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Abstract. Discrete multiplicative random cascade (MRC)
models were extensively studied and applied to disaggregate
rainfall data, thanks to their formal simplicity and the small
number of involved parameters. Focusing on temporal dis-
aggregation, the rationale of these models is based on multi-
plying the value assumed by a physical attribute (e.g., rain-
fall intensity) at a given time scaleL, by a suitable num-
berb of random weights, to obtainb attribute values corre-
sponding to statistically plausible observations at a smaller
L/b time resolution. In the original formulation of the MRC
models, the random weights were assumed to be indepen-
dent and identically distributed. However, for several stud-
ies this hypothesis did not appear to be realistic for the ob-
served rainfall series as the distribution of the weights was
shown to depend on the space-time scale and rainfall inten-
sity. Since these findings contrast with the scale invariance
assumption behind the MRC models and impact on the ap-
plicability of these models, it is worth studying their nature.
This study explores the possible presence of dependence of
the parameters of two discrete MRC models on rainfall in-
tensity and time scale, by analyzing point rainfall series with
5-min time resolution. Taking into account a discrete micro-
canonical (MC) model based on beta distribution and a dis-
crete canonical beta-logstable (BLS), the analysis points out
that the relations between the parameters and rainfall inten-
sity across the time scales are detectable and can be modeled
by a set of simple functions accounting for the parameter-
rainfall intensity relationship, and another set describing the
link between the parameters and the time scale. Therefore,
MC and BLS models were modified to explicitly account
for these relationships and compared with the continuous in
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scale universal multifractal (CUM) model, which is used as
a physically based benchmark model. Monte Carlo simula-
tions point out that the dependence of MC and BLS parame-
ters on rainfall intensity and cascade scales can be recognized
also in CUM series, meaning that these relations cannot be
considered as a definitive sign of departure from multifrac-
tality. Even though the modified MC model is not properly
a scaling model (parameters depend on rainfall intensity and
scale), it reproduces the empirical traces of the moments and
moment exponent function as effective as the CUM model.
Moreover, the MC model is able to reproduce some rainfall
properties of hydrological interest, such as the distribution
of event rainfall amount, wet/dry spell length, and the au-
tocorrelation function, better than its competitors owing to
its strong, albeit unrealistic, conservative nature. Therefore,
even though the CUM model represents the most parsimo-
nious and the only physically/theoretically consistent model,
results provided by MC model motivate, to some extent, the
interest recognized in the literature for this type of discrete
models.

1 Introduction

Rainfall series spanning several years are usually available at
coarse time scales, say above daily resolution, thanks to the
rain gauge networks operating over a long time. Similarly,
rain fields at coarse space scale are provided by numerical
weather prediction models and remote sensor instruments,
such as radar and satellite. However, the space-time resolu-
tion of this data is often not appropriate for several hydro-
logical analyses, and rainfall information needs to be disag-
gregated to a finer space-time resolution (e.g.,Gaume et al.,
2007). The problem has been widely studied in the literature
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and several techniques have been proposed (see e.g.,Kout-
soyiannis et al., 2003; Sivakumar and Sharma, 2008; Rupp
et al., 2009, and references therein). One of the most studied
approaches is based on the discrete multiplicative cascades
(e.g.,Mandelbrot, 1974). The rationale of this method is to
split each time (or space) interval at a given resolution and
cascade levelk −1 into a numberb of subintervals at level
k, and assign to each subinterval a rainfall value obtained
by multiplying the rainfall intensity (or amount) of the par-
ent coarse interval by the cascade weightsW (also known as
generator), which fulfill some prescribed properties recalled
in the next sections. The process is repeated for a number of
levels until the rainfall series/field is disaggregated to the re-
quired space/time resolution. In time series disaggregation,
the branching numberb is commonly assumed to be equal
to 2, resulting in a dyadic cascade, so that the time scale is
halved at each cascade level. In this case, afterk levels, each
interval at the reference (coarse) time scaleL0 is divided as
i = 1,2,...,bk subintervals at finer scaleLk; therefore, the
scale ratio is defined asλk = L0/Lk = bk (λ0 = 1 is associ-
ated with the 0th cascade level corresponding to the coarsest
reference time scaleL0). The rainfall intensityR contained
in theith subinterval at a generic cascade levelk is given by:

Ri,k = R0

k∏
j=1

Wj (i) = Ai,kλk for i = 1,2,...,bk
; k > 0, (1)

whereAi,k is the rainfall amount corresponding toRi,k, and
the expectation ofW is E[W ] = 1. MRC models can be
classified into two main groups, microcanonical and canon-
ical, according to different conservation laws that character-
ize the cascade. In thermodynamics, the first type refers to
an exact conservation of the energy at each cascade stage,
and is appropriate for closed systems, while the latter pre-
serves the ensemble averages, and is appropriate for open
systems (e.g.,Schertzer and Lovejoy, 1987). Since the atmo-
spheric turbulence, rainfall, and other geophysical processes
interact with each other and the external environment, the
microcanonical constraint appears highly artificial and such
models should be considered essentially academic. The most
important consequence of the microcanonical constraint is
that the model necessarily returns upper bounded singular-
ities, limiting the occurrence of extreme realizations (e.g.,
Schertzer et al., 1991; Schertzer and Lovejoy, 1992; Lovejoy
and Schertzer, 1995).

The interest in discrete MRC models is related to their
simplicity compared to more complex approaches, as well
as to their link to the energy transfer processes in turbu-
lent flows (Kolmogorov, 1941, 1991; Schertzer and Love-
joy, 1987; Veneziano et al., 2006; Paulson and Baxter, 2007).
However, these models can be considered as the “first gen-
eration” of MRC models (Lovejoy and Schertzer, 2010a),
while more realistic results are provided by the “second gen-
eration” of continuous in scale multifractal processes based

on Lévy stable random variables (e.g.,Schertzer and Love-
joy, 1987, 1997; Lovejoy and Schertzer, 1995; Lovejoy et al.,
2008). The latter models are called continuous universal
multifractal (CUM) models owing to their properties of sta-
bility and attractivity, which correspond to a generalization
of the central limit theorem (e.g.,Schertzer and Lovejoy,
1987, 1997; Schertzer et al., 2010). Nevertheless, discrete
MRC models are still widely applied and studied in the liter-
ature.

A basic hypothesis under the multiplicative structure in
Eq. (1) is that the weightsW are assumed to be independent
and identically distributed (iid). However, as discussed by
Veneziano et al.(2006), even though the multiplicative com-
bination of the weightsW is generally supported by empiri-
cal evidence (Menabde et al., 1997; Veneziano et al., 2006),
commonly theiid assumption does not seem to be realistic.
Cascade weights have been found to be dependent on scale
(Veneziano et al., 1996; Menabde et al., 1997; Menabde and
Sivapalan, 2000; Molnar and Burlando, 2005; Paulson and
Baxter, 2007), on covariates such as large-scale rainfall in-
tensity (Over and Gupta, 1994, 1996; Deidda, 2000; Molnar
and Burlando, 2005), and on the interval class, i.e. intervals
at the beginning, middle, or end of a rainfall event (Olsson,
1998; Olsson and Berndtsson, 1998; Güntner et al., 2001;
Veneziano and Iacobellis, 2002).

Veneziano et al.(2006) have explored the dependence of
the cascade weights on rainfall intensity and cascade level,
assuming the so-called discrete canonical logstable model,
which accounts for zero rainfall (hereinafter, also denoted
as lacunarity) thanks to a thresholding procedure, and the
beta-logstable (BLS) model (described in Sect.2.2), which
describes lacunarity by a parameter driving the rain/no-rain
process. Since conditioning the weights to intensity results
in biased estimates of the model parameters,Veneziano et al.
(2006) suggested an iterative estimation procedure. Further-
more, they compared different versions of the BLS model,
whose parameters may or may not vary with the rainfall in-
tensity and/or the cascade level.

