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Abstract. It is known that some quiescence precedes the
strong events in the Bak–Tang–Wiesenfeld sand-pile (Pepke
and Carlson, 1994). We introduce dissipation depending on
the propagation of the events into this model such that in the
constructed model the growth of activity occurs before the
strong events. This fact allows the prediction of them in ad-
vance with a certain efficiency. This efficiency is variable in
time. The best predictability is observed during subcritical
time ranges, while the efficiency is definitely worse in the
supercritical state.

1 Introduction

The attitude to earthquake prediction remains controversial
(Wyss, 1997). On the one hand, there exist the prediction al-
gorithms which efficiently forecast strong earthquakes in ad-
vance (Kossobokov and Shebalin, 2003). The foreshock ac-
tivity of middle-size earthquakes underlies these algorithms
(Keilis-Borok, 2003). On the other hand, some scientists ar-
gue that these algorithms hardly reflect the physics of the
seismicity and that the efficiency of the current outcome of
the prediction will decline later (Geller et al., 1997).

This discussion is based on the comprehension of the seis-
mic process as a movement of a self-organized critical sys-
tem of blocks. A typical example of a self-organized critical
system is the sandpile introduced by Bak, Tang, and Wiesen-
feld (BTW) in Bak et al.(1987). Their model determines
the evolution of sand grains on a lattice. The grains are
slowly accumulated until their number becomes locally too
big. Then they are instantaneously redistributed over the lat-
tice. The redistribution mechanism is conservative inside the
lattice and dissipative at the boundary. The slow input and
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the quick output balance each other and the system comes to
its steady state (Dhar, 1999). Model reviews and open prob-
lems can be found atDhar(2006); Dickman et al.(2000).

According toPepke and Carlson(1994), (a) strong model
events have theanti-activation scenario; (b) the adapted
earthquake precursors predict these events with a very low
efficiency. Further investigation (Shapoval and Shnirman,
2004) of the BTW sandpile gives evidence that its biggest
events (which rarely happen) are predictable due to precur-
sors that are unobservable in seismicity. The irregularity of
the dissipation (examined byDe Menech et al., 1998) and
the oscillation of the sand-pile height underlie the prediction.
In details, when the number of the grains in the lattice is
small the system stays in its subcritical state characterized
by a weak dissipation and a rare occurrence of the middle-
size events. Then the lattice accumulates “extra” grains
and the system comes to the supercritical state. It returns
to the subcritical state when a characteristic event happens
(De Menech et al., 1998). Just the latter event is predictable
due to the quiescence preceding it (Shapoval and Shnirman,
2004). Still, the absence of activation prior to strong events
contradicts either the critical self-organization of the seismic
process or the predictability of earthquakes based on a cer-
tain activation. The “wrong” scenario of strong model events
probably happens due to the conservative redistribution of
the grains inside the lattice, whereas the fault interactions are
dissipative.

We introduce an internal (local) dissipation during the re-
distribution of the grains into the BTW sand-pile with a cen-
tral seeding (Wiesenfeld et al., 1990). Dissipation “accom-
panying” earthquakes seems to be proportional to the volume
of the source. The variety of the sand-pile models with dis-
sipative redistribution of the grains exhibits dissipation that
is close to the area of the source of model earthquakes. A
proper definition oflocaldissipation that ensures the required
global features of dissipation (i.e. proportionality to the vol-
ume of the source) is not evident. We use the simplest local
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rule such that dissipation of the full-scale events is unpropor-
tionally bigger than dissipation of the small events.

This dissipation leads to theactivationscenario of strong
events. The constructed model remains predictable but the
growth of activity underlies the prediction of strong events.
The prediction algorithm corresponds to that for real seismic-
ity (Keilis-Borok, 2003). The highest efficiency of prediction
is attained when the system comes to the subcritical state.

