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Abstract. The Blasius equation describes the properties of
steady-state two dimensional boundary layer forming over
a semi-infinite plate parallel to a unidirectional flow field.
The flow is governed by a modified Blasius equation when
the surface is aligned along the flow. In this paper, we
demonstrate using numerical solution, that as the wedge an-
gle increases, bifurcation occurs in the nonlinear Blasius
equation and the dynamics becomes chaotic leading to non-
convergence of the solution once the angle exceeds a critical
value of 22◦. This critical value is found to be in agreement
with experimental results showing the development of shock
waves in the medium and also with analytical results show-
ing multiple solutions for wedge angles exceeding a critical
value. Finally, we provide a derivation of the equation gov-
erning the boundary layer flow for wedge angles exceeding
the critical angle at the onset of chaos.

1 Introduction

The Blasius equation is used to model the boundary layer
growth over a surface when the flow field is slender in na-
ture, and is derived from the two-dimensional Navier-Stokes
equation. The equation was first derived by Blasius and is
given by:

f ′′′(η)+f (η)f ′′(η)= 0

with boundary conditions:

f (0)= a; f ′(0)= b; f ′(∞)= c

The original problem for the Blasius equation is associated
with a = b= 0, c= 1, and a theoretical analysis was given
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by Weyl (1942). This equation has been studied for many
different conditions. Klemp and Acrivos (1972) considered
b being negative for a moving plate. Hussaini et al. (1986)
proved and analyzed the existence and non-uniqueness of
the moving plate problem. Schliching and Bussmann (1943)
discussed mass transfer including injection and suction for
fixed flat plate where the boundary conditions becomea 6= 0,
b= 0, c= 1. Vajravelu and Mohapatra (1990) extended the
moving plate problem with mass injection on the wall to
study the drag reduction effects, wherea <0,b<0, c= 1. A
general discussion of this moving wall boundary layer flow
was reported by Fang (2003a), wherea,b ∈ <, c= 1 (< is
any real number). Fang (2003b) also analyzed the heat trans-
fer problem for a moving wall boundary layer. Cortell (2007)
studied the heat transfer problem for a moving imperme-
able wall. Another class of boundary layer problem for a
stretching sheet relevant to the Blasius equation was studied
by Sakiadis (1961), in which the boundary conditions be-
comeb= 1, c= 0 with a= 0 for an impermeable plate and
a 6= 0 for mass transfer across a permeable plate, where the
x-velocity was normalized by the wall stretching velocity. It
was shown that fora,b ∈ <, c≤ b, the Blasius equation has
one and only one solution ifb ≥ 0, 0≤ c ≤ b, and no so-
lution if c < 0. In the real physical world, a problem for a
semi-infinite flat wall moving in a stationary fluid frequently
occurs. This problem can be modeled by the Blasius equa-
tion with the above-mentioned boundary conditions. Kewley
and Hornung (1974) performed an experiment on a wedge
of length 14 cm and width of 15 cm with wedge angle 2θ .
As they varied the angle of the wedge, the flow-field started
to produce shock curvature at 2θ = 35◦ and began to cre-
ate straight shock waves when the angle reached 2θ = 43◦.
These observations of shock waves and non uniqueness in
the analytical analysis motivated us to perform a nonlinear
analysis on the Blasius equation for different wedge angles.
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In the next section we sketch the derivation of the Blasius
equation from the two-dimensional Navier-Stokes equation
and we establish the terminology. In Sect. 3 we present the
results of our numerical simulation, demonstrate the onset of
chaos and quantify the angle at which the system becomes
chaotic. We also provide in Sect. 4 a derivation of the equa-
tion governing the boundary layer flow for wedge angles ex-
ceeding the critical angle at the onset of chaos. Finally, con-
clusions are presented in Sect. 5. Details of the numerical
technique are given in the Appendix A.

2 Theory of flow along a wedge

2.1 Derivation of Blasius equation from Navier-Stokes
equation

Consider a uniform flow of velocityU approaching a slender
wedge (see Fig. 1). For a slender wedge, the equation for the
flow can be derived from the two-dimensional Navier-Stokes
equation:

∂u

∂x
+
∂v

∂y
= 0 (2.1)

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
= −

1

ρ

∂p

∂x
+ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(2.2)

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
= −

1

ρ

∂p

∂y
+ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(2.3)

whereu andv are the velocity components of flow in the x
and y directions, respectively,p is the dynamic pressure at
any location (x, y) and ν is the kinematic viscosity of the
flowing fluid.