Rupp et al.(2009) have studied the relationships among
weights, rainfall intensity, and cascade level by assuming a
discrete two-parameter microcanonical model (see Sect.2.3),
with one parameter driving the lacunarity and the other con-
trolling the generation of positive rainfall values. This model,
with parameters depending on large-scale rainfall intensity,
has been studied and applied byOver and Gupta(1994) to
radar-derived rainfall maps, and byMolnar and Burlando
(2005) to point rainfall series.Rupp et al.(2009) have found
that the dependence between the lacunarity parameter and
rainfall intensity can be properly described by a lognormal
distribution, whose parameters vary in turn with the scale
through power-law relationships, whereas the second param-
eter of the MC model can be described by quadratic func-
tions of rainfall intensity, rescaled across the disaggregation
levels. The idea behind the approach suggested byRupp
et al.(2009) is to describe the dependence between the MRC
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model parameters and rainfall intensity by simple analytical
functions, such as lognormal distribution or parabolic func-
tion, whose coefficients rescale in turn across the cascade
levels, accounting for the scale dependence.Rupp et al.
(2009) have noted that conditioning the weights to rainfall
intensity may account for much of the dependence on inter-
val class because the intensity is operatively discretized in
classes for computational reasons. Hence, this approach en-
compasses in some way the classification strategy used by
Olsson(1998), for example.

It should be noted that the studies byVeneziano et al.
(2006) and Rupp et al. (2009) have different scopes.
Veneziano et al.(2006) aimed at proving that the observed
dependence of the cascade weights on rainfall intensity and
cascade level cannot be reproduced by models that do not
explicitly account for it, concluding that this behavior is not
a spurious effect, but is related to the nature of the rain-
fall observations. In more detail, the observed precipitation
can be considered as the flow of condensed water through a
constant-altitude plane. Even though the rate of water vapor
condensation is multifractal owing to its link to atmospheric
turbulence,Veneziano et al.(2006) argued that the multifrac-
tality can be lost in the observation of condensed particles as
rainfall measured at a constant altitude. On the other hand,
Rupp et al.(2009) aimed at assessing the possible improve-
ment in performance of the MC model, when the observed
dependences of the cascade weights on rainfall intensity and
cascade level are explicitly modeled, regardless of the nature
of these relations.

The scope of the present study is to select and set up the
most simple and possibly accurate MRC model that can sim-
ulate synthetic series useful as input for rainfall-runoff mod-
els. Thus, the focus is on the reproduction of several prop-
erties of hydrological interest, such as event rainfall amount
and wet/dry spell length. Nevertheless, as the model selec-
tion is based on the analysis of the multifractal properties
of observed rainfall series, the study also explores the de-
pendence of the cascade weights on rainfall intensity and
cascade level. The analysis relies on three rainfall series
with a 5-min resolution from three rain gauges located in the
Viterbo province (central Italy). Based on these data, the ap-
proach suggested byRupp et al.(2009) was applied to both
MC and BLS models to carry out comparisons and possible
generalizations. For example, unlikeRupp et al.(2009), we
found that the relationships between the parameters control-
ling the lacunarity and rainfall intensity could be modeled
by a single power-law curve, resulting in more parsimonious
models. Moreover, the CUM model is applied as a physically
based multifractal benchmark model, and the corresponding
multifractal exploratory analysis is used to study the nature
of the observed dependence of the cascade weights on rain-
fall intensity and cascade level.

The article is organized as follows. In Sect.2, the multi-
fractal notation and the structure of the CUM, MC, and BLS
models are briefly recalled. Section3 describes multifrac-

tal analysis, and the empirical parameter-intensity-scale re-
lationships are explored and parameterized. In Sect.4, the
performances of the considered models are assessed by com-
paring several statistics computed on the observed and simu-
lated series. The conclusions are summarized in Sect.5.

2 Basic multifractal concepts and MRC models

2.1 Multifractal formalism and continuous universal
multifractal (CUM) model

In this study, the multifractal analysis focuses on rainfall in-
tensityR, in agreement with the “codimension multifractal
formalism” (Schertzer and Lovejoy, 1987), which is based
on the statistics of densities of measures (here, the rain-
fall amount per time unit), and is well suited for analyzing
stochastic multifractals. Informally, defining the scale invari-
ance ofR means to identify similarities in the statistical prop-
erties of the distribution function ofR at different scales of
aggregation. Once these common characteristics are found
between two time scales, the variableR is said to be scale
invariant, and statistical information about the distribution of
R at the smallest resolution may be derived from coarse res-
olution characteristics (Mascaro et al., 2010).

In order to analyze the scaling properties ofR, the data
are aggregated to lower and lower resolution by temporal av-
eraging. This “dressing” procedure is an attempt to invert
the cascade “bare” process which we are interested in (e.g.,
Lovejoy et al., 2008). Denoting the reference external scale
of the cascade byLref (here, 1280 min≈ 1 day), the generic
aggregated scale byL (here,L ∈ [5,1280] min), and the scale
ratio byλ, the scaling behavior entails:〈
R

q
λ

〉
= λK(q)

〈R1〉
q
; λ = Lref/L, (2)

where〈·〉 denotes the ensemble mean,〈R1〉 is the ensemble
mean ofR, the subscript “1” refers to the largest reference
resolution corresponding toλ = 1, K(q) is the moment scal-
ing exponent, andq is the moment order. IfK(q) is constant,
the process is said to be “simple scaling”, otherwiseR shows
a “multiple scaling” behavior. It worth noting thatLref is
just a convenient scale, whereas, under scaling hypothesis,
the cascade is characterized by an effective outer scaleLeff
(the largest scale of variability) that is unknown a priori and
should be estimated from the data (e.g.,Lovejoy et al., 2008).
Focusing on the normalized moments, from Eq. (2), it fol-
lows:

Mq =

〈
R

q
λ

〉
〈R1〉

q = λK(q). (3)

The scaling of the moments can be assessed by computing
Mq at different scales, and plottingMq against the scale ratio
λ in a log-log plane, where the power-law relation in Eq. (3)
becomes linear. The empiricalK(q) functions can be esti-
mated from the slopes of the trace moments (e.g.,Schertzer
and Lovejoy, 1987).
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As mentioned in Sect.1, in time series analysis, it is com-
mon to consider scales ratios multiple ofb = 2. The choice of
a discrete range of scales helps to understand cascade prop-
erties, is convenient for simulating, and is coherent with the
dressing (averaging) procedure that is used to estimateMq

andK(q). However, instead of considering a discrete cas-
cade process evolving to its small-scale limit, it is possible
to consider interactions of this process over a finite range of
scales, with larger and larger numbers of its replicas, and
then seek the small-scale limit (e.g.,Schertzer and Lovejoy,
1987; Lovejoy and Schertzer, 1995; Schertzer and Lovejoy,
1997). This approach leads to CUM processes (Schertzer
and Lovejoy, 1987). These processes are based on Lévy sta-
ble (orα-stable) random variables (e.g.,Samorodnitsky and
Taqqu, 1994) that follow the maximally asymmetric stable
distributions with index of stability (or characteristic expo-
nent)α ∈ (0,2] and skewness coefficient equal to−1 (e.g.,
Schertzer and Lovejoy, 1997). The corresponding theoreti-
calK(q) is a three-parameter function:

K(q)−qH =


C1

α−1
(qα

−q), for α 6= 1

C1q log(q), for α = 1

, (4)

where α is the above-mentioned index of stability,C1 is
the codimension of the mean singularity and describes the
sparseness of the mean of process (e.g.,Schertzer and Love-
joy, 1987; Tessier et al., 1993; de Lima and de Lima, 2009),
andH is called the “nonconservation parameter”, sinceH 6=

0 implies that the ensemble average statistics depend on the
scale, whileH = 0 is a quantitative statement of ensemble
average conservation across the scales (e.g.,Lovejoy and
Schertzer, 1995; Lovejoy et al., 2008). It worth recalling that
α values define five qualitative cases (Lovejoy and Schertzer,
1995): (1) α = 2 defines multifractals with Gaussian genera-
tors; (2)α ∈ (1,2] defines multifractals with Ĺevy generators
and unbounded singularities; (3)α = 1 defines multifractals
with Cauchy generators; (4)α ∈ (0,1) defines multifractals
with Lévy generators and bounded singularities; (5)α = 0
defines monofractal processes.

