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Abstract. Discrete multiplicative random cascade (MRC) scale universal multifractal (CUM) model, which is used as
models were extensively studied and applied to disaggregata physically based benchmark model. Monte Carlo simula-
rainfall data, thanks to their formal simplicity and the small tions point out that the dependence of MC and BLS parame-
number of involved parameters. Focusing on temporal disters on rainfall intensity and cascade scales can be recognized
aggregation, the rationale of these models is based on multialso in CUM series, meaning that these relations cannot be
plying the value assumed by a physical attribute (e.g., rainconsidered as a definitive sign of departure from multifrac-
fall intensity) at a given time scalgé, by a suitable num- tality. Even though the modified MC model is not properly
berb of random weights, to obtaih attribute values corre- a scaling model (parameters depend on rainfall intensity and
sponding to statistically plausible observations at a smalleiscale), it reproduces the empirical traces of the moments and
L /b time resolution. In the original formulation of the MRC moment exponent function as effective as the CUM model.
models, the random weights were assumed to be indeperMoreover, the MC model is able to reproduce some rainfall
dent and identically distributed. However, for several stud-properties of hydrological interest, such as the distribution
ies this hypothesis did not appear to be realistic for the ob-of event rainfall amount, wet/dry spell length, and the au-
served rainfall series as the distribution of the weights wastocorrelation function, better than its competitors owing to
shown to depend on the space-time scale and rainfall intenits strong, albeit unrealistic, conservative nature. Therefore,
sity. Since these findings contrast with the scale invarianceesven though the CUM model represents the most parsimo-
assumption behind the MRC models and impact on the apnious and the only physically/theoretically consistent model,
plicability of these models, it is worth studying their nature. results provided by MC model motivate, to some extent, the
This study explores the possible presence of dependence d@fterest recognized in the literature for this type of discrete
the parameters of two discrete MRC models on rainfall in-models.

tensity and time scale, by analyzing point rainfall series with
5-min time resolution. Taking into account a discrete micro-
canonical (MC) model based on beta distribution and a dis-

crete canonical beta-logstable (BLS), the analysis points ou  Introduction

that the relations between the parameters and rainfall inten-

sity across the time scales are detectable and can be model&hinfall series spanning several years are usually available at
by a set of simple functions accounting for the parameter-coarse time scales, say above daily resolution, thanks to the
rainfall intensity relationship, and another set describing therain gauge networks operating over a long time. Similarly,
link between the parameters and the time scale. Thereforgain fields at coarse space scale are provided by numerical
MC and BLS models were modified to explicitly account Weather prediction models and remote sensor instruments,
for these relationships and compared with the continuous irsuch as radar and satellite. However, the space-time resolu-
tion of this data is often not appropriate for several hydro-
logical analyses, and rainfall information needs to be disag-

Correspondence td=. Serinaldi gregated to a finer space-time resolution (eGgaume et aJ.
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(f.serinaldi@unitus.it) 2007). The problem has been widely studied in the literature
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and several techniques have been proposed (se&elg:, on Lévy stable random variables (e.§Ghertzer and Love-
soyiannis et a).2003 Sivakumar and Sharm&2008 Rupp  joy, 1987 1997 Lovejoy and Schertzet 995 Lovejoy et al,
etal, 2009 and references therein). One of the most studied2008. The latter models are called continuous universal
approaches is based on the discrete multiplicative cascadenultifractal (CUM) models owing to their properties of sta-
(e.g.,Mandelbrof 1974). The rationale of this method is to bility and attractivity, which correspond to a generalization
split each time (or space) interval at a given resolution andof the central limit theorem (e.gSchertzer and Lovejoy
cascade levet — 1 into a numbew of subintervals at level 1987 1997 Schertzer et al.2010. Nevertheless, discrete
k, and assign to each subinterval a rainfall value obtainedVIRC models are still widely applied and studied in the liter-
by multiplying the rainfall intensity (or amount) of the par- ature.
ent coarse interval by the cascade weightgalso known as A basic hypothesis under the multiplicative structure in
generator), which fulfill some prescribed properties recalledEq. (1) is that the weightdV are assumed to be independent
in the next sections. The process is repeated for a number &nd identically distributedi(d). However, as discussed by
levels until the rainfall series/field is disaggregated to the re-Veneziano et a2006, even though the multiplicative com-
quired space/time resolution. In time series disaggregationbination of the weights$¥ is generally supported by empiri-
the branching number is commonly assumed to be equal cal evidenceNlenabde et al. 1997 Veneziano et al.2000),
to 2, resulting in a dyadic cascade, so that the time scale isommonly theid assumption does not seem to be realistic.
halved at each cascade level. In this case, aftevels, each  Cascade weights have been found to be dependent on scale
interval at the reference (coarse) time sdageis divided as  (Veneziano et al.1996 Menabde et a].1997 Menabde and
i =1,2,...b* subintervals at finer scalg; therefore, the Sivapalan 200Q Molnar and Burlandp2005 Paulson and
scale ratio is defined ag = Lo/L; =b* (Lo =1 is associ- Baxter, 2007, on covariates such as large-scale rainfall in-
ated with the Oth cascade level corresponding to the coarsesensity Over and Guptal994 1996 Deidda 200Q Molnar
reference time scalkg). The rainfall intensityR contained and Burlandp2009, and on the interval class, i.e. intervals
in theith subinterval at a generic cascade lévid given by:  at the beginning, middle, or end of a rainfall eve@igson
1998 Olsson and Berndtsspi998 Guntner et al. 2001
L Veneziano and lacobelli2002).
Rix= Rol_[ W)= A fori=1,2,...65 k>0, (1) Veneziano et al(2009 have explored the dependence of
the cascade weights on rainfall intensity and cascade level,
assuming the so-called discrete canonical logstable model,
whereA,  is the rainfall amount corresponding & «, and which accounts for zero rainfall (hereinafter, also denoted
the expectation o is E[W]=1. MRC models can be as lacunarity) thanks to a thresholding procedure, and the
classified into two main groups, microcanonical and canon-beta-logstable (BLS) model (described in S&c®), which
ical, according to different conservation laws that character-describes lacunarity by a parameter driving the rain/no-rain
ize the cascade. In thermodynamics, the first type refers tprocess. Since conditioning the weights to intensity results
an exact conservation of the energy at each cascade stage,biased estimates of the model parametéeseziano et al.
and is appropriate for closed systems, while the latter pre{2006 suggested an iterative estimation procedure. Further-
serves the ensemble averages, and is appropriate for openore, they compared different versions of the BLS model,
systems (e.gSchertzer and Lovejoyl987). Since the atmo-  whose parameters may or may not vary with the rainfall in-
spheric turbulence, rainfall, and other geophysical processetensity and/or the cascade level.
interact with each other and the external environment, the Rupp et al.(2009 have studied the relationships among
microcanonical constraint appears highly artificial and suchweights, rainfall intensity, and cascade level by assuming a
models should be considered essentially academic. The mosliscrete two-parameter microcanonical model (see 363}t.
important consequence of the microcanonical constraint isvith one parameter driving the lacunarity and the other con-
that the model necessarily returns upper bounded singulartrolling the generation of positive rainfall values. This model,
ities, limiting the occurrence of extreme realizations (e.g.,with parameters depending on large-scale rainfall intensity,
Schertzer et 811991, Schertzer and LovejoyL1992 Lovejoy has been studied and applied ®yer and Guptd1994) to
and Schertzer995. radar-derived rainfall maps, and Wyolnar and Burlando
The interest in discrete MRC models is related to their (2009 to point rainfall seriesRupp et al(2009 have found
simplicity compared to more complex approaches, as wellthat the dependence between the lacunarity parameter and
as to their link to the energy transfer processes in turbu+ainfall intensity can be properly described by a lognormal
lent flows Kolmogoroy, 1941 1991 Schertzer and Love- distribution, whose parameters vary in turn with the scale
joy, 1987 Veneziano et al2006 Paulson and Baxte2007). through power-law relationships, whereas the second param-
However, these models can be considered as the “first gereter of the MC model can be described by quadratic func-
eration” of MRC models l(lovejoy and Schertzer20103, tions of rainfall intensity, rescaled across the disaggregation
while more realistic results are provided by the “second gendevels. The idea behind the approach suggestedRinyp
eration” of continuous in scale multifractal processes basect al.(2009 is to describe the dependence between the MRC

