
first, the current〈j21〉. Let the background magnetic field
B0 be directed along the z-axis and the electromagnetic wave
field depend mainly on the z-coordinate and only weakly,
say, on the y-coordinate. We here discuss a general physi-
cal problem which is independent on the specific choice of
the coordinate system. It can be some local system in the
magnetosphere or laboratory. For simplicity, we only have
chosen the y-dependence of the wave amplitude. This does
not exclude a possible x-dependence and has no influence on
the result obtained below. We further consider equations of
motion (1) and (2) and continuity Eq. (3) in the linear ap-
proximation over the wave amplitude. We findnj1, vj1x,
and, consequently,

〈
nj1vj1x

〉
(the index 1 denotes the lin-

ear values). We consider the wave which travels along the
background magnetic field and has the circular polarization.
Then, we obtain for the wave with a given frequencyω (here
and belowω>0)

〈ni1vi1x〉 = −
e2n0

4m2
i

σ

ω(ωi −σω)
2

∂
〈
E2

1

〉
∂y

, (10)

whereωi = eB0/mic is the ion cyclotron frequency,E1 is
the wave electric field,σ = ±1 marks the left- (σ = +1,
Alfv én ion cyclotron waves) or right- (σ = −1, magne-
tosonic waves) polarization. The expression for〈ne1ve1x〉 can

be obtained from Eq. (10) withmi → 0. Calculating the non-
linear current〈j21x〉 and substituting it into Eq. (8), we find
expression for〈B21z〉

〈B21z〉 = −
1

4

ω2
pi(2ωi −σω)

ωi (ωi −σω)
2

〈
E2

1

〉
B0

, (11)

whereωpi =
(
4πn0e

2/mi
)1/2

is the ion plasma frequency. It
is easy to verify that expression (11) follows from Eq. (9) for
the wave under consideration. Thus, Pitayevsky’s formula
(9) takes only into account the current〈j21〉.

Now we calculate the nonlinear current〈j22〉. By consid-
ering equations of motion for ions and electrons in the second
approximation over the wave amplitude, we obtain

〈vi2〉−〈ve2〉 = −
1

ωiB0
〈A2〉×B0, (12)

where

A2 = vi1 ·∇vi1 −
e

mic
(vi1 −ve1)×B1.

HereB1 is the wave magnetic field. In our case, we must
find the value

〈
A2y

〉
. Carrying out the necessary calculations

and taking into account Eq. (5), we find

〈
A2y

〉
=

e2

4m2
i

σω

ωi (ωi −σω)
2

∂
〈
E2

1

〉
∂y

. (13)

Substituting Eq. (13) into Eq. (12), we find the current〈j22x〉.
Using Eq. (8), we obtain

〈B22z〉 = −
1

4

ω2
piσω

ωi (ωi −σω)
2

〈
E2

1

〉
B0

. (14)

This term is not taken into account by Eq. (9). Thus, the total
induced quasi-stationary nonlinear magnetic field is the sum
of Eqs. (11) and (14) and equals to

〈B2z〉 = 〈B21z〉+〈B22z〉 = −
1

2

ω2
pi

(ωi −σω)
2

〈
E2

1

〉
B0

. (15)

We note that whenω→ωi (σ >0) expressions (11) and (14)
are equal to each other. Thus, Pitaevsky’s formula gives in
this case a result that is a factor of 2 smaller than the one of
Eq. (15).

The magnetic field〈B2z〉 is negative, i.e. is a diamagnetic
one. The nonlinear current〈j22〉 must be also taken into
account for other kinds of waves. The expression (15) can
be shown to be suitable whenLy(x) �Lz andτcA �Ly(x),
whereLy(x) andLz are typical inhomogeneity lengths of the
wave amplitude across and along the background magnetic
field, τ is the typical time of the wave amplitude change,
and cA = B0/(4πρ0)

1/2 is the Alfvén velocity,ρ0 =min0.
When these inequalities are not satisfied, the magnetic field
〈B2z〉 in a cold plasma is determined by some differential
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equation (see Nekrasov and Feygin, 2006). We note that
the kinetic expression for the induced magnetic moment in
the thermal plasma has been derived in Nekrasov and Petvi-
ashvili (1979).

