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Abstract. A set of random variables is exchangeable if its  Opinions differ slightly as to how precisely ensembles are
joint distribution function is invariant under permutation of to be interpreted, but a common view is the following, often
the arguments. The concept of exchangeability is discussedgeferred to asMonte-Carlointerpretation $tephenson and
with a view towards potential application in evaluating en- Doblas Reye2000. An ensemblés a collectionXy, ..., Xk
semble forecasts. It is argued that the paradigm of ensemblesf random variables, drawn independently from a common
being an independent draw from an underlying distributiondistribution functionFy, theforecast distribution The fore-
function is probably too narrow; allowing ensemble mem- cast distribution depends on a paramétavhich can be con-
bers to be merely exchangeable might be a more versatilsidered as the (random) state of the forecasting scheme. In
model. The question is discussed whether established metlother words Fy is the distribution of the ensemble members
ods of ensemble evaluation need alteration under this modetonditioned on the current state of the forecasting scheme be-
with reliability being given particular attention. It turns out ing6. The details of the forecasting scheme are of no interest
that the standard methodology of rank histograms can stilin the present study; we can imagine it as some information
be applied. As a first application of the exchangeability con-processing device providing either a forecast distribution or
cept, it is shown that the method of minimum spanning treesan ensemble. In fact, often the forecast distributignis
to evaluate the reliability of high dimensional ensembles isbut a mental construct and not operationally available. The
mathematically sound. verificationis yet another random variabMy which is inde-
pendent ofX1, ..., Xk, conditionally org.

The forecasting scheme is callediableif the distribution
. of Xg, conditionally ond, is given byF,. The Monte-Carlo
1 Introduction interpretation implies thaf; is reliable if and only if con-

) o ditionally on9, Xg... X are independent random variables
A widely employed means to convey probabilistic forecast,yith common distribution functior. Less formally stated,
information are ensembles. Ensembles are particularly popge verification behaves like just another ensemble member.
ular for forecasting dynamical processes. In this situation,s consequence of reliability is that the rank &f among
the ensemple .members are generated by running a model @fj ensemble members assumes the values, X + 1 with
the dynam_|cs into the futurg. Heterogqneny of the ens.e.mbleequm probability (namely AK + 1)), either conditionally
members is commonly achieved by slightly different initial unconditionally org. (The rank ofXg is defined as the
conditions as well as heterogeneity of the model itself. In ef-,,,mber of indices so thatX,, < Xo; the concept of rank ob-
fect, the ensemble members are considered “equally "kely”\/iously makes sense only if the; are scalars.) This fact is

scenarios of the future evolution of the process under conyge( to build tests for reliability. More specifically, reliability
cern (see for exampl®oth et al, 20031, implies that for =1,..., K +1

1
Correspondence tal. Brocker Prank(Xo) =110) = 1 @)
BY (broecker@pks.mpg.de) ) _
Let 7;,i =1,..., L sets covering the range of the parameter
P. Then a consequence of EQ) (s

1This interpretation does not apply to situations in which the
ensemble members are obviously distinguishable, for example i
they are generated using significantly different models (Poor Man’s 1
Ensemble). Such ensembles are not considered here. P(rank(Xo) =110 € T}) = K1 (2

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.


http://creativecommons.org/licenses/by/3.0/

2 J. Biocker and H. Kantz: Exchangeability in ensemble forecasting

This means that conditioned ahe 7;, the histogram of a functiong : V — R and check the reliability of the ensem-
rank(Xp) should be flat. This can be statistically tested, seeble {¢(X1)...¢ (X )} with respect to the verificatiof(Xo).
for exampleBrocker(2008. (A technical difficulty, ignored  Obviously, this is but a necessary test for the original prob-
here, is that is typically not available operationally.) The lem, since by applying the functio$, we might have ne-
relation @) is only necessary for reliability, not sufficient; glected various degrees of freedom of the problem.
seeBrocker(2008; Hamill (2007) for a discussion. Another approach was proposed blansen and Smith
There are two issues with this rank based reliability analy-(2004. Let¢ : VX — R a function which is symmetric, that
sis, both of which lead us to stuéxchangeableensembles. s, if 7 is any permutation of the numbefs,..., K}, then
Random variables are called exchangeable if their distribug (v1,...,vx) = ¢ (vz(1),-... Uz (k)). In Hansen and Smith
tion function is symmetric. In formulae, the random vari- (2004, ¢(v1,...,vk) is the length of theminimum span-

