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Abstract. Koyna region is well-known for its triggered seis-
mic activities since the hazardous earthquake ofM = 6.3 oc-
curred around the Koyna reservoir on 10 December 1967.
Understanding the shallow distribution of resistivity pattern
in such a seismically critical area is vital for mapping faults,
fractures and lineaments. However, deducing true resistiv-
ity distribution from the apparent resistivity data lacks pre-
cise information due to intrinsic non-linearity in the data
structures. Here we present a new technique based on the
Bayesian neural network (BNN) theory using the concept
of Hybrid Monte Carlo (HMC)/Markov Chain Monte Carlo
(MCMC) simulation scheme. The new method is applied to
invert one and two-dimensional Direct Current (DC) vertical
electrical sounding (VES) data acquired around the Koyna
region in India. Prior to apply the method on actual resistiv-
ity data, the new method was tested for simulating synthetic
signal. In this approach the objective/cost function is op-
timized following the Hybrid Monte Carlo (HMC)/Markov
Chain Monte Carlo (MCMC) sampling based algorithm and
each trajectory was updated by approximating the Hamilto-
nian differential equations through a leapfrog discretization
scheme. The stability of the new inversion technique was
tested in presence of correlated red noise and uncertainty of
the result was estimated using the BNN code. The estimated
true resistivity distribution was compared with the results of
singular value decomposition (SVD)-based conventional re-
sistivity inversion results. Comparative results based on the
HMC-based Bayesian Neural Network are in good agree-
ment with the existing model results, however in some cases,
it also provides more detail and precise results, which ap-
pears to be justified with local geological and structural de-
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tails. The new BNN approach based on HMC is faster and
proved to be a promising inversion scheme to interpret com-
plex and non-linear resistivity problems. The HMC-based
BNN results are quite useful for the interpretation of frac-
tures and lineaments in seismically active region.

1 Introduction

The dynamically active Koyna region has been one of the fo-
cuses of colossal research activities in India ever since the
killer earthquake ofM = 6.3 occurred around the Koyna
reservoir on 10 December 1967 (Gupta et al., 1969, 1972,
2002; Talwani, 1997). The hazardous seismic activities
in and around the region have been continuing since then,
though sporadically. The layered structures in and around the
region have impacted on the near surface distribution pattern
of electrical properties. The modeling and interpretation of
Direct Current (DC) resistivity sounding in this region, there-
fore, assume a special significance to understand the inhomo-
geneous infiltrations of fluids through porous media and geo-
logically weak zones, such as faults and fractured zones, near
the sub-surface area. The DC resistivity sounding method is
one of the most popular methods that has been invariably
applied for solving hydrological, geothermal, environmental
and engineering problems (Ekinci and Demirci, 2008; Singh
et al., 2010). In this method, current is induced directly into
the ground through a pair of current electrodes and resulting
voltage difference is measured between a pair of potential
electrodes. The method provides the apparent resistivity dis-
tribution against depth. The depth of penetration of electrical
signal is generally found to be approximately one-third of the
distance between the electrode separations.
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The estimation of true resistivity distribution against depth
from the apparent resistivity data essentially lead to solv-
ing the inverse problem. Further, relation between the ob-
served “apparent resistivity” and the model parameters (“true
resistivity” and “layer thickness”) is non-linear. Forward
mathematical models are generally used to relate the mea-
sured/observed data (here apparent resistivity) to desired
model parameters (true resistivity and layer thickness). Es-
sentially, the forward modeling is a process of predicting re-
sults of measurements on the basis of some general princi-
ple or model and specific conditions relevant to the problem.
Inverse modeling, in contrast starts with the data and a gen-
eral principle or a model, in which the model parameters are
estimated by minimizing the error/misfit function set up be-
tween the data and model parameters (Menke, 1984). During
the past decades researchers have made several attempts to
solve the resistivity inverse problems (Ghosh, 1971; Zohdy,
1989; Macias et al., 2000; Qady and Ushijima, 2001; Singh
et al., 2005; Ekinci and Demirci, 2008). However, these ap-
proaches have some common drawbacks. These algorithms
critically depend on the initial parameter chosen for it. The
general class “Monte Carlo” e.g., genetic algorithm and sim-
ulated annealing techniques have proven to be useful whilst a
good staring model is not available (Rubinstein, 1981; Kirk-
patrick et al., 1983; Horne and MacBeth, 1994) for offering
global solution. These methods are also computationally ex-
pensive and sometimes found unfeasible for processing vo-
luminous amount of data. Thus it is imperative to search for
a more robust cost effective approach for solving non-linear
resistivity inverse problems.