In the Appendix, we show that the magnetic field〈B21z〉

is produced by the circular microcurrents across the back-
ground magnetic field generated by waves under considera-
tion. However, this conclusion has a general physical sense
and can be applied to other kinds of waves.

4 Ponderomotive force

In this section, we will find the ponderomotive force along
the background magnetic fieldB0. Let us add Eqs. (1) and
(2) and take into account Eqs. (6) and (7). Having in mind
thatni ' ne= n for waves under consideration, we obtain

min

(
∂vi

∂t
+vi ·∇vi

)
= −∇p+ming+

1

4π
(∇×B) (16)

×(B0+B)−
1

4πc

∂E

∂t
×(B0+B),

wherep=pi +pe.
We are interested in a slow nonoscillatory motion of

plasma along the magnetic fieldB0. It is obvious that such
a motion is possible under the action of the nonlinear force
in Eq. (16). Projecting this equation on thez-direction and
averaging over fast oscillations, we obtain

ρ0
∂ 〈vi2z〉

∂t
+
∂ 〈p2〉

∂z
−migz 〈ni2〉 (17)

= −
1

8π

∂
〈
B2

1

〉
∂z

−
1

4πc

〈(
∂E1

∂t
×B1

)
z

〉
+

1

c

〈
(j1×B0)z

〉
.

In Eq. (17), the equilibrium conditiongz = ∂p0/ρ0∂z and
equalitiesvi1z =B1z ' 0 satisfied in our case have been taken
into account. The last term on the right-hand side of Eq. (17)
is connected with the curvature of the magnetic field lines
(see below). The right-hand side of Eq. (17) is the longitudi-
nal ponderomotive forceFpz.

It is followed from Eq. (5) that, for example, for the trav-
eling wave∼ cos

(∫ z
kzdz−ωt

)
we have the relation〈

B2
1

〉
=N2

〈
E2

1

〉
, (18)

whereN2
= k2

zc
2/ω2 is the refractive index. Here, we do

not consider the time-dependence of the wave amplitude,
supposing that∂

〈
E2

1

〉
/∂z� (kz/ω)∂

〈
E2

1

〉
/∂t (Washimi and

Karpman, 1976). Then, the second term on the right-hand
side of Eq. (17) can be represented in the form〈(
∂E1

∂t
×B1

)
z

〉
=

1

2
c
∂
〈
E2

1

〉
∂z

. (19)

To calculate the last term on the right-hand side of
Eq. (17), we take into account that the magnetic fieldB0 can
have a curvature. LetB0 have the form

B0 =

[
−

1

2

∂B0

∂z
x,−

1

2

∂B0

∂z
y,B0(z)

]
(20)

in some local system of coordinates. The equation∇ ·B0 =

0 is satisfied. Substituting expression (20) in this term, we
obtain〈
(j1×B0)z

〉
=

1

2

∂B0

∂z

〈
xi1j1y−yi1j1x

〉
. (21)

Accomplishing calculations of expression in the angle brack-
ets of Eq. (21), we find in our case

〈
xi1j1y−yi1j1x

〉
= −

e3n0

m2
i ωi

〈
E2

1

〉
(ωi −σω)

2
. (22)

Let us now substitute expressions (18), (19), (21), and (22)
into Eq. (17). As a result, we obtain the following equation:

ρ0
∂ 〈vi2z〉

∂t
+
∂ 〈p2〉

∂z
−migz 〈ni2〉 (23)

= −
1

8π

∂

∂z

(
N2

+1
)〈

E2
1

〉
+

1

4π
〈B2z〉

∂B0

∂z
,

where 〈B2z〉 is defined by Eq. (15). This equation is ap-
propriate in the regiony(x)� Ly(x) because we have not
taken into account the contribution of〈j2〉 in Eq. (17). The
first term of the ponderomotive forceFpz in Eq. (23) is
the high-frequency pressure and the second term appears in
the magnetic medium embedded in an external inhomoge-
neous magnetic field. This specific term is the well-known
Pitayevsky’s force (Pitayevsky, 1960). We note that this
force can be written in the vector form asFP = (M ·∇)B0,
whereM = (1/4π)〈B2〉. The last form is a general one
for a force acting on medium with the magnetic momentM