ablesX1,..., Xk are exchangeable if ning tree that is the shortest graph connecting the points
v1,...,vg. Using¢, a new verificatiorfg and a new ensem-

M(x,....xk) = M(Xr()--- Xz (k) ble&, ...,&x with values inR are generated as follows:

whereM is the joint distribution function ok 1,..., Xx and £ = e (X0, .., XK) k=0 K ©)

7 is an arbitrary permutation & elements (a definition for

non-scalar random variables will be given in Set). The  Where

first issue with the rank approach is that it obviously cannot o

be used in higher dimensilta)rr)islansen and Smit(QOOLl));ug- P(Xo,.... Xg) =P (X0, oo Xt Xyt -, X). @
gested an alternative approach based on the minimum spata other wordsg; is the lenght of the minimum tree spanning
ning tree. Effectively, the high dimensional ensemble is con-Xg... Xk with X; left out. The problem now is that the ran-
densed into an ensemble with real valued members. The erdom variablesy...£x are not any longer independent, even
semble members are however not independent; yet they arigthe original variablesXy... Xk are. Indeed, we would ex-
exchangeable, due to the fact that the minimum spanning trepect them to be very highly dependent, since any two of them
is a symmetric function. This is looked at in detail in S&:t.  have all but one argumentin common. Itis therefore not clear
The second issue is that in the Monte-Carlo interpretation|f the rank of &y within &, ...,k has uniform distribution.
even though the ensemble members are independent condivhat rescues the approach though is the fact that, under the
tionally on@, they are generallyotindependent condition- hypothesis of reliabitliy, the variabl€s...£x are exchange-

ally on6 € T;. More precisely, we have that able. As will be shown in Sect, the rank histogram can then
still be expected to be flat. To see that the variabtes &g
P(X1 <x1,.... Xg <xg}l0) = Fp(x1) ... Fo (xk), are exchangeable, note that it follows readily from the def-

is a product, whileP({X1 < x1,..., Xx <xx}|f € T}) is not. inition.s that permuting the(o_...XK has the same effect as
Equation B) below gives the exact expression for this prob- @PPlying the same perturbation to the..5x . (The symme-
ability, from which we gather that it is still symmetric. That Y Of the functiong is crucial here.) Since the distribution of
is, the ensemble remains exchangeable under this conditior}’® Xo--- Xk is invariant under permutations, the same holds
ing. If the ensemble was only exchangeable in the first placethUs foréo...éx, which are therefore exchangeable random
conditioning would not destroy that property. This is looked variables. Note also that we are not using the independence
at in detail in Sect3. of the Xi, but only that they are exchangeable themselves.
These two issues raise the question as to whether th&nus for theg; to be exchangeable it is sufficient that the
Monte-Carlo interpretation should be replaced by the weaker<+ &€ €xchangeable. In other words, building the minimum
assumption that the ensemble members are exchangeabi@@nning trees, exchangeability of ensemble members is pre-
random variables. It is demonstrated (mainly in Sdpthat ~ Served, although not independence.
in doing so, not much will be lost. Most importantly, the
property () of the rank distribution is still vaI.id (f_or are- 3 Forecast stratification
liable ensemble), whence the rank based reliability analysis
can be applied to exchangeable ensembles. In particular, thes mentioned in the Introduction, even though the ensemble
analysis shows that the minimum spanning tree approach isnembers are independent conditionallygothey are gener-
mathematically sound. ally notindependent conditionally aghe T, whereT is some
subset of the range of. Indeed, suppose thé, ..., X, are
independent givea, and letG be the distribution of. Then