In the recent past, Artificial Neural Network (ANN)-based
techniques have been widely applied to solve non-linear
problems in various branches of geophysics (Van der Baan
and Jutten, 2000; Poulton, 2001). For example: (1) for seis-
mic event classification (Dystart and Pulli, 1990), (2) well
log analysis (Aristodemou et al., 2005; Maiti et al., 2007;
Maiti and Tiwari, 2007, 2009, 2010b), (3) first arrival pick-
ing (Murat and Rudman, 1992), (4) earthquake prediction
(Feng et al., 1997), (5) inversion (Raiche, 1991; Devilee et
al., 1999), (6) parameter estimation in geophysics (Macias et
al., 2000), (7) prediction of aquifer water level (Coppola Jr. et
al., 2005), (8) magneto-telluric data inversion (Spichak and
Popova, 2000), (9) magnetic interpretations (Bescoby et al.,
2006), (10) signal discrimination (Maiti and Tiwari, 2010a),
(11) modeling (Sri Lakshmi and Tiwari, 2009), (12) DC re-
sistivity inversion (Qady and Ushijima, 2001; Lampinen and
Vehtari, 2001; Singh et al., 2005, 2006, 2010).

There are, however, several limitations in conventional
neural network approaches also (Bishop, 1995; Maiti and Ti-
wari, 2009). One of the major limitations is that the network
is trained by maximizing a likelihood function of the param-
eters or equivalently minimizing an error function in order to
obtain the best set of parameters starting with an initial ran-
dom set of parameters. Sometimes a regularization term with
an error function is used to prevent over-fitting. In that case,

a complex model can well be used to fit the training data but
it does not necessarily guarantee the smaller errors in the un-
seen data (Bishop, 1995). This is due to the fact that ensuing
procedure does not take into account of uncertainty in the
estimation of parameters (Bishop, 1995; Nabney, 2004).

In the present work, we developed a Bayesian neural
network approach via a powerful Hybrid Monte Carlo ap-
proach (Bishop, 1995; Nabney, 2004; Maiti and Tiwari,
2009, 2010a) for estimating true resistivity and layer thick-
ness precisely from the apparent resistivity data acquired
from Chiplun to Patan (26 number of Schlumberger sounding
profile data) of Koyna region (Latitude 17.25◦ N–17.52◦ N,
Longitude 73.5◦ E–74.00◦ E; profile length is about 50 km
roughly in E-W direction), Maharashtra (Fig. 1a–b). We
compared the new HMC-based BNN results with conven-
tional singular value decomposition (SVD) based damped
least-squares solution. Our results suggest that the HMC-
based BNN technique is comparatively superior to the con-
ventional SVD-based technique in a sense that the present
technique takes care of the problem of uncertainty analysis
in a natural way. Thus, besides introducing a novel HMC-
based BNN approach for solving non-linear inverse problem,
the analyses have brought out precise distribution of true re-
sistivity which appears to be quite significant, especially for
constraining the model in seismically active region Koyna.

2 Geological setting of the study area

The study area is located on the western side of Peninsular
India (Fig. 1a). It is covered by Deccan Traps, a Continen-
tal Flood Basalt (CFB). The CFB provinces are believed to
be intimately related to passage of continental masses over
static mantle plumes (hot spot), and to the subsequent conti-
nental rifting triggered by plume activities (Morgan, 1972).
It is believed that Deccan Traps were erupted during the
separation of the Seychelles micro-continent from Indian,
50–60 Ma (end of Cretaceous-early Tertiary) (Duncan and
Pyle, 1988) during a rifting event induced by the northward
movement of the Indian subcontinent over the Late Creta-
ceous manifestation of Reunion plume. A remarkable fea-
ture of Deccan volcanism is the horizontal flow throughout
the region. There are many lava flows with varying thick-
ness ranging from 10 to 160 m. Variations in thickness of
the trap flows are attributed mainly to pre-Trap topography.
These massive compact lava sequences have low permeabil-
ity, which implies that there is significant migration of water
through faults, fractures, columnar jointing and vesicles. A
general regional strike varies from NS to NNW. Geological
observations indicated the existence of a NNE trending strike
slip fault, passing through Koyna (Gupta and Rastogi, 1974;
Gupta et al., 1969, 2002; Talwani, 1997). Several lineament
features have been identified in the Deccan trap region of
western India. Structural shear zones are speculated to exist
along the lineament, based on study of imageries and some
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Fig. 1. (a)Geological map of the study area,(b) location map of the Schlumberger resistivity profile.

field observations (Athavale and Mohan, 1976). The seismic
activities in the western region are bounded by the Koyna
River Fault Zone (KRFZ) that dips steeply towards the West,
and to the East by the NE-SW trending Patan Fault (Fig. 1a).
The area between KRFZ and Patan Fault is intersected by a
number of NW-SE fractures zones.

The present resistivity profile covers the major parts of
Koyna region, starting from Chiplun (Latitude 17.51◦ N,
Longitude 73.52◦ E) to Patan (Latitude 17.36◦ N Longitude
73.90◦ E) with maximum current electrode separation (AB)
of 200 m. The measurements were taken using the SSR-MP-
AT instrument (manufactured by IGIS, Hyderabad) during
March 2009. In order to improve the quality of data, the
resistivity meter performed a minimum of three stacks for
each data point. The locations of the sounding points have
been marked in Fig. 1b. The existing geophysical and geo-
logical studies show that the shallow distribution of the re-
sistivity is important for understanding the fault and linea-
ment pattern of the area. The exposed basement is fractured
at many places of the area which could be speculated as the
shear zones. In view of the established utility of resistivity
method in locating and demarcating the fractured and weath-
ered zones, especially in the seismically active Koyna region,
it was thought worth to conduct electrical resistivity survey
over the area to get a precise true resistivity value against
depth.