in the inhomogeneous magnetic fieldB0 (Landau and Lif-
shits, 1982). In our case,M =Mb0, whereb0 is the unit
vector alongB0. Therefore, we haveFP =M∂B0/∂b0 or
FPb0 = b0·FP = M ·∂B0/∂b0. This is a general expression
available for the arbitrary curve magnetic field. We see that
important is the inhomogeneity of the magnetic field along
its direction to have the longitudinal force. In the vicin-
ity of some point, where we calculate the forceFP , a lo-
cal magnetic force line has in a general case the form (20).
An inhomogeneity of the magnetic field along only the x-
or y-directions does not influence on the valueFP . We
also note that if we take the inhomogeneous magnetic field
with straight field lines,B0 = [0,0,B0(x,y)], then we obtain
FP =M∇B0(x,y).

The expression forFpz in Eq. (23) can be rewritten through
only the gradient of the electric field amplitude. To show this,
we note that the wave electric field amplitude in a weakly
inhomogeneous medium is proportional toN−1/2. Thus, we
have that

〈
E2

1

〉
∼N−1. Using this relation and taking into

account Eq. (18), we obtain

∂

∂z

〈
B2

1

〉
=
∂

∂z
N2
〈
E2

1

〉
= −N2 ∂

∂z

〈
E2

1

〉
. (24)
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We also see that
〈
B2

1

〉
∼N . Thus, we have

〈
B2

1

〉〈
E2

1

〉
= const.

For low-frequency electromagnetic waves traveling along the
background magnetic field, the refractive indexN is, as
known, equal to

N2
= 1+

ω2
pi

ωi (ωi −σω)
. (25)

For our purpose, we don’t need the small thermal cor-
rections toN . As is known (e.g. Hasegawa and Uberoi,
1982; Voitenko and Goossens, 2004), this contribution for
Alfv én wavesω� ωi andN2

� 1 is the following: ω =

kzcA
(
1+k2

⊥
ρ2
s

)1/2
, whereρs is the ion acoustic gyroradius

andk⊥ is the wave number across the background magnetic
field. In the casek2

⊥
ρ2
s � 1 which is here considered, this

term can be neglected in our calculations for the real value
N2

� 1. Using Eqs. (15), (24), and (25), we can express the
ponderomotive forceFpz in the following form:

Fpz=
1

8π

(
N2

−1
)(∂ 〈E2

1

〉
∂z

−
ωi

ωi −σω

〈
E2

1

〉 ∂ lnB0

∂z

)
. (26)

In Eq. (23), the inhomogeneity of the electric field ampli-
tude can be defined by the inhomogeneity of medium, non-
linearity, finite spectral width of the linear harmonics with the
different weight, and wavelength for standing waves. Below,
we examine the first case. Considering the WKB-solution for
the stationary wave electric field amplitude and substituting
expression (25) into Eq. (26), we obtain

Fpz = −

(
N2

−1
)

N2

〈
E2

1

〉
16π[(

N2
−1

) ∂ lnρ0

∂z
+

σω

ωi −σω

(
N2

−1
) ∂ lnB0

∂z

+
2ωi

ωi −σω

∂ lnB0

∂z

]
. (27)

The expression (27) differs from the analogous one obtained
by Guglielmi et al. (1995) by the coefficient in the second
term in the square brackets. For the case

〈
E2

1

〉
∼B0/N con-

sidered in Guglielmi et al. (1993, 1995), we also have a dif-
ferent result. Note that for magnetosonic waves(σ = −1),
the second term in the square brackets in Eq. (27) changes
the sign. In the caseN2

� 1 andωi � ω, expression (27)
takes the form

Fpz= −
N2
〈
E2

1

〉
16π

[
∂ lnρ0

∂z
+

(
σω

ωi
+

2

N2

)
∂ lnB0

∂z

]
. (28)

For the modelB0 ∼ ρ
γ

0 , the last term in square brackets of
this expression can be omitted. We see from Eqs. (27) or (28)
that for the low-frequency Alfv́en and magnetosonic waves
the ponderomotive force has a negative sign (the equator po-
sition is atz= 0). Therefore, it is directed to the equator of
the geomagnetic field and can drive the plasma upward.