Unlike discrete cascades, the CUM theory implies simu-
lation algorithms based on transformations in the frequency
domain (fractional integrations) that allow the generation of
rainfall sequences (or fields) at any (not necessarily integer)
scale ratioλ. As the CUM model generates strictly posi-
tive realizations, the zero rainfall is introduced by assigning
the zero value to the simulations below a minimum thresh-
old. This is a simple but effective approach to account for
deviations from a pure cascade behavior, based on the hy-
pothesis that the scale breaks can be mainly ascribed to the
minimum measurement resolution (e.g.,Onof et al., 2005;
Lovejoy et al., 2008). In this work, the simulation of causal
CUM series (with corrections for finite size effects) was per-
formed in R (R Development Core Team, 2009), by trans-
lating the MathematicaR codes provided by S. Lovejoy at

the web sitehttp://www.physics.mcgill.ca/∼gang/multifrac/
multifractals/software.htm. For further details on the imple-
mented algorithms, the readers are referred toWilson et al.
(1991), andLovejoy and Schertzer(2010a,b).

2.2 Discrete beta-logstable (BLS) canonical model

The development of a discrete multiplicative cascade in
Eq. (1) requires the simulation of the weightsW from a
suitable distribution. Canonical and microcanonical models
applied in this study differ in the distribution used to carry
out the simulation. Canonical models are based on distri-
butions with positive support and expected valueE[W ] = 1,
which preserve the mass on an average at all levels in the
cascade. In these models, the zero rainfall is accounted for
by adopting discrete-continuous distributionsF(w) = p0 +

(1−p0)G(w), wherep0 = Pr[W = 0] andG(w) = Pr[W ≤

w|W > 0]. The probabilityp0 describes the lacunarity and
is related to the fractal dimension of the series, whereas the
distributionG of the positive weights is often assumed to be
lognormal (e.g.,Gupta and Waymire, 1993; Molnar and Bur-
lando, 2005), log-Poisson (e.g.,Deidda et al., 1999, 2006;
Deidda, 2000; Onof et al., 2005; Sivakumar and Sharma,
2008; Mascaro et al., 2010) or logstable (e.g.,Schertzer
and Lovejoy, 1987; Olsson, 1995; Pathirana et al., 2003;
Veneziano et al., 2006). It should be noted that the hypothesis
of existence of a fractal support is alternative to the assump-
tion of a low threshold for the measurable rainfall intensity,
allowing for a cross-check of the two hypotheses. More-
over, we recall that the terms “lognormal” and “logstable”
are not strictly correct as the dressed process is only approx-
imately logstable/lognormal for low-order moments or low
singularities (Schertzer and Lovejoy, 1997). Nevertheless,
since the discussion on the BLS model is based on the work
by Veneziano et al.(2006), we adopt the definition “beta-
logstable”.

The theoreticalK(q) function corresponding to the BLS
model is:

K(q)=


βBLS(q−1)+

CBLS

αBLS−1
(qαBLS−q), for αBLS 6=1

βBLS(q−1)+CBLSq log(q), for αBLS=1

,

(5)

whereβBLS is the parameter controlling zero rainfall.βBLS
is related top0 and fractal dimensionD by the relation-
ship βBLS = −K(0) = −logb(1−p0) = d −D, whered is
the Euclidean embedding dimension of the rainfall process
(d = 1 for a time series) (e.g.,Over and Gupta, 1994, 1996;
Veneziano et al., 2006). The second term in the right hand
side of Eq. (5) has the same form as that of the right hand
side of Eq. (4). However, in this study, the BLS parameters
are assumed to vary with the discrete scale ratioλk (or cas-
cade levelk) and rainfall intensity of the parent intervals at
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level k −1. Since the physical meaning of the index of sta-
bility and codimension is lost in this conditioning procedure,
the parameters are denoted asCBLS andαBLS instead ofC1
andα. Moreover, the BLS model with scale-intensity vary-
ing parameters only preserves the dyadic structure of a dis-
crete MRC model, but it is not actually a multifractal model
at all. Indeed, its good performance (compared to a thresh-
olded discrete logstable) is interpreted byVeneziano et al.
(2006) as an indicator of departure from multifractality.

The estimation of BLS parameters requires the computa-
tion of the weightsW , namely, the ratios between the rainfall
intensity in a given subinterval at levelk and the correspond-
ing parent interval at levelk−1. As the bare processRb,k is
not really observed, weightsW can only be estimated by the
reverse dressed processRk. In general, the statistics of the
bare rainfall provide biased estimates of the dressed rainfall,
and vice versa (e.g.,Lovejoy and Schertzer, 1995; Veneziano
et al., 2006; Paulson and Baxter, 2007). In order to correct
this bias,Veneziano et al.(2006) have applied an iterative es-
timation procedure that adjusts the parameters estimated on
the dressed process so that theK(q) function of the simu-
lated (disaggregated) series reproduces that of the observed
series. Paulson and Baxter(2007) have used a similar ap-
proach, wherein, the objective function of an optimization
process is the sum of the absolute differences between the
second and third moments of the measured rainfall time se-
ries across the considered scales. In this study, to point out
the impact of the model structure (canonical and microcanon-
ical) on the bias of the estimates, any bias correction is ap-
plied.

To explore the possible dependence of BLS parameters on
scale level and rainfall intensity, the empiricalK(q) function
K(q|k,Rb,k−1) conditioned to scale levelk and bare rainfall
intensityRb,k−1 is estimated as:

K̂(q|k,Rk−1) = logb(
〈
W q(k,Rk−1)

〉
)

= logb

(〈
R

q
k |Rk−1

〉
R

q

k−1

)
, (6)

where
〈
R

q
k |Rk−1

〉
is the empiricalqth moment of the condi-

tional rainfall intensityRk|Rk−1, and the range ofRk−1 is
partitioned in a suitable number of classes (Veneziano et al.,
2006). For each scale levelk and eachRk−1 class, theK(q)

function of the BLS model in Eq. (5) is fitted to the empir-
ical K̂(q|k,Rk−1) (Eq. 6) by estimating the three parame-
ters βBLS, CBLS, andαBLS. βBLS is assessed by the rela-
tionshipβBLS = −K(0), whereas, the other two parameters
are estimated by the nonlinear least square minimization of
the residuals(K(q)− K̂(q)) (Dennis et al., 1981) computed
over a range of momentsq ∈ [0,3]. The procedure yields a
set of three parameter estimates{β̂BLS,ĈBLS,α̂BLS} for each
combination of scale levelk and class of rainfall intensity.
For further details on the estimation method, the readers are
referred to Sect.3.2andVeneziano et al.(2006).

2.3 Discrete microcanonical (MC) model

Unlike the canonical models, the microcanonical models pre-
serve the exact mass of rainfall across the cascade levels. In
this case, each parent interval at levelk − 1 is subdivided
into b subintervals at levelk, which contain a rainfall amount
equal to the parent interval. In terms of rainfall intensity,
this means that the generatorW can be considered a ran-
dom variable ranging in[0,b] such that1

b

∑b
i=1Wk(i) = 1

for each set ofb subintervals at levelk corresponding to a
given parent interval at levelk −1. For the sake of conve-
nience,W is replaced with the rescaledV = W/b ranging in
[0,1]. Similar to the BLS model, the zero rainfall is explic-
itly preserved by allowing forW = 0 with a probabilityp0.
Assumingb = 2, as is done in this study, and denotingvl and
vr as the weights of the left and right subintervals obtained
from a parent interval, the probability thatvl andvr are 0 or
1 is equal to the probability of the events(vl = 0∧vr = 1) or
(vl = 1∧vr = 0) and is defined asp0 = Pr[vl = 0∨vr = 0].
Even though the probabilities of the events(vl = 0∧vr = 1)

and (vl = 1∧ vr = 0) are not necessarily equal, this prop-
erty is empirically observed in several datasets (e.g.,Mol-
nar and Burlando, 2005; Rupp et al., 2009) and also in the
data used in this study (figures not shown). Hence, the zero
rainfall can be summarized by a unique parameterp0 or
px = 1−p0, wherepx = Pr[vl ∈ (0,1)∧vr ∈ (0,1)] = Pr[vl ∈

(0,1)] = Pr[vr ∈ (0,1)]. The weightsV ∈ (0,1) are modeled
by a symmetric one-parameter beta distribution:

f (v) =
1

B(a)
va−1(1−v)a−1, (7)

whereB(·) is the beta function, anda is a shape parameter.
This distribution is often used because it is defined on a finite
support [0,1] and can assume several shapes, such as, uni-
form (a = 1), bell-shape (a > 1), and U-shape (a < 1). The
distribution in Eq. (7) has meanE[V ] = 0.5 so thatE[W ] =