j=1
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model parameters and rainfall intensity by simple analyticaltal analysis, and the empirical parameter-intensity-scale re-
functions, such as lognormal distribution or parabolic func- lationships are explored and parameterized. In Skdhe

tion, whose coefficients rescale in turn across the cascadperformances of the considered models are assessed by com-
levels, accounting for the scale dependend®upp et al.  paring several statistics computed on the observed and simu-
(2009 have noted that conditioning the weights to rainfall lated series. The conclusions are summarized in Sect.
intensity may account for much of the dependence on inter-
val class because the intensity is operatively discretized in
classes for computational reasons. Hence, this approach ea—

compasses in some way the classification strategy used by ) - yyiifractal formalism and continuous universal
Olsson(1998, for example. _ ) multifractal (CUM) model

It should be noted that the studies bfgneziano et al.
(200§ and Rupp et al. (2009 have different SCOpes. |n this study, the multifractal analysis focuses on rainfall in-
Veneziano et al(2009 aimed at proving that the observed tensity g, in agreement with the “codimension multifractal
dependence of the cascade weights on rainfall intensity angymalism” (Schertzer and LovejoyL987), which is based
cascade level cannot be reproduced by models that do nQj the statistics of densities of measures (here, the rain-
explicitly account for it, concluding that this behavior is not ¢5)| amount per time unit), and is well suited for analyzing
a spurious effect, but is related to the nature of the rain-siochastic multifractals. Informally, defining the scale invari-
fall observations. In more detail, the observed precipitationance ofr means to identify similarities in the statistical prop-
can be considered as the flow of condensed water through @ries of the distribution function o at different scales of
constant-altitude plane. Even though the rate of water vapoggregation. Once these common characteristics are found
condensation is multifractal owing to its link to atmospheric penveen two time scales. the variakeis said to be scale
turbulenceVeneziano et a200§ argued that the multifrac-  jnyariant, and statistical information about the distribution of
tality can be lost in the observation of condensed particles ag, 4t the smallest resolution may be derived from coarse res-
rainfall measured at a constant altitude. On the other handyytion characteristicsascaro et a).2010.
Rupp et al(2009 aimed at assessing the possible improve- |y order to analyze the scaling propertiesRyf the data
ment in performance of the MC model, when the observedyre aggregated to lower and lower resolution by temporal av-
dependences of the cascade weights on rainfall intensity angdraging. This “dressing” procedure is an attempt to invert
cascade level are explicitly modeled, regardless of the naturgye cascade “bare” process which we are interested in (e.g.
of these relations. _ Lovejoy et al, 2008. Denoting the reference external scale

The scope of the present study is to select and set up thgs the cascade by.ref (here, 1280 min- 1 day), the generic

most simple and possibly accurate MRC model that can simyggregated scale Hy(here,L < [5,1280 min), and the scale
ulate synthetic series useful as input for rainfall-runoff mod- r4tig py , the scaling behavior entails:

els. Thus, the focus is on the reproduction of several prop- g K@) .
erties of hydrological interest, such as event rainfall amount Ry ) =2 (R1)?; A= Liet/L, (2

and wet/dry spell length. Nevertheless, as the model selecyhere(.) denotes the ensemble meaR;) is the ensemble
tion is based on the analysis of the multifractal propertiesmean ofR, the subscript “1” refers to the largest reference
of observed rainfall series, the study also explores the deresolution corresponding o= 1, K (¢) is the moment scal-
pendence of the cascade weights on rainfall intensity angng exponent, and is the moment order. I (¢) is constant,
cascade level. The analysis relies on three rainfall serieghe process is said to be “simple scaling”, otherwksghows

with a 5-min resolution from three rain gauges located in theg “multiple scaling” behavior. It worth noting thates is
Viterbo province (central Italy). Based on these data, the apjyst a convenient scale, whereas, under scaling hypothesis,
proach suggested Hyupp et al (2009 was applied to both  the cascade is characterized by an effective outer dcafe

MC and BLS models to carry out comparisons and possiblgthe largest scale of variability) that is unknown a priori and

generalizations. For example, unliReipp et al (2009, we  should be estimated from the data (eLgyejoy et al, 2008.
found that the relationships between the parameters controlegcusing on the normalized moments, from B3, {t fol-

ling the lacunarity and rainfall intensity could be modeled |gws:

Basic multifractal concepts and MRC models

by a single power-law curve, resulting in more parsimonious (Rq)
models. Moreover, the CUM model is applied as a physically 7, = AL 5 K@) (3)
based multifractal benchmark model, and the corresponding (R1)?

multifractal exploratory analysis is used to study the natureThe scaling of the moments can be assessed by computing

of the observed dependence of the cascade weights on rai4, at different scales, and plotting, against the scale ratio

fall intensity and cascade level. A in a log-log plane, where the power-law relation in E3). (
The article is organized as follows. In Se2f.the multi- becomes linear. The empirical(g) functions can be esti-

fractal notation and the structure of the CUM, MC, and BLS mated from the slopes of the trace moments (&ghertzer

models are briefly recalled. Secti@describes multifrac- and Lovejoy 1987).