2 Model

2.1 Dynamics

Let {(i,j)}Li,j=1 be a square lattice. The set of the integers

4 = {hij }
L
i,j=1 is called a “configuration”. These integers are

interpreted as the heights of the sand grains on the cell(i,j).
The cell (i,j) is stable if hij < H , whereH = 4 is the

cell instability threshold. Ifhij > H , then the cell(i,j) is
unstable. Further, the configuration4 is called “stable” if all
its cells are stable. Otherwise, the configuration is unstable.

Let a random variable take the values 0, 1, 2, 3 with the
probability of 1/4. Then itsL2 independent observations de-
termine the initial configuration40. Evidently,40 is stable.

Now we define the mechanism transforming the configu-
ration4(t) appearing at the time stept to 4(t +1). Initially,
the mechanism adds a new grain onto the central cell(i0,j0):

hi0j0 −→ hi0j0 +1.

If the cell (i0,j0) remains stable nothing more occurs at this
time stept . Then the configuration4(t +1) is obtained. If
hi0j0 > 4 then sand is redistributed.

We start the definition of the redistribution with one act
initiated by any unstable cell(i,j). Let hij > 4. Then the
unstable cell passes four grains one-by-one to its four nearest
neighbours. Several grains can dissipate during this pass:

hij −→ hij −4−Dij , (1)

hc(i,j) −→ hc(i,j) +1 ∀c(i,j), (2)

wherec(i,j) is any cell such that it has a common side with
(i,j) andDij is some non-negative integer. ThenDij grains
dissipate if the cell(i,j) does not belong to the lattice bound-
ary. The redistribution on the boundary results in one (or two
for the corners) additional dissipated grain since the bound-
ary cells have less than four neighbours. It worth reminding
thatDij = 0 in the BTW sand-pile.

Clearly, the act of the redistribution can lead to the for-
mation of new unstable cells. The redistribution starts in the
central cell(i0,j0) and continues until a stable configuration
occurs (during the redistribution one cell can become unsta-
ble several times). The final configuration is just4(t +1).
Then the next time step begins.

Two time scales are defined in the model. The grain ad-
dition occurs duringslow time (the word “slow” is usually
omitted). The redistribution is associated withquick time.

2.2 Dissipation

It remains to defineDij . Let zij be the counters of the cell
instability. It is supposed thatzij = 0 ∀i,j at the beginning
of any time step. Once the cell(i,j) becomes unstable the
counterzij increases by one. The threshold valuez∗ is fixed
for all the counterszij . By definition, put

Dij =

{
0, if zij < z∗;

d∗, if zij > z∗,
(3)

whered∗ is some natural number. Thus in addition to a
boundary dissipation we define an internal dissipation de-
pending on the redistribution of the grains.

Our model depends on two parameters:z∗ andd∗. The
valuez∗ determines when the dissipation is switched on. The
valued∗ stays for the number of the dissipating grains during
one act of the redistribution.

The value of the instability thresholdH does not influence
the model dynamics. We fixH = 4 to make easier the com-
parison with the BTW sand-pile. In this case the heights can
become negative due to dissipation. However they are still
bounded from below. Whence, movingH higher makes all
the heights positive. Interpretinghij as the local stress we
keep in mind the model with sufficiently bigH .

If the redistribution occurs at some time step then this pro-
cess is called anevent. Its sizeis the number of the unstable
cells appeared during the redistribution and counted with re-
gard for multiplicity.

The model differs from the BTW sand-pile in two ways.
First, new grains are added not in cells chosen at random but
in the lattice center only (as discussed inWiesenfeld et al.,
1990). This makes the dynamics deterministic. Secondly,
the dissipationDij differs from zero.

3 Power recurrence law

The BTW sand-pile has gained popularity due to its power
recurrence law. We draw the corresponding plot for the con-
structed model. Let acataloguebe the set of the consequent
events. The catalogue has to be sufficiently extent and remote
from the initial configuration such that the system is able to
attain the steady state. Suppose1s is some fixed number be-
ing insignificantly bigger than one. LetF(s) be the number
of the catalogued events, whose size lies inσ ∈ [s/1s,s1s),
divided by the extent of the catalogue (in other words, by the
number of the grains added). IfF(s) is a power function then
its graph is linear in the log-log scale.