1. For b = 2, pairs of weightsvl andvr , which follow the
distribution in Eq. (7) and fulfill the relationvl +vr = 1, can
be simulated by drawing two independent realizationsx1 and
x2 from a gamma distribution with parametera, and by tak-
ing the ratiosx1/(x1 + x2) and x2/(x1 + x2) (Mood et al.,
1974; Koutsoyiannis and Xanthopoulos, 1990). Parametera
can be estimated by the method of moments through the rela-
tionshipa = 1/(8Var[V ])−0.5 (e.g.,Molnar and Burlando,
2005). Analogous to BLS model, the parameter estimates are
conditioned to the scale levelk, and rainfall intensityRk−1
as follows: for a generic cascade levelk, the range of rainfall
intensitiesRk−1 at the previous stagek −1 (coarser resolu-
tion) is partitioned in a finite number of intensity classes; the
intervals withRk−1 falling in a given class are taken, and
the corresponding (disaggregated) subintervals at levelk are
used to estimatepx |Rk−1 anda|Rk−1. The procedure yields
a set of two parameters{p̂x,â} for each combination of scale
level and intensity class. Following the approach ofRupp
et al. (2009), the relationships between the MC parameters
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Table 1. Annual summary statistics of the three stations Castel
Cellesi (CCE), Montefiascone (MFI), and Viterbo (VIT).

Station CCE MFI VIT

Elevation 369 560 357
Latitude 42.591 42.536 42.420
Longitude −11.848 −11.973 −11.894
Mean [mm] 824 878 841
StDev [mm] 200 246 154
5th percentile [mm] 548 556 628
25th percentile [mm] 697 743 729
75th percentile [mm] 963 1072 932
95th percentile [mm] 1129 1267 1060

(px anda), scale levelk, and rainfall intensityRk−1 are ana-
lyzed and modeled by analytical formulas.

3 Data analysis

The data analyzed in this study are from three 5-min rainfall
series recorded in three stations (Castel Cellesi (CCE), Mon-
tefiascone (MFI), and Viterbo (VIT)) located in the Viterbo
province (central Italy), by tipping bucket rain gauges with
0.2 mm resolution. The VIT time series spans from 1995 to
2005 (11 years), while CCE is available for 10 years (1995 to
2000, 2002, 2003, 2005, 2006) and MFI for eight years (1995
to 1997, 1999, 2002 to 2005). The corresponding daily se-
ries were studied and modeled bySerinaldi(2009), and the
annual summary statistics are shown in Table1. The lack
of long continuous rainfall data at a fine time scale moti-
vates the research on rainfall modeling and disaggregation
to obtain the information required in hydrological studies.
As disaggregation methods are often applied to downscale
daily rainfall series, scales ranging from 5 min to 1280 min
are used here because the latter is the scale closest to the
1440-min daily scale, achievable by aggregating 5-min se-
ries withb = 2 (e.g.,Molnar and Burlando, 2005). For CUM
simulation, this limitation does not apply; however, the same
range of scales is used for the sake of comparison. Moreover,
only results referring to the MFI data are presented in the fol-
lowing discussion, as similar conclusions hold for CCE and
VIT series.

3.1 Multifractal analysis

The first analysis performed on the data aims at exploring the
presence of an overall scaling behavior across a wide range
of scales and the range of rainfall intensities. Therefore, the
first multifractal analysis, which is related to CUM frame-
work, is performed without splitting estimates as a function
of scale and coarse rainfall intensity, whereas the possible
dependence of the scaling properties onk andRk−1 is dis-
cussed in Sect.3.2.

Figure1a shows the power spectrum density (PSD) of the
MFI time series at a 5-min resolution. The scaling behav-
ior should result in a linear pattern of the PSD in log-log
scale. The figure points out that the PSD is not strictly linear.
However, taking into account that the PDS of rainfall series
can be affected by a number of factors (e.g.,Harris et al.,
1997), the approximation is deemed reasonable for resolu-
tions between 10 min and 1 day. The slope coefficientβ of
the straight line fitted to PSD is equal to 0.88, corresponding
to a value of the Hurst exponent equal to 0.94. To check the
sensitivity of this estimate,β was also estimated considering
the PSD between 1 h and 1 month, obtaining a value equal
to 0.68, and Hurst exponent equal to 0.84. Figure1b shows
the normalized moments of orderq increasing from 0 to 3 by
steps of 0.2. Even though the coarse reference scale is 1280-
min, data have been aggregated up to≈ 15 days to better
appreciate the scaling behavior. The patterns are rather lin-
ear except for some unavoidable departures. Moments of low
order do not converge to a fixed outer scale; however, as the
order increases, the lines tend to converge to the scale ratio
log2(λeff) = log2(Lref/Leff) = log2(0.9/90) ≈ −6.6, mean-
ing thatLeff ≈ 90 days (3 months). The empiricalK(q) es-
timated from the slopes of the trace moments is shown in
Fig. 1c. Zero rainfall and rounding off introduced by the
resolution of the rain gauge result in an almost linear pat-
tern ofK(q). The valueK(0) allows defining the codimen-
sion of the intervals with positive rainfall as−K(0) ≈ 0.47
and the fractal dimensionD = 1− 0.47= 0.53. The slope
K ′(1) provides the codimension of the meanC1 ≈ 0.38. It
should be noted that these values are coherent with those
reported byLovejoy and Schertzer(1995) for rain gauge
daily rainfall data,de Lima and Grasman(1999) for 15-min
and daily rainfall, andde Lima and de Lima(2009) for 10-
min and daily rainfall. AssumingC1 ≈ 0.38 andLeff ≈ 90
days (=129 600 min), the equationRλ = λC1 〈R1〉 gives that
the main contribution to the meanR is (129600/5)0.38

≈ 48
times the mean, namely, 0.108·48≈ 5.2 mm h−1.

Figure1c also showsK(q) corresponding to the process
δR obtained by taking the absolute differences ofR at the
finest resolution. As the difference of the slopesK ′(q) of
KR andKδR is equal toH (e.g.,Lovejoy et al., 2008), it can
be used to check the value ofH . For the data on hand,H
ranges between−0.0036 and 0.0026, i.e.H can be assumed
equal to zero. To compute the parameterα and to check
the value ofC1, we have applied the double trace moment
(DTM) method (e.g.,Lavallée et al., 1991; Schmitt et al.,
1992, 1993). Referring the readers to the mentioned refer-
ences for technical details, the slopes of the straight lines
in Fig. 1d give an estimate ofα. As the intercepts corre-
spond to the values ofK(q), estimates ofC1 can be obtained
from Eq. (4) asC1 = K(q)(α −1)/(qα

−q) for H = 0. For
q = {1.5,1.75,2}, we obtainα̂ = {0.812,0.820,0.804} and
Ĉ1 = {0.374,0.371,0.376}. The estimates ofC1 are coher-
ent with the value obtained from the slopeK ′(1), whereas
α̂ values are only “guess” estimates, which were checked by
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Fig. 1. (a) Power spectrum density (PSD) of the observed MFI series. Grey lines denote the power-law curves fitted on PSD for two
different ranges of frequencies.(b) Traces of normalized moments, and corresponding moment-scale power-law relationships fitted to the
data.(c) Empirical and CUM theoreticalK(q) functions.(d) Patterns of|K(q,η)| resulting from the double trace moment (DTM) technique
for q = {1.5,1.75,2}. Straight lines represent the power-law fitted to the linear part of the patterns (grey points).

simulation. The procedure leads to a final value,α̂ = 1.25,
which yields simulations with moment scaling behavior and
K(q) close to the observed series. It should be noted that
the α values provided by DTM imply bounded singulari-
ties, while the final value obtained by simulation yields un-
bounded singularities. The theoretical CUMK(q) functions
with C1 = 0.38 andα equal to 0.81 and 1.25 are shown in
Fig. 1c: K(q) with the parameterα = 0.81 is very close to
the empiricalK̂(q), whereas the differences are more evi-
dent for the valueα = 1.25. In spite of this disagreement, in
Sect. 4.1, it is shown that the valueα = 1.25 provides thresh-
olded series that exhibit empiricalK̂(q) close to the observed
one.