www.nonlin-processes-geophys.net/17/697/2010/ Nonlin. Processes Geophys., T1469010
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As mentioned in Sect, in time series analysis, it is com- the web sitehttp://www.physics.mcgill.cafgang/multifrac/
mon to consider scales ratios multiplebot 2. The choice of  multifractals/software.htmFor further details on the imple-
a discrete range of scales helps to understand cascade promented algorithms, the readers are referredtizon et al.
erties, is convenient for simulating, and is coherent with the(1991), andLovejoy and Schertzg2010ab).
dressing (averaging) procedure that is used to estibgte
and K (¢). However, instead of considering a discrete cas-2.2 Discrete beta-logstable (BLS) canonical model
cade process evolving to its small-scale limit, it is possible
to consider interactions of this process over a finite range ofThe development of a discrete multiplicative cascade in
scales, with larger and larger numbers of its replicas, anceq. (1) requires the simulation of the weight®¥ from a
then seek the small-scale limit (e.§c¢hertzer and Lovejgy  suitable distribution. Canonical and microcanonical models
1987 Lovejoy and Schertzeld 995 Schertzer and Lovejgy  applied in this study differ in the distribution used to carry
1997. This approach leads to CUM process&gHertzer out the simulation. Canonical models are based on distri-
and Lovejoy 1987). These processes are based émysta-  butions with positive support and expected vali{@V] =1,
ble (ora-stable) random variables (e.&amorodnitsky and  which preserve the mass on an average at all levels in the
Taqqy 1994 that follow the maximally asymmetric stable cascade. In these models, the zero rainfall is accounted for
distributions with index of stability (or characteristic expo- by adopting discrete-continuous distributioA$w) = po+
nent)x € (0,2] and skewness coefficient equal+d. (e.qg., (1— po)G(w), wherepg=Pi{W =0] andG(w) =PH{W <
Schertzer and Lovejoyi997). The corresponding theoreti- w|W > 0]. The probabilitypg describes the lacunarity and

cal K (¢) is a three-parameter function: is related to the fractal dimension of the series, whereas the
c distributionG of the positive weights is often assumed to be
! (q%*—q), for a#1 lognormal (e.g.Gupta and Waymirgl 993 Molnar and Bur-
K(g)—gH={"% -1 , 4) landg 2005, log-Poisson (e.g.Deidda et al. 1999 2006
C1ql09(q), for a=1 Deiddg 200Q Onof et al, 2005 Sivakumar and Sharma

2008 Mascaro et a).2010 or logstable (e.g.Schertzer
where « is the above-mentioned index of stabilitg; is and Lovejoy 1987 Olsson 1995 Pathirana et al.2003
the codimension of the mean singularity and describes thé&/eneziano et al2006. It should be noted that the hypothesis
sparseness of the mean of process (8&c¢hertzer and Love-  of existence of a fractal support is alternative to the assump-
joy, 1987 Tessier et a).1993 de Lima and de Lima2009, tion of a low threshold for the measurable rainfall intensity,
andH is called the “nonconservation parameter”, sifte: allowing for a cross-check of the two hypotheses. More-
0 implies that the ensemble average statistics depend on thaver, we recall that the terms “lognormal” and “logstable”
scale, whileH =0 is a quantitative statement of ensemble are not strictly correct as the dressed process is only approx-
average conservation across the scales (eayejoy and  imately logstable/lognormal for low-order moments or low
Schertzer1995 Lovejoy et al, 2008. It worth recalling that  singularities Schertzer and Lovejoyl997). Nevertheless,
a values define five qualitative casé®yejoy and Schertzer  since the discussion on the BLS model is based on the work
1999: (1) @ = 2 defines multifractals with Gaussian genera- by Veneziano et al(2006, we adopt the definition “beta-
tors; (2)a € (1, 2] defines multifractals with &vy generators  logstable”.
and unbounded singularities; (8)= 1 defines multifractals The theoreticak (¢) function corresponding to the BLS
with Cauchy generators; (4) € (0,1) defines multifractals model is:
with Lévy generators and bounded singularities; 5} 0

defines monofractal processes. CiLs

Unlike discrete cascades, the CUM theory implies simu-K( )= ﬂBLS(q_1)+aBLS—1(anLS_Q)’ for apLs71
lation algorithms based on transformations in the frequency ’
domain (fractional integrations) that allow the generation of PeLs(¢—1)+CsLsql0g(9), for agLs=1
rainfall sequences (or fields) at any (not necessarily integer) (5)

scale ratioh. As the CUM model generates strictly posi-

tive realizations, the zero rainfall is introduced by assigningwhere g s is the parameter controlling zero rainfaig s
the zero value to the simulations below a minimum thresh-is related topp and fractal dimensiorD by the relation-
old. This is a simple but effective approach to account forship fg.s = —K (0) = —l0g, (1 — po) =d — D, whered is
deviations from a pure cascade behavior, based on the hythe Euclidean embedding dimension of the rainfall process
pothesis that the scale breaks can be mainly ascribed to th@/ = 1 for a time series) (e.gQver and Guptal994 1996
minimum measurement resolution (e.@nof et al, 2005 Veneziano et a).2006. The second term in the right hand
Lovejoy et al, 2008. In this work, the simulation of causal side of Eq. §) has the same form as that of the right hand
CUM series (with corrections for finite size effects) was per- side of Eq. 4). However, in this study, the BLS parameters
formed inR (R Development Core Tegr2009, by trans-  are assumed to vary with the discrete scale ratigor cas-
lating the Mathematica codes provided by S. Lovejoy at cade levek) and rainfall intensity of the parent intervals at
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level k — 1. Since the physical meaning of the index of sta- 2.3 Discrete microcanonical (MC) model

bility and codimension is lost in this conditioning procedure,

the parameters are denoted@g s andap s instead ofCq

Unlike the canonical models, the microcanonical models pre-

anda. Moreover, the BLS model with scale-intensity vary- Serve the exact mass of rainfall across the cascade levels. In
ing parameters only preserves the dyadic structure of a disthis case, each parent interval at lewet 1 is subdivided
crete MRC model, but it is not actually a multifractal model into b subintervals at level, which contain a rainfall amount

at all. Indeed, its good performance (compared to a threshequal to the parent interval. In terms of rainfall intensity,

olded discrete logstable) is interpreted Yggneziano et al.
(2006 as an indicator of departure from multifractality.

this means that the generatéf can be considered a ran-
dom variable ranging in0, ] such that% Z?:1Wk(i) =1