It has been observed (Schlichting and Gersten, 1999) that
the velocitiesu andv are of the order of the free stream ve-
locityU , except in the region close to the surface of the body.
The velocity of the fluid at the surface of the wedge is zero
due to no-slip condition and there is a transition from zero
to full velocity at a distance from the surface. The transition
occurs within a thin boundary layer where the velocity gradi-
ent ∂u

∂y
is very large, hence the viscous shear stressτ =µ ∂u

∂y
plays an important role in the flow. In the region outside the
boundary layer, the velocity gradient is very small and hence
the viscosity is significantly less important and the flow is
frictionless.

The presence of the wedge in the flow leads to a boundary
layer, as depicted in Fig. 2. At a point located at a distanceL

alongx from the edge of the plate, the depth of the boundary
layer is assumed to beδ. We can scale the variables asx∼L,
y ∼ δ; u∼U , v∼V andt ∼L/U to perform a dimensional
analysis.
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Fig 1. Laminar boundary layer growth over a wedge of angle 2θ  
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Fig. 1. Laminar boundary layer growth over a wedge of angle 2θ .
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Fig 2. Laminar boundary layer growth over a flat surface where the boundary layer depth is of the 

order of δ and the velocity of flow in the x-direction at the boundary layer is u0. 
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Fig. 2. Laminar boundary layer growth over a flat surface where the
boundary layer depth is of the order ofδ and the velocity of flow in
the x-direction at the boundary layer isu0.

From the continuity equation, Eq. (2.1), we getV ∼Uδ/L.
With ν

LU
≈ ε� 1, the balance between viscosity and con-

vective inertia impliesδ
2

L2 ≈ ε, and the termν ∂
2u

∂x2 in the x-
component of the Navier-Stokes equation, Eq. (2.2), can be
neglected. Then the equation in the x-direction becomes:

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
= −

1

ρ

∂p

∂x
+ν

∂2u

∂y2
(2.4)

Similarly, scaling arguments reduce the y-component of the
Navier-Stokes equation, Eq. (2.3), to

−
1

ρ

∂p

∂y
= 0 (2.5)

At the outer boundary layer, i.e., in the inviscid region, the
velocity in the y-direction becomes zero and the velocity in
the x-direction does not change with respect toy, i.e.,

∂u

∂y
= 0, v= 0

For a steady state flow,∂u
∂t

= 0, and the momentum equation
in the x-direction at the boundary becomes:

u0
∂u0

∂x
= −

1

ρ

∂p

∂x
,

whereu0 is the velocity of flow in the x-direction at the
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boundary. Then the complete set of equations consists of
Eq. (2.1) and

u
∂u

∂x
+v

∂u

∂y
= u0

∂u0

∂x
+ν

∂2u

∂y2
(2.6)

∂p

∂y
= 0 (2.7)

To solve this system of equations the velocities are repre-
sented by the stream-functionψ(x,y) of the flow defined by:

u=
∂ψ

∂y
, v= −

∂ψ

∂x
(2.8)

Replacing velocities by the stream-function in the momen-
tum equation gives:

∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
= u0

∂u0

∂x
+ν

∂3ψ

∂y3
(2.9)

The equation is made non-dimensional by defining the vari-
ables:

ξ =
x

L
, η=

y

L

√
Re

δ(ξ)

where the Reynolds number is given byRe=
UL
ν

,L being the
characteristic length scale alongx. Taking as a trial solution
for the stream-function (Schlichting and Gersten, 1999) the
form:

ψ(ξ,η)=
Lu0(ξ)
√

Re
δ(ξ)f (ξ,η)

we get,

u(ξ,η)

u0(ξ)
= fη (ξ,η)

The functionf is assigned in such a way that it provides a
self-similar solution. Hence it becomes a function ofη only.
Then replacingψ(x,y) in terms off (η) in the momentum
equation yields, after extensive but straightforward manipu-
lations,

fηηη+a1ffηη+a2−a3
(
fη
)2

=
δ2u0

U
·
[
fηfξη−fηηfξ

]
(2.10)

wherea1 =
δ
U
d
dξ
(u0δ), a2 = a3 =

δ2

U
du0
dξ

, and the subscripts
indicate partial derivatives.