3 Methods

3.1 Forward modeling

Schlumberger sounding is the most popular sounding method
in DC resistivity survey. For Schlumberger sounding, the re-
lationship between the apparent resistivity (ρa) and the layer
parameters (e.g. layer thickness, layer true resistivity) can be
expressed by an integral equation considering an earth model
consisting of homogeneous and isotropic layers. Following
(Koefoed, 1970) we write the equation as follows

ρa(s) = s2

∞∫
0

T (λ)J1(λs)λdλ (1)

Where,s is half of the current electrode spacing (AB/2) in
Schlumberger electrode configuration,J1 denotes the first-
order Bessel function of the first kind andλ denotes the inte-
gral variable. Following Koefoed (1970) we write recurrence
relationship of the resistivity transform function,T (λ) as,

Ti (λ) =
Ti+1(λ)+ρi tanh(λhi)[

1+Ti+1(λ)tanh(λhi)/ρi

] , i = n−1,...,1 (2)

Where,n denotes the number of layers,ρi andhi are the true
resistivity and thickness of thei-th layer, respectively.
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3.2 Inversion scheme

The standard linearized inversion approach to solving the
non-linear inverse problems in geophysics are largely based
on iterative processes. The forward model is developed based
on the specific relation between physical models to the ob-
served data. “Inversion” processes update the model param-
eter at each step to best fit the observed data. However, the
inversion of the resistivity sounding data is an ill-posed prob-
lem. This is due to the fact that the contradictory information
on model parameter cannot be assessed due to lack of infor-
mation. Therefore, small changes in the data may lead to
large changes in the model. Successful optimization depends
heavily on choosing the correct initial model. The problem
may be reduced by introducing damping into the system of
equations (Roy, 1999). This resulted in a solution of damped
least-squares which we can write following (Menke, 1984)

1m =

(
GT G+β2I

)−1
GT 1d (3)

Where1m is the parameter correction vector;1d is the data
difference vector;G is the Jacobian matrix containing par-
tials derivative of data with respect to the initial model pa-
rameter. I is the identity matrix, and the termβ is called
damping factor which is a scalar quantity, actually controls
both speed of convergence and solution. This solution is also
known as Tikhonov regularization (Levenberg, 1944; Mar-
quardt, 1963; Menke, 1984).

3.3 Singular value decomposition (SVD)

Singular value decomposition (SVD) technique is popular in
many areas of geophysical inversion. It is a very useful tech-
nique for small scale geophysical inverse problem especially,
for unstable, rank-deficiency problem. SVD provides numer-
ically stable results in addition to the information related to
model parameter resolution and covariance analysis (Meju,
1994).

We factorize ann×n or n×m Jacobian matrixG in the
above Eq. (3) as follows

G = UQLT (4)

Where forn data andm parameters,U(n×m)andL(m×m)

are two orthonormal matrix, containing respectively the data
space and the parameter space eigenvectors andQ is a(m×

m) diagonal matrix containing at mostr non-zero eigenval-
ues ofG, with a conditionr ≤ m. These diagonal entities in
matrix Q

(
α1,α2,...,αp

)
are called singular values ofG. We

write SVD-based damped least squares solution,

1m =

(
LQ2LT

+β2I
)−1

LQUT 1d (5)

We get the form by adding the damping factor to the diagonal
elements(
LQ2LT

+β2I
)

=

(
Ldiag

{
α2

j

}
LT

+β2I
)

= Ldiag
(
α2

j +β2
)

LT (6)

We write the inverse of the Eq. (6) as follows,

(
Ldiag

{
α2

j +β2
}

LT
)−1

= Ldiag

{
1

α2
j +β2

}
LT (7)

Substituting the Eq. (7) in Eq. (5) we obtain

1m = Ldiag

{
1

α2
j +β2

}
LT LQUT 1d (8)

We obtain the parameter correction vector as:

1m = Ldiag

{
αj

α2
j +β2

}
UT 1d (9)

The Eq. (9) provides damped least-squares solution via the
SVD. Usually, in initial iteration, the damping factor is set to
be a large positive value while making the full use of steepest
descent method. Subsequently, at each iteration the damp-
ing factor is multiplied by a factor less than unity so that
the least-squares method dominates near the solution (Meju,
1994). Following Arnason and Hersir (1988) we determine
the damping factor as follows:

β = αW1c
1
W (10)

WhereW is the test number for the damping factor at any
iteration,α is the parameter eigenvalue and the term1c is
given by

1cr =
(cr−1−cr)

cr−1
(11)

Where,cr−1 is the misfit value obtained at previous iteration
andcr is the misfit found at the current iteration. In this study,
Eqs. (10) and (11) were used to set the damping factor in each
iteration.