The estimation of BLS parameters requires the computafor each set ob subintervals at levet corresponding to a
tion of the weights$¥, namely, the ratios between the rainfall 9iven parent interval at leved —1. For the sake of conve-

intensity in a given subinterval at levieland the correspond-

ing parent interval at levdl — 1. As the bare proces® « is

nience,W is replaced with the rescaldd= W /b ranging in
[0,1]. Similar to the BLS model, the zero rainfall is explic-

not really observed, weight¥’ can only be estimated by the itly preserved by allowing foW’ =0 with a probability po.
reverse dressed proceBs. In general, the statistics of the Assumingb =2, as is done in this study, and denotingind
bare rainfall provide biased estimates of the dressed rainfallv- @s the weights of the left and right subintervals obtained

and vice versa (e.g.ovejoy and Schertzel995 Veneziano
et al, 2006 Paulson and BaxteR007. In order to correct

from a parent interval, the probability thatandv, are 0 or
1is equal to the probability of the events =0A v, =1) or

this bias Meneziano et a(2006 have applied an iterative es- (1 =1Av, =0) and is defined apo = Priv; =0v v, =0].
timation procedure that adjusts the parameters estimated ofven though the probabilities of the evetits=0A v, = 1)

the dressed process so that ti¢g) function of the simu-

and (v; = 1A v, =0) are not necessarily equal, this prop-

lated (disaggregated) series reproduces that of the observédty is empirically observed in several datasets (vml-

series. Paulson and Baxtgj2007) have used a similar ap-

nar and Burlando2005 Rupp et al. 2009 and also in the

proach, wherein, the objective function of an optimization data used in this study (figures not shown). Hence, the zero
process is the sum of the absolute differences between thiinfall can be summarized by a unique parametgror
second and third moments of the measured rainfall time sePx = 1—po, wherep, =Prv; € (0,1) Av, € (0,1)] =Prlv €

ries across the considered scales. In this study, to point ouf0- D1=Prv, € (0,1)]. The weightsV’ € (0,1) are modeled

the impact of the model structure (canonical and microcanonby & symmetric one-parameter beta distribution:

ical) on the bias of the estimates, any bias correction is ap- 1

plied.

f)= V(1 —v) @)

B(a)

To explore the possible dependence of BLS parameters on

scale level and rainfall intensity, the empiridél{q) function
K (gqlk, Rp x—1) conditioned to scale levél and bare rainfall
intensity Ry x—1 is estimated as:

K (qlk, Ri—1) = log, (W4 (k, Rc-1)))

= og, (%ﬂ) , ©

k-1

where(R/|Rx_1) is the empiricalyth moment of the condi-
tional rainfall intensityRy|Rx—1, and the range oR;_1 is
partitioned in a suitable number of class¥er{eziano et al.
2006. For each scale levéland eachk;_1 class, theK (¢)
function of the BLS model in Eq.5] is fitted to the empir-

whereB(-) is the beta function, and is a shape parameter.
This distribution is often used because it is defined on a finite
support [0,1] and can assume several shapes, such as, uni-
form (@ = 1), bell-shaped > 1), and U-shapea(< 1). The
distribution in Eq. {) has mearE[V]=0.5 so thatE[W] =

1. Forb =2, pairs of weights; andwv,, which follow the
distribution in Eqg. {) and fulfill the relationv; +v, = 1, can

be simulated by drawing two independent realizationand

x2 from a gamma distribution with parameterand by tak-

ing the ratiosx1/(x1+ x2) andxz/(x1+ x2) (Mood et al,
1974 Koutsoyiannis and Xanthopoulos990. Parameten

can be estimated by the method of moments through the rela-
tionshipa = 1/(8Va{V]) — 0.5 (e.g.,Molnar and Burlandp
2005. Analogous to BLS model, the parameter estimates are

ical K (qlk, Rx—1) (Eq. 6) by estimating the three parame- conditioned to the scale levé| and rainfall intensityRy_1
ters BeLs, CeLs, andapLs. BeLs is assessed by the rela- as follows: for a generic cascade lexethe range of rainfall
tionship BgLs = — K (0), whereas, the other two parameters intensitiesR;_; at the previous stage— 1 (coarser resolu-
are estimated by the nonlinear least square minimization ofion) is partitioned in a finite number of intensity classes; the

the residualgK (¢) — I%(q)) (Dennis et al.1981) computed

intervals with R;_1 falling in a given class are taken, and

over a range of momentge [0,3]. The procedure yields a the corresponding (disaggregated) subintervals at leaet

set of three parameter estima{@s| s, CsLs, @sLs} for each

combination of scale levatl and class of rainfall intensity.

used to estimat@, | Rx—1 anda|R;_1. The procedure yields
a set of two parametef$,,a} for each combination of scale

For further details on the estimation method, the readers arkevel and intensity class. Following the approachRefpp

referred to Sect3.2andVeneziano et al2009.
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Table 1. Annual summary statistics of the three stations Castel Figurela shows the power spectrum density (PSD) of the

Cellesi (CCE), Montefiascone (MFI), and Viterbo (VIT). MFI time series at a 5-min resolution. The scaling behav-
ior should result in a linear pattern of the PSD in log-log
Station CCE MEI VIT scale. The figure points out that the PSD is not strictly linear.
_ However, taking into account that the PDS of rainfall series
Elevation 369 560 357 can be affected by a number of factors (elgarris et al,
Lat'“{ded 42.591 42536 42420 1997, the approximation is deemed reasonable for resolu-
Longitude —11.848 11973 -11.894 tions between 10 min and 1 day. The slope coefficieiof
Mean [mm] 824 878 841 . . . - .
the straight line fitted to PSD is equal to 0.88, corresponding
StDev [mm] 200 246 154
5th percentile [mm] 548 556 628 to a value of the Hurst exponent equal to 0.94. To check the
25th percentile [mm] 697 743 729 sensitivity of this estimates was also estimated considering
75th percentile [mm] 963 1072 932 the PSD between 1h and 1 month, obtaining a value equal
95th percentile [mm] 1129 1267 1060 to 0.68, and Hurst exponent equal to 0.84. Figllveshows

the normalized moments of ordgincreasing from 0 to 3 by

steps of 0.2. Even though the coarse reference scale is 1280-

min, data have been aggregated uprtd5 days to better

appreciate the scaling behavior. The patterns are rather lin-

ear except for some unavoidable departures. Moments of low

order do not converge to a fixed outer scale; however, as the

3 Data analysis order increases, the lines tend to converge to the scale ratio
l0gy(Leff) =109y (Lret/ Let) = 109,(0.9/90) =~ —6.6, mean-

The data analyzed in this study are from three 5-min rainfalling thatLes ~ 90 days (3 months). The empiric&l(q) es-

series recorded in three stations (Castel Cellesi (CCE), Montimated from the slopes of the trace moments is shown in

tefiascone (MFI), and Viterbo (VIT)) located in the Viterbo Fig. 1c. Zero rainfall and rounding off introduced by the

province (central Italy), by tipping bucket rain gauges with resolution of the rain gauge result in an almost linear pat-

0.2mm resolution. The VIT time series spans from 1995 totern of K (¢). The valuek (0) allows defining the codimen-

2005 (11 years), while CCE is available for 10 years (1995 tosion of the intervals with positive rainfall ask (0) ~ 0.47

