
Nonlin. Processes Geophys., 18, 1–5, 2011
www.nonlin-processes-geophys.net/18/1/2011/
doi:10.5194/npg-18-1-2011
© Author(s) 2011. CC Attribution 3.0 License.

Nonlinear Processes
in Geophysics

The concept of exchangeability in ensemble forecasting
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Abstract. A set of random variables is exchangeable if its
joint distribution function is invariant under permutation of
the arguments. The concept of exchangeability is discussed,
with a view towards potential application in evaluating en-
semble forecasts. It is argued that the paradigm of ensembles
being an independent draw from an underlying distribution
function is probably too narrow; allowing ensemble mem-
bers to be merely exchangeable might be a more versatile
model. The question is discussed whether established meth-
ods of ensemble evaluation need alteration under this model,
with reliability being given particular attention. It turns out
that the standard methodology of rank histograms can still
be applied. As a first application of the exchangeability con-
cept, it is shown that the method of minimum spanning trees
to evaluate the reliability of high dimensional ensembles is
mathematically sound.

1 Introduction

A widely employed means to convey probabilistic forecast
information are ensembles. Ensembles are particularly pop-
ular for forecasting dynamical processes. In this situation,
the ensemble members are generated by running a model of
the dynamics into the future. Heterogeneity of the ensemble
members is commonly achieved by slightly different initial
conditions as well as heterogeneity of the model itself. In ef-
fect, the ensemble members are considered “equally likely”
scenarios of the future evolution of the process under con-
cern (see for exampleToth et al., 2003)1.
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1This interpretation does not apply to situations in which the
ensemble members are obviously distinguishable, for example if
they are generated using significantly different models (Poor Man’s
Ensemble). Such ensembles are not considered here.

Opinions differ slightly as to how precisely ensembles are
to be interpreted, but a common view is the following, often
referred to asMonte-Carlo interpretation (Stephenson and
Doblas Reyes, 2000). An ensembleis a collectionX1,...,XK

of random variables, drawn independently from a common
distribution functionFθ , the forecast distribution. The fore-
cast distribution depends on a parameterθ , which can be con-
sidered as the (random) state of the forecasting scheme. In
other words,Fθ is the distribution of the ensemble members
conditioned on the current state of the forecasting scheme be-
ing θ . The details of the forecasting scheme are of no interest
in the present study; we can imagine it as some information
processing device providing either a forecast distribution or
an ensemble. In fact, often the forecast distributionFθ is
but a mental construct and not operationally available. The
verificationis yet another random variableX0 which is inde-
pendent ofX1,...,XK , conditionally onθ .

The forecasting scheme is calledreliable if the distribution
of X0, conditionally onθ , is given byFθ . The Monte-Carlo
interpretation implies thatFθ is reliable if and only if con-
ditionally onθ , X0...XK are independent random variables
with common distribution functionFθ . Less formally stated,
the verification behaves like just another ensemble member.
A consequence of reliability is that the rank ofX0 among
all ensemble members assumes the values 1,...,K +1 with
equal probability (namely 1/(K + 1)), either conditionally
or unconditionally onθ . (The rank ofX0 is defined as the
number of indicesn so thatXn ≤ X0; the concept of rank ob-
viously makes sense only if theXk are scalars.) This fact is
used to build tests for reliability. More specifically, reliability
implies that forl = 1,...,K +1

P(rank(X0) = l|θ) =
1

K +1
, (1)

Let Ti,i = 1,...,L sets covering the range of the parameter
θ . Then a consequence of Eq. (1) is

P(rank(X0) = l|θ ∈ Ti) =
1

K +1
. (2)
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This means that conditioned onθ ∈ Ti , the histogram of
rank(X0) should be flat. This can be statistically tested, see
for exampleBröcker(2008). (A technical difficulty, ignored
here, is thatθ is typically not available operationally.) The
relation (2) is only necessary for reliability, not sufficient;
seeBröcker(2008); Hamill (2001) for a discussion.