2 Evaluation of high dimensional ensemble forecasts .
we have the relation

If the ensemble members are elements of a high dimenIP>({Xl<x1 Xx <xxll0eT)
sional vector spac®, the rank is no longer defined, and

the approach to testing reliability as outlined in the Intro- = }/ Fy(x1)-...- Fp(xg)dG(0), (5)
duction ceases to apply. One possible approach is to choose cJr
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with by cyclic permutation of theX,...,Xkx+1 and using ex-
changeability. The left and right hand sides are, respectively,
C'Z/dG(e)- P{X; € A, k=1,...,K} and P{X;11 € A,k=1,...,K},
r proving the shift invariance of the distribution.
In general, the expressiob)(cannot be written as a prod-  Next we will look at the distribution of ranks of exchange-

uct with the individual factors being one-dimensional distri- aple random variables, which is relevant for reliability tests,
bution functions. In any event though, the right hand sideand also for the general interpretation of ensembles. Let
of (5) is symmetric, that is, invariant with respect to per- againz be a permutation of the numbefs,...,K}. For
mutations of they;. Thus, Conditionally o, the ensemble any such permuta’[ion, we have the event:= {Xﬂ(l) <

is exchangeable. Exchangeability though is a convex prop-.. < x, k1, that is, the event that th&, ).k =1,...,K

erty, thatis, it is preserved when averaging over diStribUtionare ordered. Obvious|y’ th&, are d|S]0|nt for different per-
functions. More precisely, let the ensemidg,..., Xx be a  mutationsz. Due to exchangeability, the,'s all have the

draw from a symmetric distribution functioy (x1,...,xk),  same probability. This fact supports the intuitive notion that
where as before is itself random. If agairz is some distri-  the order in which ensemble members come is irrelevant and
bution function for9, then the average does not carry any information. Furthermore, if the joint dis-
~ tribution function of theX;’s is continuous, therX; = X ;
M(x1,...,xK) =/M0(X1,~--,x1<)dG(9), (6)  for k # j happens with probability zero only, and therefore

_ _ S _ P(UA;) =1, where the union runs over all permutations
is again a symmetric distribution function. We can thereforeof the numberq1,...,K}. Since there ar&! such permu-
conclude that any averaging owedoes not destroy the ex- tations, it must be thaP(A,) = 1/K!, that is, each one of
changeability of the ensemble. What we learn from thesepossible orderings of th&,’s occurs with probability 1K !.
considerations is that the classical Monte-Carlo interpreta-There are exactlyk — 1)! permutationsr with 7 (k) =1 for
tion gives independent ensemble members only if we congrpitrary but fixedk,! < K. Hence, the probability thax
dition on the full model staté, while any other condition-  has rank is equal to(K,;,l)! - % In other words

ing results in merely exchangeable random variables. As a i

consequence, we might want to study exchangeable rando'f@(ranl(X y=1)= i ®)
variables, and we might want to drop the Monte-Carlo inter- W=V T

pretation and assume merely exchangeability of the ensem- This result can be derived as a consequence of the fol-

ble members ipthe first plgce. The next section demonstrateﬁbwing statement, which is of interest on its own and easy
that not much is lost in doing so. to prove (sed.ehmann 1959. Write X for the k-th or-
der statistics, that is, the random variable at positiavhen
4 Exchangeable random variables X1,..., Xk are put in ascending order. Then for any function
f(x1,...,xg) it holds that
Let X1,...Xk be a finite series of real valued random vari-
ables. As mentioned in the Introduction, the random vari-E(f(X1,....Xx)| Xk =xk.k=1,...,K)
ables are said to be exchangeable if their joint distribu- 1
tion function is symmetric. If theX; have values inR¢, = ﬁzf(xﬂ(l)“'xﬂ(m)’ ©)
they are defined as exchangeable if for any family of sets g
{Ar cR4;k=1...K} and any permutation of the elements  where the sum ranges over all permutationsoélements.
{1,...,K}, it holds that A noteworthy fact is that the right hand side is independent of
the actual distribution of th& ;. To prove relation&) using
(9), fix somem and! and apply 9) to

