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Abstract. We propose an alternative approach for the em-
bedding space reconstruction method for short time series.
An m-dimensional embedding space is reconstructed with a
set of time delays including the relevant time scales charac-
terizing the dynamical properties of the system. By using
a maximal predictability criterion ad-dimensional subspace
is selected with its associated set of time delays, in which
a local nonlinear blind forecasting prediction performs the
best reconstruction of a particular event of a time series. An
locally unfoldedd-dimensional embedding space is then ob-
tained. The efficiency of the methodology, which is mathe-
matically consistent with the fundamental definitions of the
local nonlinear long time-scale predictability, was tested with
a chaotic time series of the Lorenz system. When applied to
the Southern Oscillation Index (SOI) (observational data as-
sociated with the El Nĩno-Southern Oscillation phenomena
(ENSO)) an optimal set of embedding parameters exists, that
allows constructing the main characteristics of the El Niño
1982–1983 and 1997–1998 events, directly from measure-
ments up to 3 to 4 years in advance.

1 Introduction

Predictability is a fundamental physical property of deter-
ministic systems. Predicting the time evolution of a sys-
tem is an important problem in many disciplines of sci-
ence, such as economics, dynamical systems and weather
forecasting. It is indeed a defiant problem if the only in-
formation available from the system comes from time se-
ries of some univariate experimental data. Numerous tools
have been developed precisely for this purpose (see, e.g.
Kantz and Schreiber, 2005). An important tool is the method
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of phase space (or state space) reconstruction introduced
by Packard et al.(1980) and mathematically stated as the
embedding theorem byTakens(1981), and also later by
Sauer et al.(1991). The embedding theorem states that
the dynamics of a physical system recorded in a time se-
ries s (t1),s (t2),...,s (tk)..,s (tn) can be fully captured or
embedded in them-dimensional phase space defined by
x(tk) = [s (tk),s (tk +τ0),........,s (tk +(m−1)τ0)], whereτ0
is a time delay. If the attractor is of dimensiondA, then, given
any time delayτ0, an embedding dimensionm ≥ 2dA +1 is
required. Under that condition nearly all delay reconstruc-
tions are one to one and faithful, appropriately diffeomorphic
to the original phase space. That is, under certain generic
conditions the state space reconstruction is equivalent to the
original phase space. This equivalence ensures that differen-
tial information is preserved and allows for both qualitative
and quantitative analysis. However, these theorems are exis-
tence proofs (Abarbanel et al., 1993) and they do not directly
explain how to get a suitable time delay or embedding di-
mension from a finite time series (Pecora et al., 2007). Imple-
mentation of the reconstruction method requires that the time
delay and the dimension be determined by using heuristic
and/or statistical criteria (for reviewsAbarbanel et al., 1993;
Schreiber, 1999; see alsoCellucci et al., 2003; Letellier et al.,
2008). It is important to stress that the embedding dimension
required by the embedding theorem is a sufficient condition
and could be larger than the necessary embedding dimension
(Abarbanel et al., 1993). To find the necessary minimal em-
bedding dimensionPecora et al.(1995, 2007) proposed an al-
ternative approach that reduced the problems of choosing all
embedding parameters to one. This problem is addressable
by using a single statistical test formulated directly from the
reconstruction theorems, a continuity test. This is a global
test in the sense that it uses information on the whole attrac-
tor. For the Lorenz system they found that three dimensions
(for τ = [0,τ0,4τ0] with τ0 = 14) are required to unfold the
Lorenz attractor efficiently. This is indeed much better than
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the 16 components required with the fixed time delay em-
bedding methodology (Pecora et al., 2007). Let’s note that
varying time delays for the Lorenz attractor were addressed
also byGarcia and Almeida(2005), indicating that different
time delays are more efficient than the conventional use of a
fixed time delay. Variable embedding lag vectors have been
also used in some global modelling strategies (see e.g.,Judd
and Mees, 1998).

