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Abstract. In coastal seas and straits, the interaction
of barotropic tidal currents with the continental shelf,
seamounts or sills is often observed to generate large-
amplitude, horizontally propagating internal solitary waves.
Typically these waves occur in regions of variable bottom
topography, with the consequence that they are often
modeled by nonlinear evolution equations of the Korteweg-
de Vries type with variable coefficients. We shall review
how these models are used to describe the propagation,
deformation and disintegration of internal solitary waves as
they propagate over the continental shelf and slope.

1 Introduction

Solitary waves are nonlinear localized waves of permanent
form, first observed by Russell (1844) as a free surface
solitary wave in a canal, and then in a series of experi-
ments. Later, analytical studies by Boussinesq (1871) and
Rayleigh (1876) for small-amplitude water waves confirmed
Russell’s observations. Then Korteweg and de Vries (1895)
derived their well-known equation, which contains the
“sech”2 solitary wave as one of its main solutions. But it
was not until the second half of the twentieth century that
it was realised that the Korteweg-de Vries (KdV) equation,
was, on the one hand, a notable integrable equation, and
on the other hand a universal model for weakly nonlinear
long waves in a wide variety of physical contexts. The
KdV equation, together with various extensions, describes a
balance between nonlinear wave-steepening and linear wave
dispersion.
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Of principal concern in this paper are the large-amplitude
internal solitary waves which propagate in the shallow water
of coastal oceans. It is now widely accepted that the basic
paradigm for internal waves in shallow seas is based on the
KdV equation, first derived in this context by Benney (1966)
and Benjamin (1966) and subsequently by many others;
for recent reviews see, for instance, Grimshaw (2001),
Holloway et al. (2001), Ostrovsky and Stepanyants (2005),
Helfrich and Melville (2006), Apel et al. (2007), Grimshaw
et al. (2007), or the book by Vlasenko et al. (2005). However,
in the coastal ocean, the waves are propagating in a region
of variable depth and also through regions of horizontally
varying hydrology. In this situation, the appropriate model
equation is the variable-coefficient KdV equation

At +cAx−
cQx

Q
A+µAAx+δAxxx = 0 , (1)

Here A(x,t) is the amplitude of the wave, andx, t are
space and time variables, respectively. The coefficientc(x)

is the relevant linear long wave speed, whileQ(x) is the
linear modification factor, defined so thatQ−2A2 is the wave
action flux for linear long waves. The coefficientsµ(x) and
δ(x) of the nonlinear and dispersive terms respectively, are
determined by the properties of the basic state. All these
coefficients are slowly-varying functions ofx. The variable-
coefficient KdV equation for water waves was developed by
Ostrovsky and Pelinovsky (1970) and later systematically
derived by Johnson (1973b), while Grimshaw (1981) gave
a detailed derivation for internal waves (see also Zhou and
Grimshaw, 1989 and Grimshaw, 2001). The first two terms
in (1) are the dominant terms, and hence we can make the
transformation

A=QU , ξ =

∫ x dx

c
, s= ξ− t . (2)
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Substitution into (1) yields, to the same leading order of
approximation where (1) holds,

Uξ +αU Us+λUsss= 0 (3)

α=
Qµ

c
, λ=

δ

c3
. (4)

The coefficientsα, λ are functions ofξ alone. Note thatξ
measures travel time along the spatial path of the wave, while
s is a temporal variable measuring the wave phase.

However because internal solitary waves are often of
large amplitudes, it is sometimes useful to include a
cubic nonlinear term in (1) and (3), which then become,
respectively (see the review by Grimshaw, 2001),

At +cAx−
cQx

Q
A+µAAx+µ1A

2Ax+δAxxx = 0 , (5)

Uξ +αU Us+βU
2Us+λUsss= 0 , (6)

where β =
Q2µ1

c
. (7)

Equations (3) and (6), sometimes with various modifications
such as with an additional dissipative term, or with a term
taking account of the Earth’s rotation, have been applied to
the study of internal solitary wave wave transformation in
the coastal zone by many authors (for instance Cai et al.,
2002; Djordjevic and Redekopp, 1978; Grimshaw et al.,
2004, 2006, 2007; Holloway et al., 1997, 1999; Hsu et al.,
2000; Liu et al., 1988, 1998, 2004; Orr and Mignerey, 2003;
Shroyer et al., 2009 and Small, 2001a, b, 2003).