Finally, an alternative estimate ofH was performed by the
relationship (e.g.,Lovejoy and Schertzer, 1995):

H =
β −1+K(2)

2
=

β −1

2
+

C1(2α
−2)

2(α−1)
. (8)

Assumingβ = 0.88, Eq. (8) givesH values equal to≈ 0.19
and≈ 0.23 forα = 0.81 andα = 1.25, respectively. Forβ =

0.68 and the same values ofα, H ≈ 0.09 and≈ 0.14. These
values are within the ranges reported in the literature dealing
with rainfall analysis (e.g.,Royer et al., 2008; de Lima and
de Lima, 2009), and are compatible withH = 0 owing to the
low accuracy resulting from measurement discretization and
seasonality (e.g.,Lovejoy et al., 2008).

3.2 Analysis of imperfect scaling

As mentioned in Sect.1, several studies have pointed out the
dependence of discrete cascade parameters on scale levelk

and rainfall intensityRk−1. To check the presence of these
relations, the parameters of BLS and MC models were es-
timated by the method described in Sect.2.2 and 2.3. In
more detail, nine time scales from 1280 min (λ0) to 5 min
(λ8) were considered. At each cascade levelk, the weights
W were computed fromRk−1 andRk, and the corresponding
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Fig. 2. Relationships among BLS parameters, time scale, and rainfall intensityR or amountA.

Fig. 2. Relationships among BLS parameters, time scale, and rainfall intensityR or amountA.

statistics were used to estimate BLS and MC parameters at
level k. To study the possible dependence on the rainfall in-
tensity of parent intervals, the range ofRk−1 was partitioned
in 12 classes (logarithmically binned). Therefore, for each
level k, there are 12 subsets ofRk−1 and the correspond-
ing Rk, leading to 12 sets of parameters. This procedure al-
lows studying the relation between the models’ parameters
andRk−1 at each scale level. Figure2a–c shows the relation-
ships between the BLS parameters and the rainfall intensity.
The values ofβBLS are aligned along a rather well-defined
pattern (Fig.2a), which can be suitably parameterized by a
power-law type function ranging in [0,1]:

βBLS(R) =
1

1+σ(R−µ)ξ
, (9)

whereµ, σ , and ξ are position, scale, and shape parame-
ters, respectively. However, from Fig.2a, the dependence on

scale level is not clear. This dependence may be highlighted
by performing a horizontal shift of the points in Fig.2a pro-
portional to the scale level, i.e. by transforming the rainfall
intensity into rainfall amountAk = Rk/λk. Figure2d shows
the result of the shifting procedure. The plot points out that
βBLS follows well-defined patterns for each cascade level,
exhibiting a systematic decrease as the time scale decreases
and rainfall amount increases. It is worth noting that each
curve in Fig.2d should show 12 points for each cascade level,
according to the estimation procedure. However, at some
scales, a smaller number of points are shown, since someR

classes contain few values, resulting in unreliable estimates.
As R ≥ 0, it is assumed thatµ = 0. It follows that the de-
pendence amongβBLS, rainfall intensityR, and scale level
k can be summarized by a simple two-parameter power-law
function ofR.

Nonlin. Processes Geophys., 17, 697–714, 2010 www.nonlin-processes-geophys.net/17/697/2010/
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The patterns ofCBLS (Fig.2b) seem to increase as the time
scale and rainfall intensity increase. However, a decreasing
behavior emerges at the highest rainfall values. To param-
eterize these patterns, a double translation was performed.
First, curves were horizontally translated by transforming the
rain intensity into rainfall amountAk = Rk/λk. Thus, we fo-
cus on the dependence ofCBLS on A instead ofR (Fig. 2e).
Therefore, the curves in Fig.2e are collapsed by a vertical
shift (Fig. 2g). This shift is preformed multiplying the val-
ues of each curve by the overall value ofCBLS(k), which is
computed using all dataRk−1 andRk without partitioning the
range ofRk−1. Points in Fig.2g are approximately aligned
along a straight line in the log-linear plane, which is modeled
by a log-linear relationship:

CBLS(A) = c0+c1log(A), (10)

in which c0 and c1 denote generic coefficients. Figure2i
shows the values of the overallCBLS(k) that are used to per-
form the vertical shift.CBLS(k) is parameterized by a power-
law function ofλk:

CBLS(k) = d0(λk)
d1, (11)

whered0 andd1 are coefficients to be estimated on the data.
Since Eqs. (10) and (11) summarize the dependence ofCBLS
onA andk, respectively,CBLS(A,k) can be written as:

CBLS(A,k) = CBLS(A)/CBLS(k). (12)

In other words, the curves in Fig.2e can be modeled by an
equation depending onA, which is properly shifted to ac-
count for the scale, according to the ruleCBLS(k).

A similar approach was applied to parameterαBLS. Fig-
ure 2c points out that a horizontal shift coupled with a ver-
tical shift can be appropriate to collapse the curves, allow-
ing for the parsimonious modeling ofαBLS. Analogous to
CBLS, the horizontal shift is performed by transformingRk

in Ak = Rk/λk (Fig. 2f). Therefore, the resulting curves are
considered as realizations of a unique functionαBLS(A) de-
pending onA (Fig. 2h), which is shifted according to a co-
efficientαBLS(k) depending onk (Fig. 2j). αBLS(k) are the
αBLS parameters computed on the whole series at each cas-
cade stagek, without partitioningR in 12 classes.αBLS(A)

is described by a two-order polynomial (Fig.2h):

log(αBLS(A)) = c′

0+c′

1log(A)+c′

2(log(A))2, (13)

in which c′

0, c′

1, andc′

2 are the polynomial coefficients, and
αBLS(k) is modeled by a power-law function ofλk:

αBLS(k) = d ′

0(λk)
d ′

1, (14)

whered ′

0 andd ′

1 are the power-law coefficients. The para-
metric counterpart of the curves in Fig.2f can be obtained by
combiningαBLS(A) andαBLS(k) according to the following
multiplicative rule:

αBLS(A,k)= αBLS(A)αBLS(k). (15)

Fig. 3. Relationships among MC parameters, time scale, and rain-
fall intensityR or amountA.

The same method was applied to the MC parameters. In or-
der to perform a comparison with the results obtained by
Rupp et al.(2009), we focused onpx instead ofp0. Un-
like Rupp et al.(2009), who parameterizedpx by the lognor-
mal distribution, whose coefficients varied with time scale
through loglinear functions, we adopted a simpler approach.
Figures3a and3c show that the patterns ofpx(A,k) could
be collapsed into a unique curvepx(R) by the same hori-
zontal shifting procedure used forβBLS. Hence, a power-law
function was used:

px(R) =
1

1+σ ′(R−µ′)ξ
′
. (16)

whereµ′, σ ′, andξ ′ are position, scale, and shape param-
eters, respectively. Analogous toαBLS, the patterns ofa
(Fig. 3b) were shifted horizontally (Fig.3d), and then ver-
tically (Fig. 3e). The resulting (collapsed) patterns in Fig.3e
were described by a two-order polynomial:

log(a(A)) = c′′

0 +c′′

1 log(A)+c′′

2(log(A))2, (17)
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Fig. 4. Relationships between models’ parameters and rainfall intensity (or amount) for three representative series simulated by BLS, MC,
and CUM models.
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while the rule that drives the vertical shifta(k) was described
by a power-law function ofλk (see Fig.3f):

a(k) = d ′′

0 (λk)
d ′′

1 . (18)

The parametric counterpart of the curves in Fig.3d can be
obtained by combininga(A) anda(k) according to the fol-
lowing multiplicative rule (Rupp et al., 2009):

a(A,k)= a(A)a(k). (19)

4 Simulations and results

The physically based CUM model and discrete BLS and
MC models with parameters that vary according to Eqs. (9)–
(19) have been applied to simulate 100 synthetic rainfall se-
quences at 5-min time scale with the same length of the ob-
served series. In the CUM simulation, series were thresh-
olded using a value equal to twice the observed mean (2·

0.108 mm h−1). As in the previous section, only results refer-
ring to MFI series are reported. The performance of the mod-
els was assessed by comparing the ability to reproduce both
the modeled parameters and scaling properties along with a
number of rainfall characteristics useful for hydrological ap-
plications. Moreover, the possible presence of chaotic be-
havior was explored in order to evaluate the models in terms
of properties not explicitly accounted for by CUM, BLS and
MC model structures.

