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Abstract. In this paper, spectral and detrended fluctuation
analyses, as well as time reversibility and magnitude-sign
decomposition, have been applied to the 10-year time-series
data resulting from geochemical monitoring of gas emissions
on the flanks of Mt. Etna, and gases from a CO2 exploitation
well located tens of kilometers from the volcano. The analy-
sis of the time series which showed main effects of fraction-
ation between gases due to selective dissolution in aquifers
(e.g., the CO2 concentration series), revealed the occurrence
of random fluctuations in time, typical of systems where sev-
eral processes combine linearly. In contrast, the series of
He isotopic composition exhibited power-law behavior of the
second-order fluctuation statistics, with values of the scaling
exponent close to 0.9. When related to the spectral exponent,
this value indicates that the isotopic series closely resem-
ble fractal flicker-noise signals having persistent long-range
correlations. The isotopic signals also displayed asymmetry
under time reversal and long-range correlation of the asso-
ciated magnitude series, therefore it was statistically proved
the presence of nonlinearity. Both long-range correlation and
nonlinearity in time series have been generally considered as
distinctive features of dynamic systems where numerous pro-
cesses interact by feedback mechanisms, in accordance with
the paradigm of self-organized criticality (SOC). Thus, it is
here proposed that the system that generated the isotope se-
ries worked under conditions of SOC. Since the fluctuations
of the isotope series have been related to magma degassing,
the previous results place constraints on the dynamics of such
process, and suggest that nonequilibrium conditions must be
dominant. It remains unclear whether the signature of SOC is
directly due to volatile degassing from magma, or if it derives
from the interaction between melt and the stress field, which
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certainly influences magma decompression. The strength of
scaling appears to increase after 2002 (α values from 0.8 up
to 1.2), focusing on transition of the Etnean system from typ-
ical SOC toward conditions of lower criticality. By compar-
ing this transition with those of geophysical observables, it
can be suggested that the drop in the rate of magma supply,
subsequent to the paroxysms of 2001 and 2002–2003, was
the main cause of the scaling change.

1 Introduction

Recent studies of Mt. Etna volcano have analyzed the com-
plex behavior of this system by applying modern statistical
tools designed for dynamic systems to geophysical data sets
obtained by intensive monitoring of the volcano (Centamore
et al., 1997; Vinciguerra and Barbano, 2000; Telesca et al.,
2002; Vinciguerra, 2002; Currenti et al., 2005a, b; Walter et
al., 2005). This approach has revealed previously hidden fea-
tures of the space and time dynamics of the Mt. Etna system,
which suggest it works in conditions of self-organized criti-
cality (SOC); namely, that the system is formed from many
interacting components working far from equilibrium, and
is characterized by (i) highly nonlinear behavior, (ii) slow
driving forces and small perturbations, and (iii) scale invari-
ance of observables in space and time (Sornette and Sornette,
1989; Turcotte, 1992). The first condition means that the ef-
fects of individual processes do not simply sum in the sys-
tem, instead producing chain reactions, and the third condi-
tion indicates that the statistics of an observable of the sys-
tem does not change with the scale of observation (i.e., there
are not preferential scales). Scaling has been found in time
series of Mt. Etna eruptions (Telesca et al., 2002), which
display a fractal distribution and clustering of events. Sim-
ilarly, power-law distributions (i.e., scale invariance) have
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Figure 1. Sketch map of Eastern Sicily and detail of Mt Etna, with positioning of main tectonic 
lineaments and faults (modified from Patanè et al., 2006). Sampled gas discharges are also 
displayed (see text for details). 
 
 
 

Fig. 1. Sketch map of Eastern Sicily and detail of Mt. Etna, with positioning of main tectonic lineaments and faults (modified from Patanè et
al., 2006). Sampled gas discharges are also displayed (see text for details).

been identified by analyzing seismic and geomagnetic sig-
nals of Mt. Etna (Currenti et al., 2005a, b). These signals
display changes in their time structures, clearly related to the
main eruptive episodes, which in turn suggest relationships
with magma dynamics whose cause-and-effect mechanisms
still need to be clarified. Scale invariance and clustering of
seismicity also depends on the main tectonic directions at
Mt. Etna (Vinciguerra and Barbano, 2000), accounting for
the effects of local and regional stress fields on the volcanic
activity (Pataǹe et al., 2006).

Seismicity and geomagnetic signals are linked to the dy-
namics of magma (Currenti et al., 2007), whose eruption is
the ultimate expression of its ascent. Magma ascent also
causes decompression and degassing of volatiles from the
silicate melt. Thus, if the above-mentioned observables
of Mt. Etna (from geophysical signals to eruptions) exhibit
time-scaling behavior, any indicator of magma degassing
would also be expected to display scale invariance and an
organized temporal structure. Geochemical signals are the
best candidate for investigating this, provided that degassing-
related parameters are selected and sufficiently long time se-
ries are available. Caracausi et al. (2003a, b) and Rizzo et
al. (2006) provide geochemical data in 10-year-long time se-
ries from peripheral gas discharges from soils and mud vol-
canoes of Mt. Etna. The data set comprises chemical and iso-
tope compositions of four gaseous manifestations located on
the east and southwest slopes of Mt. Etna, as well as the Naf-
tia gas emissions located on the Hyblean foreland far from
the volcano, along the northeast-southwest-trending fault.
Caracausi et al. (2003a, b) focused on both the He isotope
signals and the concentrations of He and CO2. They con-
cluded that the observed variations in the He isotope compo-
sition are directly linked to magma degassing at depth, while

shallower secondary processes modify the original chemical
composition of the magmatic gas to various extents. The
fractionation of volatiles due to selective dissolution of gas
species in shallow aquifers was recognized as the main sec-
ondary process affecting the magmatic gases.

In this study, we investigate the scaling (two-point correla-
tion) and nonlinear properties of the geochemical time series
from the Mt. Etna peripheral gas discharges. We selected the
He isotope time series obtained at five monitored sites, as
well as significant time series of the He and CO2 concentra-
tions. Each time series consisted of some hundreds of data
points collected during 10 years of sampling (since 1996),
and they displayed remarkable changes linked to the phases
of Mt. Etna activity (Caracausi et al., 2003a, b; Rizzo et al.,
2006). We used both isotope and chemical series to highlight
differences in the dynamics of magma-related processes with
respect to secondary nonmagmatic processes. We show that
He isotope time series (an indicator of magma degassing) ex-
hibit scale invariance, multifractality, long-range correlations
and nonlinearity, similar to other geophysical signals. In con-
trast, the effects of secondary crustal processes appear to be
much more random. Finally, our analysis reveals that tem-
poral variations in scaling properties could be related to the
activity of the volcano.

2 The geochemical data set

Gases discharged from emissions around the periphery of
Mt. Etna volcano have been geochemically monitored since
1996 (Caracausi et al., 2003a). Samples were taken from the
Vallone Salato mud volcanoes (hereafter called VS) and a
soil gas emission near the village of Paternò (hereafter called
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P39) in the southern flank of the volcano (Fig. 1) with a sam-
pling interval of 2 weeks or less. The discharged gases were
collected by means of a stainless-steel funnel in the case of
mud volcanoes, or through a probe inserted 50 cm into the
emission orifice as regards soil gases. Two-way Pyrex bottles
with vacuum valves at both ends were connected to the sys-
tem and used as sample containers. At the same times, sam-
ples were taken from the CO2 exploitation wells of Naftia
(hereafter called Nf, see Fig. 1), located on the Hyblean fore-
land 40 km from the volcano, along the northeast-southwest-
trending fault. In this case, the two-way sample containers
were directly connected to the head of the well. In all the
samples, the He isotope ratio was always measured, while
the entire chemical composition was regularly analyzed from
the year 2000 onwards. Two other gas discharges were added
to the monitoring program in 2001: (i) the mud volcanoes of
Salinelle di Stadio (hereafter called St) at Paternò village,
and (ii) the bubbling gases of the Fondachello water chan-
nel (hereafter called Fd) along the coast east of the volcano
(Fig. 1) (Caracausi et al., 2003b; Rizzo et al., 2006). Since
then, all five sites have usually been sampled at a rate of once
every 2 weeks, with it being increased to one or even two
samples per week during periods of unrest of the volcano.
As a result, we have (i) 10-year time-series data of He isotope
ratios from sites VS, P39, and Nf, with each series consisting
of about 350 data points; (ii) shorter isotope series from sites
Fd and St (each comprising∼200 data points); and (iii) time
series of chemical concentrations for every measured species
at each of the five sites, comprising 200–250 points. These
series are, at our knowledge, the longest and complete col-
lections of He isotopic data from an active volcano. When
recalling that an operator is required to collect these type of
samples, it is easy to understand the huge field work required
to build this dataset. Despite the big efforts to maintain reg-
ular sampling frequencies, the changeable field and weather
conditions, as well as any logistical questions in a ten-year
monitoring, made impossible to achieve regularly sampled
data stricto sensu. Shift by a few days are thus present, as
well as some gap of data.