Predictability is one of the system’s properties that can be
used to obtain a set of parameters for the embedding space
reconstruction method (Sugihara and May, 1990; Casdagli
et al., 1991; Alparslan et al., 1998). It’s precisely by using
the prediction power thatRegonda et al.(2005) developed an
approach based on local polynomial regression for ensem-
ble forecasting of time series. It was applied to two kinds of
time series: chaotic (Hennon and Lorenz) and observational
data (Great Salt Lake and NIÑO3 Index). Later,Meng and
Peng(2007) (see alsoZhao et al., 2009), also using the pre-
diction power criterion, proposed a new local linear predic-
tion model to obtain optimal embedding parameters. They
showed that its prediction performance was superior to the
traditional local linear prediction. In addition they also in-
dicated (for the Lorenz system) that the optimal parameters
found, change accordingly with the initial conditions used.
In line with previous results byRegonda et al.(2005), that
indicated that the forecasts initiated from several contiguous
starting points show a change in the local predictability.

The basic idea in non-linear model prediction relies on us-
ing adequately the information on the temporal evolution of
orbits which lie on a compact attractor in phase space. Each
orbit has near it a whole neighbourhood of points in phase
space which also evolve under the dynamics to new points
(e.g.Abarbanel et al., 1993). Using the information about
how neighbours evolve, it is possible to use phase space in-
formation to construct a map. The mapping function can be
estimated using local models in which the function approxi-
mation at each time step is done from data sets of the local
neighbourhood only in a piecewise manner, or global models
in which the function approximation is done for the whole
domain (Abarbanel et al., 1993).

In this paper we report an alternative methodological ap-
proach for the embedding space reconstruction method for
short time series. We restrict our study to local prediction
models. Our proposition relies on the use of a maximal pre-
dictability criterion to reconstruct an embedding space. This
is performed in the sense that the dynamical evolution of the
system recorded in the experimental data can be reproduced
during a given time span. Under this criterion, we also ob-
tain an optimal embedding dimension by selecting the op-
timal d-dimensional subspace from a largerm-dimensional
embedding space. Them-dimensional embedding space is
reconstructed so that the relevant time scales that character-
ize the phenomenon are contained in the set of time delays
of the embedding. We apply this methodology first to a time
series from the Lorenz system with chaotic regime param-

eters, then to an observational time series, a benchmark in
climatic science, the Southern Oscillation Index (SOI), the
main index describing the temporal evolution of the El Niño-
Southern Oscillation (ENSO) phenomena. In Sect. 2 we de-
scribe the methodology and in Sect. 3 we show its theoretical
basis, while in Sects. 4 and 5 we present the results for both
the Lorenz system and SOI that are later discussed in Sect. 6.

2 Methodology

The first step of our methodology consists in reconstruct-
ing anm-dimensional embedding space by defining anm-
dimensional delay phase space vector with componentsxi =

s(t+τi), whereτi = [i−1]τ0 andτ0 is a basic time scale. The
embedding dimensionm is chosen such thatτm = (m−1)τ0
is larger than the largest of the most relevant time scales char-
acterizing the phenomenon. In case of unknown phenomena
the relevant time scales can be identified through different
time series methods, for example Fourier spectrum. For the
time delayτ0 we choose the zero autocorrelation time or the
68% decay time of autocorrelation of the time series (Abar-
banel et al., 1993; Cellucci et al., 2003). Similar to the uni-
fied approach to resolve the attractor reconstruction problem
proposed byPecora et al.(2007), we seek a set of time de-
lays τj , or equivalently, a set of delay vector components
xj (t) = s(t +τj ) defined in ad-dimensional space, which is
a subspace of them-dimensional reconstructed embedding
space. In this way, we obtain a vector of variable delay times,
which is optimal because it allows a better description of the
evolution of the system. To determine when the optimal em-
bedding parameters are obtained, we use the maximal local
predictability criterion. We seek, for the reconstruction of a
particular event, to begin at some “starting” (or “present”)
point and reconstruct or finishp time steps into the “future”.
Under this criterion we assume that, when the whole selected
event is optimally reconstructed with a local blind forecast
technique, the attractor is optimally unfolded, at least in a
neighbourhood of the “starting” point. The set of time delays
τj , with j = 1,...,d < m is the optimal set for time delays of
ad-dimensional subspace of them−dimensional embedding
space.