4.1 Scaling properties

First, we have evaluated the ability of the models to repro-
duce the analytical relationships (Eqs.9–19) that describe the
possible imperfect scaling. Figure4 compares the relation-
ship between the models’ parameters and rainfall intensityR

or rainfall amountA after removing the dependence on the
scale level, i.e. after the vertical shift described in Sect.3.2.
The lines refer to analytical relationships with coefficients
estimated on the MFI observed series, while empirical re-
lationships associated with a representative simulated series
are denoted with points. BLS and MC parameters were com-
puted on CUM, BLS, and MC series, in order to assess if
each model could reproduce the parameter patterns of the
others. βBLS, αBLS, px , anda, corresponding to BLS se-
ries, appear to be more dispersed than those of MC series,
whereas the BLSCBLS values show some bias compared to
the MC values. The most important result is that the CUM
model is able to reproduce the parameter patterns quite well,
except for some unavoidable bias. The relationship between
scales and parameters driving the vertical shifts described in
Sect.3.2 is shown in Fig.5. Also in this case, the bias of
the parameters computed on the BLS series appears slightly
more evident than that of the MC series. Even though the
structure of the two-parameter CUM model does not explic-
itly account for the analytical patterns illustrated in the fig-
ure, it shows an agreement comparable to that of the more

Fig. 5. Relationships between the models’ parameters and scale for
the representative series used in Fig.4.

complex BLS and MC models. The systematic patterns in
the models’ parameters, which were detected in the time se-
ries, should be a sign of the changes in the distribution ofW

related to the cascade level and classes of rainfall intensity
(or amount). However, as these patterns can be reproduced
by a thresholded multifractal model (CUM), they cannot be
considered as a definitive proof of the presence of physically
based departures from multifractality.

MC, BLS, and CUM simulated series were also analyzed
by the same multifractal techniques applied in Sect.3.1. Fig-
ure 6 (top panels) shows the PSD of a representative simu-
lated series for each model. BLS tends to overestimate the
PSD, whereas MC shows the best agreement. This result is
expected, and can be ascribed to the strong conservation rule
that characterizes the MC model. A better performance of
BLS could be obtained using the trial-and-error fitting pro-
cedure applied byVeneziano et al.(2006). However, as men-
tioned in Sect.2.2, this approach was not used in order that
the comparison between BLS and MC is not influenced by
different estimation methods. CUM series exhibits a PSD

www.nonlin-processes-geophys.net/17/697/2010/ Nonlin. Processes Geophys., 17, 697–714, 2010
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Fig. 6. Top panels show the PSD of three representative rainfall series simulated by BLS, MC, and CUM models (black lines) along with
the PSD of the observed MFI series (grey lines). Middle panels show the traces of normalized moments of the observed MFI series and
sequences simulated by the three models. Bottom panels illustrate theK(q) functions.

Fig. 6. Top panels show the PSD of three representative rainfall series simulated by BLS, MC, and CUM models (black lines) along with the
PSD of the observed MFI series (grey lines). Middle panels show the traces of normalized moments of the observed MFI series (points) and
the median patterns corresponding to the sequences simulated by the three models (lines). Grey areas denote the 90% confidence intervals
(CIs) computed on 100 simulations. Bottom panels illustrate theK(q) functions corresponding to the trace moments shown in the middle
panels.

similar to the observed one but less accurate than the PSD of
the MC series. Figure6 also shows the traces of the moments
of order q = {0,2,3} (middle panels), andK(q) functions
(bottom panels). The graphs illustrate the median patterns
and the 90% confidence intervals (CIs) computed from the
100 simulations. All models are able to reproduce low-order
moments (say,q < 2), whereas differences are more evident
for higher moments (q > 2). BLS exhibits both systematic
bias and variance higher than MC and CUM. As expected,
MC model yields series with statistical properties very close
to the observed series owing to its strong conservative struc-
ture. On the other hand, the performance of CUM model

is remarkable, considering its parsimonious structure based
on two invariant parameters. The simple thresholding proce-
dure mimics the fractal support of the observed series quite
well. Unlike MC, CUM model (withα = 1.25) involves un-
bounded singularities, resulting in a higher variability of the
high-order moments.

4.2 Physical properties

As the main purpose of disaggregation is to obtain rainfall
series at a fine time scale, to be used for further analyses,
the BLS, MC and CUM models should provide synthetic
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Fig. 7. QQ-plots of four physical summary statistics computed on 100 series simulated by BLS, MC, and CUM models.(a)–(c) Positive
rainfall intensity at 5-min time scale.(d)–(f) Event rainfall amount.(g)–(i) Wet spell length.(j)–(l) Dry spell length. Grey lines denote the
patterns of the median of each statistics computed on 100 simulations, while light grey lines are the 5th and 95th percentiles.

series that are able to mimic some physical properties of in-
terest. Eight rainfall attributes were used for assessing the
simulation quality: (1) positive rainfall (R > 0) at 5-min time
scale; (2) rainfall accumulated during storm events; (3) wet
spell durations; (4) dry spell durations; (5) percentage of ze-
ros (no rain,P0); (6) expectation of annual maxima; (7) stan-

dard deviation of annual maxima; (8) first 100 lags (≈8 h)
of the autocorrelation function (ACF). To define independent
storm events, a minimum critical inter-arrival time was com-
puted by the method proposed byRestrepo-Posada and Ea-
gleson(1982). The resulting values were 64, 23, and 29 h for
CCE, MFI, and VIT, respectively. As these inter-arrival times
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Fig. 8. Physical summary statistics computed on 100 series simulated by BLS, MC, and CUM models.(a)–(c)Probabilities of zero rainfall
P0. (d)–(f) MeanE[·] of annual maxima.(g)–(i) Standard deviationSD[·] of annual maxima.(j)–(l) Autocorrelation function. Grey lines
denote the patterns of the median of each statistics computed on 100 simulations, while light grey lines are the 5th and 95th percentiles.

were longer than the typical evolution time of the storms for
the specific climatic region (≈5–6 h on an average), a value
of seven hours was adopted. This value is equal to or coher-
ent with that applied bySalvadori and De Michele(2001) for
a similar climate, and byKoutsoyiannis and Pachakis(1996)
andPathirana et al.(2003) for different climates.

Theqq-plots in Fig.7a–c show that the BLS model over-
estimates 5-min positive rainfall above≈50 mm h−1, the

MC model slightly underestimates the high quantiles, and
the CUM model provides the most accurate median pattern.
Moreover, high BLS and CUM quantiles are more dispersed
than MC, reflecting the different models’ structures. In fact,
BLS and CUM models allow simulation of unbounded sin-
gularities, while MC model at the most preserves all mass
contained in a time interval at coarse scales, resulting in
bounded singularities. Focusing on the distributions of event
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accumulated rainfall (Fig.7d–f), BLS model overestimates
this attribute and its variability, whereas MC and CUM mod-
els reproduce it rather accurately. Moreover, the uncertainty
of the high MC and CUM quantiles is almost null and void.
This behavior can be related to the distributions of positive
values in Fig.7a–c: extreme BLS and CUM quantiles show
similar variability and different bias, while extreme MC and
CUM quantiles show different variability (bounded and un-
bounded singularities) and similar (small) bias. As the event
rainfall amount results from an integral process, the lack of
bias plays a prominent role compared to presence/absence of
isolated extreme realizations.

The BLS and CUM models tend to overestimate the wet
spell length (Fig.7g–i) for short durations (say, less than few
hours), meaning that the simulated series tend to exhibit short
events, which are longer than the corresponding observed
events with equal probability. Since short durations refer
to the events of main interest for studies concerning small
basins, this property of the BLS and CUM series has to be
taken into account in hydrological applications. On the other
hand, the MC model reproduces wet spell durations less than
≈20 h rather well, but it slightly underestimates wet spells of
longer durations (Fig.7h). The BLS and CUM models tend
to overestimate inter-arrival times, while the MC gives dry
spells almost identical to the observed ones (Fig.7j–l) owing
to the exact mass preservation involved in the MC structure.