The He isotope composition of the gas discharges (6.7±

0.9Ra, Ra being the isotope ratio in the atmosphere) suggest
a magmatic genesis, since it matches that of He trapped in
olivine phenocrysts of Etnean lavas (6.7±0.4Ra; Marty et
al., 1994). The very high He/Ne ratios of the emissions rule
out any appreciable contribution of He from the atmosphere.
With this in mind, Caracausi et al. (2003a) focused on large
temporal variations in the He isotopes. By using chemical
balances between the magmatic fluid and the local crustal
endmember, as recognized in several CH4 exploitation wells
in the area, they showed that the isotope fluctuations were
not due to variable contributions of crustal He. Those au-
thors also observed that the large changes occurred simul-
taneously at all sites, even those 60-km distant, and a few
months prior to the main eruptive phases of Mt. Etna (2001,
2002–2003, and 2006). All these features allowed them to

link the variations to magmatic processes occurring inside
the Etnean plumbing system. The isotope changes were at-
tributed to episodes of rapid volatiles exsolution from magma
due to melt ascent and decompression during the refilling of
an extensive plumbing system.

Caracausi et al. (2003b) identified more complex varia-
tions in the chemical composition of the emissions. Coupled
to the effects of magma degassing, those authors found ev-
idence of chemical dissolution of the magmatic fluids into
shallow hydrothermal aquifers. The gas species exhibit, in
fact, different solubilities in water: while CO2 dissolves
in the aqueous solution, noble gases, N2, and CH4 are se-
lectively enriched in the gas phase at chemical equilibrium
with liquid water. Modeling such secondary processes al-
lowed Caracausi et al. (2003b) to filter out the changes of
gas composition due to the selective dissolution into aquifers
and to obtain the composition of the pristine magmatic gas
phase. The dissolution-driven effects largely differed among
the sites, ranging from very modest dissolution at Nf, up to
the almost total CO2 removal at Fd, where a CH4-dominated
gas phase is discharged. Moreover, in the case of site VS,
the degree of gas dissolution also changed in space and time,
causing large variations in the chemical composition. After
filtering out such secondary effects, Caracausi et al. (2003b)
identified temporal variations in both He/CO2 and He/Ne
ratios, consistent with processes of chemical fractionation
during magmatic degassing. Based on the solubilities of
these volatiles in silicate melts, Caracausi et al. (2003b) com-
puted the decompression of the magma bodies involved in
the episodes of refilling, and assessed the depths of the two
major magmatic reservoirs. It is noteworthy that the esti-
mated depths were similar for all the sites except for Nf.

3 Statistical methods

As stated in Sect. 2, our geochemical series (hereafter GS)
must be regarded as unevenly sampled time series from a
strictly statistical point of view, even if they contain a largely
dominant sampling frequency. Moreover, similar to many
types of physical, biological, financial and Earth Science data
(Kantz and Schreiber, 2004; Lovejoy and Schertzer, 2007a,
b), these series are noisy and strongly nonstationary signals,
in that they display intrinsic fluctuations at all scales together
with embedded local trends (Caracausi et al., 2003a, b; Rizzo
et al., 2006; see also Fig. 12a). To test the occurrence of
long-range correlation in such signals, other statistical meth-
ods than autocorrelation and power spectrum analysis have
been more conveniently applied (Kantelhardt et al., 2001),
although they can hardly work out in the case of unevenly
sampled series (Schmitz and Schreiber, 1999). Taking into
account the above raised issues, we follow two approaches:

1. we try to qualitatively reveal the occurrence of long-
range correlation and nonlinearity in our GS by
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applying specific statistical tools for unevenly sampled
time series;

2. we make an effort for quantifying the scaling and non-
linear properties of the GS by using statistical methods
which are particularly suitable for very fluctuating sig-
nals. Because such methods work with evenly sampled
time series, they require an interpolation of the GS.

In both the approaches, we applied the surrogate series
method (Theiler et al., 1992), with the aim to assess the sta-
tistical confidence of our results and the effects of the inter-
polation procedures. In the following, we detail about the
applied statistical approaches.

3.1 Analysis of unevenly sampled time series

We firstly tried to put into evidence, from a qualitative point
of view, long-range correlation and nonlinearity in unevenly
sampled GS. Long-range correlations were investigated by
calculating the power spectrum of GS and searching for any
power law distribution of their spectral frequencies, in accor-
dance with the relation:

S(ω) ∼ ω−β (1)

whereS(ω) is the power spectrum of the GS,ω is the spectral
frequency andβ is the spectral exponent of power law. Be-
cause the well-known Fourier transform cannot be calculated
for unevenly sampled series, we used the Lomb periodogram
(Lomb, 1976) to achieve the power spectrum.

Afterward, we applied the test of Time Reversibility (here-
after TR) to the GS, which allows to put qualitatively into
evidence any nonlinearity in unevenly sampled time series
(Schmitz and Schreiber, 1999). The TR test analyzes the
first-differences of series raised to third power, therefore is
a measure of asymmetry of the series under time reversal
(Subba Rao and Gabr, 1984; Dikes et al., 1995). Since linear
stochastic processes are fully characterized by their power
spectrum, which does not contain information on the direc-
tion of time, any time asymmetry of series reveals the pres-
ence of nonlinearity. For a time series of datax(i) sampled
at timest (i), with i = 1,2,...N , we define TR as (Schmitz
and Schreiber, 1999):

γ =
1

(σ 2)3/2(N −1)

N∑
i=2

(
xi −xi−1

ti − ti−1

)3

(2)

whereγ is the measure of the TR, andσ is the standard devi-
ation of the time series. Conceptually, Eq. (2) computes the
mean of the slopes at the third power. For linear stochastic
processes, which exhibit the same statistic properties under
time reversal, we can expect to calculateγ = 0 in Eq. (2). In
contrast, the achievement ofγ values other than zero indi-
cates that the time series is somewhat nonlinear.

The TR test has been very frequently used for analyzing
several types of time series (see Schmidtz and Schreiber,

1999; Gliozzi et al., 2002; Porta et al., 2006). The statistical
properties of the handled series such as probability density
function (hereafter PDF) and autocorrelation, have been able
to affect the results of the test (Schreiber and Schmitz, 1997;
Schmitz and Schreiber, 1999; Gliozzi et al., 2002), there-
fore the reliability of the method must be estimated by nu-
merical experiments based on a suitable null hypothesis (see
Sect. 3.3.2). In numerical studies, TR has achieved high-
quality performances, sometimes better than other nonlin-
earity tests (i.e. correlation sum and high-order autocorrela-
tion; Schreiber and Schmitz, 1997). The occurrence of time
asymmetry has proved to be a sufficient condition to declare
that the time series shows nonlinear properties. On the other
hand, it cannot be regarded as a necessary condition, given
that the test was not able to reject the null hypothesis of lin-
earity for some types of noisy nonlinear signals (Schreiber
and Schmitz, 1997).

3.2 Time series interpolation, and quantification of
scaling and nonlinearity

After the qualitative recognition, our main aim was to quan-
tify the long-range correlation and nonlinear properties of
the GS by coupling the detrended fluctuation analysis (Peng
et al., 1995) and the magnitude-sign decomposition (Ashke-
nazy et al., 2001, 2003), which are known to work well for
very fluctuating signals. Because these methods are conve-
niently applied to regularly sampled time series, we were
forced to interpolate our GS signals. We used the two sim-
plest methods of interpolation: (i) a step-like scheme, by di-
viding the time interval between samplesxi andxi+1 into two
equal parts, and assigning the valuexi to thexi-edged half
and the valuexi+1 to thexi+1-edged half; and (ii) a piecewise
first-order polynomial scheme, consisting of joining adjacent
samples with straight lines (hereafter referred to as linear,
in contrast with the step-like interpolation). We then sam-
pled the interpolated series with a constant time step so as
to achieve evenly spaced time series, hereafter called regu-
lar GS (RGS), as distinct from the GS. On the basis of our
preferential field sampling at intervals of 1 and 2 weeks, the
sampling frequencies of the new RGS were chosen to match
these two main frequencies (that is 0.07 and 0.14 day−1).
The RGS allow that both detrended fluctuation analysis and
magnitude-sign decomposition can be performed.

3.2.1 Detrended fluctuation analysis

The Detrended Fluctuation Analysis (DFA) was specifi-
cally developed to analyze long-range correlation in noisy
and nonstationary signals with embedded trends by Peng et
al. (1995), and it has been successfully employed to identify
scaling in hundreds of time-series data from totally different
research fields (see Goldberger et al., 2000, for a review). In
DFA, the time seriesx(i), with i = 1,2,...,N , is first mean-
subtracted and then integrated:
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yk =

∑k

i=1
(xi − x̄) (3)

wherexi is the i-th element and̄x is the mean of the time
series. They(k) series (called the profile function) is divided
into M = Int(N/n) time windows having sizen, indexed by
v = 1,2,...,M. Since the length ofy(k) is normally not a
multiple of n and a short final segment ofy(k) is not ana-
lyzed, the profile is also calculated starting from the other
end, thereby producing 2M windows. Each windowv is fit-
ted by anm-th order polynomialpm with m < n, so thatm
defines the order of the DFA. Finally, the fluctuation function
is computed as:

F(n) =

√√√√ 1

2M

2M∑
v=1

1

n

n∑
k=1

[
y(v−1)n+k −pm

(v−1)n+k

]2
(4)

Whenx(i) displays long-range correlation,F(n) follows the
power-law relation:

F(n) ∝ nα (5)

where α is the scaling exponent, which is computed as
the slope of the best-fit straight line in a plot of log[F(n)]
vs. log(n). Equation (4) becomes highly unstable on long
timescales (highn values) due to the few windows consid-
ered, so that it is usually interrupted whenn > N /4 (Kantz
and Schreiber, 2004). In addition, it is known that theF(n)

values are underestimated relative to a pure power-law pre-
diction on a short timescale (n < 10; Hu et al., 2001; Kantel-
hardt et al., 2001).