There are two issues with this rank based reliability analy-
sis, both of which lead us to studyexchangeableensembles.
Random variables are called exchangeable if their distribu-
tion function is symmetric. In formulae, the random vari-
ablesX1,...,XK are exchangeable if

M(x1,...,xK) = M(xπ(1) ...xπ(K)),

whereM is the joint distribution function ofX1,...,XK and
π is an arbitrary permutation ofK elements (a definition for
non-scalar random variables will be given in Sect.4.) The
first issue with the rank approach is that it obviously cannot
be used in higher dimensions.Hansen and Smith(2004) sug-
gested an alternative approach based on the minimum span-
ning tree. Effectively, the high dimensional ensemble is con-
densed into an ensemble with real valued members. The en-
semble members are however not independent; yet they are
exchangeable, due to the fact that the minimum spanning tree
is a symmetric function. This is looked at in detail in Sect.2.
The second issue is that in the Monte-Carlo interpretation,
even though the ensemble members are independent condi-
tionally onθ , they are generallynot independent condition-
ally on θ ∈ Ti . More precisely, we have that

P({X1 < x1,...,XK < xK}|θ) = Fθ (x1) · ... ·Fθ (xK),

is a product, whileP({X1 < x1,...,XK < xK}|θ ∈ Ti) is not.
Equation (5) below gives the exact expression for this prob-
ability, from which we gather that it is still symmetric. That
is, the ensemble remains exchangeable under this condition-
ing. If the ensemble was only exchangeable in the first place,
conditioning would not destroy that property. This is looked
at in detail in Sect.3.

These two issues raise the question as to whether the
Monte-Carlo interpretation should be replaced by the weaker
assumption that the ensemble members are exchangeable
random variables. It is demonstrated (mainly in Sect.4) that
in doing so, not much will be lost. Most importantly, the
property (1) of the rank distribution is still valid (for a re-
liable ensemble), whence the rank based reliability analysis
can be applied to exchangeable ensembles. In particular, the
analysis shows that the minimum spanning tree approach is
mathematically sound.

2 Evaluation of high dimensional ensemble forecasts

If the ensemble members are elements of a high dimen-
sional vector spaceV , the rank is no longer defined, and
the approach to testing reliability as outlined in the Intro-
duction ceases to apply. One possible approach is to choose

a functionφ : V → R and check the reliability of the ensem-
ble {φ(X1)...φ(XK)} with respect to the verificationφ(X0).
Obviously, this is but a necessary test for the original prob-
lem, since by applying the functionφ, we might have ne-
glected various degrees of freedom of the problem.

Another approach was proposed byHansen and Smith
(2004). Let φ : V K

→ R a function which is symmetric, that
is, if π is any permutation of the numbers{1,...,K}, then
φ(v1,...,vK) = φ(vπ(1),...,vπ(K)). In Hansen and Smith
(2004), φ(v1,...,vK) is the length of theminimum span-
ning tree, that is the shortest graph connecting the points
v1,...,vK . Usingφ, a new verificationξ0 and a new ensem-
ble ξ1,...,ξK with values inR are generated as follows:

ξk := φk(X0,...,XK) k = 0...K, (3)

where

φk(X0,...,XK) := φ(X0,...,Xk−1,Xk+1,...,XK). (4)

In other words,ξk is the lenght of the minimum tree spanning
X0...XK with Xk left out. The problem now is that the ran-
dom variablesξ0...ξK are not any longer independent, even
if the original variablesX0...XK are. Indeed, we would ex-
pect them to be very highly dependent, since any two of them
have all but one argument in common. It is therefore not clear
if the rank ofξ0 within ξ1,...,ξK has uniform distribution.
What rescues the approach though is the fact that, under the
hypothesis of reliabitliy, the variablesξ0...ξK are exchange-
able. As will be shown in Sect.4, the rank histogram can then
still be expected to be flat. To see that the variablesξ0...ξK

are exchangeable, note that it follows readily from the def-
initions that permuting theX0...XK has the same effect as
applying the same perturbation to theξ0...ξK . (The symme-
try of the functionφ is crucial here.) Since the distribution of
theX0...XK is invariant under permutations, the same holds
thus forξ0...ξK , which are therefore exchangeable random
variables. Note also that we are not using the independence
of the Xk, but only that they are exchangeable themselves.
Thus for theξk to be exchangeable it is sufficient that the
Xk are exchangeable. In other words, building the minimum
spanning trees, exchangeability of ensemble members is pre-
served, although not independence.

3 Forecast stratification

As mentioned in the Introduction, even though the ensemble
members are independent conditionally onθ , they are gener-
ally not independent conditionally onθ ∈ T , whereT is some
subset of the range ofθ . Indeed, suppose theX1,...,Xk are
independent givenθ , and letG be the distribution ofθ . Then
we have the relation

P({X1 < x1,...,XK < xK}|θ ∈ T )

=
1

c

∫
T

Fθ (x1) · ... ·Fθ (xK)dG(θ), (5)
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with

c =

∫
T

dG(θ).