If the coefficientsa1, a2 anda3 are constants, the solution
f is independent ofξ and the equation reduces to:

f ′′′(η)+a1f (η)f
′′(η)+a2−a3f

′(η)2 = 0 (2.11)

and the variablesξ =
x
L

, η=
y
L

√
Re

δ(ξ)
become the character-

istic variables of the partial differential equation. Equa-
tion (2.11) is a form of Blasius equation (Schlichting and
Gersten, 1999), the common or simplified form of which cor-
responds to the casea1 = 1/2, a2 = a3 = 0.

2.2 Flow over a wedge

For a flow over a wedge, the inviscid flow velocityu0 is as-
sumed to follow a power law dependence with distance

u0 =Uxm , (2.12)

wherem= β/(2−β); β = 2θ/π (see Fig. 1). This assump-
tion is made based on different experimental observations
(Schwartz and Eley, 2002).

The coefficients and the boundary conditions in the Bla-
sius equation depend upon the values of the wedge angles.
When the value ofm is 0≤m<∞; 0 ≤ β < 2, then the
coefficients become:a1 = 1, a2 = a3 =

2m
m+1 whereη=

y
δ
;

δ=

√
2Ux

(m+1)Lu0
. In this case, the final form of the equation is

written as:

f ′′′
+ff ′′

+
2m

m+1

(
1−f ′2

)
= 0

⇒
m+1

2
f ′′′

+
m+1

2
ff ′′

+m
(
1−f ′2

)
= 0, (2.13)

whereη=
y
δ
; δ=

√
2νx

(m+1)u0
,

f ′
=
df

dη
=
u

u0
, f ′′

=
d2f

dη2
, f ′′′

=
d3f

dη3

The boundary conditions aref (0)= 0; f ′(0)= 0; f ′(ηL)=

1; ηL is a large value ofη where the velocity becomes almost
laminar.

For a reversed wedge flow for which−0.5≤m≤ 0; −2≤

β ≤ 0, the coefficients are (Schlichting and Gersten, 1999):
a1 = −1, a2 = a3 = −

2m
m+1

Hence the final form of the equation becomes:

f ′′′
−ff ′′

−
2m

m+1

(
1−f ′2

)
= 0

⇒
m+1

2
f ′′′

−
m+1

2
ff ′′

−m
(
1−f ′2

)
= 0 (2.14)

along with the boundary conditions:f (0)= 0; f ′(0)= 0;
f ′(ηL)= 1.

Another form of the equation can be obtained by using a
transformationu= u−u0 (Brighi and Hoernel, 2006). Then
the coefficients become:a1 =

m+1
2 1, a2 = 0, a3 =m. In this

case, the equation takes the form (Brighi and Hoernel, 2005):

f ′′′
+
m+1

2
ff ′′

−mf ′2
= 0 (2.15)

withm=
β+2
2−β

, so 0≤m<∞, −2≤β <2, where the bound-
ary conditions are given by:f (0)= constant;f ′(0)= −1;
f ′(ηL)= 0. The value off (0) is related to the value of the
stream-function at the wedge surface and it depends on the
assumptions used to derive the Blasius equation. It may be
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noted that form= 0, Eq. (2.15) reduces to the well known
form of the Blasius equation.

As all the forms of the Blasius equation are third order or-
dinary differential equations (ODE), it is convenient to split
it in three first order ODE’s before solving. Withf ′

= g and
f ′′

= g′
=h, the Blasius equation becomes:

df

dη
= g

dg

dη
=h

(
Case I

) m+1

2

dh

dη
+
m+1

2
f h+m

(
1−g2

)
= 0(0≤m<∞;0≤β <2) or

(
Case II

) m+1

2

dh

dη
−
m+1

2
f h−m

(
1−g2

)
= 0(−0.5≤m≤ 0;−2≤β ≤ 0) or

(
Case III

) dh
dη

+
m+1

2
f h−mg2

= 0(0≤m<∞,−2≤β <2) (2.16)

with proper boundary conditions.