In the case of stationary Gaussian stochastic series, the
scaling exponentα can be analytically related to the auto-
correlation exponentγ (see Taqqu et al., 1995). Taking into
account thatγ andβ are linked through the Wiener-Khinchin
theorem, it follows that a relationship also exists between the
spectral and the scaling exponents:

β = 2α−1 (6)

Also, the exponentα can be related to the well-known Hurst
exponent H. For stationary series such as fractional Gaus-
sian noises (having−1< β < 1), the profile functionyk of
Eq. (3) will be a fractional Brownian motion (Brownian mo-
tion is in effect the integral of Gaussian noise) and the scaling
exponent will be 0< α < 1, as computed by Eq. (6). In this
case,α will be identical to H (Taqqu et al., 1995), which in
fact takes values between 0 and 1. For non-stationary sig-
nals, such as fractional Brownian motion with 1< β < 3, the
profile yk will be the integral of a fractional Brownian sig-
nal and will display scaling exponents in the range 1< α < 2
(by Eq. 6). It follows that the exponent H of the fractional
Brownian signal will be equal toα−1.

By means of Eq. (6), we can also define the values ofα ex-
ponent to be expected for Gaussian stochastic signals having
known spectral and correlation properties. In fact, we de-
rive thatα = 0.5 for uncorrelated time series, typical of ran-

dom white-noise processes havingβ = 0. Long-range cor-
related data will give higher or lower values:α < 0.5 indi-
cates anticorrelated series (where a large value is more likely
to be followed by a small value);α > 0.5 indicates corre-
lated (persistent) time series;α = 1 is typical of dynamic
systems in a self-organized critical state (producing flicker
noise, also called 1/f or pink noise); andα = 1.5 finally sug-
gests integrated white-noise series, typical of Brownian-like
processes.

As concerns non-Gaussian stochastic series, several stud-
ies have been aimed to evaluate possible effects of probabil-
ity distributions other than Gaussian on results of both DFA
and other correlation estimators (see Barunik and Kristoufek,
2010, for a short review). Although the conclusions of these
works do not always agree about some questions, here we
recall the main achieved results which can be relevant to our
work. The first one is that the expected scaling exponent of
uncorrelated time series is 0.5, regardless the PDF of the sig-
nal. Kantelhardt et al. (2002) showed analytically this result
for long-tailed distributions too. Secondly, all the correla-
tion estimators, including DFA, suitably work in the case of
Gaussian and near-Gaussian distributions, while they deteri-
orate their performances with increasing heavy tails of PDF
(Barunik and Kristoufek, 2010). Therefore, the confidence
level of the DFA test has to be specifically evaluated depend-
ing on the properties of handled series (Sect. 3.3.1).

3.2.2 DFA in short time series

Time series comprising less than 103 points, such as the GS
in this work, may adversely affect the reliability of the esti-
mations ofF(n) andα, although some studies suggest that
DFA is poorly influenced by such finite-time scale effects
(Cernelc et al., 2002; Colorado and Carpena, 2005). We
chose to improve the confidence of the estimated exponents
by using the technique of the phase randomized surrogate
(PRS; Govindan et al., 2007), specifically addressed to min-
imize this question. It involves creating several copies of the
series by preserving the correlations of the original series.
These surrogate series are generated by firstly computing the
Fourier transformF (ω) of x(i) after subtraction of the mean:

F(ω) = |u(ω)|ei8(ω) (7)

where|u(ω)| and8(ω) represent the magnitude and phase
angle of the transform, respectively. The phase is substituted
by using the phase of an equal-length series of independent
and identically distributed (i.i.d.) Gaussian random numbers.
An inverse Fourier transform is then computed to obtain the
phase-randomized series. Since:

S(ω) = F(ω)2
= |u(ω )|2 (8)

and the two series (original and surrogate) have the same
u(ω), they also display the same power spectrum. It fol-
lows from Eq. (6) that they must theoretically have the same
value of α. Therefore, theF(n) function is computed for
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both the original and surrogate series, and the result is aver-
aged among all the achieved values to reduce the statistical
variations inF(n).

Following Govindan et al. (2007), a number of 39 sur-
rogate series must be used to achieve a 95% significance
level of the estimated exponent when using the PRS tech-
nique. Since the surrogate series exhibit slightly differ-
ent variances, they are normalized by their standard devia-
tion before applying DFA. Both original and surrogate se-
ries display the above-mentioned underestimation ofF(n)

on short timescales (see Sect. 3.3), which reduces the range
of timescales that can be used for best fitting andα estima-
tion. For short data sets it is hence useful to apply the cor-
rection proposed by Kantelhardt et al. (2001), which should
eliminate or at least reduce such underestimation at smalln

values. Accordingly,F(n) is multiplied by a correction func-
tionK(n) that, by construction, has negligible effects at large
timescales, whereas it gets growing weight as soon asn be-
comes small.

3.2.3 Magnitude and sign decomposition

Long-range correlated time series can exhibit single or mul-
tiple Hurst exponents, and hence are named mono- or mul-
tifractal, respectively. Whereas monofractal series display
linearly dependent exponents of the different moments, mul-
tifractal ones are nonlinear. It can be shown that mono- and
multifractal series having similar long-range correlation will
also display the same power-law distribution of Fourier am-
plitudes. In contrast, the monofractal series will have a to-
tally uncorrelated phase spectrum, whereas the phase spec-
trum of the multifractal series will be still correlated. To
shuffle the Fourier phases of the multifractal series there-
fore converts the multifractal series into a monofractal one,
destroying the nonlinearity. On this basis, Ashkenazy et
al. (2001, 2003) proposed a practical method to distinguish
linear from nonlinear signals. The method involves first com-
puting the increment series from the original time seriesxi :

1xi = xi+1−xi (9)

Opposite to an integration (see Eq. 3), Eq. (9) results in the
correlations of the increment series being characterized by an
exponent that is about 1 less than the original series. There-
after, the magnitude series|1xi | and the sign series sgn(1xi)

are computed from increments, so that:

1xi = sgn(1xi)|1xi | (10)

Based on numerical experiments, Ashkenazy et al. (2003)
showed that the sign series preserves the linear correlations
of the increment series (so producingαincr. ∼= αorig. −1). In-
stead, the correlation of the magnitude series provides infor-
mation about the nonlinearity of the original seriesxi . This
means that if the original series is positively correlated (e.g.,
αorig. = 1) and nonlinear, theα value of the magnitude se-
ries is also suggestive of a long-range correlation (namely,

αmagnitude= 1), whilst both the sign and increment series will
be anticorrelated. Randomizing the Fourier phases of the
original series so as to destroy its nonlinearity will not af-
fect the correlations of both the increment and sign series,
but the magnitude series will appear to be totally uncorre-
lated (α = 0.5).

The same as in the other statistics of this work, the mag-
nitude test can be also affected by both autocorrelation prop-
erty and PDF of the handled time series, therefore the null
hypothesis and the confidence level of the test have to be
evaluated by numerical experiments (Sect. 3.3.1). Recently,
Nagarajan (2007) achieved suitable results in rejecting null
hypothesis of linearity when using magnitude series of Gaus-
sian and near-Gaussian signals, coupled to PRS method for
surrogates. In the case of strongly non-Gaussian signals,
magnitude did not work suitably when coupled to surrogate
techniques which preserve the non-Gaussianity of PDF (Na-
garajan, 2007).

3.3 Reliability of the statistics: the method of surrogate
series

The method of surrogate series (Theiler et al., 1992) allows
to estimate reliability and error bars of a statistical test when
we do not know its probability distribution and cannot analyt-
ically calculate its variance. Practically, one creates several
surrogate series having chosen PDF and correlation prop-
erties, and applies the selected statistic test on these surro-
gates. The comparison of the achieved results with the ex-
pected ones constrains the reliability and uncertainty of the
test. Here we used the surrogate series method on: (i) DFA
and magnitude-sign decomposition studies of the interpo-
lated geochemical series; (ii) the TR tests for unevenly sam-
pled geochemical series.