In general, the expression (5) cannot be written as a prod-
uct with the individual factors being one-dimensional distri-
bution functions. In any event though, the right hand side
of (5) is symmetric, that is, invariant with respect to per-
mutations of thexi . Thus, conditionally onθ , the ensemble
is exchangeable. Exchangeability though is a convex prop-
erty, that is, it is preserved when averaging over distribution
functions. More precisely, let the ensembleX1,...,XK be a
draw from a symmetric distribution functionMθ (x1,...,xK),
where as beforeθ is itself random. If againG is some distri-
bution function forθ , then the average

M̄(x1,...,xK) =

∫
Mθ (x1,...,xK)dG(θ), (6)

is again a symmetric distribution function. We can therefore
conclude that any averaging overθ does not destroy the ex-
changeability of the ensemble. What we learn from these
considerations is that the classical Monte-Carlo interpreta-
tion gives independent ensemble members only if we con-
dition on the full model stateθ , while any other condition-
ing results in merely exchangeable random variables. As a
consequence, we might want to study exchangeable random
variables, and we might want to drop the Monte-Carlo inter-
pretation and assume merely exchangeability of the ensem-
ble members in the first place. The next section demonstrates
that not much is lost in doing so.

4 Exchangeable random variables

Let X1,...XK be a finite series of real valued random vari-
ables. As mentioned in the Introduction, the random vari-
ables are said to be exchangeable if their joint distribu-
tion function is symmetric. If theXi have values inRd ,
they are defined as exchangeable if for any family of sets
{Ak ⊂ Rd

;k = 1...K} and any permutationπ of the elements
{1,...,K}, it holds that

P{Xk ∈ Ak,k = 1,...,K} = P{Xπ(k) ∈ Ak,k = 1,...,K}, (7)

A sub-selection of exchangeable random variables is ex-
changeable. Similarly, an infinite seriesX1,X2,... of random
variables is defined to be exchangeable if the firstk members
{X1,...,Xk} are exchangeable for anyk ∈ N.

A few properties of exchangeable random variables are
discussed. Exchangeable random variables are identically
distributed. More generally, infinite series of exchangeable
random variables have shift invariant distributions and there-
fore form stationary processes. To see this, note that

P({Xk ∈ Ak,k = 1,...,K}∪{XK+1 ∈ Rd
})

= P({Xk+1 ∈ Ak,k = 1,...,K}∪{X1 ∈ Rd
})

by cyclic permutation of theX1,...,XK+1 and using ex-
changeability. The left and right hand sides are, respectively,
P{Xk ∈ Ak,k = 1,...,K} and P{Xk+1 ∈ Ak,k = 1,...,K},
proving the shift invariance of the distribution.

Next we will look at the distribution of ranks of exchange-
able random variables, which is relevant for reliability tests,
and also for the general interpretation of ensembles. Let
againπ be a permutation of the numbers{1,...,K}. For
any such permutation, we have the eventAπ := {Xπ(1) <

... < Xπ(K)}, that is, the event that theXπ(k),k = 1,...,K

are ordered. Obviously, theAπ are disjoint for different per-
mutationsπ . Due to exchangeability, theAπ ’s all have the
same probability. This fact supports the intuitive notion that
the order in which ensemble members come is irrelevant and
does not carry any information. Furthermore, if the joint dis-
tribution function of theXk ’s is continuous, thenXk = Xj

for k 6= j happens with probability zero only, and therefore
P(∪Aπ ) = 1, where the union runs over all permutationsπ

of the numbers{1,...,K}. Since there areK! such permu-
tations, it must be thatP(Aπ ) = 1/K!, that is, each one of
possible orderings of theXk ’s occurs with probability 1/K!.
There are exactly(K −1)! permutationsπ with π(k) = l for
arbitrary but fixedk,l ≤ K. Hence, the probability thatXk

has rankl is equal to(K−1)!
K!

=
1
K

. In other words

P(rank(Xk) = l) =
1

K
. (8)

This result can be derived as a consequence of the fol-
lowing statement, which is of interest on its own and easy
to prove (seeLehmann, 1959). Write X[k] for the k-th or-
der statistics, that is, the random variable at positionk when
X1,...,XK are put in ascending order. Then for any function
f (x1,...,xK) it holds that

E(f (X1,...,XK)|X[k] = xk,k = 1,...,K)

=
1

K!