5 Nonlinear density and pressure evolution

We further consider the equation for the mass density evolu-
tion 〈ρ2〉 =mi 〈n2〉. Applying the operator∂/∂t to the corre-
sponding equation derived from Eq. (3) and using Eqs. (17)
and (28), we obtain

∂2〈ρ2〉

∂t2
−
∂2〈p2〉

∂z2
+
∂ 〈ρ2〉gz

∂z
=
∂

∂z

(〈
B2

1

〉
16π

∂ lnρ0

∂z

)
, (29)

wheregz = 2g0ψ/L
2, ∂/∂z= (1/REL)∂/∂ψ , ψ < 1 is the

geomagnetic latitude in the vicinity of the equator,g0 =

9.8 m s−2, L is McIllwain’s parameter, andRE is the Earth’s
radius. It is followed from Eq. (29) that the thermal pres-
sure〈p2〉 can have a considerable influence on the evolution
of density. We see from Eq. (17) that the sign of∂ 〈p2〉/∂z

coincides with the sign of the ponderomotive force and is
negative (see Eq. 28). Therefore, the growth of∂ 〈p2〉/∂z

will hinder the movement of plasma due to the ponderomo-
tive force and lead to the establishment of a stationary state
in which 〈vi2z〉 = 0. The pressure equation for ions (Eq. 4)
can be written by using Eq. (17) in the form

∂2〈pi2〉

∂t2
− 2c2

si
∂2〈pi2〉

∂z2
+2

(
c2

si
∂ρ0

ρ0∂z
−
∂pi0

ρ0∂z

)
∂ 〈pi2〉

∂z

= −c2
si
∂Gz

∂z
+

(
c2

si
∂ρ0

ρ0∂z
−
∂pi0

ρ0∂z

)
Gz, (30)

wherec2
si = γpi0/ρ0 andGz = gz 〈ρ2〉+Fpz. For simplicity,

we assume thatpe∼pi that results in〈pe2〉 ∼ 〈pi2〉.
From Eq. (30), we can conclude that the typical time

for the stationary state to be established is of the order of
τ ∼H/cs, whereH is the typical inhomogeneity scale length
andcs ∼ [(Te+Ti)/mi ]1/2 is the sound velocity. During this
time, the plasma displaces by the distance4z∼ 〈vi2z〉τ . The
typical velocity〈vi2z〉 is 〈vi2z〉 ∼ Fpzτ/ρ0. Thus, we obtain
an estimation

4z

H
∼

H

c2
sρ0

Fpz. (31)

Substituting expression (28) forFpz into Eq. (31), we find

4z

H
∼

〈
B2

1

〉
16πγp0

. (32)

Depending on the relation
〈
B2

1

〉
/p0, the value4z/H can be

smaller, of the order of or larger than unity.
The amount of plasma per unit of area, which displaces

into the region of the equator, is4ρ ∼ ρ04z. If the pon-
deromotive force acts from both sides of the equator, then
the plasma will be accumulated in this region. The change
of the densityδρ will be equal toδρ/ρ0 ∼ 4z/l, where l
is the dimension of the region, where plasma is accumu-
lated. We note that the stationary state can be achieved, if
1L/cA&H/cs, where1L is the length of the wave packet.
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If the stationary state is not achieved, the displacement is
determined by the duration of the ponderomotive force ac-
tion.

6 Displacement of plasma under the action of narrow
packets

The Pc 1 pulsations are sufficiently narrow wave packets in
space, dimension of which is much smaller than the length
of magnetic field force lines in the region of their generation
(e.g. Gendrin et al., 1971; Arnoldy et al., 2005; Loto’aniu
et al., 2005, and references therein). The group velocity of
these waves is equal to the Alfvén velocity. The forward front
of the wave accelerates the plasma under the action of the
ponderomotive force and the backward front decelerates it
leading to a finite plasma displacement. If4L is the typi-
cal dimension of the packet, then the time of interaction with
plasma, through which the packet travels, is4t ∼ 4L/cA.
The typical nonlinear velocity is〈vi2z〉 ∼ Fpz4t/ρ0. The
plasma displacement is4z∼ 〈vi2z〉4t . For the ponderomo-
tive force of the form

Fpz= −
1

8π

∂
〈
B2

1

〉
∂z

(see Eq. 17, where the contribution of the magnetic moment
is neglected), the value4z is estimated as

4z

4L
∼

〈
B2

1

〉
B2

0

� 1. (33)

If we take the ponderomotive force defined by Eq. (28), then
we obtain the same estimation as Eq. (33). Thus, Pc 1 pulsa-
tions do not modify the background plasma distribution.