3.3.1 DFA and magnitude-sign decomposition on
interpolated series

The surrogate series with chosen correlation features were
generated by using the Fourier filtering method described in
Chen et al. (2002). In detail, coupling Eqs. (1) and (8) yields:

u(ω) = F(ω) ∼ ω−β/2 (11)

In the case of a Gaussian white noise, the latter one has
Fourier transformFG(ω) with spectral exponentβ equal to
0 (the subscript “G” refers to Gaussian white series). Fourier
coefficients having a known power-law distribution can be
obtained using:

u(ω) = FG(ω)ω−β/2 (12)

whereβ is the chosen spectral exponent. We therefore gener-
ated a Gaussian white series with similar variance to original
data, we calculated the Fourier coefficients, and used them in
Eq. (12) with the selectedβ value (namely, the required cor-
relation property). An inverse Fourier transform performed
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Figure 2. Bilogarithm plot of the fluctuation function F(n) vs. time scale n, for a RSS having 
flicker-noise correlation properties (theoretical α = 1.03). The DFA results are displayed for the 
series interpolated by both step-like and linear method, and resampled by both 0.07 day-1 and 0.14 
day-1 frequencies. The label “correct.” refers to DFA coupled to PRS and small-n correction 
techniques (see text). As the calculated F(n) functions almost overlap, they have been multiplied by 
an arbitrary factor so as to be shifted for clarity. This procedure was repeated in the following 
figures whenever required. 

Fig. 2. Bilogarithm plot of the fluctuation functionF(n) vs. time
scalen, for a RSS having flicker-noise correlation properties (the-
oretical α = 1.03). The DFA results are displayed for the series
interpolated by both step-like and linear method, and resampled by
both 0.07 day−1 and 0.14 day−1 frequencies. The label “correct.”
refers to DFA coupled to PRS and small-n correction techniques
(see text). As the calculatedF(n) functions almost overlap, they
have been multiplied by an arbitrary factor so as to be shifted for
clarity. This procedure was repeated in the following figures when-
ever required.

thereafter on the Fourier coefficients coming from Eq. (12)
yielded stationary data having the chosen correlation prop-
erty [hereafter named the simulated series (SS)]. Equation (6)
also gave the expected value of scaling exponentα.

It should be noticed that this technique produces corre-
lated series having expected Gaussian distribution. We al-
ready discussed on the fact that DFA exhibits very good per-
formance when we work with Gaussian to near Gaussian se-
ries, while progressively reducing its quality with increasing
heavy tails of PDF (Barunik and Kristoufek, 2010), therefore
surrogates should have similar PDF than the original series.
By using simple histograms, it can be showed that the GS es-
sentially are Gaussian to near-Gaussian distributed signals.
We took care to compare the PDF of GS to that of the surro-
gate series, and we verified a good match of the distributions.
As a result, the effects of PDF on DFA were considered to be
minor.

We applied the interpolation procedure to the SS with a
knownα value and length equal to that of the GS, and cal-
culated a new series (hereafter called regular SS (RSS), by
analogy with the RGS) by sampling the interpolated SS at
the same frequency as that used for the RGS. Then, we ap-
plied DFA to the RSS, and we compared the achieved results
with those expected.

0.01

0.1

1

10

10 100 1000 10000
n (days)

F(
n)

Step-like, 0.14/d
Step-like, 0.14/d, Correct.
Linear, 0.14/d, Correct.
Step-like, 0.07/d, Correct.
Linear, 0.07/d, Correct.

α=1.07

α=1.09

α=1.02

α=1.06

Flicker RSS

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-4 -3 -2 -1 0

Log(ω) (1/d)

Po
w

er
 s

pe
ct

ru
m

β=1

β=2

Figure 3. Power spectrum of a flicker RSS, with step-like interpolation and resampled by 0.07 d-1

(grey) and 0.14 day-1 (black). The two curves have been shifted by 2 logarithm units for clarity. The
different spectral exponent of the high- and low-frequency branches is displayed. 

Figure 2. Bilogarithm plot of the fluctuation function F(n) vs. time scale n, for a RSS having 
flicker-noise correlation properties (theoretical α = 1.03). The DFA results are displayed for the 
series interpolated by both step-like and linear method, and resampled by both 0.07 day-1 and 0.14 
day-1 frequencies. The label “correct.” refers to DFA coupled to PRS and small-n correction 
techniques (see text). As the calculated F(n) functions almost overlap, they have been multiplied by 
an arbitrary factor so as to be shifted for clarity. This procedure was repeated in the following 
figures whenever required. 

Fig. 3. Power spectrum of a flicker RSS, with step-like interpolation
and resampled by 0.07 d−1 (grey) and 0.14 day−1 (black). The
two curves have been shifted by 2 logarithm units for clarity. The
different spectral exponent of the high- and low-frequency branches
is displayed.

Figure 2 shows a log[F(n)] vs. log(n) plot for a flicker
RSS. It is clear the advantage of using the techniques for
improving DFA of short time series (i.e. the coupled PRS
and small-n correction techniques, see Sect. 3.2.2), in that
they greatly reduce the statistical variability of the estimated
F(n) values. We therefore used these two techniques as a
rule, nonetheless their application does not change basically
the meaning of our analyses.

In RSS with weekly sampling (0.14 day−1), all F(n) func-
tions show underestimations at small scales (n < 49 days, or
n < 7 points), suggesting that the small-n correction method
only partially solves the problem (Fig. 2). The deflection
does not appear in the corrected DFA of uninterpolated SS,
indicating that it is caused by the interpolation procedure. In-
deed, interpolation schemes are known to affect estimations
of power spectra, since they reduce the high-frequency com-
ponents. In fact, the step-like scheme causes a power-law
form of the high-frequency portion of spectrum withβ = 2,
whereas linear interpolation givesβ = 4 (Newman and Eble,
1999). In Fig. 3, this purely mathematical effect is evident
at high frequencies, with a crossover from high- to low-
frequency behavior occurring around 0.02 day−1 (timescales
of about 50 days). Since the power spectrum exponentβ and
scaling exponentα are linked (Eq. 6), higherβ values for
timescales shorter than 50 days imply higherα (with values
of 1.5 to 2.5, for step-like to linear interpolations, respec-
tively); this explains the above-mentioned deflection. This
problem constrained us to exclude the values ofF(n) for
n < 49 days when fitting the straight line to estimateα. In
RSS with a sampling frequency of 0.07 day−1, F(n) cannot
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Figure 4. Fluctuation function F(n) vs. time scale n, for a RSS having white noise correlation 
(theoretical α = 0.55). A straight line having slope α = 1 has been plotted for comparison (dotted). 
DFA was always coupled to PRS and small-n correction techniques, except for calculation of the 
data group labeled “not correct.”. Resampling frequencies were both 0.14 day-1 and 0.07 day-1. The 
label “DFA-2” indicates second-order DFA analysis. 

Fig. 4. Fluctuation functionF(n) vs. time scalen, for a RSS having
white noise correlation (theoreticalα = 0.55). A straight line hav-
ing slopeα = 1 has been plotted for comparison (dotted). DFA was
always coupled to PRS and small-n correction techniques, except
for calculation of the data group labeled “not correct.”. Resam-
pling frequencies were both 0.14 day−1 and 0.07 day−1. The label
“DFA-2” indicates second-order DFA analysis.

be computed below the scale of 42 days (namely,n < 3
points), and hence the small-scale deflection is much less ev-
ident (Figs. 2 and 3).

Similar results were obtained by applying DFA to white-
noise RSS (Fig. 4), although the small-scale deflection was
more marked due to the lesser slope of the log[F(n)] func-
tion for white noise. Indeed, it was already evident for a
timescale shorter than 100–120 days when the 0.14-day−1

sampling frequency was applied. At a sampling frequency of
0.07 day−1, short timescales were only slightly affected by
underestimation and thus theα exponent of uncorrelated sig-
nals could be still suitably estimated by linear best fitting of
the log[F(n)] function withn ≥ 56 days (orn ≥ 4 points). Fi-
nally, higher-order DFAs did not change the overall results,
but they did cause appreciable interpolation-related under-
estimation ofF(n) on timescales of longer than 100 days
(Fig. 4).

With the aim of quantitatively assessing the uncertainties
in α estimation, we generated a large number of SS with ex-
pected correlations ranging from white to Brownian noise by
the surrogate method, and we converted them into RSS by
the interpolation and resampling procedure. When applying
DFA, we estimated the scaling exponent by fitting the linear
portion of the log[F(n)] function (n ≥ 49 or ≥ 56 days de-
pending on the selected sampling frequency). For frequen-
cies of both 0.14 and 0.07 day−1, the comparison between
expected and estimated values revealed that the exponent was
slightly overestimated for white-noise uncorrelated signals,
very similar for flicker noise, and slightly underestimated for

Brownian noise (Fig. 5). Fitting the data distribution in Fig. 5
with a quadratic polynomial curve allowed the expectedα

value to be calculated from the estimated one, giving stan-
dard errors of 0.06–0.08α units.