2000, 2002, 2003, 2005, 2006) and MFI for eight years (19952nd the fractal dimensio® =1—0.47=0.53. The slope

to 1997, 1999, 2002 to 2005). The corresponding daily se-K'(1) provides the codimension of the mean~ 0.38. It

ries were studied and modeled Bygrinaldi(2009, and the ~ should be noted that these values are coherent with those

annual summary statistics are shown in TahleThe lack  reported byLovejoy and Schertze(1993 for rain gauge

of long continuous rainfall data at a fine time scale moti- daily rainfall data,de Lima and Grasmaf1999 for 15-min

vates the research on rainfall modeling and disaggregatio@nd daily rainfall, andle Lima and de Lim#2009 for 10-

to obtain the information required in hydrological studies. Min and daily rainfall. Assuming’; ~ 0.38 andLef ~ 90

As disaggregation methods are often applied to downscalélays 129600 min), the equatioR; =1 (R1) gives that

daily rainfall series, scales ranging from 5min to 1280 min the main contribution to the meahis (129600'5)*%% ~ 48

are used here because the latter is the scale closest to thiges the mean, namely, D8 48~ 5.2 mm L,

1440-min daily scale, achievable by aggregating 5-min se- Figurelc also showsK (¢) corresponding to the process

ries withb = 2 (e.g.,Molnar and Burlandp2005. For CUM 3R obtained by taking the absolute differencesroht the

simulation, this limitation does not apply; however, the samefinest resolution. As the difference of the slop€qq) of

range of scales is used for the sake of comparison. Moreove& ® and K is equal toH (e.g.,Lovejoy et al, 2008, it can

only results referring to the MFI data are presented in the fol-be used to check the value &. For the data on hand/

lowing discussion, as similar conclusions hold for CCE andranges betweer0.0036 and 0026, i.e.H can be assumed

(px anda), scale levek, and rainfall intensityR;_1 are ana-
lyzed and modeled by analytical formulas.

VIT series. equal to zero. To compute the parameteand to check
the value ofCy, we have applied the double trace moment
3.1 Multifractal analysis (DTM) method (e.g.Lavallee et al. 1991, Schmitt et al.

1992 1993. Referring the readers to the mentioned refer-

The first analysis performed on the data aims at exploring theences for technical details, the slopes of the straight lines
presence of an overall scaling behavior across a wide rangm Fig. 1d give an estimate ok. As the intercepts corre-

of scales and the range of rainfall intensities. Therefore, thespond to the values & (¢), estimates o€ can be obtained
first multifractal analysis, which is related to CUM frame- from Eq. @) asC1 =K (q)(« —1)/(q* —q) for H =0. For
work, is performed without splitting estimates as a functiong = {1.5,1.75,2}, we obtaina = {0.8120.820 0.804} and

of scale and coarse rainfall intensity, whereas the possibleﬁ‘l =1{0.374,0.371,0.376}. The estimates of’; are coher-
dependence of the scaling propertieskoand Ry_1 is dis- ent with the value obtained from the slogg(1), whereas
cussed in SecB.2 a values are only “guess” estimates, which were checked by
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Fig. 1. (a) Power spectrum density (PSD) of the observed MFI series. Grey lines denote the power-law curves fitted on PSD for two
different ranges of frequenciegb) Traces of normalized moments, and corresponding moment-scale power-law relationships fitted to the
data.(c) Empirical and CUM theoreticat (¢) functions.(d) Patterns ofK (¢, n)| resulting from the double trace moment (DTM) technique

for ¢ ={1.5,1.75,2}. Straight lines represent the power-law fitted to the linear part of the patterns (grey points).

simulation. The procedure leads to a final valées 1.25, Assumingp = 0.88, Eq. 8) gives H values equal te= 0.19
which yields simulations with moment scaling behavior and and~ 0.23 for ¢« = 0.81 anda = 1.25, respectively. Fog =
K (g) close to the observed series. It should be noted tha0.68 and the same values @f H ~ 0.09 and~ 0.14. These
the « values provided by DTM imply bounded singulari- values are within the ranges reported in the literature dealing
ties, while the final value obtained by simulation yields un- with rainfall analysis (e.g.Royer et al. 2008 de Lima and
bounded singularities. The theoretical CUf{g) functions  de Lima 2009, and are compatible withl = 0 owing to the
with C1 =0.38 anda equal to 0.81 and 1.25 are shown in low accuracy resulting from measurement discretization and
Fig. 1c: K(g) with the parametett = 0.81 is very close to  seasonality (e.g.Lovejoy et al, 2008.
the empiricall%(q), whereas the differences are more evi-
dent for the valuer = 1.25. In spite of this disagreement, in 3.2 Analysis of imperfect scaling
Sect. 4.1, itis shown that the valae=1.25 provides thresh-
olded series that exhibit empiricli’l(q) close to the observed
one.

Finally, an alternative estimate &f was performed by the
relationship (e.gl.ovejoy and Schertzel995:

As mentioned in Secti, several studies have pointed out the
dependence of discrete cascade parameters on scalé level
and rainfall intensityR;_1. To check the presence of these
relations, the parameters of BLS and MC models were es-
timated by the method described in Se2R2 and2.3. In
more detail, nine time scales from 1280 mitp)Y to 5min

(rg) were considered. At each cascade lguethe weights

W were computed fronR;_1 and Ry, and the corresponding

_B-1+K@ _p-1, C1(Z*-2)

H - .
2 2 2(a—1)

(8)
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Fig. 2. Relationships among BLS parameters, time scale, and rainfall inteRisityamountA.

statistics were used to estimate BLS and MC parameters acale level is not clear. This dependence may be highlighted
level k. To study the possible dependence on the rainfall in-by performing a horizontal shift of the points in F2a pro-
tensity of parent intervals, the rangeRf_1 was partitioned  portional to the scale level, i.e. by transforming the rainfall
in 12 classes (logarithmically binned). Therefore, for eachintensity into rainfall amounf; = Ry /Ax. Figure2d shows
level k, there are 12 subsets &j_1 and the correspond- the result of the shifting procedure. The plot points out that
ing Ry, leading to 12 sets of parameters. This procedure al8g_s follows well-defined patterns for each cascade level,
lows studying the relation between the models’ parameterexhibiting a systematic decrease as the time scale decreases
andRy_j at each scale level. FiguBa—c shows the relation- and rainfall amount increases. It is worth noting that each
ships between the BLS parameters and the rainfall intensitycurve in Fig.2d should show 12 points for each cascade level,
The values offg_s are aligned along a rather well-defined according to the estimation procedure. However, at some
pattern (Fig.2a), which can be suitably parameterized by a scales, a smaller number of points are shown, since $dme

power-law type function ranging in [0,1]: classes contain few values, resulting in unreliable estimates.
1 As R >0, it is assumed that = 0. It follows that the de-
BeLs(R) = ————, 9) pendence amongg, s, rainfall intensity R, and scale level
1+0(R—p)t