The nonlinear differential equation can be solved by us-
ing different approaches (Brighi and Hoernel, 2005; Zaturska
and Banks, 2001). One common method is to convert the
boundary value problem to an initial value problem, where
the value of the velocity gradientf ′′(0)= h(0)= s is esti-
mated by using a shooting method for whichf exists for
[ 0,∞) and f ′(ηL) = g(ηL) = 1; ηL is large value ofη.
The usual approach to solve fors is by using the Newton-
Raphson method (see Appendix A).

The solution of the Blasius equationf ′′′
+

m+1
2 ff ′′

−

mf ′2
= 0 wherem=

β+2
2−β

, so 0≤m<∞, −2≤ β < 2 with
the boundary conditionsf (0)= a; f ′(0)= −1; f ′(ηL)= 0
has been obtained (Brighi and Hoernel, 2006; Brighi and
Sari, 2005) by using the similarity solutions. They have ob-
served that whenm ∈ [0,1], i.e., −2 ≤ β ≤ 0, there exists
a unique solution for the Blasius equation for any value if
f (0)= a. Whenm> 1, i.e.,β > 0, there exists one unique
concave solution and infinitely many concave-convex solu-
tions for any value off (0)= a.

Another approach to solving the boundary value prob-
lem is by using the Adomian decomposition method (ADM)
(Adomian, 1988, 1991, 1994). In this method, the nonlin-
ear equation is split into two components, one is the linear
part and the other is the nonlinear part. The solution is then
assumed to have an analytic form, given by a summation of
infinite series (Allan and Syam, 2005). The coefficients of
the series are then estimated by using the boundary condi-
tions.
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Fig 3. The boundary layer depth against the length of the channel (in non-dimensional form) has 

been plotted for different wedge angles. If can be observed that as the inclination angle increases, 

the depth of the boundary layer reduces. 
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Fig. 3. The boundary layer depth against the length of the channel
(in non-dimensional form) has been plotted for different wedge an-
gles. If can be observed that as the inclination angle increases, the
depth of the boundary layer reduces.

3 Numerical solutions and chaotic behavior

The Blasius equation (2.16) is solved for different wedge an-
gles to obtain the boundary layer profile. Figure 3 shows the
boundary layer depthδ against the length of the channel for
different wedge angles (Eq. 2.13). It can be observed that an
increase in the inclination angle results in a reduction of the
boundary layer depth.

The system of Eqs. (2.13) is numerically solved for differ-
ent wedge angles for a given initial perturbation (δ0 = 10−5)
at the initial condition and the difference between the two so-
lutions in phase space for the two initial conditions is com-
puted. Figure 4 shows the distance between the two solutions
evolved in phase space with an increase inη. It is observed
that as the wedge angle reaches 22◦, the difference between
the paths in phase space diverges.

The initial guess of the velocity gradient at the surface of
the plate is assumed to be unity. The correct velocity gradi-
ent has been estimated by solving the Blasius equation using
Newton’s iterative scheme. In Fig. 5 the velocity gradient
value at the plate surface has been plotted against the iter-
ation number. From that figure, it is observed that as the
wedge angle increases, the number of iterations required to
estimate the velocity gradient at the surface of the wedge in-
creases and when the wedge angle approaches 22◦, the solu-
tion does not converge.

It can be observed from Table 1 that untilm= 0.1335
(θ = 21.2◦), the value of the initial velocity gradient at the
surface converges to a unique number, hence the solution of
the Blasius equation is consistent. As the value ofm crosses
0.1335 the solution becomes periodic with cycle 2. Hence we
do not get a unique solution, but we get a solution periodic in
time and space. With increase inm, the cycle of periodicity
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Fig 4. The difference between the original and perturbed initial conditions is plotted against 

increase in non-dimensional distance from the plate surfaceη . It is observed that at the wedge 

angle of 22°, the difference between the trajectories in phase space blows up. 
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Fig. 4. The difference between the original and perturbed initial conditions is plotted against increase in non-dimensional distance from the
plate surfaceη. It is observed that at the wedge angle of 22◦, the difference between the trajectories in phase space blows up.
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Fig 5. It is observed that as the wedge angle increases, the number of iterations required to 

estimate the velocity gradient at the surface of the wedge increases and when the wedge angle is 

22°, the solution does not converge. 
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Fig. 5. It is observed that as the wedge angle increases, the number of iterations required to estimate the velocity gradient at the surface of
the wedge increases and when the wedge angle is 22◦, the solution does not converge.
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Table 1. The estimated initial guess for different wedge angles had
been tabulated below. It can be observed that when the angle is
21.3◦, the solution begins to oscillate between two values. As we
increase the angle further, the method fails to converge to a solution.