Surrogate series tests were finally performed to quantify
the reliability of the estimated scaling exponent of the magni-
tude series. In so doing, we were encouraged by the achieved
positive results for near-Gaussian signals similar to our GS,
already mentioned in Sect. 3.2.3 (Nagarajan, 2007). We fo-
cused on evaluating the significance ofα values higher than
0.5, which should be indicative of nonlinearity in the time
series. We generated SS with known correlations and simi-
lar distribution to that of the GS (see above), and since such
series were monofractal, the resulting magnitude series were
uncorrelated (α ∼= 0.5). We then converted the SS into RSS
by the interpolation and resampling procedure, computed the
magnitude series, and finally applied DFA to the magnitude
RSS, predicting thatα ∼= 0.5. As a result, we found that both
step-like and linear interpolated RSS with a 0.14-day−1 sam-
pling frequency displayed some degree of correlation. The
assessed average exponents were in fact 0.65 and 0.72, re-
spectively, with uncertainties of about 0.05α units (Fig. 6).
Randomizing the phase spectra of these RSS and again per-
forming DFA yielded the expectedα ∼= 0.5 (Fig. 6). Several
RSS with step-like interpolation and a 0.14-day−1 sampling
frequency also displayed deviations from a strictly linear be-
havior in a plot of log[F(n)] vs. log(n), giving an estimatedα
with poor reliability (Fig. 6). As shown in the following, this
problem also emerged in RGS resampled at this frequency,
and thus we did not take into account the related magnitude
exponents. In contrast, using a 0.07-day−1 sampling fre-
quency yielded plots of log[F(n)] vs. log(n) of good qual-
ity (Fig. 6). Their average exponents were 0.58 and 0.65 for
step-like- and linear-interpolated RSS, respectively (Fig. 7).
These values differ little from the expectedα = 0.5, and we
took into account such a difference when evaluating the non-
linearity of RGS.

3.3.2 Reliability of TR tests

For creating surrogates of unevenly sampled series to be
used in TR test, we followed the Constrained Randomization
method as described in Schmitz and Schreiber (1999). Ac-
cordingly, the power spectrum of the real time series is calcu-
lated by using the Lomb periodogram, that provides the con-
straints for creating the surrogates. Starting from a random-
ized distribution of the original data, they are annealed until
their Lomb periodogram closely resembles that of the orig-
inal data. The method is based on defining a cost function
which strictly depends on the difference between the Lomb
periodogram of surrogate data and that of the original series.
This function is then minimized by simulated annealing: the
surrogate series is modified by exchanging two points cho-
sen at random, and the modification is accepted if it yields a
lower value of the cost function. The generated series can
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be accepted as surrogate when the cost function becomes
smaller than a selected tolerance. The similar Lomb peri-
odogram of surrogate and original series and the annealing
procedure guarantee for keeping similar long-range correla-
tion and probability distribution, respectively (namely all the
linear properties). In contrast, the surrogate series have lost
the nonlinearity of the original series, due to the initial step of
randomization. As a consequence, the technique implies that
the null hypothesis is a linear stochastic process, regardless
its PDF.

Depending on the selected tolerance to accept surrogates,
as well as the length of series, the calculation can be very
time-consuming. The TISEAN code (Hegger et al., 1999)
was employed with this goal. Starting from a GS, we calcu-
lated 20 surrogate series having the same correlation prop-
erties (namely, very similarβ value), in order to guarantee a
90% level of significance for the test (Schmitz and Schreiber,
1999). After, we estimated the parameterγ for each surro-
gate series by using Eq. (2). The obtained values move in the
range−0.05< γ < 0.05, meaning thatγ values of the real-
data time series within this range do not allow to exclude
linearity, while higher or lower values imply the occurrence
of nonlinear properties.

To conclude this section on the reliability of the applied
statistics, it is useful to shortly recap the above-discussed ef-
fects of the PDFs of time series on the applied techniques of
surrogates. The occurrence of non-Gaussianity of PDF can
indeed affect the estimations of both correlation and non-
linearity of time series, hence the chosen surrogate method
should preserve the PDF of original series. In evaluating
long-range correlation by DFA, the applied Fourier filtering
technique in Sect. 3.3.1 can in principle modify the PDF of
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Figure 7. DFA-calculated vs. expected α exponents for magnitude RSS. All the simulated series 
were interpolated, resampled by 0.07 day-1 frequency and their magnitude series were computed. 
After, DFA was performed to assess the α values. 

Magnitude flicker RSS

Fig. 6. Log-log plot of the fluctuation functionF(n) vs. time scale
n, for a magnitude RSS. The DFA results are displayed for the series
interpolated by both step-like and linear method, and resampled by
both 0.07 day−1 and 0.14 day−1 frequencies. The label “random-
ized” refers to DFA of the magnitude RSS after that the RSS phase
spectrum was randomized (see text).

the series to a Gaussian, nevertheless the quasi-gaussianity
of our GS ensured very good match between original and
surrogates. For similar reasons, the coupling of magni-
tude method and Fourier filtering technique provided suit-
able results in rejecting null hypothesis of linearity when
performing nonlinear estimations. On the other hand, in
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Figure 8. Power spectra of unevenly sampled isotope series from sites P39, VS and Nf, computed 
by the Lomb periodogram method. The dotted lines are the best fit of a power law distribution of 
the spectral frequencies. Lomb periodograms were computed by the source routine available at 
http://www.physionet.org/physiotools/wfdb/psd/lomb.c

Fig. 8. Power spectra of unevenly sampled isotope series from
sites P39, VS and Nf, computed by the Lomb periodogram method.
The dotted lines are the best fit of a power law distribution of the
spectral frequencies. Lomb periodograms were computed by the
source routine available athttp://www.physionet.org/physiotools/
wfdb/psd/lomb.c.

the case of nonlinearity estimations by TR test, we used the
Constrained Randomization technique for unevenly sampled
series (Sect. 3.3.2), which preserves both autocorrelation and
PDF of the original signal. It means that the related null hy-
pothesis is a linear stochastic series, regardless its PDF, and

any non-Gaussianity of the original series cannot affect the
result of the test. We also recall that the TR test does not sys-
tematically reject the linear null hypothesis in some kinds of
very noisy signals (see Sect. 3.1 and Schreiber and Schmitz,
1997), nevertheless a positive result can be considered a suf-
ficient condition to assess nonlinearity even in these difficult
cases.

4 Application to geochemical time series

We applied the described statistical methods to: (i) the He
isotope time series from all five monitored sites (see Sect. 2)
and (ii) some significant time series of the He and CO2 con-
centrations from selected sites. Among the available He iso-
topic time series, the longest ones (sites VS, P39, and Nf) are
discussed in Sect. 4.1, while the shortest (Fd and St) are con-
sidered in Sect. 4.2. Finally, selected time series of the He
and CO2 chemical concentrations are discussed in Sect. 4.3.

After computing the Lomb periodogram and TR test of the
unevenly sampled GS, we interpolated the series and applied
the DFA method to the RGS. In order to evaluate the achieved
results, they were always compared to the statistics coming
from the surrogate series analyses. First-order DFA (simply
defined as DFA in this paper) was normally used, although
we also performed calculations with second- and third-order
DFA (DFA-2 and DFA-3, respectively). Finally, we com-
puted the magnitude series of the RGS, and the related DFA
and scaling exponent of magnitude RGS to asses the extent
of nonlinearity.

Nonlin. Processes Geophys., 17, 733–751, 2010 www.nonlin-processes-geophys.net/17/733/2010/
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Fig. 10.Log-log plot ofF(n) vs.n, for the magnitude RGS from Nf,
VS and P39 sites. TheF(n) functions of the sites have been shifted
by a factor 2 for clarity. The series were step-like interpolated and
resampled by 0.07 day−1 frequency.

4.1 Long-He-isotope time series

In Fig. 8, we show the power spectrum of unevenly sam-
pled isotope GS from sites P39, Nf, and VS, computed by
the Lomb periodogram. All exhibit a somewhat power-law
distribution of the spectral frequencies, suggesting the occur-
rence of long-range correlations. Table 1 gives the values of

Table 1. Scaling (α) and time reversibility (γ ) of isotopic GS.

Site αa γ b Site αa γ b

VS 0.89 −0.97 Fd 0.99 −1.8
P39 0.81 0.46 St 1.05 −2.2
Nf 0.78 −0.51

a computed by fitting power spectrum by using Eqs. (1), (6), after calculating the spec-
trum by the Lomb periodogram method on unevenly sampled GS (see text).
b computed by means of Eq. (2) on unevenly sampled GS (see text). Nonlinearity is
proved forγ values higher or lower than0.05< γ < 0.05 (see text).

the scaling exponentsα, as computed by Eq. (6). They fall
between 0.78 and 0.89, close to the signature of long-range
correlated, flicker-noise signals. Site VS exhibits the high-
est scaling exponent, whereas the strength of the correlation
seems to be slightly weaker at site Nf, the most distant from
Mt. Etna (Fig. 1). In Table 1, we also provide the estimated
values ofγ , as achieved by performing the TR tests on the
same GS (Eq. 2). When compared to the range defined by
the surrogate series (Table 1), the values are sharply differ-
ent. We thus reject the null hypothesis of linearity with a
95% confidence, suggesting that all three series exhibit non-
linear properties. Again, site VS seems to display the largest
asymmetry under time reversal.