To perform a blind forecastp time steps into the future we
use a linear function (Farmer and Sidorowich, 1987)

xi(t +1t) =

d∑
j=1

aijxj (t)+xi(t), (1)

where1t is the time step and theaij coefficients are locally
determined by consideringk future near neighbours that be-
long to the near orbits (closest orbits). The forecasting time
T = p1t is large enough so that the whole event is included
within the forecast time. To this end, it is important to notice
that in order to evaluate the local topology of the embedding

Nonlin. Processes Geophys., 17, 753–764, 2010 www.nonlin-processes-geophys.net/17/753/2010/



H. F. Astudillo et al.: Embedding reconstruction methodology for short time series 755

k k+1 k+2

n
n+1

n−1

Fig. 1. A schematic view illustrating the collection of spatial neigh-
bours and their time evolution in the state space. In the scheme,n

corresponds to the starting point or present point,n−1 is the near-
est neighbour in the same orbit,n+1 correspond to the forecast for
the first step. Thek’s correspond to the forward neighbours of the
nearest orbit. To forecast the next steps, the vector containing the
indices of the close neighbours (small black dots) is incremented by
one for each step.

space, we use information contained only in past trajectories
of the attractor. In particular, in the present study we use
only the closest orbit. We use the term “blind forecast” in the
following sense: at the starting point the nearest neighbour
is selected in the embedding space by computing Euclidean
distances from the starting point to each older point in the
time series. The nearest neighbour is obtained as the mini-
mum of the distance to the starting point. The determination
of the nearest neighbour also determines the closest orbit. In
our procedure, we do not determine the closest orbit again
for the further steps of the forecast but we follow the closest
orbit determined in the first step.

To monitor the accuracy of the reconstructions, we define
the cumulative error between the event and its reconstruction
by

E(T ) =
1

σs

[
j=p∑
j=1

1

j

[
xd(tj )−s(tj +τd)

]2

]1/2

, (2)

whereσs is the standard deviation of the time series andxd

is the last embedding vector component. We seek the set of
time delays that minimizes the cumulative error at the ter-
mination point, corresponding to the point when the event
finishes.

The implementation of the proposed algorithm is as fol-
lows:

1. Select the event to be reconstructed.

2. Select the “starting” or “present” point and the termina-
tion point that marks the end of the eventp time steps
into the “future”.

3. Reconstruct anm-dimensional embedding space with
a set of time delays given byτj = [j −1]τ0, with j =

1,...,m, andτ0 some basic time scale. The maximum
time delayτm has to be larger than the maximal rele-
vant time scale of the phenomenon.

4. Computeaij for each step using the least square method
by feeding a number of near neighbours of the closest
orbit (see Fig.1).

5. Perform a blind forecastp time steps into the ”future”,
for all subspaces of dimensiond in them-dimensional
embedding space.

6. For eachd-dimensional subspace, compute the cumula-
tive error at the termination point.

7. Select the set of time delays (the optimal set of time
delays) that minimizes the cumulative error at the ter-
mination point. The number of elements of the optimal
set of time delays,d, is the optimal local embedding
dimension.

Note that the application of this methodology requires the
specification of the time interval to be analysed for the pre-
dictability of the event, the time prediction. Under this re-
quirement blind forecasts are computed for a given dimen-
sion with all possible combinations of time delays.

In all the cases shown here, the first delay was scanned for
delay times beginning with the time for which the autocorre-
lation is zero. In this way we avoid the reconstruction of a
collapsed attractor. Other ways of choosing the lower limit
for scanning the first delay can be easily studied. We fo-
cused our study on variations of the basic time scale. In our
study we reduce the value of the basic time scale of the value
for which the autocorrelation drops to 68%. As the results
show, for the latter case, the methodology provides a better
reproduction of the events. The method presented here may
be improved by using nonlinear predictors (e.g. polynomial)
and including weights to the nearest neighbours.

It is also important to stress that in our method the pro-
cedure starts first with the determination of the local phase
space topology around the last known state when obtaining
the nearest neighbour and the closest orbit. Forecasts of fu-
ture states are obtained with a linear model following the
nearest (older) trajectory on the attractor, which in essence
provides information about the nonlinear characteristics of
the local dynamics of the physical process.