In Sect. 2, we shall present a more detailed description
of the derivation of these model equations. Then in Sect. 3,
we shall describe the slowly-varying solitary wave solutions
of the evKdV equation (6) and in particular examine the
behaviour at certain critical points where eitherα orβ vanish.
Then in Sect. 4 we shall indicate how these theoretical results
can be applied for realistic oceanic conditions, such as those
found in the South China Sea.

2 Evolution equations

2.1 Constant depth

The KdV equation is obtained by a weakly nonlinear long
wave expansion from the fully nonlinear equations (see
Grimshaw, 2001 or Grimshaw et al., 2007). We shall
consider only a two-dimensional configuration, see Fig. 1,
but initially we assume that the fluid has constant depthh. In
the basic state the fluid has densityρ0(z), a horizontal shear
flow u0(z) in the x-direction, and a pressure fieldp0(z) such
thatp0z = −gρ0. The density stratification is described by
the buoyancy frequencyN(z), where

N2(z)= −
gρ0z

ρ0
. (8)

z
ηz=

z=-h

Fig. 1. Coordinate system.

Then, relative to this basic state, the outcome is, to leading
order in the small parameterε characterizing the long wave
approximation,

ζ ∼ ε2A(X,T )φ(z)+ ... , X= ε(x−ct) , T = ε3t . (9)

Here ζ is the vertical particle displacement relative to the
basic state and the modal functionφ(z) satisfies the system{
ρ0(c−u0)

2φz

}
z
+ρ0N

2φ= 0 , for −h<z<0 , (10)

φ= 0 at z= −h , (c−u0)
2φz = gφ at z= 0 , (11)

Equation (10) is the long-wave limit of the Taylor-Goldstein
equation, and with the boundary conditions (11), determines
the modal function and the linear long wave speedc.

Typically, this boundary-value problem (10, 11) defines
an infinite sequence of regular modes,φ±

n (z), n= 0,1,2,...,
with corresponding speedsc±n , where “±” indicates waves
with c+n >uM = maxu0 andc−n <uM = minu0, respectively.
Note that it is useful to letn= 0 denote the surface gravity
waves for whichc scales with

√
gh, and thenn= 1,2,3,...

denotes the internal gravity waves for whichc scales with
Nh. In general, the boundary-value problem (10, 11) is
solved numerically. Typically, the surface modeφ0 has no
extrema in the interior of the fluid and takes its maximum
value at the surfacez= 0, while the internal modesφ±

n (z),
n= 1,2,3,..., haven extremal points in the interior of the
fluid, and vanish nearz= 0 (and, of course, also atz= −h).
Since the modal equations are homogeneous, a normalization
condition can be imposed. Here we chooseφ(zm)= 1 where
|φ(z)| achieves a maximum value atz= zm with respect to
z. In this case the amplitudeε2A is uniquely defined as the
amplitude ofζ (to leading order inε) at zm.

It can then be shown that, within the context of linear long
wave theory, any localised initial disturbance will evolve
into a set of outwardly propagating modes, each propagating
with the relevant linear long wave speed. Assuming that
the speedsc±n of each mode are distinct, it is sufficient for
large times to consider just a single mode, as expressed
by (9) Then, as time increases, the hitherto neglected
nonlinear terms come into play and cause wave steepening.
However, this is opposed by the terms representing linear
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wave dispersion, also neglected in the linear long wave
theory. A balance between these effects emerges as time
increases, technically obtained as a compatibility condition
at the second order in the expansion. The outcome is the
Korteweg-de Vries (KdV) equation for the wave amplitude

AT +µAAX+δAXXX = 0 . (12)

The coefficientsµ andδ are given by

Iµ= 3
∫ 0

−h

ρ0(c−u0)
2φ3
z dz , (13)

Iδ=

∫ 0

−h

ρ0(c−u0)
2φ2dz , (14)

I = 2
∫ 0

−h

ρ0(c−u0)φ
2
z dz . (15)

Note that after reverting to the original variablesx andt , and
using (9) Eq. (12) is equivalent to (1) for the case when all
coefficients are constant andQx = 0. The KdV equation (12)
is integrable and the long-time evolution from a localized
initial condition is a finite number of solitary waves (solitons)
and dispersing radiation.