As a following step, we attempt to quantify the recog-
nized properties of scaling and nonlinearity by using DFA.
Figure 9a displays the fluctuation function for the longest-
isotope RGS from sites P39, Nf, and VS, interpolated us-
ing the step-like method and resampled at a frequency of
0.14 day−1. The portion of [F(n)] for timescales shorter than

www.nonlin-processes-geophys.net/17/733/2010/ Nonlin. Processes Geophys., 17, 733–751, 2010
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42 days is not shown due to the above-discussed deflection
at short timescales. All time series show power-law distribu-
tion of the second-order fluctuation statistics. They closely
resemble flicker-noise signals because displaying long-range
correlations with scaling exponents that approach unity. Site
VS exhibits the highest scaling exponent, whereas P39 and
Nf give slightly lower exponents. It is noteworthy that theα

values are in very good agreement with those coming from
the Lomb periodogram. As assessed on the basis of the surro-
gate analysis (see Fig. 5), this result suggests that the adopted
interpolation schemes do not significantly affect the statistics
of our GS at the investigated time scales. The results did
not change significantly when the RGS were resampled at
0.07 day−1, although the differences among the sites become
smaller (Fig. 9b). It is also noteworthy that a slight crossover
appears to be present at a timescale of around 300 days in
the VS function, which increases the correlation exponent by
about 0.2 units (from 0.88 to 1.08) from the short to long
timescales. This could hint any differences in the underlying
dynamics of the system between short and long timescales.
We recall that similar increases in correlation were revealed
by DFA of magnetic data from the summit of Mt. Etna, al-
though the timescales were very different (∼12 days; Cur-
renti et al., 2005b).

Interesting results were also obtained when trying to quan-
tify the extent of nonlinearity by using the magnitude se-
ries of the three sites. When using a sampling frequency
0.14 day−1, applying DFA to the magnitude RGS yielded
bilogarithm plots ofF(n) vs. n of poor quality, as already
confirmed for RSS. In contrast, reliable estimates of the ex-
ponents were obtained using 0.07 day−1 sampling frequency

and the step-like interpolation (Fig. 10). In these conditions,
α values were in the range 0.7–0.8, clearly above the val-
ues obtained for monofractal RSS managed under the same
conditions (α ∼= 0.58). In accordance with the results from
the TR tests, the aboveα values confirm that all the RGS
exhibit significant degrees of multifractality and nonlinearity
(Table 1).

Finally, we also applied DFA-2 and DFA-3 to the long-
isotope RGS in an attempt to identify polynomial trends (Hu
et al., 2001). The slopes of log[F(n)] functions of the high-
order DFA (not shown) did not differ greatly from those of
first-order DFA, apart from the above-mentioned underesti-
mation at short timescales that greatly restricts the reliable
portion of the fluctuation function. It can be concluded that
significant polynomial trends are not present in the RGS.

4.2 Short isotope series and temporal variations of
scaling

The fluctuation functions of the short isotopic signals from
sites St and Fd also exhibit long-range correlations, with ex-
ponents close to typical flicker-noise signals (Fig. 11). How-
ever, the correlations appear to be slightly stronger than those
assessed by the analysis of the VS, P39, and Nf series, show-
ing scaling exponents of 1.0 to 1.1. Recalling that the isotope
GS from St and Fd cover the period since 2001, the differ-
ences in correlations between long and short series is an at-
tractive result that can be attributed to two main mechanisms:
(i) the effect of shorter signals in the estimation of the scal-
ing exponent; and (ii) the different behavior of the volcanic
system between the periods 1996–2001 and 2001–2006. The
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Fig. 12. Variations of some geochemical and geophysical parame-
ters during the period 1993–2006.(a) unhandled He isotopic time
series from VS site (grey curve), and localα exponents of the iso-
topic GS (symbols). The time length of the sliding window for cal-
culating localα is displayed (see text). The horizontal lines on the
top indicate the main eruptive phases: summit activities (thick grey
segments) and flank eruptions of 2001, 2002–2003, 2004 and 2006
(black segments);(b) seismicity expressed as both monthly rate of
events and strain release;(c) one-year mean vertical displacement
of the volcanic cone, and cumulative erupted and degassed magma
(see Allard et al., 2006; Neri et al., 2009, and their references for
sources of geophysical data).

reliability tests of scaling exponent estimation on RSS having
similar length revealed only a slight decrease in precision
(standard errors of about 0.1α units), although their accu-
racies are similar. Despite the larger error bars due to the
shortness of the series, their comparable accuracies exclude
the former of the two above hypotheses. In order to check the
second hypothesis, we studied the signals from VS, P39, and
Nf after removing the portion from 1996 to 2000. This made
the data directly comparable to the St and Fd series in terms
of both statistical significance and covered time period. As

evident in Fig. 11, the results for the shortened VS, P39, and
Nf series are very similar to those for St and Fd, irrespective
of the selected resampling frequency. In fact, the series from
all five sites display long-range correlation, with scaling ex-
ponents significantly higher than those of the long series.

The differences between the long and shortened series em-
phasize a very probable change in the behavior of the natu-
ral system over time. In order to investigate this hypothesis,
DFA was coupled to a sliding-window method (see Lapenna
et al., 2004, for a case study applied to geochemical data).
Basically, a window that was half the length of the long se-
ries was moved along the series whilst DFA was performed
to measure the temporal changes in the scaling exponent.
Applying this calculation to the three long series from VS,
P39, and Nf revealed a progressive change in the correlation
(Fig. 12a) that exceeds the estimated error bars. Theα val-
ues start to increase in all the sites around 2002, when most
of the sliding window includes the portion of the series af-
ter the 2001 and 2002–2003 eruptions. Due to the long time
period covered by the sliding window, it is not possible to
better localize the onset of the change. Although narrower
sliding windows could be in theory used to increase the tem-
poral resolution, the statistical reliability becomes too low.
Anyway, the increase of scaling lasts throughout the entire
second half of the series, withα exponents changing from
0.8–0.9 up to 1.2. The change seems also to become sharper
in the final piece of the series (Fig. 12a).

Finally, we studied the nonlinearity of the signals from St
and Fd, by firstly performing the TR test. Theγ values al-
lowed to reject the null hypothesis of linear stochastic pro-
cesses, revealing fingerprint of nonlinearity conditions (Ta-
ble 1). We analyzed the magnitude series related to the short
signals from St and Fd, and to the shortened series from VS,
NF, and P39. As stated in Sect. 3.3.1, we only used the 0.07-
day−1 sampling frequency, but the quality of the computed
power law functions was still not very high (Fig. 13). Al-
though less confident, the obtained results have practically
the same significance as those derived from longer signals.
In fact, the scaling exponents of the sites range from 0.7 to
0.8, except for the lower value of the Nf series. Comparing
these values with 0.58 of monofractal RSS again reveals the
appreciable extent of multifractality and nonlinearity of the
GS, in accordance with the TR analyses.

4.3 Time series of He and CO2 concentration

The results presented above clearly indicate that the temporal
variations in the He isotope composition exhibited both long-
range correlation and nonlinearity. Such properties are some-
how associated with the release of volatiles from magma,
since isotope signals are strictly linked to the magma as-
cent and degassing (see Sect. 2). Likewise, temporal vari-
ations in noble gas and CO2 concentrations have been fre-
quently linked to volatile degassing due to magma decom-
pression (Nuccio and Paonita, 2001; Paonita, 2005), with a
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Fig. 13. Log-log plot ofF(n) vs. n, for the magnitude RGS from
St, Fd and shortened VS, Nf and P39 signals. TheF(n) functions
of the sites have been shifted for clarity.

recent focus on possible nonequilibrium effects (Paonita and
Martelli, 2006). On this basis, we investigated the time series
of chemical composition with two main aims: (i) to elucidate
whether the concentration of volatiles shows temporal varia-
tions with flicker-noise dynamics (similar to the He isotope
signals), and (ii) to understand how secondary nonmagmatic
processes can affect the correlation and nonlinear statistics.

We selected two types of chemical series, one related to
the magmatic system, and the other mainly affected by shal-
low secondary processes. We already stated that discharged
gases from Nf are poorly affected by selective dissolution
into aquifers, and thus the temporal variation of the He con-
centration is sufficiently representative of the true magmatic
degassing signal. We then selected the He concentration time
series of Nf for performing DFA. On the other hand, Cara-
causi et al. (2003b) inferred that temporal variations in the
chemical composition of the gases from the VS vent showed
the largest variations over time, due to the effects of selective
dissolution in shallow aquifers (see Sect. 2). In fact, because
the not-condensable fraction of magmatic gases is basically
dominated by CO2 (>98 mol%), the observed fluctuations in
the CO2 concentration at VS (from 30 to 80 mol%) cannot
be caused by magma degassing. Being coupled to opposing
variations in the He, Ne, and CH4 concentrations, they fit a
model of dissolution-driven fractionation in aquifers (Cara-
causi et al., 2003b). The same model can also be used to cor-
rect the He content with respect to the effects of dissolution-
driven fractionation, so as to restore the original magmatic
signal. Therefore, we get (i) two time series carrying infor-
mation about the magmatic system, namely the He concen-
tration of Nf and the corrected He concentration of VS; and

0.25

0.50

0.75

1.00

1.25

1.50

VS, CO2 VS, He corr Nf He

al
fa

RGS

0.25

0.50

0.75

1.00

1.25

1.50

VS, CO2 VS, He corr Nf He

al
fa

magnitude RGS

0.01

0.1

1

10

10 100 1000n (days)

F(
n)

Nf P39 Fd St VS

magn. short RGS
S.F. = 0.07d-1

α = 0.69

α = 0.64

α = 0.78

α = 0.78

α = 0.70

Figure 13. Log-log plot of F(n) vs. n, for the magnitude RGS from St, Fd and shortened VS, Nf and
P39 signals. The F(n) functions of the sites have been shifted for clarity. 