k can be summarized by a simple two-parameter power-law
whereu, o, andé are position, scale, and shape parame-function of R.
ters, respectively. However, from Figa, the dependence on
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The patterns of'g. s (Fig. 2b) seem to increase as the time 14 8
scale and rainfall intensity increase. However, a decreasing 3.
behavior emerges at the highest rainfall values. To param-_. s §
eterize these patterns, a double translation was performeogx ; 2
First, curves were horizontally translated by transforming the = 2 a
rain intensity into rainfall amoun; = Ry /A¢. Thus, we fo- N 04 R ARE AR AR =
cus on the dependence Gf.s on A instead ofR (Fig. 2e). oot T 1 110 gor T 1 1 I E
Therefore, the curves in Fige are collapsed by a vertical Rainfall intensity R [mm h'] Rainfall intensity R [mm h']
shift (Fig. 2g). This shift is preformed multiplying the val- 1‘ %
ues of each curve by the overall value@§ s(k), which is = B ;Sr
computed using all datR;_1 andR; without partitioningthe =< o8 / [
range ofR;_1. Points in Fig.2g are approximately aligned %X j}'%. Qv S
along a straight line in the log-linear plane, which is modeled ('d) §
by a log-linear relationship: 01 T o e 2N ; o e
CaLs(A) =co+c1Iog(A), (10) Rainfall amount A [mm] Rainfall amount A [mm]
in which co and ¢; denote generic coefficients. Figupe :?Omr:in 103 §
shows the values of the overalk s(k) that are used to per- e 20 min 5
form the vertical shiftCg s(k) is parameterized by a power- —o— 40 min % 15 o': c g
law function ofi: —+—80min T date Y

—=+— 160 min i (@) %
CeLs(k) = do()™, (11) 7 320min o T T T oo
wheredo andd; are coefficients to be estimated on the data, ~ —* '20mn ‘Ra‘mfa‘” a‘r”"f’"t‘A [‘mm‘] N
Since Egs.10) and (L1) summarize the dependence@¥, s R é“ma;ﬁf;';‘a'f)tmnsmp 640-1280 min £
on A andk, respectivelyCgs(A, k) can be written as: M :
= 14 L ®
CeLs(A,k) = CpLs(A)/CpLs(k). (12) El 102 min ?_.
In other words, the curves in Fige can be modeled by an o4l @ %
equation depending oA, which is properly shifted to ac- T2 4 81632 64128
count for the scale, according to the rdlg, s(k). My

A similar approach was applied to parameatgrs. Fig- _ _ _ _ _
ure 2c points out that a horizontal shift coupled with a ver- F19- 3- Relationships among MC parameters, time scale, and rain-
fall intensity R or amountA.

tical shift can be appropriate to collapse the curves, allow-
ing for the parsimonious modeling afs s. Analogous to

CeLs, the horizontal shift is performed by transformi®y  The same method was applied to the MC parameters. In or-
in Ay = Ry /A (Fig. 2f). Therefore, the resulting curves aré ger to perform a comparison with the results obtained by
con5|_dered as r_eahzatlons_ of a unique funcb@_ns(A) de- Rupp et al.(2009, we focused orp, instead ofpo. Un-
pending onA (Fig. 2h), which is shifted according t0 & co-  jike Rupp et al(2009, who parameterizeg, by the lognor-
efficientapLs(k) depending ork (Fig. 2)). aps(k) are the  mal distribution, whose coefficients varied with time scale
apLs parameters computed on the whole series at each cagpoygh loglinear functions, we adopted a simpler approach.
cade stagé, without partitioningR in 12 classesapLs(A)  Figures3a and3c show that the patterns of, (A, k) could
is described by a two-order polynomial (Fih): be collapsed into a unique curyg (R) by the same hori-
log(aLs(A)) = ¢+, log(A) +c’2(log(A))2, (13) zonta}l shifting proc.edure used fBg.s. Hence, a power-law
function was used:
in which cg, ¢}, andc), are the polynomial coefficients, and

apLs(k) is modeled by a power-law function af: px(R) = (16)

1+o/(R—w)E"
7 d;

apLs(k) =do(A) 1, (14) wherey’, o/, and&’ are position, scale, and shape param-

whered], andd; are the power-law coefficients. The para- eters, respectively. Analogous s, the patterns of:

metric counterpart of the curves in Figf.can be obtained by  (Fig. 3b) were shifted horizontally (Figdd), and then ver-

combiningagLs(A) andaps(k) according to the following  tically (Fig. 3e). The resulting (collapsed) patterns in Rg.
multiplicative rule: were described by a two-order polynomial:

aBLs(A, k) = apLs(A)aLs (k). (15)  log(a(A)) =cj+c{10g(A) +c5(10g(A))?, 17)
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while the rule that drives the vertical shiftk) was described 14— 1 - L L - - -
by a power-law function of (see Fig23f): 640-1280 min - erjglytical relationship
a(k)=d§ (). (18) R I * '\C/ISM
The parametric counterpart of the curves in Fdd.can be = s L s
obtained by combining (4) anda(k) according to the fol-  ©° ° A
lowing multiplicative rule Rupp et al.2009: 0.1 ; 8 1
a(A, k) =a(Aa(k). (19) [ 10-20min
1 2 4 8 16 32 64 128

10 1 1 1 1 1 1 1 1

4 Simulations and results 640-1280 min

(19) have been applied to simulate 100 synthetic rainfall se- 3
quences at 5-min time scale with the same length of the ob-°
served series. In the CUM simulation, series were thresh- 10-20 min
olded using a value equal to twice the observed mean (2  ¢.11
0.108 mm ). As in the previous section, only results refer- 1

ring to MFI series are reported. The performance of the mod- '

els was assessed by comparing the ability to reproduce both  10-{640-1280 min
the modeled parameters and scaling properties along with a

number of rainfall characteristics useful for hydrological ap-

plications. Moreover, the possible presence of chaotic be-2 o o &
havior was explored in order to evaluate the models in terms®

of properties not explicitly accounted for by CUM, BLS and 10-20 min
MC model structures.

The physically based CUM model and discrete BLS and [
MC models with parameters that vary accordingto Egs- ( = 1_M_

2 4 8 16 32 64 128

0.1-4— T T T
1 2 4 8 16 32 64 128

4.1 Scaling properties

First, we have evaluated the ability of the models to repro-

duce the analytical relationships (E§s19) that describe the  Fig. 5. Relationships between the models’ parameters and scale for
possible imperfect scaling. Figudecompares the relation- the representative series used in Hig.

ship between the models’ parameters and rainfall intemsity

or rainfall amountA after removing the dependence on the

scale level, i.e. after the vertical shift described in S8@. ~ complex BLS and MC models. The systematic patterns in
The lines refer to analytical relationships with coefficients the models’ parameters, which were detected in the time se-
estimated on the MFI observed series, while empirical re-ries, should be a sign of the changes in the distributiow of
lationships associated with a representative simulated serig€lated to the cascade level and classes of rainfall intensity
are denoted with points. BLS and MC parameters were com{or amount). However, as these patterns can be reproduced
puted on CUM, BLS, and MC series, in order to assess ifby a thresholded multifractal model (CUM), they cannot be
each model could reproduce the parameter patterns of theonsidered as a definitive proof of the presence of physically
others. fBgLs, aBLs, px, anda, corresponding to BLS se- based departures from multifractality.