A particularly important special case arises when the
nonlinear coefficientµ defined by the expression (13) is close
to zero. In this situation, a cubic nonlinear term is needed,
and this can be achieved with a rescaling. The optimal choice
is to assume thatµ is 0(ε), and then replaceA with A/ε in
(9); in effect the amplitude parameter isε in place ofε2.
The outcome is that the KdV equation (12) is replaced by
the extended KdV equation, widely known as the Gardner
equation,

AT +µAAX+µ1A
2AX+δAXXX = 0 ,. (16)

Again, after reverting to the original variables in (9) Eq. (16)
is equivalent to (5) (with Qx = 0). Expressions for the
coefficient µ1 are available, see Grimshaw et al. (2002)
and the references therein. Like the KdV equation, (16) is
integrable and has solitary wave solutions. There are two
independent forms of the eKdV equation (16), depending on
the sign ofδµ1.

The solitary wave family of the eKdV equation (16) is
given by

A=
H

1+BcoshK(X−V T )
, (17)

where V =
µH

6
= δK2 , B2

= 1+
6δµ1K

2

µ2
, (18)

characterized by a single parameterB. The wave amplitude
is a =H/(1+B). For δµ1< 0, 0<B < 1, and the family
ranges from small-amplitude waves of KdV-type (“sech2”-
profile) (B→ 1) to a limiting flat-topped wave of amplitude
−µ/µ1 (B → 0), the so-called “table-top” wave, see the
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Fig. 2. Solitary wave family (17). The upper panel is forµ1< 0
and the lower panel is forµ1>0; in both panelsµ>0, δ >0.

upper panel in Fig. 2. Forδµ1> 0 there are two branches;
one branch has 1<B <∞ and ranges from small-amplitude
KdV-type waves (B → 1), to large waves with a “sech”-
profile (B → ∞). The other branch with−∞< B <−1,
has the opposite polarity and ranges from large waves with a
“sech”-profile whenB→ −∞, to a limiting algebraic wave
of amplitude−2µ/µ1 whenB → −1, see the lower panel
in Fig. 2 Solitary waves with smaller amplitudes cannot
exist, and from the point of view of the associated spectral
problem are replaced by breathers, that is, pulsating solitary
waves, see, for instance, Pelinovsky and Grimshaw (1997),
Grimshaw et al. (1999, 2010), Clarke et al. (2000), Lamb et
al. (2007). Whenµ1 → 0, B→ 1 and the family reduces to
the well-known KdV solitary wave family

A= asech2(K(X−V T )), V =
µa

3
= 4δK2 . (19)

Here we have replaceda, K with 2a, 2K to conform with
the usual KdV notation.

2.2 Variable background

The derivation sketched above was for the case of constant
depth, and when the basic state hydrology is independent
of x. But in the ocean, the depth varies and the basic state
hydrology may also vary in the propagation direction. These
effects can be incorporated into the theory by supposing
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that the basic state is a function of the slow variableχ =

ε3x. That is,h= h(χ), u0 = u0(χ,z) with a corresponding
vertical velocity fieldε3w0(z,χ), a density fieldρ0(z,χ)

a corresponding pressure fieldp0(χ,z) and a free surface
displacementη0(χ). This basic state is assumed to satisfy the
full equation set possibly with body forces in the momentum
equations. With this scaling, the slow background variability
enters the asymptotic analysis at the same order as the weakly
nonlinear and weakly dispersive effects. As noted in the
Introduction, it is now necessary to replace the variablesx,
t with ξ , s (2), where it is also convenient to replace the
slow variableχ with ξ . An asymptotic analysis analogous
to that described above then produces the vKdV equation (1)
(Grimshaw, 1981; Zhou and Grimshaw, 1989). The modal
system is again defined by (10, 11), but nowc= c(ξ) and
φ = φ(z,ξ), where theξ -dependence is parametric. The
analysis then proceeds as in the constant depth case, but
with extra terms corresponding to the slow variability in
the basic state, while the compatibility condition then yields
the vKdV equation (1) now with variable coefficientsµ=