Figure 14. Values of α exponent for the chemical RGS and related magnitude series. Labels in 
abscises are: “VSCO2” the CO2 concentration series of VS site; “VSHe corr.” the He concentration 
series of VS site, once filtered out the dissolution effects; “NfHe” the He concentration series of site 
Nf. The calculated exponents have been corrected by the estimated accuracy errors (see Sect. 3.3)
hence they can be directly compared to the theoretical values of flicker and white noise (solid 
horizontal lines). 

0.25

0.50

0.75

1.00

1.25

1.50

VS, CO2 VS, He corr Nf He

al
fa

RGS

0.25

0.50

0.75

1.00

1.25

1.50

VS, CO2 VS, He corr Nf He

al
fa

magnitude RGS

0.01

0.1

1

10

10 100 1000n (days)

F(
n)

Nf P39 Fd St VS

magn. short RGS
S.F. = 0.07d-1

α = 0.69

α = 0.64

α = 0.78

α = 0.78

α = 0.70

Figure 13. Log-log plot of F(n) vs. n, for the magnitude RGS from St, Fd and shortened VS, Nf and
P39 signals. The F(n) functions of the sites have been shifted for clarity. 
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series of VS site, once filtered out the dissolution effects; “NfHe” the He concentration series of site 
Nf. The calculated exponents have been corrected by the estimated accuracy errors (see Sect. 3.3)
hence they can be directly compared to the theoretical values of flicker and white noise (solid 
horizontal lines). 

Fig. 14. Values ofα exponent for the chemical RGS and related
magnitude series. Labels in abscises are: “VSCO2” the CO2 con-
centration series of VS site; “VSHe corr.” the He concentration series
of VS site, once filtered out the dissolution effects; “NfHe” the He
concentration series of site Nf. The calculated exponents have been
corrected by the estimated accuracy errors (see Sect. 3.3) hence they
can be directly compared to the theoretical values of flicker and
white noise (solid horizontal lines).

(ii) one time series mainly affected by the shallow processes
of dissolution-driven fractionation (the CO2-concentration
time series of VS). We did not consider the uncorrected He
concentration of VS due to the presence of coupling effects
from both the magmatic and shallow systems.

Figure 14 displays the scaling exponent of the above three
series as calculated for the isotopic GS. The He concentration
RGS of both Nf and VS (the “magmatic” series) indubitably
displayed long-range correlations, in accordance with the re-
sults from He isotope series. Indeed, it is understandable that
the chemical and isotope series – both carrying direct infor-
mation of the magmatic system – displayed similar correla-
tions. The value ofα was comparable to that for the long-
isotope series, and slightly lower than that for the shorter se-
ries. On the other hand, the TR test on the same two series
does not highlight any significant time asymmetry and, ac-
cordingly, the calculated value of the exponent for the mag-
nitude of these RGS essentially matched the range defined
for white-noise RSS. These results indicate monofractality
and linearity of these series, in contrast to those obtained for
the magnitude isotope series.

DFA of the CO2 concentration RGS of site VS (the
aquifer-controlled series) provided further information. The
scaling exponent of this series was close to the values for
white-noise RSS (Fig. 14), highlighting lack of long-range
correlation and random temporal fluctuations. Calculation of
theα value of the corresponding magnitude series (Fig. 14),
again yielded white-noise-like values and absence of nonlin-
earity. Since the secondary process of dissolution essentially
controls the series (see Sect. 2), we suggest that the shallow
nonmagmatic dynamics produces neither long-range corre-
lation nor nonlinearity. Therefore, the shallow system where
magmatic gases selectively dissolve in groundwater seems to
exhibit different dynamic features which do not involve feed-
back mechanisms.
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5 Inferences on dynamics of magma degassing and
relations with volcanic activity

The results of DFA on isotopic GS indicate a clear power-
law distribution of the second-order fluctuation function, that
highlights the presence of long-range correlations. Coher-
ently, the Lomb spectrum is power-law correlated too. When
compared to signals with known correlation properties, the
estimated values of the scaling exponent, close to unity, al-
low to recognize the isotopic GS as nearly flicker-noise or
1/f signals. It means that the temporal fluctuations of the He
isotope composition exhibit a fractal, power-law distribution,
without any characteristic time scale (i.e., scale invariance).
Finally, the significant asymmetry under time reversal, cou-
pled to the long-range correlations of the related magnitude
series, provide evidences of multifractality and nonlinearity
in all the isotopic GS.

The efforts of recognizing the scale invariance and non-
linearity in the isotopic series arise from the fact that, as
recalled in Sect. 1, signals showing such peculiar charac-
teristics are generally produced by natural systems working
in self-organized critical conditions (Sornette and Sornette,
1989; Turcotte, 1992). In addition to scale invariance and
nonlinearity in time-dependent variables, such systems can
be also featured by a power-law falloff in PDF of some ob-
servable. The isotopic GSs of this study exhibit the two for-
mer signatures of SOC (namely, the scaling exponents close
to one in the second-order fluctuation statistics and the non-
linearity of the series), while they show near-Gaussian PDF
(see Sect. 3.3). Nevertheless, pink-noise time series with
Gaussian PDF have been already associated to SOC systems
(Vattay and Harons, 1994), and likewise non-Gaussian distri-
butions have not implied necessarily self-organized critical-
ity (Krommes and Ottaviani, 1999). In addition, some mod-
els working under SOC have not produced pink-noise time
series (Jaeger et al., 1989). Power-law PDF can also regard
only the time fluctuations of a signal rather than the signal it-
self (e.g. some financial data, electrostatic plasma potentials,
air humidity series). To sum up, there is not an universally
accepted criterion to recognize a system as one working un-
der SOC. In accordance with Hergarten (2002), we can rea-
son about systems having different degrees of SOC, which
move from weak criticality with one single condition, up to
strong SOC where all the features are present.

It should be also noted that the physical explanation of
flicker-noise signals, as well as their ubiquitous presence in
nature, was in fact one of the main motivations for the ini-
tial proposal of the SOC concepts (Bak et al., 1987). In ac-
cordance with the SOC idea, systems where many interact-
ing components are driven away from equilibrium by an ex-
ternal force, exhibit strongly nonlinear threshold behaviors
and release their energy via events whose size are power-
law distributed (i.e. they have no characteristic scale). Lack-
ing a characteristic length will cause lacking a characteris-
tic time, which will induce a power-law behavior into the

frequency spectrum. Therefore, the temporal fingerprint of
these systems will consists in long-range correlated and non-
linear 1/f -like signals. Since the seminal work of Bak et
al. (1987), this type of signals have been considered as evi-
dences of underlying SOC dynamics in thousands of articles
on the most different topics. Accordingly, here we suggest
that the system that generates our geochemical signals works
under SOC conditions.

The importance of discovering this intriguing property
arises when recalling certain features of the isotope sig-
nals. As stated in Sect. 2, the isotope temporal fluctua-
tions have been related to magma ascent and degassing, by
ruling out significant contributions of crustal and/or atmo-
spheric sources. Therefore, the revealed long-range corre-
lation and nonlinearity appear to be directly related to the
process of volatile degassing from magma. Because systems
in conditions of SOC involve the basic requirements men-
tioned in Sect. 1, we can use the SOC paradigm to constrain
the dynamic conditions that characterize magma degassing
and the physico-chemical aspects of such processes which
can produce the SOC signatures. On this basis, we sug-
gest that magma degassing has to be controlled by slowly
driven, interaction-controlled and threshold conditions, and
that nonequilibrium conditions must dominate throughout
the process, or at least at the most important stages. Nu-
cleation and coalescence among bubbles are probably the
best candidates in providing the above conditions, because
they exhibit threshold and feedback behaviors, respectively
(Gaonach’h et al., 1996; Blower et al., 2002), both of which
are required to produce complex signatures. On this ground,
the competition between slowly growing supersaturation (the
driving force) and bubble nucleation, growth and coalescence
(the threshold and nonlinear processes) in ascending magma
could allow the system to evolve far from thermodynamic
equilibrium, at least in the initial phase of degassing. Quan-
titative models will need to assess the actual effects of these
processes on He isotope signals.

It is noteworthy that the isotope signal from the remote
Nf site shows similar scaling and nonlinearity of the other
emissions, hence the same processes must modulate this time
series. Based on the established link between the SOC sig-
nature and degassing, our results suggest that volatile-rich
magma bodies are present in this area, reinforcing the find-
ings of Caracausi et al. (2003b). On the other hand, the non-
linearity that involves the He isotopic signature of degassing,
seems to be absent in the chemical signature (see Sect. 4.3).
Unless it has been lost in chemical time series as a result of
the selective dissolution effects in aquifers (although the lat-
ter are small or largely filtered out), this condition would in-
terestingly imply that the dynamics of isotopic and chemical
degassing are different.