All models can simulate synthetic sequences with a per-
centage of zeros comparable to the observed one at 5-min
scale (Fig.8a–c). However, at the other coarser time scales,
CUM model is outperformed by BLS and MC models that
explicitly account for this property. The overestimation of
P0 by the BLS model at the coarsest reference time scale
(Fig. 8i) is coherent with the results obtained byMolnar and
Burlando(2005) for analogous canonical models based on
lognormal distribution, while the MC model reproduces the
exactP0 owing to the exact preservation of the mass (Fig.8j).
The median patterns of the mean and standard deviation of
the annual maxima across time scales (Fig.8d–i) are repro-
duced more accurately by the MC and CUM models than by
the BLS model, which also exhibits a higher variability than
its competitors. Finally, the BLS model underestimates the
ACF for the first 40 lags (≈ 3 h, Fig.8j), whereas the MC
model provides more accurate ACF values (Fig.8k). The
ACF patterns of CUM and BLS are similar, the latter show-
ing higher variability.

4.3 A look at nonlinear dynamics

In the last 25 years there has been an increasing interest in
interpreting and modeling the rainfall series as chaotic non-
linear (possibly low-dimensional) dynamic systems rather
than infinite-dimensional stochastic processes (e.g.,Sivaku-
mar et al., 2001, and references therein). As some rainfall
series seem to support the presence of chaotic-deterministic
behavior (e.g.,Sivakumar et al., 1999; Dhanya and Nagesh

Kumar, 2010), and some do not (e.g.,Koutsoyiannis and
Pachakis, 1996; Sivakumar et al., 2006), the analysis of con-
tinuous rainfall records has not yielded conclusive answers
yet. The detection of chaotic behavior is usually performed
by analyzing the correlation dimensionD2 computed via the
Grassberger-Procaccia algorithm (e.g.,Takens, 1981; Grass-
berger and Procaccia, 1983), based on the phase space recon-
struction theorem (Takens, 1981). However, this approach is
affected by a number of sources of error, such as the presence
of lacunarity (see e.g.,Theiler, 1990, for an overview). As
the rainfall time series at fine time scales (say,≤ 1 day) are
characterized by a high percentage of zeros, the Grassberger-
Procaccia algorithm may not be well-suited for these data
(see e.g.,Sivakumar, 2005; Koutsoyiannis, 2006, for a dis-
cussion on the effects of zeros on chaos detection in rainfall
series).

Aiming at assessing the differences between observed and
simulated series in terms of the possible chaotic behavior, we
recall that the trajectories of the chaotic systems are virtually
unpredictable because errors in measurement of the initial
state propagate exponentially fast. As the Lyapunov expo-
nents measure the rate of divergence, the largest Lyapunov
exponent is a suitable index to identify a chaotic system. Re-
ferring the readers toParker and Chua(1987) andSchreiber
(1999) for practical introductions, here, it is mentioned that
the largest Lyapunov exponent was estimated by the algo-
rithm introduced byRosenstein et al.(1993), based on the
quantity:

4(1t)=
1

N

N∑
t0

log

 1∣∣U(ξt0)
∣∣ ∑
st∈U(ξt0)

∣∣ξt0+1t −ξt+1t

∣∣,

(20)

whereξt0 denotes the reference points,U(ξt0) is the ball of
radiusε centered at the pointξt0. The presence of possible
chaotic dynamics results in an increasing linear pattern of
4(1t) for a reasonable range ofε and for all the embedding
dimensionsm larger than some minimum dimensionm0, and
the positive slope of this linear pattern is an estimate of the
largest Lyapunov exponent. We have usedε = 480 5-min in-
tervals = 40 h, which is equal to the decorrelation time (i.e.,
the first lag at which ACF becomes zero) andm = {10,25}.
The patterns of4(1t) in Fig. 9 show that any scaling linear
region is present either in the observed or representative sim-
ulated series. This denotes that there is no evidence for the
divergence of trajectories in the reconstructed phase space,
and thus for chaotic behavior. Of course, the use of a unique
index to detect chaos is not enough (e.g.,Dhanya and Nagesh
Kumar, 2010); however, the essential point is that the BLS,
MC, and CUM series, all reproduce MFI patterns rather well,
but for some intrinsic statistical fluctuations. Hence, for the
data on hand, stochastic models represent a reasonable way
to describe and simulate 5-min rainfall series.
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Fig. 9. 4(1t) patterns for the embedding dimensionsm equal to 10
and 25 (see text for details).

5 Conclusions

The analysis of rainfall series at 5-min resolution has pointed
out that the weightsW characterizing the discrete random
cascade models used to describe the rainfall process do not
appear to beiid. The generatorW exhibits a complex de-
pendence on scale and rainfall intensity (or amount), which
is reflected in the behavior of the parameters of the discrete
models considered in this study (MC and BLS). In order to
explore the nature of these departures from theiid hypoth-
esis, we have introduced the above-mentioned dependences
in the models’ parameterization by a set of suitable, simple
functions. Moreover, the physically based CUM model was
used as a benchmark model to check the consistency of the
departures from multifractality. The models were tested by
comparing a number of statistics computed on the observed
and simulated series. The results can be summarized as fol-
lows:

1. The series simulated by discrete BLS and MC models
can reproduce the analytical relationships that charac-
terize the models, and synthesize departures ofW from
theiid hypothesis. The BLS model tends to give biased
estimates more than the MC model does. This could
be ascribed to the differences between the bare and
dressed processes (e.g.,Veneziano et al., 2006; Paul-
son and Baxter, 2007), which were not corrected dur-
ing the model calibration. However, if this is the case,
MC model appears to be less sensible than BLS model
to bare/dressed bias.

2. The patterns that describe the dependence of BLS and
MC parameters on scale level and rainfall intensity (or
amount) can be also reproduced by CUM model, which
was properly thresholded to account for zero rainfall
measurements. Therefore, the detection of these pat-

terns is not sufficient to establish whether the departure
from multifractality is real or it has to be ascribed to
measurement inaccuracy. Moreover, we cannot exclude
that the scale by scale changes in the parameters may
depend on the use of cascade weights estimated by con-
ditioning to the rainfall intensity (amount) at the par-
ent time intervals (Eq.6). This approach implicitly in-
volves a microcanonical conservation which may cause,
to some extent, the systematic patterns of the models’
parameters.

3. The multifractal analysis of the observed and simulated
series confirms that BLS model tends to yield biased
results, whereas MC and CUM models yield rather ac-
curate results. In particular, it is shown that the simple
thresholding procedure applied to CUM series is able to
reproduce the shape of the observed scaling exponent
function.

4. Results concerning the physical summary statistics con-
firm the satisfactory performance of MC and CUM
models. Since the latter model implies unbounded sin-
gularities, it provides larger extreme realizations than
the MC model. Nevertheless, the MC model allows for
a more accurate simulation of some properties, such as
wet/dry spells, ACF, and probability of zero rainfall at
the scales of interest. Even though the MC model dis-
cussed in this study is not physically based and not mul-
tifractal at all, the properties of the simulated series can
explain the interest for its study and possible application
to real-world problems.

5. The patterns of the largest Lyapunov exponent point out
that there are no substantial differences between the ob-
served and simulated series, and there is no evidence
for low-dimensional nonlinear dynamics driving the an-
alyzed rainfall series.

Finally, it is worth bearing in mind that the results presented
in this study depend on the analyzed data as pointed out by
the variety of conclusions available in the literature focus-
ing on these topics. However, a twofold overall conclusion
can be drawn: (1) the departures from multifractal behav-
ior on real-world rainfall data can be explained in differ-
ent ways, making difficult definitive statements. Of course,
in agreement to the Occam’s razor, the simplest and theo-
retically/physically based explanation should be preferred.
(2) From the practical point of view, the choice of a model
is related to the scope of the analysis; even though the theo-
retically/physically based models should be preferred, other
options should not be discarded a priori, as they can provide
suitable solutions for specific problems.
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Güntner, A., Olsson, J., Calver, A., and Gannon, B.: Cascade-based
disaggregation of continuous rainfall time series: the influence of
climate, Hydrol. Earth Syst. Sci., 5, 145–164, doi:10.5194/hess-
5-145-2001, 2001.

Gupta, V. and Waymire, E.: A statistical analysis of mesoscale rain-
fall as a random cascade, J. Appl. Meteorol., 32, 251–267, 1993.