3 Local predictability

To visualize this last point, let us recall some basic defini-
tions on predictability in dynamic systems. Lyapunov ex-
ponents quantify predictability through globally averaged ef-
fective growth rates of uncertainty in the limits of large time
and small uncertainty; thus by construction they are of lim-
ited use. To obtain a quantitative estimate of the accuracy
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of a particular forecast, the local dynamics of uncertain-
ties about that initial condition are more relevant (Ziehmann
et al., 2000). Local quantities provide a more detailed de-
scription of the dynamics since they probe the motion on
short enough time-scales to distinguish the different states
that the system passes through. In such situations, distribu-
tions of local Lyapunov exponents, namely the value of the
Lyapunov exponents over finite segments of a trajectory, pro-
vide a better probe of the underlying nonuniform attractor. In
particular, the local Lyapunov exponent can be negative even
when the global Lyapunov exponent is positive (as on a typ-
ical chaotic attractor) or vice versa (on strange nonchaotic
attractors) (Datta and Ramaswamy, 2003).

We follow and reproduce the definitions of linear and non-
linear finite time lyapunov exponents given byDing and Li
(2007). By definition, chaotic systems display sensitive de-
pendence on initial conditions: two initially close trajecto-
ries can diverge exponentially in the phase space with a rate
given by the largest Lyapunov exponentλ1. The lyapunov
exponents are defined as follows:

Let us consider an n-dimensional continuous-time dynam-
ical system

d

dt
X(t) = F(X(t)), (3)

whereX = (x1,x2,...,xn)
T and F is an n-dimensional vec-

tor field. By performing an infinitesimal dispacementδ(t) =

X(t) − X0(t) from the fiducial orbitX0(t), the linearized
equations are given by

d

dt
δ = J(X)δ+G(X,δ), (4)

whereJ(X) is the Jacobian matrix, andG(X,δ) are the high
order nonlinear terms of the perturbationsδ. For initial in-
finitesimal perturbation Eq. (4) is linearized dropping the
nonlinear perturbation term. The linear propagatorµ(X0,t)

is obtained integrating the linearized equations along a fidu-
cial orbitX0(t), andδµ(t) = µ(X0,t)δ(0) gives the evolution
of any infinitesimal initial errorδ(0) forward for a timet to
δµ(t) (Ziehmann et al., 2000). Local or finite time lyapunov
exponent is defined by

λ̃(X0,t)= lim
‖δ(0)‖→0

1

t
ln

∥∥δµ(t)
∥∥

‖δ(0)‖
. (5)

The largest lyapunov exponent is defined by:

λ1 = lim
t→∞

λ̃(X0,t), (6)

provides that the lyapunov exponent exists (Ott and Yorke,
2008). Because ergodicity the global largest lyapunov expo-
nent do not depends onX0 (Oseledec, 1968).

Nonlinear finite time lyapunov exponent are given by

λ(X0,δ(0),t)=
1

t
ln

∥∥δη(t)
∥∥

‖δ(0)‖
, (7)

where the nonlinear propagatorη(X0,δ(0),t) is obtained in-
tegrating Eq. (4) along a fiducial orbitX0(t). Now, δη(t) =

η(X0,δ(0),t)δ(0) gives the evolution of any initial errorδ(0)

forward for a timet to δη(t). The mean nonlinear finite-time
lyapunov exponent is given by

λ̄(δ(0),t)= 〈λ(X0,δ(0),t)〉N , (8)

where<>N denotes the ensemble average.
Numerical results demonstrate superiority of the nonlin-

ear finite time lyapunov exponent in determining the limit of
predictability of chaotic systems in comparison with linear
one (Ding and Li, 2007). Local predictability limit gives a
measure of long time-scale local predictability on the atrac-
tor (Ding et al., 2008). It is different from the local diver-
gence rates or local Lyapunov exponent, which are restricted
to conditions of sufficiently small perturbations and only ap-
plicable to reflect the short time-scale local predictability.
Therefore, the distribution of the local predictability limit
does not appear some regions of underlying high predictabil-
ity or low predictability in phase space (Ziehmann et al.,
2000; Ding et al., 2008).