ries, appear to be more dispersed than those of MC series, MC, BLS, and CUM simulated series were also analyzed
whereas the BLS' g s values show some bias compared to by the same multifractal techniques applied in S&dt. Fig-

the MC values. The most important result is that the CUM ure 6 (top panels) shows the PSD of a representative simu-
model is able to reproduce the parameter patterns quite wellated series for each model. BLS tends to overestimate the
except for some unavoidable bias. The relationship betweeSD, whereas MC shows the best agreement. This result is
scales and parameters driving the vertical shifts described iexpected, and can be ascribed to the strong conservation rule
Sect.3.2is shown in Fig.5. Also in this case, the bias of that characterizes the MC model. A better performance of
the parameters computed on the BLS series appears slightBLS could be obtained using the trial-and-error fitting pro-
more evident than that of the MC series. Even though thecedure applied byeneziano et a2006. However, as men-
structure of the two-parameter CUM model does not explic-tioned in Sect2.2, this approach was not used in order that
itly account for the analytical patterns illustrated in the fig- the comparison between BLS and MC is not influenced by
ure, it shows an agreement comparable to that of the morelifferent estimation methods. CUM series exhibits a PSD
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Fig. 6. Top panels show the PSD of three representative rainfall series simulated by BLS, MC, and CUM models (black lines) along with the
PSD of the observed MFI series (grey lines). Middle panels show the traces of normalized moments of the observed MFI series (points) and
the median patterns corresponding to the sequences simulated by the three models (lines). Grey areas denote the 90% confidence interve
(Cls) computed on 100 simulations. Bottom panels illustratekilig) functions corresponding to the trace moments shown in the middle
panels.

similar to the observed one but less accurate than the PSD a$ remarkable, considering its parsimonious structure based
the MC series. Figuréalso shows the traces of the moments on two invariant parameters. The simple thresholding proce-
of orderg = {0,2,3} (middle panels), an& (¢) functions  dure mimics the fractal support of the observed series quite
(bottom panels). The graphs illustrate the median patternsvell. Unlike MC, CUM model (witha = 1.25) involves un-
and the 90% confidence intervals (Cls) computed from thebounded singularities, resulting in a higher variability of the
100 simulations. All models are able to reproduce low-orderhigh-order moments.

moments (say < 2), whereas differences are more evident

for higher moments¢ > 2). BLS exhibits both systematic 4 » Physical properties

bias and variance higher than MC and CUM. As expected,

MC model yields series with statistical properties very close . . L . .

to the observed series owing to its strong conservative struc:'—A‘S the main purpose of disaggregation is to obtain rainfall

series at a fine time scale, to be used for further analyses,
ture. On the other hand, the performance of CUM modelthe BLS, MC and CUM models should provide synthetic
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rainfall intensity at 5-min time scaléd)—(f) Event rainfall amount(g)—(i) Wet spell length(j)—(I) Dry spell length. Grey lines denote the

patterns of the median of each statistics computed on 100 simulations, while light grey lines are the 5th and 95th percentiles.

series that are able to mimic some physical properties of indard deviation of annual maxima; (8) first 100 lags8()

terest. Eight rainfall attributes were used for assessing th@f the autocorrelation function (ACF). To define independent

simulation quality: (1) positive rainfall > 0) at 5-min time

storm events, a minimum critical inter-arrival time was com-

scale; (2) rainfall accumulated during storm events; (3) wetputed by the method proposed Bgstrepo-Posada and Ea-
spell durations; (4) dry spell durations; (5) percentage of ze-gleson(1982. The resulting values were 64, 23, and 29 h for
ros (no rain,Pp); (6) expectation of annual maxima,; (7) stan- CCE, MFI, and VIT, respectively. As these inter-arrival times
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Fig. 8. Physical summary statistics computed on 100 series simulated by BLS, MC, and CUM nta@€s) Probabilities of zero rainfall
Pg. (d)—(f) Mean E[-] of annual maxima(g)—(i) Standard deviatiol§ D[-] of annual maxima(j)—(I) Autocorrelation function. Grey lines
denote the patterns of the median of each statistics computed on 100 simulations, while light grey lines are the 5th and 95th percentiles.

were longer than the typical evolution time of the storms for MC model slightly underestimates the high quantiles, and
the specific climatic regiomr{5—6 h on an average), a value the CUM model provides the most accurate median pattern.
of seven hours was adopted. This value is equal to or coheMoreover, high BLS and CUM quantiles are more dispersed
ent with that applied bsalvadori and De Michel@007) for than MC, reflecting the different models’ structures. In fact,
a similar climate, and bi{outsoyiannis and Pachaki$996 BLS and CUM models allow simulation of unbounded sin-
andPathirana et al2003 for different climates. gularities, while MC model at the most preserves all mass
contained in a time interval at coarse scales, resulting in

Thegg-plots in Fig. 7a—c show that the BLS mode| over- bounded singularities. Focusing on the distributions of event