∑
π

f (xπ(1) ...xπ(K)), (9)

where the sum ranges over all permutations ofK elements.
A noteworthy fact is that the right hand side is independent of
the actual distribution of theXk. To prove relation (8) using
(9), fix somem andl and apply (9) to

f (x1,...,xK) =

{
1 if rank(xm) = l

0 otherwise

With this choice, the left hand side of relation (9) becomes
equal toP(rank(Xm) = l|X[k] = xk,k = 1,...,K). On the
right hand side of relation (9), the sum just counts the number
of permutationsπ with π(m) = l, of which there are exactly
(K − 1)!, as noted before. Thus the right hand side of (9)
gives 1/K; we have established

P(rank(Xm) = l|X[k] = xk,k = 1,...,K)= 1/K.

This implies (8).
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5 De Finetti’s theorem

For an infinite series of exchangeable random variables, the
following remarkable fact (known as de Finetti’s theorem,
see Kingman, 1978; Hewitt and Savage, 1955) has been
demonstrated. There exists a random variableθ with some
distributionG so that the representation

P{X1 < x1,...,XK < xK} =

∫
Fθ (x1) · ... ·Fθ (xK)dG(θ),

holds for all finiteK, with Fθ (x) := P(Xk < x|θ). In par-
ticular, an infinite series of exchangeable random variables
is always independent conditionally onθ . This theorem is
false though for only finite series of exchangeable random
variables.

Of course, we would like to view an infinite number of
variables as an idealisation of a sufficiently large but finite
number of variables. In the present context, the statement
of de Finetti implies that if we start with an exchangeable
ensemble, then in the limit of infinitely many members, the
ensemble can in fact be considered as independently drawn
from some underlying random distribution function. Does
that mean that for sufficiently large ensembles, we are back
in the classic Monte-Carlo interpretation of ensembles? And
how large is “sufficiently large”? Any attempt to answer this
question will have to incorporate details of the ensemble gen-
eration process.

In order to appreciate the difficulties involved, consider
the following example, which shows that “just large” is not
enough. An urn containsN balls, either red or blue, in pro-
portion θ , which is itself considered random. Drawing ei-
ther with or without replacement results in an exchangeable
sequence of red and blue balls. Furthermore, ifθ is given,
drawingwith replacement yields an independent series of red
and blue balls, so de Finetti’s theorem is true here even for
only finite number of draws. This is not the case for draw-
ing without replacement. The colour of the very last ball,
for example, is known afterN −1 draws; givenθ , the draws
arenot independent. If only a few balls are drawn though
from a very large urn, then drawing with and without re-
placement essentially amounts to the same. Consequently,
the draws would be essentially independent in both cases.
Thus, in order that drawing without replacement gives an in-
dependent series, the essential bit is not that the number of
draws is large, but that the number of draws issmall com-
pared to the number of balls left in the urn. As de Finetti’s
theorem assumes an infinite series of draws, the urn has to
contain an infinite amount of balls in the first place. Given
such a generous urn, it does not matter if we draw with or
without replacement, the series is independent in either case,
and de Finetti’s theorem becomes true.

We learn from this example that de Finetti’s theorem isnot
an idealisation of a situation with many draws from an urn,
but rather of a situation with comparablyfewdraws from an
urn containing a very large number of balls. The implications

this has for the application of de Finetti’s theorem to ensem-
bles given typical procedures of ensemble generation will be
subject to future research.

6 Conclusion

Starting from the standard Monte-Carlo interpretation of en-
sembles, it was shown that the ensemble members retain their
independence only if their distribution conditional on the la-
tent variable is considered. Otherwise, the independence is
destroyed, and they are merely exchangeable. This leads us
to study exchangeable random variables. A central result is
that under exchangeability, any permutation of the ensemble
members is equally likely, which formalises the intuitive un-
derstanding that the order in which ensemble members come
is irrelevant. In addition, this implies that a given ensemble
member assumes any rank with equal probability. This fact
is at the basis of standard reliability tests such as Talagrand
histograms.

Furthermore, we discussed de Finetti’s theorem, which es-
sentially asserts that an infinitely large ensemble with ex-
changeable members can be considered a Monte-Carlo en-
semble. The usefulness of this result though for merely finite
ensembles is questionable.

To demonstrate the applicability of the concept, the
method of minimum spanning trees, suggested byHansen
and Smith(2004) to evaluate the reliability of large di-
mensional ensembles, was revisited. It was shown that the
method amounts to forming a “new ensemble”, which is not
independent but still exchangeable. We therefore concluded
that the corresponding histograms can be expected to be flat.
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