In order to show the theoretical basis of our methology we
write Eq. (1) as,

X(n+1) = a(n)X(n)+X(n) = A(n)X(n), (9)

whereA(n) = a(n)+ I , andI the identity matrix. It is impor-
tant to note that the matrixa(n) is evaluated at each time step
in our procedure. Let us denote byX0(0) the nearest neigh-
bour of the nearest orbit (the fiducial orbit) to the present
point, andX0(n) the n-steps future neighbour on the fiducial
orbit. Then, we can also write

X0(n+1) = A0(n)X0(n), (10)

so that,

δ(n+1) = X(n+1)−X0(n+1), (11)

and,

δ(n+1) = A(n)X(n)−A0(n)X0(n). (12)

In our methodology we obtain the future of the present orbit
by following the fiducial orbit, so thatA0(n) = A(n). We can
write

δ(n+1) = A(n)δ(n), (13)

or,

δ(n+1) = η(X0,δ(0),n)δ(0). (14)
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Fig. 2. The panels(a–d) show the blind forecast (green dots) forτ0 = 15, and for dimensions fromd = 4 to d = 7, respectively. The x-
coordinate of the Lorenz system is plotted with black dots. Red dots are the present point and the termination point of the blind forecast,
respectively. The starting point is 5748 and the forecast time is 50 steps.
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Fig. 3. The panels(a–d) show the blind forecast (green dots) forτ0 = 15, and for dimensions fromd = 4 to d = 7, respectively. The x-
coordinate of the Lorenz system is plotted with black dots. Red dots are the present point and the termination point of the blind forecast,
respectively. The starting point is 5753 and the forecast time is 50 steps.
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Fig. 4. Cumulative error between the event and its reconstruction.
In panel (a) are shown the cumulative error for a 50 steps blind
forecast starting at point 5748 for dimensionsd = 4 tod = 7 for the
Lorenz x-coordinate. In panel(b) are shown the cumulative error
for a 50 steps blind forecast starting at point 5753 for dimensions
d = 4 tod = 7 for the Lorenz x-coordinate.

Because in most of the measured time series the present and
the nearest orbit (the fiducial orbit) are not arbirarily close
to each other, we identify Eq. (14) with the nonlinear prop-
agated errorδη. We conclude that our procedure ressemble
without any approximation the definition of the nonlinear fi-
nite time lyapunov exponents. The selected subspace of the
embedding space minimizes the cumulative error at the ter-
mination point, that is the subspace where, locally, the repro-
duced attractor is less unstable.

The present methodology, which is mathematically con-
sistent with the fundamental definitions of the local nonlinear
predictability, provides a simple procedure to study nonlin-
ear, long-term local predictability in observational time se-
ries.

4 Application to the Lorenz System

To test our methodology we use a time series obtained from
the well known Lorenz system which is described by the fol-
lowing equations (Lorenz, 1963):

ẋ = σ(y −x) (15)

ẏ = −xz+rx −y (16)

ż = xy −bz (17)

The time series was produced using the parameters,σ =

16, r = 45.92, b = 4 and initial condition(x0,y0,z0) as
(1.,0.,0.) to generate a time series of 6000 observations.
With these parameters the Lorenz system show chaotic be-
haviour. The standard fourth-order Runge-Kutta method is
used to solve the equations with integration step of1t =

0.05. A region with similar characteristics to that shown by

1860 1880 1900 1920 1940 1960 1980 2000
year

-3

-2

-1

0

1

2

3

S
O

I

Fig. 5. The panels show the SOI. It extends monthly from 1866-to-
2009 with 1716 data points (http://www.cgd.ucar.edu/cas/catalog/
climind/soi.html). In blue and red are shown the strongest El Niño
1982–1983 and 1997–1998 events.

Regonda et al.(2005) (see Fig. 3 of his paper) was selected
for the x coordinate of the Lorenz system for the time se-
ries, shown in panels (a–d) of Figs.2 and3 with black dotted
lines.

By using the Fourier spectrum we determine the temporal
time scales that drives the phenomena. Therein the largest
statistically significant time scale is a period of 334 steps.
The zero autocorrelation time for the time series isτ0 = 15.
Thus, we choose the largest time delay to beτmax= 345. To
determine theaij coefficients of Eq. (1) we select the near-
est neighbour of the same orbit to the present point plus 8
forward near neighbours of the closest orbit.

We choose two “starting” points to show the performance
of our method; a point nearx = 0 and a point which is away
from x = 0, 5748 and 5753, respectively. In panels (a–d) of
Fig. 2 we show a 50 steps blind forecast (green dots) with
starting point at 5748 withτ0 = 15, and for dimensions from
d = 4 to d = 7, respectively. In panels (a–d) of Fig.3 we
show a 50 steps blind forecast (green dots) with starting point
at 5753 forτ0 = 15, and for dimensions fromd = 4 tod = 7.
In Fig. 4 the cumulative error of the event reconstruction
is plotted. In panel (a) we show the cumulative error for a
50 steps blind forecast starting at point 5748 for dimensions
d = 4 to d = 7 for the Lorenz x-coordinate. In panel (b) we
show the cumulative error for a 50 steps blind forecast start-
ing at point 5753 for dimensionsd = 4 tod = 7 for Lorenz x
coordinate.