Figure1 introduces the functionF(s) for the different val-
ues of the parametersz∗ andd∗. The typical pattern for the
functionF(s) in the log-log scale consists of the almost lin-
ear part followed by the bump and the abrupt break down.
To check whether this pattern or at least its linear part is con-
served asL → ∞ one has to simulate the models for several
biggerLs. In the paper we leave this problem aside. The big
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Fig. 1. The frequencyF(s) vs. the sizes for the different models;
“z∗

= infinity” stays for the BTW model with a central seeding; the
slopes of the dashed lines are−0.12 and−0.15; the catalogues’
extent is 5×105; L = 128;1s = 100.1.

values of the parameterz∗ mean that the dissipationDij is
(almost always) equal to zero (according to Eq.3). Then the
model dynamics agrees with the BTW sand-pile with grain
addition in the central cell. Ifz∗ is small the dissipation is
switched on so early that the strong events are hardly real-
ized. Therefore the graph forz∗

= 4, d∗
= 1 lies significantly

lower than the others.

Note that the functionF(s) exhibits locally cumulative
size distribution. This increases the slope of the power part of
the graphs by 1 (in the log-log scale) comparatively with the
direct size-frequency plot given, for example inWiesenfeld
et al.(1990) for the BTW model with the central seeding.

4 Prediction

4.1 Precursor “Power Size” (PSi)

There are prediction algorithms forecasting strong earth-
quakes in advance (Keilis-Borok and Kossobokov, 1990;
Keilis-Borok and Rotwain, 1990; Kossobokov and Shebalin,
2003; Shebalin, 2006). The precursors of the strong earth-
quakes underlying these algorithms quantitatively describe
the increase of the middle-size earthquakes prior to the strong
earthquakes. We are going to adapt these precursors to the
big model events. The event is called “target” if its size is
bigger than somes0. The target events correspond to the
strong earthquakes. Suppose[s−,s+], s− < s+ < s0, is the
size interval of the middle-scale events,w is the length of the

Table 1. Optimal values of the parameters fixed for different pairs
(d∗,z∗).

d∗ z∗ lg(s−) lg(s+) α w T

1 4 2.80 3.80 0.25 300 100
1 5 3.00 4.00 0.25 200 100
1 9 3.45 4.45 0.25 70 300
1 10 3.50 4.50 0.25 100 100
1 20 3.80 4.80 0.25 100 300
10 10 3.25 4.25 0.75 350 100

sliding window, ands(t) ∈ [s−,s+] is the size of the middle-
scale event occurred at the time stept . Then the functional

9α(t) =

t−1∑
k=t−w

(
s(k)

)α
, (4)

whereα is an appropriate power, is a precursor (of the target
events) measuring the occurrence of the middle-scale events.

We name this precursor “Power Size” (PSi) as well as the
prediction algorithm based on this precursor. Prediction al-
gorithm PSi includes the calculation of the precursor and a
rule switchingalarmson and off. As soon as9α(t) > 9∗

(for appropriate fixed9∗) the algorithm expects a target
event to occur during the nextT time steps. More precisely,
let ton be any time step specified by9α(ton) > 9∗. Then
toff = ton+T is assigned toton if the target events are absent
on [ton,ton+T ]. Otherwise bytoff denote the step of the first
target events. Then the union of all[ton,toff] (which possibly
intersect one another) forms atime of increased probability
(TIP) of the target events. The target events are said to be
predictedif they occur during TIP.