4 Bayesian neural network approach

In Bayesian neural network approach, we establish the for-
ward relationship between models predicted by forward-
modeling with the data (apparent resistivity) through a func-
tion as

d = f (x)+ε (12)

Wheref is the function relating between model space and
data space,ε is error,d is data, andx is model. It is worth-
while to mention thatf is non linear (discussed above) to es-
tablish data-model relationship, so direct estimation of model
is not possible. A common way of inverting for modelx in
Eq. (12) is via iterative least squares method. However this
does not provide uncertainty measures. Instead, to solve the
Eq. (12) in Bayesian sense, we considered sufficient num-
ber of representative realizations samples (model /data pair)
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Fig. 2. Layout of MLP with a three-layer neural network with “d” representing input, subscript “i” representing the number of nodes in
the input layerwji representing the connection weight between thei-th node in the input layer and thej -th node in the hidden layer and
wjk , representing the connection weight between thej -th node in the hidden layer and thek-th node in the output layer.2j and2k are
bias vectors for the hidden and the output layer. When the sum of the argument of a neuron is comparable to the threshold value2j , the
sigmoid function squashes linearly, otherwise it saturates with value +1; –1 gives non-linearity for non-linear mapping between an input and
an output space. Sigmoid function plays key role for mapping non-trivial geo-electrical problem.

from a finite data sets = {dk,xk}
N
k=1 conditioned on the ex-

plicit limit of resistivity data. So we write the equation now
as

x = fNN(d;w) (13)

Where,x is model desired,fNN is the output predicted by
the network andw is network weight parameter. In stan-
dard/conventional approach of neural network for solving
Eq. (12), often, regularization is included to modify total
misfit function

E(w) = µES+λER (14)

Where, for example,ER =
1
2

R∑
i=1

w2
i is known as weight-

decay regularization which favors small values for the net-
work weight,R is total number of weights and biases in the
network,λ andµ, which control other parameters (synaptic
weight and biases), are known as hyper parameters (Maiti
and Tiwari, 2010b).ES, least square error measure function,

can be written in the form ofES =
1
2

N∑
k

{xk −ok (dk;wk)}
2,

wherexk andok are respectively the target/desired and the
actual output at each node in the output layer. It is impor-
tant to note that forward functions used in node are nonlinear
tan sigmoid in nature eases to solve the non trivial problem
(Fig. 2). In the traditional approach, the training of a net-
work starts with an initial set of weights and biases and ends
up with the single best set of weights and biases given the
objective function is optimized.

In the Bayesian neural network approach, a suitable prior
distribution, sayP(w) of weights is considered before ob-
serving the data instead of single set of weights. Us-
ing Bayes’ rule, a posteriori probability distribution for the
weights, sayP (w|s) can be given as (Bishop, 1995; Khan
and Coulibaly, 2006),

P (w|s) =
P (s|w)P (w)

P (s)
(15)
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Where,P (s|w) is the data set likelihood function, and the de-
nominator,P(s) is a normalization factor. The denominator
P(s) is intractable so direct estimation of posteriorP (w|s)

is not possible. Using the rules of conditional probability, the
distribution of outputs for a given input vector,x can be writ-
ten in the form (Bishop, 1995; Khan and Coulibaly, 2006),

P (x|d,s) =

∫
P (x|d,w)P (w|s)dw . (16)

The major problem in Bayesian computation is evaluat-
ing integrals for posteriori pdf of weights (Eq. 15) and net-
work output (Eq. 16). Fortunately numerical methods Monte
Carlo combine with Markov Chain (MCMC) sampling based
method plays an important role for evaluating posterior inte-
grals. The Eq. (16) can be approximated as

P (x|d,s) =
1

N

N∑
n=1

P (x|d,wm) . (17)

Where{wm} represents a MCMC sample of weight vectors
obtained from the distributionP (w|s) andN is the number
of pointsw sampled fromP (w|s).

4.1 Markov Chain Monte Carlo (MCMC)/Hybrid
Monte Carlo (HMC)

It is well known that simple gradient descent algorithm can
get trapped at shallow local minima. One way of overcom-
ing this problem is to define the error surface in terms of
a Hamiltonian statistical mechanism that accounts for the
approximation errors and the momentum term of each tra-
jectory. This is the basis of the Hybrid Monte Carlo al-
gorithm/Markov Chain Monte Carlo algorithm (Duane et
al., 1987). In this algorithm, each trajectory is updated by
approximating the Hamiltonian differential equations by a
leapfrog discretisation scheme. Markov Chain Monte Carlo
algorithm draws an independent and identically distributed
(i.i.d) sample

{
w(i)

;i = 1,2,...,N
}

from the target distribu-
tion P (w|s); in Bayesian sense, posterior probability distri-
bution of target network parameter. Markov process forms a
sequence of “state” to draw samples from posterior pdf. It
is noted that the chain converges toP (w|s) given enough
space. The states are represented by a particle in the high
dimensional network parameter space whose positions are
defined byq ∈ Rw. So the Eq. (15) can be written in the
form of π(q) ∝ exp{−E(q)}, whereE(q) is potential energy
functions/cost function for optimization problem. By intro-
duction of momentum variablesp with corresponding kinetic

energy functionsV (p) =
1
2

N∑
i=1

p2
i to efficiently explore large

region of phase-space by simulating the Hamiltonian dynam-
ics in fictitious time. The particle mass and Boltzmann con-
stantkB can be re-scaled to unity. Full Hamiltonian energy
function on a fictitious phase space is

H(q,p) = E(q)+V (p) (18)

The canonical distribution of Hamiltonian is

π(q,p) =
1

QH

exp{−H(q,p)} (19)

It is clear that if we sample (q, p) from the distribution
π(q,p) =

1
QH

exp{−H(q,p)}, then the marginal distribution
of q is exactly the target distributionπ(q). Here, π is a
generic symbol.