It is clear that our method is able to reproduce the x coordi-
nate time series for the Lorenz system in both cases and for
several cycles for dimensiond = 7 with a cumulative error
slightly higher than 10% at step 50 in both cases.

Nonlin. Processes Geophys., 17, 753–764, 2010 www.nonlin-processes-geophys.net/17/753/2010/
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5 Application to El Ni ño

In this section we show the performance of the proposed
methodology when characterizing the largest ENSO events.
El Niño Southern Oscillation (ENSO) is known as the dom-
inant driver for year-to-year climate variability (Trenberth,
1997). The ENSO phenomenon originates in the coupled
ocean−atmosphere dynamics of the tropical Pacific (Philan-
der, 1990). Through teleconnections associated with atmo-
spheric circulation and air-sea interaction outside the trop-
ical Pacific, it deeply affects climate worldwide with large
environmental and societal impacts (Glantz, 2001). ENSO
is generally represented by the Southern Oscillation index
(SOI) (Trenberth, 1984), representing the southern oscilla-
tion, i.e. the principal mode of surface pressure variability
in the Tropics. The SOI index is the standardised anomaly
of the mean sea level pressure difference between Tahiti
and Darwin. Sustained negative values of the SOI often
indicate El Nĩno episodes. These negative values are usu-
ally accompanied by a decrease in the strength of the Pa-
cific Trade Winds and an anomaly warming of the central
and eastern tropical Pacific Ocean. Instead positive values
of the SOI, La Nĩna episodes, are associated with stronger
Pacific trade winds and warmer sea temperatures over the
western Pacific, while the central and eastern tropical Pacific
Ocean is cooler. An important aspect of ENSO is that El
Niño events are generally characterized by a larger magni-
tude than La Nĩna counterparts. The strongest El Niño events
ever recorded being those of the 1982–1983 and 1997–1998
years. The oscillation does not have a specific period but
occurs preferentially at inter-annual time scales. It has been
also observed (Torrence and Webster, 1999) that the ampli-
tude of ENSO undergoes changes on decade time scales. The
SOI time series used here (see Fig.5) extends monthly from
1866 to 2009 (http://www.cgd.ucar.edu/cas/catalog/climind/
soi.html). We low pass filtered (box car, 15 months) the
anomaly time series to keep frequencies where the power of
the system is concentrated and which are the most relevant,
the low frequencies (interannual, decadal).

Indeed, the events selected to test our method are the
strongest, that is the 1982–1983 and 1997–1998 El Niño
events. In the signal, both events (oscillations) can be
roughly described by two maxima and a minimum. The
minimum is the peak amplitude of the EL Niño event. In
the study, the termination point is located just one month af-
ter the second maximum. We place the “starting point” 60
months (5 years) before the termination point.

To determine theaij coefficients of Eq. (1) at the “present”
point, the nearest neighbour to the present point and 24 near
forward neighbours from the nearest older orbit are selected
(corresponding to the small black dots in Fig.1). Here, we
useτ0, the zero autocorrelation lag and the 68% autocorrela-
tion decay time (for SOI these are 15 months and 7 months,
respectively) to reconstruct them-dimensional embedding
space. The largest time scale relevant to the phenomenon

used is 18 years (216 months), givingm = 16 andm = 34 for
τ0 = 15 andτ0 = 7 months, respectively. Thed-dimensional
subspaces of dimension from 3 to 8 are scanned. The blind
forecast time isT = 60 months.

To obtain a time delay set that characterizes a region of
the attractor, we seek for a unique optimal set of time delays
that minimizes, simultaneously, the sum of cumulative er-
rors at the termination point for a number of successive start-
ing points. In this study this region spans six months, and
a mean forecast is computed by averaging all forecasts for
the six successive starting points. Although individual per-
formance give better results, as expected in local prediction
(Ding et al., 2008), with the requirement of simultaneously,
the sub space of the embedding space is determined where
the limit of predictability is obtained by ensemble average.