4.2 Prediction efficiency

The ratio of the unpredicted events and the TIP extent natu-
rally describe the prediction efficiency (Keilis-Borok, 2003;
Molchan, 2003). Supposen is the ratio of the unpredicted
events,τ is the ratio of TIP (in other words,τ is the total TIP
extent divided by the catalogue length), andε is n+τ . Then
ε is called thelossof the algorithm. According toMolchan
(2003), the lossε is close to 1 for a random prediction. The
efficiencyof the prediction is 1−ε.

4.3 Choice of parameters

The parameterss−, s+, α, w, T and9∗ are adjusted on some
“learning catalogue” to minimizeε. In fact, ε depends on
the parameters in a complex way. Therefore a parallelepiped
lying in the parameter space is detected “by hands”. This
parallelepiped is gridded and each node (which is a point in
the parameter space) is examined. The node generating the
leastε gives the values of the parameters that are called op-
timal and fixed (Table1). Then the algorithm is applied to
another catalogue with all these values fixed.
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Fig. 2. The lossε with error bars vs. the thresholdz∗ switching
the dissipation on ford∗

= 1. The numbers are the values of log(s0)

(the lowest size of the target events).

The low boundarys0 of the target events is not adjusted.
Aiming at the best efficiency we chooses0 as big as possible
(this idea works for the BTW sand-pile;Shapoval and Shnir-
man, 2004). The fixed values ofs0 (being written in Fig.2
for L = 128) ensure approximately the same frequency of the
target events in the catalogues for differentz∗. Despite these
values ofs0 are bigger than the sizes shown in Fig.1 the
number of the target events in the catalogue is big enough to
get statistically significant results.

4.4 Prediction outcome

Figure 2 introduces the lossε for the prediction algorithm
corresponding to the dissipationd∗

= 1 and several values of
z∗. If z∗ is too big algorithm PSi does not predict the target
events. This agrees with the BTW sand-pile. Small values of
z∗ (z∗

= 4 in Fig.2) lead to a weak predictability. The strong
events are extremely rare in such models.

The best predictability is observed for intermediatez∗

(Fig.2). These values ofε are far from 1. This gives evidence
that the prediction results are not random. Moreover, the ef-
ficiency increases whenever the dissipation goes up. We do
not support this statement for allz∗ but give the detailed anal-
ysis of the predictability in the model determined byz∗

= 10,
d∗

= 10.

So, fix z∗
= 10, d∗

= 10. Algorithm PSi is applied to the
catalogue sampled during[2.5× 106,7.5× 106

] time steps
(L = 128; 5×106 grains are added on the lattice). It keeps
2601 target events. The algorithm predicts 2185 events while
the alarm continues about a third of the catalogue’s extent. In
other words, the outcome of the prediction isn = 0.16, τ =

0.35, ε = 0.51. To check this result other catalogues of the
same length are generated for different initial configurations.
The values ofε = n+τ ≈ 0.5 are conserved.

The parameters of the algorithm PSi influence the effi-
ciency in adifferentway. The most principal parameters are
w andT . On the contrary, the parameterα determining the
power in the functional9α defined in Eq. (4) weakly influ-
ences the efficiency. We claim that the loss of the algorithm
PSi is less than 0.54 asα ∈ [0.1,1].

4.5 Role of dissipation

We have determined the nonlinear dissipation depending on
the propagation of the model events. This dissipation weak-
ens the middle-scale events preventing their propagation.
Therefore it takes the series of the middle-scale events to
transport the grains to the boundary. Only then the full-scale
event happens. Hence it can be predicted. This scheme gives
the explanation of the reported prediction efficiency.

4.6 Efficiency variability

By definition, put

h(t) = L−2
L∑

i,j=1

hij (t),

where the values ofhij (t) are taken at the end of the time
stept . Further, suppose〈h〉(t) is the mean ofh(t) over previ-
ousNs=50 000 time steps and〈ε〉(t) is the lossε calculated
on [t −Ns,t]. Then the oscillations of〈ε〉(t) are rather big
(Fig. 3). The loss can be doubled (from 0.35 to 0.70) due to
the choice of the prediction interval. Is this variability con-
nected with the sandpile height, which changes significantly
too (Fig.3)?