µ(ξ),δ= δ(ξ), but which are again defined by (13, 14, 15)
(but the upper limit in the integrals is nowz= η0 replacing
z = 0). For the present case of internal waves, we find
that the linear modification factor is given by, see Zhou and
Grimshaw (1989),

Q2
=

1

Ic2
, (20)

whereI is defined by (15). Note also that the expression for
Q can also be simply determined by requiring thatQ−2A2

should be the wave action flux in the linear long wave
limit. The variable-coefficient extended KdV equation (5)
is obtained in a similar manner.

We shall conclude this section with some illustrative
examples. First consider the case ofsurface waves. We put
the densityρ = constant so that thenN2

= 0 (8). Then, for
the case when there is no background flow so thatu0 = 0,
η0 = 0, we obtain the well-known expressions

φ=
z+h

h
for −h<z<0 , c= (gh)1/2 . (21)

and so µ=
3c

2h
, δ=

ch2

6
, Q2

=
1

2gc
. (22)

Similarly, for interfacial wavesin a two-layer fluid, let the
density be a constantρ1 in an upper layer of heighth1 and
ρ2>ρ1 in the lower layer of heighth2 =h−h1. That is

ρ0(z)= ρ1H(z+h1)+ρ2H(−z−h1) ,

so that ρ0N
2
= g(ρ2−ρ1)δ(z+h1) .

HereH(z) is the Heaviside function andδ(z) is the Diracδ-
function. Again we assume that there is no background flow
(u0 = 0, η0 = 0). and we replace the free boundary with a
rigid boundary so that the upper boundary condition forφ(z)

becomes justφ(0)= 0. This is a good approximation for
oceanic internal solitary waves. Then we find that

φ=
z+h

h2
for −h<z<h1, φ= −

z

h1
for −h1<z< 0,

c2
=
g(ρ2−ρ1)h1h2

ρ1h2+ρ1h2
. (23)

Substitution into (13, 14, 15) yields

µ=
3c
(
ρ2h

2
1−ρ1h

2
2

)
2h1h2(ρ2h1+ρ1h2)

, δ=
ch1h2(ρ2h2+ρ1h1)

6(ρ2h1+ρ1h2)
,

Q2
=

1

2g(ρ2−ρ1)c
. (24)

Note that for the usual oceanic situation whenρ2−ρ1 � ρ2,
the nonlinear coefficientµ for these interfacial waves is
negative whenh1<h2 (that is, the interface is closer to the
free surface than the bottom), and is positive in the reverse
case. The case whenh1 ≈ h2 leads to the necessity to use
the extended KdV equation (16), where the coefficientµ1 is
given by

µ1 = −
3c

8h2
1h

2
2(ρ1h2+ρ2h1)

2{(
ρ1h

2
2−ρ2h

2
1

)2
+8ρ1ρ2h1h2(h1+h2)

2
}
. (25)

Note thatµ1< 0, and so the eKdV equation (16) for a two-
layer fluid always hasδµ1<0.

However, in a three-layer fluid there are parameter regimes
where one or two modes may haveµ1> 0 (Grimshaw et al.,
2002), and there are many cases for real oceanic conditions
with smooth stratification and background shear when the
parameterµ1>0, see Grimshaw et al. (2004, 2007).