7 Plasma displacement under the action of standing
waves

It is followed from Eq. (17) that the standing wave displaces
the plasma to its nodes. In this case, the wave amplitude
inhomogeneity is defined by its wavelength. If the stand-
ing wave would have a node at the equator and an amplitude
maximum in the conjugate points of the ionosphere, then the
wave could cause a movement of plasma only upward. It
would be possible, if a quarter of the wavelength would con-
tain between the Earth and the magnetic equator. In a general
case, the wave equation must be solved for an inhomoge-
neous medium with the boundary conditions.

8 Conclusion

In the present paper, we have considered the ponderomotive
action of the low-frequency Alfv́en waves traveling along
the nonuniform geomagnetic field. The magnetic moment

induced by the electromagnetic field has been taken into ac-
count. We have shown that Pitayevsky’s formula for the mag-
netic moment does not include the additional magnetic mo-
ment induced by the nonlinear current which is connected
with the quasi-stationary nonlinear particle velocities. The
total magnetic moment has a negative sign, i.e. it is directed
against the background magnetic field. This diamagnetic
field results, in particular, in the nonlinear shift of the cy-
clotron frequency (Nekrasov and Petviashvili, 1979).

We have obtained the expression for the ponderomotive
force for the quasi-monochromatic wave packets which are
nonuniform due to the background inhomogeneity. Our
expression differs from the analogous result obtained by
Guglielmi et al. (1993, 1995). In our consideration, we also
have taken into account the right-polarized magnetosonic
waves. We have shown that in this case one term which is
proportional to the magnetic field inhomogeneity in the ex-
pression for the ponderomotive force changes the sign (see
Eq. 27 forσ = −1).

The equation for the plasma density evolution under the
action of the induced thermal pressure and ponderomotive
force has been considered. We have shown that the nonlin-
ear thermal pressure decelerates the plasma flux and can lead
to the establishment of a stationary state in which the flux is
equal to zero. This important effect of the nonlinear thermal
pressure for traveling pulsations has not been considered in
papers cited above. For this case, we have obtained the esti-
mation for the plasma displacement to the equator (Eq. 32).
If the stationary state is not achieved, the displacement is de-
termined by the duration of the ponderomotive force action.

We have also obtained an estimation for the plasma dis-
placement under the action of the narrow wave packets such
as Pc 1 pulsations. In this case, the displacement is much
smaller than the space dimension of the packet. Thus, Pc 1
pulsations can not modify the background plasma distribu-
tion. This conclusion considerably differs from the previous
results according to which the Pc 1 pulsations lead to accu-
mulation of plasma in the equatorial region.

The long standing wave having node only at the equator
can cause an upward movement of plasma.

Appendix A

We here show that expression (11) can be obtained, using
the magnetic moment of the circular current of the charged
species. Under the action of the circularly polarized Alfvén
wave, the electrons and ions move over circle in the direction
of the wave polarization around the magnetic fieldB0. The
currentIj of one particlej is equal to

Ij = σ
qjω

2π
, (A1)
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whereqj is the charge of speciesj . The magnetic moment
µj of this current is given by

µj =µjb0 = −
Ij

c
Sjb0, (A2)

whereSj is the circle area (e.g. Sivukhin, 2002). It can be
shown (e.g. Nekrasov and Feygin, 2006) that the radius of
the circleaj is

aj =

∣∣qj ∣∣
mj

1

ω
∣∣ωj −σω

∣∣E10, (A3)

whereE10 is the wave amplitude and the brackets|| denote
an absolute value. Substituting expressions (A1) and (A3)
into Eq. (A2), we obtain the magnetic moment of one particle

µj = −
q3
j

2m2
j c

σ

ω
(
ωj −σω

)2E2
10. (A4)

The total magnetic moment of the unit of volume is equal to
M = n0(µe+µi). Using expression (A4), we find

M = −
1

8π

ω2
pi(2ωi −σω)

ωi (ωi −σω)
2

E2
10

B0
. (A5)

We see from Eq. (A5) that the value 4πM coincides with
〈B21z〉 within a factor 1/2.
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