In Fig. 6 the mean forecast is plotted (orange dots) for
τ0 = 15 and dimensions fromd = 3 to d = 8. The individual
forecast for each starting point is also plotted (green dots),
as well as the SOI signal (black dots). In panel (a) we show
three vertical segmented lines referencing successively the
first and last starting point, as well as the termination point
(TP) of the event. In each panel the corresponding set of time
delays is shown.

In Fig. 7 is shown the performance of the methodology for
the El Niño 1997–1998 event with the 68% decay time of the
autocorrelation as basic time scale. The panels (a–f) show
the mean forecast (orange dots) forτ0 = 7, and for dimen-
sions fromd = 3 to d = 8, respectively. The individual fore-
casts, for each starting point, are also plotted (green dots),
as well as the SOI signal (black dots). In panel (a) we show
three vertical segmented lines referencing successively the
first and last starting point, as well as the termination point
(TP).

In Fig. 8 the performance of the methodology for the EL
Niño 1982–1983 event is shown. The panels (a–f) show the
mean forecast (orange dots) forτ0 = 7, and for dimensions
from d = 3 to d = 8, respectively. The individual forecasts,
for each starting point, are also plotted (green dots), as well
as the SOI signal (black dots). In panel (a) we show three ver-
tical segmented lines referencing successively the first and
last starting point, as well as the termination point (TP).

In Fig. 9, in panels (a) and (b) (for 1997–1998 event) and
(c) (for 1982–1983 event), we plot the cumulative errors of
the mean forecast for dimensionsd = 3 tod = 8 correspond-
ing to Figs.6, 7, and8, respectively.

If we compare Figs.6 to 7, particularly panels (d) to (f),
which correspond to embeddings from dimensiond = 6 to
d = 8, it is visually clear that the mean forecast fits better
the event in Fig.7. Thus, a global comparison of cumula-
tive errors for the 1997–1998 event in Fig.9 (panels a and b)
show that using the 68% decay time for the autocorrelation
(τ0 = 7) offers a significantly better event reconstruction than
the zero autocorrelation time (τ0 = 15). The plotted cumula-
tive errors of the mean forecast at the termination point for
the computed dimensions in panel a) (withτ0 = 15) show no
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Fig. 6. The panels(a–f) show the mean forecast (orange dots) forτ0 = 15, and for dimensions fromd = 3 to d = 8, respectively. The
individual forecasts, for each starting point, are also plotted (green dots), as well as the SOI signal (black dots). In panel(a) we show three
vertical segmented lines referencing successively the first and last starting point, as well as the termination point (TP).
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Fig. 7. The panels(a–f) show the mean forecast (orange dots) forτ0 = 7, and for dimensions fromd = 3 tod = 8, respectively. The individual
forecasts, for each starting point, are also plotted (green dots), as well as the SOI signal (black dots). In panel(a) we show three vertical
segmented lines referencing successively the first and last starting point, as well as the termination point (TP).

significant differences in the range between 50% and 60%.
Instead, the ones computed with the 68% decay time for the
autocorrelation (τ0 = 7, panel (b) show important differences

with figures spreading over a range between 15% and 55%.
Remarkably, dimension 7 has a significantly lower cumula-
tive error (≈ 15%) performing a better event reconstruction
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Fig. 9. Panels(a) and(b) show cumulative errors of the mean fore-
cast for dimensionsd = 3 to d = 8 for the 1997–1998 event, corre-
sponding to Figs.6 and7, respectively. Panel(c) shows the cumu-
lative error of the mean forecast for dimensionsd = 3 to d = 8 for
the 1982–1983 event, corresponding to Fig.8.

than dimension 8. Thus, for this particular event, the use of
this technique allows also to identify the minimal embedding
dimension. For the El Niño 1997–1998 event, the embed-
ding dimension 7 and time delays [0, 29, 85, 92, 162, 190,
197] produce a mean forecast that reconstructs the event with

a cumulative error of (≈ 15%) at the termination point. The
event’s characteristics, the amplitude and the termination (at
the termination point), are reconstructed roughly 3.5 and 4.5
years in advance. In panel (c) of Fig.9 we plot cumulative
errors of the mean forecast for the 1982–1983 event at the
termination point for the computed dimensions with the 68%
decay time for the autocorrelation (τ0 = 7). It is also visu-
ally clear that, compared to the 1997–1998 event’s (panel b
of Fig.9), the cumulative errors are larger, although, in Fig.8
panels (d) to (f), timing and amplitude of the main event are
correctly estimated.