Practically pure Metropolis-Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970) is proved to be very slow
because the method makes no use of gradient information.
The proposed algorithm here is based on Hybrid Monte
Carlo (HMC) algorithm for sampling from target distribution
which makes the use of the gradient information. The HMC
based algorithm is a sampling algorithm that takes into con-
sideration certain gradient information. The algorithm fol-
lows the following sequence of steps once a step sizeθ and
the number of iterationsL have been decided upon: (i) firstly
randomly choose a directionτ : τ can be either−1 or +1 with
the probability 0.5 simulate the dynamics forward or back-
ward in time. The transition probability matrix satisfies mi-
croscopic reversibility which implies that probability of these
two transitions fromqj to qi or from qi to qj be same at all
times and each pairs of points maintains a mutual equilib-
rium. (ii) Secondly carry out the iterations: starting with the
current state[q,p] = [q(0),p(0)] of energyH , wherep is a
momentum term which is randomly evaluated at each step,
let algorithm performL steps with a step size ofθ resulting
in the candidate state, [w∗, p∗] with energyH ∗. (iii) Thirdly
the candidate state is accepted with usual metropolis proba-
bility of acceptance, min

{
1,exp

[
−(H ∗

−H)
]}

, whereH(.)

is the Hamiltonian energy. If the candidate state is rejected
then the new state will be the old state. The above three steps,
in essence, describe how the sampling is done from posterior
distribution of network parameter so that the summation of
Eq. (17) can be accomplished for the optimization of the net-
work. The momentum termp can be randomly generated or
it can be changed dynamically at each step and there are dif-
ferent ways of doing this (Duane et al., 1987; MacKay, 1992;
Neal, 1996; Bishop, 1995). The sets of weights are thus se-
lected or rejected according to the three steps above and the
numbers of samples that are wished to be retained are the
number of weights retained. For each set of weights there is
a corresponding network output.

4.2 Synthetic example

We have carried out numerical experiment following Nab-
ney (2004). For example, to illustrate the application of
the Bayesian techniques to a “regression” problem, we con-
sider a one-input one-output example involving data gener-
ated from the a smooth sine function of the form of

f (x) = 0.25+0.07sin(2πx) (20)

with additive Gaussian noise having standard deviation of
δ = 0.1. Value forx were generated by sampling an isotropic
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Fig. 3. (a)The graph shows the simulation of a synthetic underlying
function using 100 numbers of data points in the presence of noise
via Hybrid Monte Carlo (HMC) method when the data are sampled
at point 0.25. The standard deviation (STD) of the noise is 0.3.(b)
Examples when the data are sampled at point 0.25 and 0.75 and
STD of noise distribution is 0.1.

Gaussian mixture distribution. Figure 3a–b shows trained
BNN approximation which corresponds to mean of the pre-
dictive distributions. Error bar represents one standard de-
viations (±1δ) of the predictive distribution. This predictive
distribution allows us to provide error bars for the network
output instead of just a single answer. For the synthetic ex-
periment we have chosen following the parameters: (i) the
number of node used in a single hidden layer is 10. (ii) The
number of training samples used in the experiments is 50.
(iii) The initial prior hyperparameter values areλ = 0.01 and
µ = 50.0. (iv) The tolerance for the weight optimization is
set to a very low value (10−7). This is because the Gaussian
approximation to the weight posterior depends on being at a
minimum of the error function (Nabney, 2004). The detailed
analysis of sensitivity of the hyperparameters is given in the
recent work of Maiti and Tiwari (2010a). The initialization
of the model parameters is performed by a distribution of
model parameters. The initial values of model parameters of
MLP (Multi-Layer Perceptron) (synaptic weight and biases)
are formed by Gaussian prior distribution of zero mean and
inverse varianceλ (also known as regularization coefficient
or prior hyperparameters). To define objective function in
Bayesian framework, an error model for the data likelihood
is required. It is assumed that target data is formed from
a smooth function with additive zero mean Gaussian noise.

Fig. 4. Forward model used to create the resistivity synthetic train-
ing and testing for two-dimensional resistivity model.

Accordingly hyper-parameterµ = 50 is estimated for both
hidden and output layer weights. After defining prior and
likelihood functions, posterior has been estimated by Bayes’
rule.

5 Model initiation and implementation

5.1 Hidden layers, connection weights and output

In Bayesian neural network modeling we do not necessarily
need to estimate the optimal number of the weights (hidden
layer) to have a good generalization (Bishop, 1995). How-
ever, in the present problem we find by trial and error that a
single hidden layer with twenty five individual nodes is ap-
propriate.