3 Deformation of internal solitary waves

3.1 Slowly varying solitary wave

In general the evKdV equation (6) with variable coefficients
α = α(ξ), β = β(ξ)λ = λ(ξ) must be solved numerically.
However, it is first instructive to consider the slowly-varying
solitary wave. This is described in detail in review article
by Grimshaw et al. (2007), but for convenience we shall
present a brief summary here. The slowly-varying solitary
wave is an asymptotic solution based on the assumption
that the background state varies slowly relative to a typical
wavelength. Formally, we suppose that

α=α(σ), β =β(σ), λ= λ(σ), σ = κξ , κ� 1. (26)

We then invoke a multi-scale asymptotic expansion of the
form (see Grimshaw, 1979)

U =U0(ψ,σ )+κU1(ψ,σ )+ ..., (27)
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ψ = s−
1

κ

∫ σ

V (σ)dσ . (28)

Hereψ is a temporal variable in a frame moving with the
speedV . U is defined over the domain−∞<ψ <∞, and
we will require thatU remain bounded in the limitsψ →

±∞. Since we can assume thatλ>0 small-amplitude waves
will propagate in the negative s-direction, and so we can
suppose thatU → 0 asψ → ∞. However, it will transpire
that we cannot impose this boundary condition asψ→ −∞.
This procedure is well-known for the vKdV equation (see
Johnson, 1973a for the case of water waves, and Grimshaw,
1979 for the general case) and is readily extended to the
evKdV equation (see the recent reviews by Grimshaw, 2007
and Grimshaw et al., 2007).

Substitution of (27) into (3) yields,

−VU0ψ+αU0U0ψ+βU2
0Uψ+λU0ψψψ = 0 , (29)

−VU1ψ+α(U0U1)ψ+β
(
U2

0U1

)
ψ

+λU1ψψψ = −U0σ . (30)

Equation (29) has the solitary wave solution

U0 =
D

1+BcoshKψ
, (31)

where V =
αD

6
= λK2 , B2

= 1+
6λβK2

α2
. (32)

When the coefficients are constants, this is just the eKdV
solitary wave (17). Here it is a slowly-varying solitary wave
as the parameterB =B(σ) and hencea=D/(1+B)= a(σ ),
V = V (σ), K = K(σ). The main aim of the analysis is
then to determine how these parameters vary, and this is
determined at the next order of the expansion.

We now seek a solution of (30) for U1 → 0, ψ → ∞

and for whichU1 is bounded asψ → −∞. In order to
determine the conditions that need to be imposed on the
right-hand side of (30) to ensure that such a solution can
be obtained, we need to consider the adjoint equation to the
homogeneous operator on the left-hand side of (30), which is
for the dependent variablẽU1,

−V Ũ1ψ +αU0Ũ1ψ +βU2
0 Ũ1ψ +λŨ1ψψψ = 0. (33)

The required compatibility conditions are then that the
right-hand side of (30) should be orthogonal to all linearly
independent solutions of the adjoint Eq. (33) which decay at
infinity. Two linearly independent solutions of the adjoint
Eq. (33) are 1,U0. While both of these are bounded, only
the second solution satisfies the condition thatU1 → 0 as
ψ → ∞. The third solution is unbounded asψ → ±∞.
Hence only one compatibility condition can be imposed,
namely that the right-hand side of (30) is orthogonal toU0,
which leads to

P0σ = 0 where P0 =

∫
∞

−∞

U2
0 dψ . (34)

ThusP0 is a constant, and as the solitary wave (19) has just
one free parameterB, this condition suffices to determine its
variation.

However, the evKdV equation (6) has two conservation
laws

∂M

∂ξ
= 0, M =

∫
∞

−∞

Uds, (35)

∂P

∂ξ
= 0, P =

∫
∞

−∞

U2ds, (36)

for “mass” and “momentum” respectively. In physical terms,
(35) is an approximation to the conservation of physical
mass, while (36) expresses conservation of wave action
flux at the leading order. The condition (34) is easily
recognized as the leading order expression for conservation
of momentum (36). But since this completely defines the
slowly-varying solitary wave, we now see that this cannot
simultaneously conserve mass. This is also apparent when
one examines the solution of (30) for U1, from which it is
readily shown that althoughU1 → 0 asψ→ ∞,U1 →D1 as
ψ→ −∞ where

VD1 = −M0σ , where M0 =

∫
∞

∞

U0dψ . (37)

This non-uniformity in the slowly-varying solitary wave
has been recognized for some time, see, for instance,
Knickerbocker and Newell (1978, 1980), Grimshaw (1979)
or Grimshaw and Mitsudera (1993) and the references
therein. The remedy is the construction of a trailing shelf
U (s) of small amplitudeO(κ) but long length-scaleO(1/κ),
which thus hasO(1) mass, butO(κ) momentum. It resides
behind the solitary wave, and to leading order is given by