Harris, D., Seed, A., Menabde, M., and Austin, G.: Factors af-
fecting multiscaling analysis of rainfall time series, Nonlin.
Processes Geophys., 4, 137–155, doi:10.5194/npg-4-137-1997,
1997.

Kolmogorov, A. N.: The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers, Pro-
ceedings of the USSR Academy of Sciences, 30, 299–303, 1941.

Kolmogorov, A. N.: The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers, Pro-
ceeding of Royal Society of London, Series A, 434, 9–13, 1991.

Koutsoyiannis, D.: On the quest for chaotic attractors in hydrologi-
cal processes, Hydrolog. Sci. J., 51, 1065–1091, 2006.

Koutsoyiannis, D. and Pachakis, D.: Deterministic chaos versus
stochasticity in analysis and modeling of point rainfall series,

J. Geophys. Res., 101, 26441–26451, doi:10.1029/96JD01389,
1996.

Koutsoyiannis, D. and Xanthopoulos, T.: A dynamic model for
short-scale rainfall disaggregation, Hydrolog. Sci. J., 35, 303–
322, 1990.

Koutsoyiannis, D., Onof, C., and Wheater, H. S.: Multivariate rain-
fall disaggregation at a fine time scale, Water Resour. Res., 39,
1173, doi:10.1029/2002WR001600, 2003.

Lavallée, D., Schertzer, D., and Lovejoy, S.: On the determination
of the codimension function, in: Scaling, fractals and non-linear
variability in geophysics, edited by: Schertzer, D. and Lovejoy,
S., pp. 99–110, Kluwer, 1991.

Lovejoy, S. and Schertzer, D.: Multifractals and Rain, in: New Un-
certainty Concepts in Hydrology and Hydrological modelling,
edited by: Kundzewicz, A. W., pp. 62–103, Cambridge Univer-
sity Press, Cambridge, 1995.

Lovejoy, S. and Schertzer, D.: On the simulation of continu-
ous in scale universal multifractals, part I: spatially continu-
ous processes, Computers and Geoscience, 36, 1393–1403, doi:
10.1016/j.cageo.2010.04.010, 2010a.

Lovejoy, S. and Schertzer, D.: On the simulation of continuous in
scale universal multifractals, part II: space-time processes and
finite size corrections, Computers and Geoscience, 36, 1404–
1413, doi:10.1016/j.cageo.2010.07.001, 2010b.

Lovejoy, S., Schertzer, D., and Allaire, V. C.: The remarkable wide
range spatial scaling of TRMM precipitation, Atmos. Res., 90,
10–32, doi:10.1016/j.atmosres.2008.02.016, 2008.

Mandelbrot, B. B.: Intermittent turbulence in self-similar cascades:
divergence of high moments and dimension of the carrier, J. Fluid
Mech., 62, 331–358, 1974.

Mascaro, G., Vivoni, E. R., and Deidda, R.: Downscaling soil mois-
ture in the southern Great Plains through a calibrated multifrac-
tal model for land surface modeling applications, Water Resour.
Res., 46, W08546, doi:10.1029/2009WR008855, 2010.

Menabde, M. and Sivapalan, M.: Modeling of rainfall time series
and extremes using bounded random cascades and Levy-stable
distributions, Water Resour. Res., 36, 3293–3300, 2000.

Menabde, M., Harris, D., Seed, A., Austin, G., and Stow, D.: Multi-
scaling properties of rainfall and bounded random cascades, Wa-
ter Resour. Res., 33, 2823–2830, 1997.

Molnar, P. and Burlando, P.: Preservation of rainfall properties in
stochastic disaggregation by a simple random cascade model, At-
mos. Res., 77, 137–151, 2005.

Mood, A. M., Graybill, F. A., and Boes, D. C.: Introduction to the
Theory of Statistics, McGraw-Hill, New York, 3rd edn., 1974.

Olsson, J.: Limits and characteristics of the multifractal behavior
of a high-resolution rainfall time series, Nonlin. Processes Geo-
phys., 2, 23–29, doi:10.5194/npg-2-23-1995, 1995.

Olsson, J.: Evaluation of a scaling cascade model for tempo-
ral rain-fall disaggregation, Hydrol. Earth Syst. Sci., 2, 19–30,
doi:10.5194/hess-2-19-1998, 1998.

Olsson, J. and Berndtsson, R.: Temporal rainfall disaggregation
based on scaling properties, Water Sci. Technol., 37, 73–79,
1998.

Onof, C., Townend, J., and Kee, R.: Comparison of two hourly to
5-min rainfall disaggregators, Atmos. Res., 77, 176–187, 2005.

Over, T. M. and Gupta, V. K.: Statistical analysis of masoscale rain-
fall: Dependence of a random cascade generator on large-scale
forcing, J. Appl. Meteorol., 33, 1526–1542, 1994.

www.nonlin-processes-geophys.net/17/697/2010/ Nonlin. Processes Geophys., 17, 697–714, 2010



714 F. Serinaldi: Modeling scaling and imperfect scaling in rainfall time series

Over, T. M. and Gupta, V. K.: A space-time theory of mesoscale
rainfall using random cascades, J. Geophys. Res., 101, 26319–
26331, 1996.

Parker, T. and Chua, L.: Chaos: A tutorial for engineers, Proceed-
ings of the IEEE, 75, 982–1008, 1987.

Pathirana, A., Herath, S., and Yamada, T.: Estimating rainfall distri-
butions at high temporal resolutions using a multifractal model,
Hydrol. Earth Syst. Sci., 7, 668–679, doi:10.5194/hess-7-668-
2003, 2003.

Paulson, K. S. and Baxter, P. D.: Downscaling of rain gauge time
series by multiplicative beta cascade, J. Geophys. Res., 112,
D09105, doi:10.1029/2006JD007333, 2007.

R Development Core Team: R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria,http://www.R-project.org, ISBN 3-900051-07-
0, 2009.

Restrepo-Posada, P. J. and Eagleson, P. S.: Identification of inde-
pendent rainstorms, J. Hydrol., 55, 303–319, 1982.

Rosenstein, M. T., Collins, J. J., and De Luca, C. J.: A practical
method for calculating largest Lyapunov exponents from small
data sets, Physica D, 65, 117–134, 1993.

Royer, J.-F., Biaou, A., Chauvin, F., Schertzer, D., and Lovejoy, S.:
Multifractal analysis of the evolution of simulated precipitation
over France in a climate scenario, Comptes Rendus Geosciences,
340, 431–440, doi:10.1016/j.crte.2008.05.002, 2008.

Rupp, D. E., Keim, R. F., Ossiander, M., Brugnach, M., and Selker,
J. S.: Time scale and intensity dependency in multiplicative cas-
cades for temporal rainfall disaggregation, Water Resour. Res.,
45, W07409, doi:10.1029/2008WR007321, 2009.

Salvadori, G. and De Michele, C.: From Generalized Pareto to Ex-
treme Values laws: Scaling properties and derived features, J.
Geophys. Res., 106, 24063–24070, 2001.

Samorodnitsky, G. and Taqqu, M. S.: Stable Non-Gaussian Random
Processes, Chapman & Hall, New York, 1994.

Schertzer, D. and Lovejoy, S.: Physical modeling and analysis
of rain and clouds by anisotropic scaling of multiplicative pro-
cesses, J. Geophys. Res., 92, 9693–9714, 1987.

Schertzer, D. and Lovejoy, S.: Hard and Soft Multifractal processes,
Physica A, 185, 187–194, 1992.

Schertzer, D. and Lovejoy, S.: Universal Multifractals do Exist!:
Comments on “A statistical analysis of mesoscale rainfall as a
random cascade”, J. Appl. Meteorol., 36, 1296–1303, 1997.

Schertzer, D., Lovejoy, S., Lavallée, D., and Schmitt, F.: Universal
hard multifractal turbulence, theory and observations, in: Non-
linear Dynamics of Structures, edited by: Sagdeev, R. Z., Frisch,
U., Hussain, F., Moiseev, S. S., and Erokhin, N. S., pp. 213–235,
World Scientific, 1991.

Schertzer, D., Tchiguirinskaia, I., Lovejoy, S., and Hubert, P.: No
monsters, no miracles: in nonlinear sciences hydrology is not an
outlier!, Hydrolog. Sci. J., 55, 965–979, 2010.
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