5.2 Number of training samples

We considered a total of 1326 representative input/output
pairs within the constrained bounds of the plausible geologi-
cal solutions for 1-D BNN training. Following Van der Bann
and Jutten (2000), the number of training samples is kept
more than the total internal variables. For two-dimensional
inversion, we considered an embedded anomalous mass of
resistivity 105 Ohm-m (Fig. 4) to generate a synthetic train-
ing set required for training the network. A collinear Schlum-
berger was set up in sounding mode with half of the cur-
rent electrode spacing 100 m. The position of the anoma-
lous mass was changed and moved to all the model mesh el-
ements. In this process, we allowed each element in the mesh
to be either resistive or conductive. The two-dimensional
data set was generated using the finite element forward mod-
eling (Dey and Morrison, 1979; Uchida, 1991) scheme in
which a total of eighty training sets were generated for each
profile.
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5.3 Input data scaling and model parameterization

Normalization of the raw data (input/output), before present-
ing it to the network is crucial to avoid saturation in order to
map nontrivial problem. Hence we scaled all the input/output
pair values between 0 and 1 [−1 and +1] by using a sim-
ple linear transformation algorithm (Poulton, 2001); normal-
ized input = 2× (input-minimum input)/(maximum input-
minimum input) – 1. In view of computational simplicity
(Bishop, 1995) and to avoid large curvature (Nabney, 2004),
the initial values of model parameters (synaptic weight and
biases) are formed by following a Gaussian prior distribu-
tion function of a zero mean and an inverse variance,λ (also
known as regularization coefficient or prior hyperparameter).
We use a single hyperparameterλ, for all the weights in a net-
work. In order to define an objective function in the Bayesian
framework, an error model for the data likelihood is required.
Having assumed that the target data is formed from a smooth
function with additive zero mean Gaussian noise, we esti-
mated the hyperparameterµ for both hidden and output layer
weights.

5.4 Data division for model validation and testing

Over-fitting is one of the serious drawbacks in traditionally
used Artificial Neural Network (ANN) modeling. In this
case, the selected training set is memorized in such a way
that ANN fits even the inherent deceptive noise present in the
data. Therefore, the performance of the network is excellent
only on the data set used for training but not on new data set.
However, the Bayesian learning approach control “effective
complexity” by considering many adjustable parameters and
the parameter uncertainty is considered in form of probabil-
ity distribution (Bishop, 1995; Nabey, 2004). It may be noted
that the HMC-based BNN approach does not require any
cross-validation test to prevent “over-fitting” (Bishop, 1995)
because the underlying approach is equipped with strong
mathematical soundness that takes care of such drawbacks
naturally. Thus following the guidelines described earlier in
the case of synthetic data modeling, we performed our train-
ing and simulation using all data sets.

5.5 Network sensitivity to correlated noise

In many geological/geophysical situations, we invariably ob-
serve some kind of deceptive/correlated noise, which domi-
nates the field observations and corrupts the actual signal. In
the present case, we do not have any precise idea about the
“percentage” of noise present in the actual resistivity data.
Assuming however, that there is some level of inescapable
noise in the data, it would be prudent to test the robustness
and the stability of the results. Broadly speaking, there are
two types of noise in the data. One is uncorrelated noise
or white noise and another is correlated or red noise. The
red noise is incredibly deceptive because it correlates with

Table 1. Estimation of model parameter of synthetic data set cor-
rupted with 5% correlated red noise.

Model True Estimated Estimated Average
para- value value value uncertainty
meter SVD-based HMC-BNN HMC-BNN

conventional method method
method method

ρ1 90 Ohm-m 90.50 Ohm-m 89.70
ρ2 451 Ohm-m 450.00 Ohm-m 450.50
ρ3 112 Ohm-m 110.00 Ohm-m 112.25
ρ4 20 Ohm-m 22.10 Ohm-m 19.76
ρ5 893 Ohm-m 894.00 Ohm-m 892.63
ρ6 3.00 Ohm-m 4.00 Ohm-m 2.97 ∼ 0.30
h1 0.83 m 1.0 m 0.85 m
h2 1.90 m 2.00 m 1.95 m
h3 9.10 m 10.00 m 9.00 m
h4 8.50 m 7.5 m 8.75 m
h5 10.40 m 12.00 m 10.50 m

the data rendering unphysical appearances in the data struc-
ture. Statistically the red noise is followed by random walk
model and often misread as data. The detailed procedure of
generation and mixing of red noise for testing and experi-
mental treatments can be found elsewhere (Maiti and Tiwari,
2010b). Here we have tested the trained network in presence
of correlated red noise (Table 1). One can see from Table 1
that the network is able to fairly accurately estimate resistiv-
ity distribution in presence of correlated red noise (Table 1).

5.6 Uncertainty analysis

The uncertainty at the network output arise mainly due to
(i) the intrinsic noise in the data embodies in the hyper-
parameterµ and (ii) theoretical error described by the pos-
terior distribution of the weight vectorw (Bishop, 1995).
The elements along the main diagonal of output covariance
matrix shows the “variances” of the fluctuations about the
mean of the Gaussian probability densities that characterizes
the uncertainties. The off-diagonal elements show the extent
to which these fluctuations are correlated (Tarantola, 1987).
The average uncertainty results for the synthetic and real data
inversion are given in Tables 1 and 2.