Our results have also revealed variations in the strength
of the long-range correlations of the isotopic GS over time,
as raised by the calculated changes of the scaling exponents
(Sect. 4.2 and Fig. 12a). During the investigated period,
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Mt. Etna also showed several changes in volcanic activity,
which can be convincingly related to the above changes of
correlation. Since 1993, very large volumes of magma fed
the degassing of Mt. Etna, as estimated on the basis of SO2
released by the volcanic plume (Allard et al., 2006). Such
volumes largely exceed those actually erupted in the same
period (Fig. 12c), suggesting a mechanism of storage of de-
gassed melts in the Etnean system. It is in agreement with
the results of deformation measurements, which put into ev-
idence a general inflation trend of the volcano in the period
1993–1998, followed by a few years of minor deformation
(Neri et al., 2009). The onset of the 2001 eruption marked a
clear change in the rate of magma accumulation, suggesting
an abrupt decrease of the deep magma supply to the feeding
system (Fig. 12c). Accordingly, the eruption also marks the
start of a deflationary trend (Fig. 12c). It can be reasonably
thought that Mt. Etna progressively increased its eruptive po-
tential until the 2001 eruption, whereas the subsequent ener-
getic activities allowed the volcano to discharge its energy in
excess. We recall that the 2001 and 2002–2003 paroxysms
were extremely vigorous (Behncke and Neri, 2003; Andron-
ico et al., 2005), with the latter culminating in exceptional ex-
plosive activity, whereas explosiveness and spattering were
almost absent during the 2004 effusion (Burton et al., 2005;
Corsaro and Miraglia, 2005) and weak during the 2006 erup-
tion (Behncke et al., 2007). The growing levels of activity
of Mt. Etna until 2002 were also highlighted by the rate of
release of seismic energy from the system (Fig. 12b), while
such rate showed a unambiguous decrease after the 2002–
2003 eruptions.

From a geochemical point of view, the different behav-
ior of the system before and after the 2001 and 2002–2003
events is already recognizable on the unhandled isotope GS
(Fig. 12a): large and high-frequency fluctuations clearly oc-
cur until 2001, whereas the signal is much more smoothed
during the following years. In terms of scaling, there is a
progressive variation from a persistent, flicker-like signal up
to 2002, towards Brownian, Gaussian-integrated series later
(Fig. 12a). It suggests that temporal changes in the dynamic
behavior of the system occurred, although they are not easy
to explain from a deterministic point of view. Once more,
we can use concepts from the SOC paradigm to carry out
some considerations. If high levels of activity imply severe
nonequilibrium conditions, the system should exhibit typi-
cal self-organized critical dynamics and nonlinearity during
these periods. Thus, the increase in the exponent after the
2002 could sign a change from a complex behavior toward
Brownian dynamics, typical of less-energetic periods. Al-
though it is not the goal of this paper to model the magmatic
process capable to produce isotope signals having the re-
quired time-dependent scaling features, we recall that several
approaches are emerging to describe time-dependent nonlin-
ear dynamics in magma chambers (see Sparks, 2003, for a re-
view). In addition to a number of physical variables (e.g. heat
loss and crystallization, frequency and volume of eruptions),

such models put into evidence the effects of the varying ex-
tent of internal overpressure in destabilizing magma cham-
bers, which critically depends on the rate of magma refilling.
On this ground, we remind that the 2001 and 2002–2003
eruptions displayed the involvement of a different magma
with respect to the typical one feeding Etnean activity, be-
ing richer in volatiles and more explosive, and among the
most primitive erupted in the past centuries (Corsaro et al.,
2007). The massive input of this new magma in the Etnean
feeding system would have caused the overpressure respon-
sible for the geochemical and geophysical anomalies prior to
the 2001 event, as well as the changes of scaling properties.
It is matter of discussion if the scaling and nonlinearity of
our signals is a consequence of the atypical features of such
magma, particularly linked to its high content of volatiles,
or alternatively if any massive magmatic refilling would pro-
duce similar conditions.

6 Summary and conclusion

Several years of geochemical monitoring of the gas emis-
sions from sites around Mt. Etna have made available long
time series of data, which have allowed us to apply statistical
tools to detect the scaling and nonlinear properties of these
signals. We have used power spectrum, Lomb periodogram,
time reversibility and detrended fluctuation analysis to inves-
tigate how time-series data of the isotopic and chemical com-
position of He and CO2 are linked to the magmatic activity of
Mt. Etna. The results clearly indicate that the temporal fluc-
tuations of the He isotope composition exhibit no character-
istic scales (i.e., scale invariance) and long-range correlations
with a fractal power-law distribution. Irrespective of their lo-
cation in the volcano edifice, all the sites provide isotope sig-
nals marked by power-law exponents close to 1, which are
typical of dynamic systems in a self-organized critical state.
Moreover, both TR test and DFA of the magnitude series, de-
rived from the isotope signals, reveal remarkable degrees of
nonlinearity, which are normally found in systems exhibiting
complex behavior and feedback mechanisms among interact-
ing processes. Such properties put constraints on the intrinsic
and hidden dynamics of the system, suggesting that it works
in conditions of self-organized criticality. Evidence of long-
range correlation also emerges by DFA of He concentration
time series, once the effects of chemical fractionation due to
selective dissolution in aquifers have been basically filtered
out. In this case, the nonlinearity appears however to be lost.

Based on geochemical evidences, previous works have
strictly linked the fluctuations of the investigated He iso-
topic signals to the pre-eruptive degassing of volatiles from
ascending and decompressing magma. Thus, our previous
result that the system generating the signals works under
criticality conditions allows us to conclude that the process
of magma degassing is able to yield the typical signature of
self-organized complex dynamics. By using the conceptual
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framework of SOC, degassing has hence to be controlled
by slowly driven, interaction-dominated and threshold con-
ditions. Degassing in effect involves: (i) bubble nucleation
and/or detachment, which display evident threshold behav-
iors, (ii) bubble coalescence, that is able to exhibit nonlinear
cascading regimes of bubble growth, and (iii) recharging, de-
compression and growing supersaturation which act as driv-
ing forces. As a result, it would not be surprising if any de-
gassing indicator displays the SOC signature.

SOC in magma dynamics has been revealed by statistical
analyses of several types of observables, ranging from the
occurrence of eruptive events to acoustic emissions, ground
deformations, geomagnetic anomalies, volcanic tremors, and
seismicity (Grasso and Bachèlery, 1995; Vinciguerra and
Barbano, 2000; Diodati et al., 2000, 2004; Kostantinou and
Schlindwein, 2002; Telesca et al., 2002; Vinciguerra, 2002;
Currenti et al., 2005a, b; Walter et al., 2005). It is notewor-
thy that in most of these cases, the complex behavior can also
be attributed to magma interaction with the stress and strain
fields of the volcanic structure through which the magma mi-
grates (see Grasso and Bachèlery, 1995). Hence, such inter-
action can also affect magma degassing by cause-and-effect
mechanisms, and it could transfer the SOC signature to the
degassing indicators. Future research should be aimed to as-
sess whether the pre-eruptive degassing process is really able
to exhibit its own complexity or whether is simply a conse-
quence of the mechanisms of magma migration.

On the other hand, the analysis of CO2 concentration time
series – which are directly affected by the shallow processes
of chemical equilibrium between gas and groundwater – re-
veals the absence of both long-range correlation and nonlin-
earity. The temporal fluctuations of the signals are essentially
random, so that the shallow system where the volcanic gases
selectively dissolve into groundwaters does not appear to be
governed by complexity conditions. Although the network of
rock fractures influences the fluid flow and the extent of gas-
water chemical interactions, and complex behaviors could be
accordingly expected, our results appear to contradict this
guess. This should be kept in mind when linking the com-
plexity of fluid-flow-induced observables with the fractality
of geological structures.

Finally, our results suggest temporal changes in the cor-
relation strength of the He isotope signals. In particular, we
found that the scaling exponent progressively increased since
2002, meaning that the strength of the correlation increased
from a flicker-noise type toward higher values. Despite the
low time resolution of our analysis, it unambiguously dis-
plays that the 2001 and 2002–2003 eruptions signed a dra-
matic change in the dynamic behavior of the Etnean system.
This outcome agrees with the hints coming from observ-
ing several geophysical signals, which recognize two peri-
ods marked by sharply different behavior of the volcanic sys-
tem: (i) prior to the 2001 eruption, showing growing levels of
activity and energy; (ii) subsequent to the 2002–2003 erup-
tions, marked by a decrease of activity. During the former

period, the feeding system of Mt. Etna was massively refilled
by a primitive and volatile-rich magma, never observed in the
volcano. Accordingly, Mt. Etna volcanism between 2001–
2003 was among the most energetic in recent times, whereas
subsequent eruptions were much less vigorous. On this basis,
the observed transition of Mt. Etna system from typical SOC
toward Brownian-like dynamics seems to be strictly linked
to the state of activity of the volcano. In detail, the typical
behavior of system at a critical state would become manifest
during periods of strong unrest of the volcano due to mas-
sive input of volatile-rich magmas in the plumbing system.
Longer monitoring will be required to prove this attractive
hypothesis.
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