U (s)=κU (s)(T ), for T=κξ<9(σ)=

∫ σ

V (σ)dσ . (38)

Here T = 9(σ) defines the location of the solitary wave.
U (s)(T ) is independent ofσ , and is determined so that the
shelf amplitude is justκD1(σ ) at the location of the solitary
wave, that isU (s)(9(σ))=D1(σ ) (37). At higher orders
in κ the shelf itself will evolve and may generate secondary
solitary waves, see El and Grimshaw (2002) and Grimshaw
and Pudjaprasetya (2004). The slowly-varying solitary wave
and the trailing shelf together satisfy conservation of mass.

Substitution of the solitary wave (31) into the expression
(34) for P0 yields

P0 =
D2

K

∫
∞

−∞

du

(1+Bcoshu)2
, (39)

or G(B)=P0

∣∣∣∣∣ β3

λα2

∣∣∣∣∣
1/2

, (40)

where G(B)=

∣∣∣B2
−1

∣∣∣3/2∫ ∞

−∞

du

(1+Bcoshu)2
. (41)
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The expression (40) determines the variation of the
parameterB sinceP0 is a constant, determined by the initial
conditions. The integral term inG(B) can be explicitly
evaluated,

B2>1 : G(B)= 2(B2
−1)1/2∓4arctan

√
B−1

B+1
, (42)

0<B < 1 : G(B)= 4arctanh

√
1−B

1+B
−2

(
1−B2

)1/2
. (43)

The alternative signs in (42) correspond to the casesB >1 or
B <−1. Next, the trailing shelf is found from (37, 38) where

B2>1 : M0 = ±|
6λ

β
|
1/24arctan

√
B−1

B+1
, (44)

0<B < 1 : M0 = ±|
6λ

β
|
1/24arctanh

√
1−B

1+B
. (45)

Here the alternative signs in (44) and (45) correspond to the
casesαB >0 orαB <0.

The expression (40) provides an explicit formula for the
dependence ofB on the basic state parametersα, β, λ, ν. It is
readily shown thatG(B) (42) is a monotonically increasing
function of |B| for 1< |B| <∞, and is a monotonically
decreasing function ofB for 0< B < 1 (43). Thus as
|β3/λα2

| → ∞, then so doesG(B). If β < 0 so that 0<
B < 1, B→ 0 and the wave approaches the limiting “table-
top” shape. On the other hand ifβ >0 and 1< |B|<∞ then
|B| → ∞ and the wave shape approaches the “sech”-profile,
The behaviour of the wave amplitude in these limits depends
on the behaviour of each of the parametersα, β, λ. But since
we can usually expectβ to be finite andλ(> 0) to be non-
zero, we see that these limiting shapes are usually achieved at
the critical point whereα→ 0. This case is discussed below
in Sect. 3.2. On the other hand, if|β3/λα2

| → 0, then so
doesG(B). In this caseB→ 1,G(B)∼ |B−1|

3/2 (see (42,
43)) and the wave profile reduces to the KdV “sech2”-shape,
provided that eitherβ < 0 when 0<B < 1, or if β > 0, then
the wave belongs to the branch defined by 1<B <∞. These
scenarios are usually achieved at the alternative critical point
whereβ = 0, discussed below in Sect. 3.2.

3.2 Passage through a critical point

The adiabatic deformation of a solitary wave discussed above
in Sect. 3.1 shows that the critical points whereα = 0, or
whereβ = 0, are sites where we may anticipate a change
in the wave structure. First we recall the vKdV model (3)
whereβ = 0. In this case the adiabatic law (40) collapses to
a3

∝ α/λ wherea is the solitary wave amplitude (19), and
the expression (37) collapses toD1 = aσ /2λK3. Suppose
that α = 0 at σ = 0, where, without loss of generality, we
can assume thatα passes from a negative to a positive value
as σ increases through zero. Initially the solitary wave is
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Fig. 3. Numerical simulation of the vKdV equation (3) withδ= 1
and asα varies from−1 to +1. The upper panel is whenα = 0
and the lower panel is whenα= 1. The simulation shows a strong
deformation of the initial solitary wave of depression atα = 0,
followed atα= 1 by the emergence of a number of solitary waves
of elevation riding on a negative pedestal.