6 Modeling resistivity data from the Koyna region

After a successful test of the proposed algorithm on com-
plex synthetic data series, we demonstrate the applicabil-
ity/efficiency of the proposed inversion method on the actual
DC resistivity data collected from the Koyna region, India
(Fig. 1). The DC resistivity sounding with Schlumberger ar-
ray was carried out at 26 VES stations as shown in Fig. 1b
using electrode spacing starting from AB = 2 up to 200 m in
successive steps. The field sites were chosen on the basis of
the accessibility and applicability of the Schlumberger geo-
electrical method in order to attain the objective.
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Table 2. Estimation of model parameter of real data of sounding
point s16.

Model True Estimated Estimated Average
para- value value value uncertainty
meter SVD-based HMC-BNN HMC-BNN

conventional method method
method method

ρ1 326.00 325.00 325.97
ρ2 74.60 73.23 75.01
ρ3 762.00 762.97 761.75
ρ4 5.82 5.80 5.83
ρ5 1500.00 1503.71 1498.78 ∼ 0.33
h1 0.90 0.95 0.93
h2 7.65 7.01 7.89
h3 6.71 6.89 6.75
h4 5.06 5.10 5.03

Fig. 5. The comparison of Hybrid Monte Carlo (HMC)-based
Bayesian neural network (BNN) inversion results with singular
value decomposition (SVD)-based conventional resistivity inver-
sion results for soundings(a) s17 and(b) s18.

We inverted 26 number of DC resistivity sounding data
using the new Hybrid Monte Carlo-based Bayesian Neural
Network approach. One dimensional inversion results of
some selected sounding station are shown (Figs. 5–7). The
HMC-based BNN results are compared with the Singular
Value Decomposition (SVD)-based conventional DC resis-
tivity inversion results to demonstrate the performance of the
new method on real data analysis. In Figs. 5–7, “Obs” de-
notes observed, and “Cal” denotes the calculated resistivity

Fig. 6. The comparison of Hybrid Monte Carlo (HMC)-based
Bayesian neural network (BNN) inversion results with singular
value decomposition (SVD)-based conventional resistivity inver-
sion results for soundings(a) s19 and(b) s20.

Fig. 7. The comparison of Hybrid Monte Carlo (HMC)-based
Bayesian neural network (BNN) inversion results with singular
value decomposition (SVD)-based conventional resistivity inver-
sion results for soundings(a) s25 and(b) s26.
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Fig. 8. Example to demonstrate two-dimensional (2-D) inversion of resistivity structure:(a) two-dimensional (2-D) model,(b) synthetic
pseudosection data containing 5% correlated red noise,(c) synthetic pseudosection obtained by inversion of Hybrid Monte Carlo (HMC)
based Bayesian neural network (BNN) approach.

values, “Res-SVD” denotes SVD based conventional resis-
tivity inversion results, “HMC-BNN” denotes Hybrid Monte
Carlo-based Bayesian Neural Network results. The new Hy-
brid Monte Carlo-based Bayesian Neural Network solution
is well correlated except some mismatches in the inversion
results of sounding point (SP) 25 (Fig. 7a). Overall, our re-
sults show that Hybrid Monte Carlo-based Bayesian Neural
Network results are stable and well consistent with the SVD-
based existing results. In addition to this, however, Bayesian
Neural Network approach also provides uncertainty estima-
tion, which is essential in the geophysical interpretations. In
the present analysis we found an average uncertainty esti-
mate of about∼ 0.30. It may be noted that the new BNN
based approach avoid “oscillation” problem around the many
local minima. The solution (mean of thousands simulations)
is chosen from thousands of equally probable model (Fig. 3).
The Hybrid Monte Carlo-based Bayesian Neural Network re-
sults lies within the 90% confidence interval (CI). We note
that majority of the Schlumberger sounding curves in the area
are either H-type or A-type. The apparent resistivity (ρa)
vs. half of the current electrode separation (AB/2) on log-log
graph suggests that there are three to four layered structured
in this area (Figs. 5–7).

Two-dimensional inversion results suggest that the surface
layer is seldom thick, being only in the range of 1–3 m. The
surface layer is thinner over elevated land/hill and in some
places it is absent too. Its resistivity value is much lower
towards Eastern end of the profile (Near Patan, Latitude
17.36◦ N, Longitude 73.90◦ E) than the Western side (near
Chiplun, Figs. 9–11). The second layer has a correspond-
ing low resistivity which indicates that the layer is composed
of weathered rock (mostly, laterite to basalt) possibly satu-
rated with water. Its thickness varies from 10 to 20 m. Third
layer is comparatively less resistive than crystalline basement
rock. It is also observed that generally the rocks in the lower
ground and hill slope are more weathered than those in the
high ground, although there are some exceptions too.

One-dimensional sounding result is useful to delineate the
layer resistivity and thickness. It is noteworthy that the one
dimensional results provided a good starting model for two
dimensional inversions. One can also verify two-dimensional
results with the help of one dimensional result and vice versa.
In principle, 2-D model based interpretation is more appro-
priate to infer lateral resistivity variation caused by multiple
episode of lava flows in this area. Figure 8b shows the syn-
thetic pseudo-section containing 5% correlated red noise.
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Fig. 9. Resistivity structure of sounding points s1–s10 by(a, b) sin-
gular value decomposition (SVD)-based conventional method(c, d)
Hybrid Monte Carlo (HMC)-based Bayesian neural network (BNN)
approaches.