A sub-selection of exchangeable random variables is ex-

changeable. Similarly, an infinite serigs, X», ... of random fx1,...,xg) = {

variables is defined to be exchangeable if the finstembers

{X1,..., Xi} are exchangeable for aky N. With this choice, the left hand side of relatio®) pecomes
A few properties of exchangeable random variables aréequal toP(rank(X,,) = I Xp =xk,k=1,...,K). On the

discussed. Exchangeable random variables are identicallyight hand side of relatiordj, the sum just counts the number

distributed. More generally, infinite series of exchangeableof permutationsr with 7z (m) =, of which there are exactly
random variables have shift invariant distributions and there-(k — 1)!, as noted before. Thus the right hand side )f (

P(Xie A k=1,....K}=P(Xrzp € At k=1,....K}, (7)

1 ifrank(x,,) =1
0 otherwise

fore form stationary processes. To see this, note that gives 1/ K ; we have established
P({ Xk GAk,k=1,...,K}U{XK+1€Rd}) P(rank(X,,) =11 X =xx,k=1,...,K)=1/K.
=P({Xxy1€ Ar,k=1,...,K}U{X1 € Rd}) This implies ).
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5 De Finetti’'s theorem this has for the application of de Finetti’s theorem to ensem-

bles given typical procedures of ensemble generation will be
For an infinite series of exchangeable random variables, thgubject to future research.

following remarkable fact (known as de Finetti's theorem,
see Kingman 1978 Hewitt and Savagel955 has been _
demonstrated. There exists a random varigbleith some 6 Conclusion

distributionG so that the representation _ . .
Starting from the standard Monte-Carlo interpretation of en-

sembles, it was shown that the ensemble members retain their
independence only if their distribution conditional on the la-

tent variable is considered. Otherwise, the independence is
destroyed, and they are merely exchangeable. This leads us

ticular, an infinite series of exchangeable random variable% study exchangeable random variables. A central result is

is always independent conditionally en This theorem is . :
- . that under exchangeability, any permutation of the ensemble
false though for only finite series of exchangeable random . . . ) S
. members is equally likely, which formalises the intuitive un-
variables. : . .
. . oo derstanding that the order in which ensemble members come
Of course, we would like to view an infinite number of . " - L .
. . L - .. isirrelevant. In addition, this implies that a given ensemble
variables as an idealisation of a sufficiently large but finite

number of variables. In the present context, the statemenrtnember assumes any rank with equal probability. This fact

of de Finetti implies that if we start with an exchangeable IS at the basis of standard reliability tests such as Talagrand
. I . histograms.
ensemble, then in the limit of infinitely many members, the . o .
X . : Furthermore, we discussed de Finetti's theorem, which es-
ensemble can in fact be considered as independently drawn

. AT : sentially asserts that an infinitely large ensemble with ex-
from some underlying random distribution function. Does :
changeable members can be considered a Monte-Carlo en-

that mean that for sufficiently large ensembles, we are back : .
. . . . emble. The usefulness of this result though for merely finite
in the classic Monte-Carlo interpretation of ensembles? An : .

ensembles is questionable.

how large is “sufficiently large”? Any attempt to answer this To demonstrate the applicability of the concept, the

que_stlon will have to incorporate details of the ensemble 9en cthod of minimum spanning trees, suggestedHaysen
eration process.

. e .. and Smith(2009 to evaluate the reliability of large di-
In order to appreciate the difficulties involved, consider ; -
. . " mensional ensembles, was revisited. It was shown that the
the following example, which shows that “just large” is not : B N L
! ; ; method amounts to forming a “new ensemble”, which is not

enough. An urn contain¥ balls, either red or blue, in pro- . .

: T ; . . independent but still exchangeable. We therefore concluded
portion 6, which is itself considered random. Drawing ei-

ther with or without replacement results in an exchangeable}hat the corresponding histograms can be expected to be flat.
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