located inσ < 0 and has negative polarity, corresponding
to the usual oceanic situation. Then, near the transition
point, the amplitude of the wave decreases to zero asa ∼

−|α|
1/3, while K ∼ |α|

2/3; the momentum of the solitary
wave is of course conserved (to leading order), but the
mass of the solitary wave increases (in absolute value) as
1/|α|

1/3, its speed decreases as|α|
4/3, and the amplitude

D1 > 0 of the trailing shelf just behind the solitary wave
grows as|α|

−8/3; the total mass of the trailing shelf is
positive and grows as 1/|α|

1/3, in balance with the negative
mass of the solitary wave, while the total mass remains a
negative constant. Since the tail grows to be comparable
with the wave itself, the adiabatic approximation breaks
down as the critical point is approached. Nevertheless,
we can infer that the the solitary wave itself is destroyed
as the wave passes through the critical pointα = 0. The
structure of the solution beyond this critical point has been
examined numerically by Knickerbocker and Newell (1980)
and revisited by Grimshaw et al. (1998a), who showed
that the shelf passes through the critical point as a positive
disturbance, which then being in an environment withα >0,
can generate a train of solitary waves of positive polarity,
riding on a negative pedestal, see Fig. 3.
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Fig. 4. Numerical simulation of the evKdV equation (6) withδ= 1,
β = −0.083 and asα varies from 1 to−1. The upper panel shows
the initial condition of a “table-top” solitary wave of elevation at
α= −1, the middle panel shows a strong deformation atα= 0, and
the lower panel shows the leading wave atα= −1. This wave is a
“table-top” wave of depression riding on a small positive pedestal.

We next take account of the cubic nonlinear term in (6)
and suppose again thatα passes through zero atσ = 0 but
that β 6= 0 at the critical point. First, let us suppose that
β < 0, 0<B < 1. Then asα→ 0, we see from (40) and
(43) thatG(B)∼ 1/|α|, andB→ 0 with B ∼ 2exp(−G/2).
Thus the approach to the limiting “table-top” wave is quite
rapid. From (31) K ∼ |α| in this limit, and the amplitude
approaches the limiting valuea ∼ −α/β. Thus the wave
amplitude decreases to zero, and, interestingly, this is a more
rapid destruction of the solitary wave than for the case when
β = 0. The massM0 (45) of the solitary wave grows as|α|

−1

and so the amplitudeD1 of the trailing shelf (37) grows as
1/|α|

4. The overall scenario afterα has passed through zero
is similar to that described above for the vKdV equation (3)
and has been discussed in detail by Grimshaw et al. (1999);
see Fig. 4 for a case when a “table-top” solitary wave is
converted to another such wave of opposite polarity, riding
on a pedestal.

Next, let us suppose thatβ > 0 so that 1< |B| < ∞

There are two sub-cases to consider,B > 0 orB < 0, when
the the solitary wave has the same or opposite polarity to
α. Then asα → 0,|B| → ∞ as |B| ∼ 1/|α|. It follows
from (31) that thenK ∼ 1, D ∼ 1/|α|,a ∼ 1, M0 ∼ 1. It
follows that the wave adopts the “sech”-profile, but hasfinite
amplitude, and so can pass through the critical pointα = 0
without destruction. But the wave changes branches from
B > 0 to B < 0 as|B| → ∞, or vice versa. An interesting
situation then arises when the wave belongs to the branch
with −∞<B <−1 and the amplitude is reducing. If the
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Fig. 5. Numerical simulation of the evKdV equation (6) for the
case whenδ = 1, β = 0.3, ν = 0 andα varies from 1 to−1. The
initial wave (not shown) is a solitary wave of elevation belonging
to the branch for whichB > 0. It then passes adiabatically through
the critical point, changing the sign ofB to B < 0, and arrives at
the locationα = −1 whereξ = T with only a small deformation.
However, at this stage its amplitude is below that allowed for a
steady solitary wave, and so it deforms into a breather, shown in
the middle panel forξ = 2T and the lower panel forξ = 4T .

limiting amplitude of−2α/β is reached, then there can be
no further reduction in amplitude for a solitary wave, and
instead a breather will form. An example of this outcome is
shown in Fig. 5, where the wave has entered this regime after
passing through the critical point.