The Fig. 8c shows the synthetic pseudo-section obtained by
the inversion of Bayesian Neural Network method. It is
worth mentioning here that the present Bayesian Neural Net-
work based resistivity model is well stable in presence of
correlated red noise (Fig. 8a–c). One can see from Fig. 9
that there is a prominent resistivity low (∼ 2− 10 Ohm-m)
below the station s3, Chiplun (Latitude 17.51◦ N, Longi-
tude 73.52◦ E). This conductive patch is fractured or weath-
ered basaltic rock saturated with water which is extended
in the direction of NE-SW of the profile (profile extends
roughly W-E direction) and the profile cuts the fractured zone
near Chiplun (Fig. 9). Note that the fractured rocks include
jointed rocks, in which chemical weathering is almost ab-
sent. The semi weathered and weathered rocks are partly
jointed or fractured in this area. In weathered rocks of the
area both inter-granular and fracture porosities exist. The
presence of feldspar and clay in the fractured rock reduces
the permeability of the rock to some extent (Verma et al.,
1980). Figure 10 shows the comparative status of resistiv-
ity distribution of profile starting from s11 to s20. Results
are stable except few (e.g., below SP 19) (Fig. 10). There is
a conductive path below the s15 (Pophli, Latitude 17.43◦ N,
Longitude 73.68◦ E) with relatively low resistivity value of
the order of 2–15 Ohm-m that could be due to the fracture
zone/fault. The origin of the fractured zones/fault seems to
be deep seated. The fractured/fault zone is parallel to the di-

Fig. 10. Resistivity structure of sounding points s11–s20 by(a,
b) singular value decomposition (SVD)-based conventional method
(c, d) Hybrid Monte Carlo (HMC)-based Bayesian neural network
(BNN) approaches.

rection of flow of the Koyna river. Perhaps, this is due to
an abrupt fall in the traps base of roughly 400 m at Pophli
(Athavale and Mohan, 1976). Below the sounding point s18,
it is evident that there is a conductive feature surrounded by
high resistive rock which may form isolated ground-water
reservoirs. The total porosity and permeability of these iso-
lated reservoirs vary widely resulting in widely variable yield
(Verma et al., 1980). In fresh rocks, joints and fissures tend
to close at a depth of maximum 70 m and there will be prac-
tically no circulation of ground water below this depth. The
area has relatively high resistivity distribution of the order
of 300 Ohm-m (Fig. 10). One can speculate from the Fig. 11
that there is a conductive layer of thickness∼ 2−5 m extend-
ing from sounding points s22–s26. The conductive layer is
exposed to the surface near sounding point s26 (near Patan).
The very low resistive path in this station could be due to
the very well known Patan Fault lying in the direction of
N45◦ E–S45◦ W (see Figs. 1 and 11).

In general, the HMC-based BNN results have been found
to be stable and match well with geology of the area. There
are some mismatches too (below s19 and s25) (Figs. 10
and 11). Eventually, the uncertainty results estimated as 0.97,
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Fig. 11. Resistivity structure of sounding points s21–s26 by(a, b)
singular value decomposition (SVD)-based conventional method.
(c, d) Hybrid Monte Carlo (HMC)-based Bayesian neural network
(BNN) approaches.

is highest below s25. This mismatch could possibly be due to
either the poor sampling of the model space in HMC-based
BNN approach or the presence of high level of correlated red
noise signal in the data. In addition to the finely mapping
and demarcating of weathered rocks, lineaments, fractures
etc., the present new method is also able to define the basaltic
flow layer precisely which is of considerable significance in
terms of societal issues like ground water exploration. Fur-
ther this result is useful to gain a better understanding of the
seismicity induced-paralleling fault systems.

7 Conclusions

1. A novel Hybrid Monte Carlo-based Bayesian neural
network inversion scheme is developed for the interpre-
tation of DC resistivity data. This method, on contrary
to the other traditional inversion scheme, does not re-
quire a prior correct initial model for successful opti-
mization.

2. The Bayesian Neural Network method is a sampling-
based global inversion scheme which takes care of non-
linearity and non-uniqueness in a natural way. The

method also provides an opportunity to estimate uncer-
tainty measures, which is essential for solving geophys-
ical inverse problem.

3. In many geophysical application (e.g., seismic, electri-
cal tomography), while repeated inversion is required
from the same prior information, the new approach de-
veloped here could be more prospective and robust for
the above purpose.

4. The Hybrid Monte Carlo-based Bayesian Neural Net-
work can be applied as an alternative cost effective
means for several other complex geophysical data also.

5. In order to check robustness of the Hybrid Monte Carlo-
based Bayesian Neural Network, the method was ap-
plied to synthetic data set and then to a large number
of actual DC resistive sounding points from the crit-
ically dynamic active zone of Koyna region for map-
ping the sub-surface resistivity structure. Besides pro-
viding some new and detailed information, the present
new findings also corroborate well with existing results.
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