estimates 5-min positive rainfall above50mmh?t, the
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accumulated rainfall (Figrd—f), BLS model overestimates Kumar, 2010, and some do not (e.gKkoutsoyiannis and
this attribute and its variability, whereas MC and CUM mod- Pachakis1996 Sivakumar et a).2006), the analysis of con-
els reproduce it rather accurately. Moreover, the uncertaintytinuous rainfall records has not yielded conclusive answers
of the high MC and CUM quantiles is almost null and void. yet. The detection of chaotic behavior is usually performed
This behavior can be related to the distributions of positiveby analyzing the correlation dimensid@® computed via the
values in Fig.7a—c: extreme BLS and CUM quantiles show Grassberger-Procaccia algorithm (eTgkens 1981, Grass-
similar variability and different bias, while extreme MC and berger and Procaccia983, based on the phase space recon-
CUM quantiles show different variability (bounded and un- struction theoremTakens1981). However, this approach is
bounded singularities) and similar (small) bias. As the eventaffected by a number of sources of error, such as the presence
rainfall amount results from an integral process, the lack ofof lacunarity (see e.gTheiler, 199Q for an overview). As
bias plays a prominent role compared to presence/absence tfe rainfall time series at fine time scales (sayi. day) are
isolated extreme realizations. characterized by a high percentage of zeros, the Grassberger-
The BLS and CUM models tend to overestimate the wetProcaccia algorithm may not be well-suited for these data
spell length (Fig7g—i) for short durations (say, less than few (see e.g.Sivakumay 2005 Koutsoyiannis 2006 for a dis-
hours), meaning that the simulated series tend to exhibit shortussion on the effects of zeros on chaos detection in rainfall
events, which are longer than the corresponding observederies).
events with equal probability. Since short durations refer Aiming at assessing the differences between observed and
to the events of main interest for studies concerning smalsimulated series in terms of the possible chaotic behavior, we
basins, this property of the BLS and CUM series has to berecall that the trajectories of the chaotic systems are virtually
taken into account in hydrological applications. On the otherunpredictable because errors in measurement of the initial
hand, the MC model reproduces wet spell durations less thastate propagate exponentially fast. As the Lyapunov expo-
~20 h rather well, but it slightly underestimates wet spells of nents measure the rate of divergence, the largest Lyapunov
longer durations (Figzh). The BLS and CUM models tend exponent is a suitable index to identify a chaotic system. Re-
to overestimate inter-arrival times, while the MC gives dry ferring the readers tBarker and Chuél987) andSchreiber
spells almost identical to the observed ones (Fig) owing (1999 for practical introductions, here, it is mentioned that
to the exact mass preservation involved in the MC structure.the largest Lyapunov exponent was estimated by the algo-
All models can simulate synthetic sequences with a per{ithm introduced byRosenstein et al1993, based on the
centage of zeros comparable to the observed one at 5-miguantity:
scale (Fig8a—c). However, at the other coarser time scales,
CUM model is outperformed by BLS and MC models that 1 & 1
explicitly account for this property. The overestimation of Z(At) = —Zlog _— Z |gt0+A, —$,+At| ,
Po by the BLS model at the coarsest reference time scale N fo |U(s’°)| s1€U (&)
(Fig. 8i) is coherent with the results obtained biplnar and (20)
Burlando (2005 for analogous canonical models based on
lognormal distribution, while the MC model reproduces the where,, denotes the reference pointé(&,,) is the ball of
exactPg owing to the exact preservation of the mass (Bjg.  radiuse centered at the poir§,. The presence of possible
The median patterns of the mean and standard deviation athaotic dynamics results in an increasing linear pattern of
the annual maxima across time scales (Biy-i) are repro-  E(Ar) for a reasonable range efand for all the embedding
duced more accurately by the MC and CUM models than bydimensionsn larger than some minimum dimensiatf, and
the BLS model, which also exhibits a higher variability than the positive slope of this linear pattern is an estimate of the
its competitors. Finally, the BLS model underestimates thelargest Lyapunov exponent. We have uged480 5-min in-
ACF for the first 40 lags~ 3 h, Fig. 8j), whereas the MC tervals=40h, which is equal to the decorrelation time (i.e.,
model provides more accurate ACF values (Fk). The  the first lag at which ACF becomes zero) and= {10, 25}.
ACF patterns of CUM and BLS are similar, the latter show- The patterns o (Ar) in Fig. 9 show that any scaling linear

ing higher variability. region is present either in the observed or representative sim-
ulated series. This denotes that there is no evidence for the
4.3 Alook at nonlinear dynamics divergence of trajectories in the reconstructed phase space,

and thus for chaotic behavior. Of course, the use of a unique
In the last 25 years there has been an increasing interest iimdex to detect chaos is not enough (elhanya and Nagesh
interpreting and modeling the rainfall series as chaotic non«umar, 2010; however, the essential point is that the BLS,
linear (possibly low-dimensional) dynamic systems ratherMC, and CUM series, all reproduce MFI patterns rather well,
than infinite-dimensional stochastic processes (8igaku-  but for some intrinsic statistical fluctuations. Hence, for the
mar et al, 2001, and references therein). As some rainfall data on hand, stochastic models represent a reasonable way
series seem to support the presence of chaotic-deterministiey describe and simulate 5-min rainfall series.
behavior (e.g.Sivakumar et a).1999 Dhanya and Nagesh
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5 Conclusions

The analysis of rainfall series at 5-min resolution has pointed
out that the weightsV characterizing the discrete random
cascade models used to describe the rainfall process do not

appear to béid. The generato# exhibits a complex de-

pendence on scale and rainfall intensity (or amount), which
is reflected in the behavior of the parameters of the discrete
models considered in this study (MC and BLS). In order to

explore the nature of these departures fromitlehypoth-

esis, we have introduced the above-mentioned dependences
in the models’ parameterization by a set of suitable, simple g
functions. Moreover, the physically based CUM model was
used as a benchmark model to check the consistency of the
departures from multifractality. The models were tested by
comparing a number of statistics computed on the observed

and simulated series. The results can be summarized as fol-
Finally, it is worth bearing in mind that the results presented

in this study depend on the analyzed data as pointed out by

lows:

terns is not sufficient to establish whether the departure
from multifractality is real or it has to be ascribed to
measurement inaccuracy. Moreover, we cannot exclude
that the scale by scale changes in the parameters may
depend on the use of cascade weights estimated by con-
ditioning to the rainfall intensity (amount) at the par-
ent time intervals (Eg6). This approach implicitly in-
volves a microcanonical conservation which may cause,
to some extent, the systematic patterns of the models’
parameters.

. The multifractal analysis of the observed and simulated

series confirms that BLS model tends to yield biased
results, whereas MC and CUM models yield rather ac-
curate results. In particular, it is shown that the simple
thresholding procedure applied to CUM series is able to
reproduce the shape of the observed scaling exponent
function.

. Results concerning the physical summary statistics con-

firm the satisfactory performance of MC and CUM
models. Since the latter model implies unbounded sin-
gularities, it provides larger extreme realizations than
the MC model. Nevertheless, the MC model allows for
a more accurate simulation of some properties, such as
wet/dry spells, ACF, and probability of zero rainfall at
the scales of interest. Even though the MC model dis-
cussed in this study is not physically based and not mul-
tifractal at all, the properties of the simulated series can
explain the interest for its study and possible application
to real-world problems.

The patterns of the largest Lyapunov exponent point out
that there are no substantial differences between the ob-
served and simulated series, and there is no evidence
for low-dimensional nonlinear dynamics driving the an-
alyzed rainfall series.

1. The series simulated by discrete BLS and MC modelsthe variety of conclusions available in the literature focus-
can reproduce the analytical relationships that characing on these topics. However, a twofold overall conclusion

terize the models, and synthesize departuréd dfom

can be drawn: (1) the departures from multifractal behav-

theiid hypothesis. The BLS model tends to give biasedjor on real-world rainfall data can be explained in differ-
estimates more than the MC model does. This couldent ways, making difficult definitive statements. Of course,
be ascribed to the differences between the bare ang, agreement to the Occam’s razor, the simplest and theo-

dressed processes (e.yeneziano et al.2006 Paul-

son and Baxter2007), which were not corrected dur-

retically/physically based explanation should be preferred.
(2) From the practical point of view, the choice of a model

ing the model calibration. However, if this is the case, js related to the scope of the analysis; even though the theo-
MC model appears to be less sensible than BLS modefetically/physically based models should be preferred, other

to bare/dressed bias.

options should not be discarded a priori, as they can provide

2. The patterns that describe the dependence of BLS {;mau't""bIe solutions for specific problems.
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