θ m Initial velocity gradient
(degree) (s)

5 0.028571 0.3976
10 0.0588 0.4469
20 0.125 0.5546
21.2 0.1335 0.5317
21.3 0.1342 0.2582 and 1.0843
22.0 0.1392 –

increases and eventually atm= 0.1392, the solution becomes
chaotic in nature and the system loses its predictability. To
the best of our knowledge, the onset of a chaotic behavior in
flow over a wedge has not been reported before in the liter-
ature. However, experimental results have shown that for a
wedge angle 2θ = 43.2◦, θ = 21.6◦, the flow starts to create
shock waves in the medium (Kewley and Hornung, 1974),
which is a representation of chaotic behavior in the flow field.
The important question then is, what is the equation that de-
scribes the boundary flow dynamics for angles exceeding the
critical value of 21.2◦. This equation is derived below.

4 Generalized equation for large wedge angles

In the derivation of the Blasius equation from the two-
dimensional Navier-Stokes equation, the velocity compo-
nents are expressed in the form of the stream-function, se-
lected to result in a similarity solution. This leads to the
derivation of the Blasius equation, an ordinary differential
equation, from the two-dimensional Navier-Stokes equation,
which is a partial differential equation. When the wedge an-
gle is larger than the critical angle and chaotic behavior is
observed, the characteristic variables in the partial differen-
tial equation cannot be found and hence the stream-function
cannot be expressed in terms of a single variable. So, when
the wedge angle is greater than the critical angle, the Blasius
equation cannot be applied to model the boundary layer phe-
nomenon. Instead, the partial differential equation in terms
of the stream-function has to be solved.

Hence for high wedge angle values, the appropriate equa-
tion for modeling the boundary layer is Eq. (2.9):

∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
= u0

∂u0

∂x
+ν

∂3ψ

∂y3

whereu0 =Uxm. In this case the model becomes:

∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
=mU2x2m−1

+ν
∂3ψ

∂y3
, (4.1)

with boundary conditions:

ψ(t,x,0) = 0, (4.2)

∂ψ

∂y

∣∣∣∣
(t,x,0)

=
u(t,x,0)

u0
= 0, (4.3)

∂ψ

∂y

∣∣∣∣
(t,x,∞)

=
u(t,x,∞)

u0
= 1, (4.4)

−
∂ψ

∂x

∣∣∣∣
(t,x,0)

=
v(t,x,0)

u0
= 0 (4.5)

This equation can be solved numerically∀x except atx = 0
which is the corner of the wedge and a singular point.

Also, depending on the boundary conditions, the flow field
may never reach steady state inside the boundary layer. In
that case, the time dependent two-dimensional Navier-Stokes
equation has to be solved to model the boundary layer, and is
given by:

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
= u0

∂u0

∂x
+ν

∂2u

∂y2

Replacing the velocity components in terms of stream-
function gives:

u=
∂ψ

∂y
, v= −

∂ψ

∂x

and the momentum equation becomes:

∂2ψ

∂t∂y
+
∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
= u0

∂u0

∂x
+ν

∂3ψ

∂y3

whereu0 is expressed as the power lawu0 =Uxm. Hence
the model becomes:

∂2ψ

∂t∂y
+
∂ψ

∂y

∂2ψ

∂x∂y
−
∂ψ

∂x

∂2ψ

∂y2
=mU2x2m−1

+ν
∂3ψ

∂y3
.