By ρ(t) we denote the correlation function of〈ε〉(t)
and 〈h〉(t). It is calculated on the intervals[t − Nb,t],
Nb=250 000. NumbersNs andNb balance two opposite re-
quirements. On the one hand, the used intervals have to be
small such that the model properties described in terms of
h(t) do not change a lot. On the other hand, if the intervals
are too small then their number of the target event remains
insufficient for meaningful conclusions about the prediction
efficiency.

According to Fig.3, lower panel, there exist extremely
long time ranges (hundreds of thousand time steps) exhibit-
ing the correlationρ of the constant sign. Still the mean of
the correlation function is close to zero.

4.7 Sub- and supercriticality

Our prediction method is expected to be appropriate near the
steady state (Sornette, 2002). The steady state consists of a
large number of configurations with approximately constant
height of the sand pile. This height being close to 1.88 in the
model investigated (d∗

= 10, z∗
= 10) can be interpreted as

a critical height. Nevertheless now and then〈h〉(t) becomes
too small (Fig.3) since the biggest events are strongly dissi-
pative. Hence the height goes far away from its critical level.
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= 10, z∗
= 10; 〈h〉(t) and〈ε〉(t) are the the average ofh(t) and, respectively, the loss of the prediction, over[t −5×104,t).

The dotted curve stays forρ(t) on the cutting off intervals with too low sand level. The solid curves stay for the other intervals. The mean of
the solid curves (of〈h〉(t)) is approximately 0.27 (1.88, dashed lines). Zero on the time axes corresponds to the beginning of the catalogue.

We want to analyze only the parts of the correlation func-
tion in which the average height is greater than or equal to
an arbitrary threshold,〈h〉(t) < h∗, because a part of our hy-
pothesis is that better prediction is not possible when the av-
erage height is low (corresponding to few events). Conse-
quently, for each time stept ′ where〈h〉(t ′) < h∗, we iden-
tify the corresponding time interval (in the past) over which
〈h〉(t ′) was previously defined, namely[t ′ −Ns,t

′
]. We want

to exclude all the points that lie in this interval from the cal-
culation of any future values of the correlation functionρ(t).
First, notice that time steps within this “forbidden” interval
will be used in the calculation of〈h〉(t) for all values oft in
[t ′,t ′+Ns]. Second, notice that time steps within the interval
[t ′,t ′ +Ns +Nb] will determineρ(t) using values of〈h〉(t)

which themselves use data from the “forbidden” interval.
Therefore, for any value oft ′ for which〈h〉(t ′) <h∗, we mark
the interval[t ′,t ′+Ns +Nb] with a dotted line in the correla-
tion plot of Fig. 3 to signify regions with poor predictability
due to low system average height (or low system mass). The
remaining part of the correlation plot is marked with thick
solid line to identify regions with better predictability.

According to Fig.3, the remaining part ofρ(t) (plotted
by the solid line) is more positive than negative. The mean
ρ̄ of this ρ(t)-part shown in the figure is 0.27 (for reliable
conclusion the mean is calculated for two other catalogues;
the values are 0.25 and 0.30). Hence the height and the ef-
ficiency fluctuate co-directionally if the height is close to its
critical level. Then the growth of the height usually increases
the lossε of the prediction algorithm. If the height is near
its critical level then the height’s growth pushes the system
to the supercritical state. Thus the co-directional oscillations
of 〈ε〉(t) and 〈h〉(t) give an implicit evidence that the pre-
dictability is worse in the supercritical state.

The value ofh∗ has to be sufficiently big to study the sys-
tem near its critical level of height. However excessively
big h∗s eliminate the graph ofρ(t) completely. It is fixed
h∗

= 1.7 whenever the mean ofh(t) is approximately 1.88.
(We check the values ofh∗ for three considered catalogues;
h∗

= 1.65 implies ρ̄ = 0.14;0.25;0.30 andh∗
= 1.75 does

ρ̄ = 0.26;0.27;0.21; this calculation gives evidence of a cer-
tain stability of the results with respect toh∗).