For the El Nĩno 1982–1983 event, the results indicate a
correct reconstruction for the timing and the amplitude of
the main event (ranging from 1982 to 1984, see panels (d
and e) in Fig.8) but with relatively larger errors before (from
1980 to the beginning of 1982), as compared to 1997–1998’s
results. Probably, the better performance of the methodology
in reconstructing the 1997–1998 event is due to the fact that
the information of the 1982–1983 event is already present in
the time series used for reconstructing the 1997–1998 event.

Finally, to complement the information provided in this
paper we show in Fig.10 some two-dimensional projections
of the two events with the parameters of the case shown in
Fig. 7 in panel (e).
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Fig. 10. Some 2-D projections of the phase portrait for dimensiond = 7 in Fig. 7 for the large event 1982–1983 (blue dotted line) and the
large event 1997–1998 (red dotted line).

6 Conclusions

We report a methodology for applying Takens’s embedding
theorem to reconstruct an event taking into account only local
information contained in a short time series. The proposed
method makes use of a maximal predictability criterion to
reconstruct locally an embedding space, in the sense that the
dynamical evolution of the system registered in the experi-
mental data can be reproduced during a given time span. It is
important to reconstruct first anm-dimensional embedding
space so that the relevant time scales that characterize the
phenomenon are contained in the set of time delays of the
embedding. The event reconstruction is performed with lo-
cal nonlinear blind forecastp time steps into the future, using
near neighbours of the closest orbit. The optimal embedding
dimension is selected from alld-dimensional subspaces of
a largerm-dimensional embedding space, the one present-
ing the minimal cumulative error at the termination point of
the event. We find that it is possible to select an optimal set
of time delays that performs a local long term reconstruc-
tion of an event, that is, there exist a subspace of an embed-
ding space where local recontruction can reproduce a class of
events in a time series of a measured observable of a complex
dynamical system.

To test the efficiency of our methodology we use the
monthly SOI time series. We studied the El Niño 1982–1983
and 1997–1998 events that are known to be the strongest
measured (by instruments) events, and difficult to predict
(Fedorov et al., 2003) more than two years in advance (Chen

et al., 2004). The performance of the methodology for the
1997–1998 event can be evaluated by observing that the
amplitude and the termination point can be reconstructed
roughly 3.5 and 4.5 years in advance, respectively. Instead, a
correct reconstruction for the timing and amplitude of the El
Niño 1982–1983 event is performed but with relatively larger
errors as compared to 1997–1998’s results. This is probably
related to the fact that there is no event with the comparable
system dynamics already present in the time series, as was
the case for the 1997–1998 event. Therefore, it is possible
to conjecture that the proposed method may not give good
results if within the time series, past events are not similar
to the studied event, i.e. if there are no similar orbits. Like-
wise, the method can be applied to arbitrarily large sizes, but
it requires a high computational cost.

These results outline the capabilities of the methodology,
and stress that this local reconstruction method can be used
to characterize the local and nonlinear properties of a given
system dynamics.

Characterizing the onset of an El Niño or La Nĩna phase
far in advance has long been a goal of climate science (Tren-
berth et al., 1998). Results byChen et al.(2004) has shown
that when the equatorial dynamics is known (based in the
1960–2000 events), prominent El Niño events could be pre-
dicted, throughout the past century, with lead times of up to
two years.

In fact forecasts has been limited by the so called spring
predictability barrier; forecasts issued before the preceding
Northern Hemisphere spring, typically show very limited
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skill (Webster and Yang, 1992). Recent advances byIzumo
et al. (2010) has shown that by taking into account both the
Indian and Pacific ocean basins the prediction horizon of
ENSO can be extended efficiently up to 14 months. There-
fore new physical understanding (Izumo et al., 2010), and
new statistical reconstruction methodologies (such as the one
proposed here) that may allow longer-range forecasts, by
transcending the spring predictability barrier, i.e., more than
a year in advance, could help with climate forecast in other
regions where ENSO has a strong influence.
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