The boundary conditions are:

ψ(t,x,0) = 0,

∂ψ

∂y

∣∣∣∣
(t,x,0)

=
u(t,x,0)

u0
= 0,

∂ψ

∂y

∣∣∣∣
(t,x,∞)

=
u(t,x,∞)

u0
= 1,

−
∂ψ

∂x

∣∣∣∣
(t,x,0)

=
v(t,x,0)

u0
= 0,

∂ψ

∂y

∣∣∣∣
(0,x,y)

=
u(0,x,y)

u0
= 1 as the flow was uniform

before the presence of the wedge
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5 Discussion

The Blasius equation is a third order ordinary differential
equation, and thus requires three boundary conditions to ob-
tain its solutions. The values of the stream function and the
velocity at the surface of the wedge are two of these boundary
conditions. The third boundary condition arises from the fact
that the effect of the wedge can be neglected at far distance
from the surface. The boundary value problem is converted
to an initial value problem by using the third boundary condi-
tion. The Blasius equation is solved assuming a velocity gra-
dient and is iterated after every step using Newton-Raphson
method until a convergent value of the velocity gradient at
the wedge surface is obtained. It is clear from Fig. 5, for
θ = 0◦ andθ = 15◦, that the iteration converges rapidly. But
for θ = 21.2◦ it takes around 110 iterations to converge. And
as the wedge angle reachesθ = 22◦ the iteration fails to con-
verge and starts oscillating. This phenomenon arises when
a nonlinear system produces chaotic behavior through bifur-
cation. To verify chaotic behavior, the Blasius equation is
simulated with two nearby initial conditions with a perturba-
tion of δ0 = 10−5. The equation has been simulated for those
two close initial conditions and the distance between the two
solutions in the phase space has been plotted in Fig. 4. For
θ = 0◦ to θ = 21.2◦, the difference in the two solutions re-
mains bounded, whereas atθ = 22◦, the solution diverges in-
dicating sensitivity to the initial conditions and approach to
chaos.

6 Conclusions

The Blasius equation is used to model the growth of bound-
ary layer over a flat surface. It has been observed experi-
mentally that as the angle of inclinationθ of the surface with
respect to the direction of the flow increases, shock waves are
created. Also the analytical solution of the Blasius equation
generates multiple solutions whenθ crosses a certain critical
value. This led us to analyze the Blasius equation for differ-
ent values ofθ and we found that bifurcation occurs with an
increase inθ , eventually leading to onset of chaos. Hence we
conclude that beyond a critical angle of inclination, which
is quantified to be 21.2◦, the Blasius equation cannot be ap-
plied to model the boundary layer growth over a flat inclined
surface. Instead, a different equation describes the flow dy-
namics and in this contribution we provide a derivation of
this equation.

Appendix A

Shooting method using Newton-Raphson method

Let h(η= 0)= s. Sinces is unknown, we assume the value
of s and solve the equation accordingly. The boundary con-
dition is: f (η= 0)= 0, g(η= 0)= 0, g(η= ηL)= 1. So the

value ofs should be such thatg(η= ηL)= 1. Hence we de-
fine a functionχ such that:

χ (s,ηL)= g(ηL)−1 and we solves for χ = 0.

To solve fors, we check the sensitivity of the variablesf , g,
andhwith respect tos. Hence we define three new variables:

F =
∂f

∂s
,G=

∂g

∂s
, H =

∂h

∂s

Now,

∂F

∂η
=
∂

∂η

(
∂f

∂s

)
=
∂

∂s

(
∂f

∂η

)
=
∂g

∂s
=G.

Similarly, ∂G
∂η

=H

∂H

∂η
=
∂

∂η

(
∂h

∂s

)
=

∂

∂s

(
−
(m+1)

2
f h−m

(
1−g2

))

= −
(m+1)

2

∂

∂s
(f h)−m

∂

∂s

(
1−g2

)
= −

(m+1)

2
(Fh+fH)+2mgG

Using Newton’s method,

si+1 = si−
χ (s,ηL)

χ ′(s,ηL)
= si−

χ (s,ηL)

∂χ(s,ηL)
∂s

∣∣∣
(si ,ηL)

= si−
g(si,ηL)−1
∂g
∂s

∣∣∣
(si ,ηL)

= si−
g(si,ηL)−1

G(si,ηL)

the value ofs is obtained by iteration.
Also to solve forηL, we use the condition that

∂u

∂η

∣∣∣∣
ηL

= 0 ⇒ f ′′(ηL)= 0

Newton’s method can be applied if the system is well
defined, continuous, differentiable and where existence and
uniqueness theorem holds. If the system becomes sensitive
to the initial condition, i.e., if the system becomes chaotic
in nature, then slight error in the estimation ofs will be
enhanced asη increases eventually giving highly erroneous
results atηL.
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