The direct calculation ofε in the subcritical and supercrit-
ical state leads to the values 0.44 and 0.57 respectively. The
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calculation corresponds to Fig.3’s all the intervals such that
h(t) belongs to[1.7,1.85] and[1.92,2.0] during at least 500
consequent time steps.

The following idea can explain the observed variability. If
the number of the grains on the lattice is too big then even
minor changes in the configurations are able to generate a
strong event. A long formation process is not necessary. A
strong event can occur “at any moment”. Therefore the pre-
dictability is weaker in the supercritical state. Furthermore,
extremely low pile height assures that the growth of activity
in a lattice part does not lead to a strong event because the
other part lacks the sand grains. A strong event would occur
later (and remain unpredictable) when the lattice accumu-
lates some additional grains and a new wave of the redistri-
bution attains the overloaded lattice part. This leads to a low
prediction efficiency. Finally, whenever the height comes to
its critical level from below there exists the formation process
of the strong events involving the increase of activity.

4.8 Accuracy of results

The properties of the prediction developed in the paper can
be sensitive to the choice of the parameters. The applied
scheme searches the minimum ofε through a limited num-
ber of points lying in the many-dimensional parameter space.
On the one hand, the lossε of the prediction as the function
in any particular parameter has aV -shape on the grid if the
values of the other parameters are fixed as reported in Table1
(we do not accompany this fact by figures). Ifε depends on
the parameters sufficiently smoothly then the obtained node
of the parameter grid is close to the global minimum ofε.
On the other hand,ε as a complex non-linear multivariable
function can have irregularities that are not described by the
values calculated on the grid’s nodes. Whence the global
minimum of ε can be passed through. If the latter is true
(which is unlikely to happen from our point of view) then the
(n,τ )-outcome of the prediction can be only more efficient
than that found in this research. However the other prognos-
tic properties of the model (in particular, the variability of the
prediction) has to be verified for the global minimum ofε.
Anyway, these properties are valid given a natural construc-
tion involving the node-by-node examination of a reasonable
parameter grid.

5 Conclusions

We introduce a non-linear dissipation of the sand grains dur-
ing their redistribution into the BTW sand-pile with a central
seeding. Several features of seismicity are built in the model.
They are two time scales and the locality of the mechanism
running the propagation of the events. The model dynamics
follows other seismic feature:

– the power recurrence law,

– the predictability of the strong events based on the acti-
vation,

– non-stationarity of the prediction.

Two last properties (assured by the introduced dissipation)
separate the constructed model from the BTW sandpile and
its simple modifications, where a certainquiescenceprecedes
the strong events (Pepke and Carlson, 1994; Shapoval and
Shnirman, 2009). Thus the constructed model realizes the
predictability of the seismic process based on theactiva-
tion inside the class of the self-organized critical systems.
Earthquakes can be preceded by a certain combination of ac-
tivation and quiescence (Huang et al., 1997) but the model
construction of this phenomenon is the subject of a separate
study.

In the developed model the dissipation plays a central role.
The seismic process is characterized by the number of fail-
ures being inversely proportional to the failure area, while
the dissipation is proportional to the failure volume. That
is why the strongest earthquakes are accompanied by the
most noticeable dissipation of the seismic process. Hence
a model analogue of the real dissipation has to be a function
on the event’s size, which grows more quickly than linearly.
The best choice of this function has not been discovered yet.
Therefore we focuses on the simplest nonlinear function em-
phasizing the dominating dissipation of the strongest events.

The model system oscillates in its steady state such that the
typical time range of the oscillations is extremely big. The
predictability of the strong events is definitely better in the
subcritical state than in the supercritical state. In the model
terms, a local non-stationarity of the seismic process can re-
sult in a temporal break down of the real prediction.
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