Finally, consider the case whenβ → 0, α 6= 0. This case
has been studied by Nakoulima et al. (2004) using both an
asymptotic analysis similar to that used here, and numerical
simulations. As already noted above, in this caseB → 1,
G(B)∼ |B− 1|

3/2 (42, 43), and it then follows from (40)
thatG∼ |β|

3/2 and so|B−1| ∼ |β|. There are three sub-
cases to consider. First, suppose that initiallyβ < 0 and so
0<B < 1. As |β| → 0, 1−B ∼ |β| and the wave profile
becomes the familiar KdV “sech2”-shape. It is readily shown
from (31) that thenK, a, M0, D1 ∼ 1 and so the wave can
pass through the critical pointβ = 0 without destruction.
However, after passage through the critical point, the wave
has moved to a different solitary branch (see Fig. 2), and this
may change its ultimate fate. A typical scenario is shown
in Fig. 6, which shows the transformation of a “table-top”
solitary wave (upper panel in Fig. 2) to a KdV “sech2”-KdV
solitary wave at the critical point, and further evolution as
a solitary wave of the upper branch in the lower panel of
Fig. 2. Second, suppose that initiallyβ > 0 and 1< B <
∞. Now B − 1 ∼ β and again the wave profile becomes
the familiar KdV “sech2”-shape, whileK, a, M0, D1 ∼ 1,
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Fig. 6. Numerical simulation of the evKdV equation (6) withα= 1,
λ= 1 andβ varies from−1 to 1, showing the transformation of a
“table-top” solitary wave to a KdV “sech2”-KdV solitary wave at
the critical point, and further evolution as a solitary wave tending to
a “sech”-profile.

allowing the wave to pass through the critical pointβ = 0
without destruction, but moving now from the upper branch
in the lower panel of Fig. 2 to the “table-top” branch in the
upper panel of Fig. 2. Third, suppose that initiallyβ > 0 and
−1>B >−∞. In this case it an be shown from (42) that
G(B) decreases from∞ to a finite value of 2π asB increases
from −∞ to −1. Consequently the limitβ → 0 in (40)
cannot be achieved. Instead asβ decreases the limitB = −1
is reached, when the wave becomes an algebraic solitary
wave, and a further decrease inβ generates a breather.

4 Application to internal solitary waves in the South
China Sea

In a typical oceanic situation, where there is a relatively
sharp near-surface pycnocline, an internal solitary wave of
depression is generated in the deep water and propagates
shorewards until it reaches a critical point. For a simple
two-layer model, this is where the pycnocline is close to
the mid-depth, see (24). The theory described above then
predicts that this wave will be destroyed in the vicinity of this
critical point and replaced in the shallow water shorewards
of the critical point by one or more internal solitary waves
of elevation riding on a negative pedestal. This basic
scenario has been observed in several places in the ocean,
For instance, this phenomena has been reported by Salusti
et al. (1989) in the Eastern Mediterranean, by Holloway et
al. (1997, 1999) and Grimshaw et al. (2004) in the North
West Shelf of Australia, by Hsu et al. (2000) in the East
China Sea, during the ASIAEX experiment in the South
China Sea by Duda et al. (2004), Liu et al. (1998, 2004), Orr
and Mignerey (2003), Ramp et al. (2004), Yang et al. (2004),
Zhao et al. (2003, 2004) and Zheng et al. (2003), and on
the New Jersey shelf by Shroyer et al. (2009). Further,
numerical simulations of the full Euler equations predict
polarity reversal in Lake Constance (Vlasenko and Hutter,
2002), in the Andaman Sea (Vlasenko and Staschuk, 2007)
and in the Saint Lawrence estuary (Bourgault et al., 2007).
But elsewhere in the ocean, where there are no such critical
points, the shoreward propagating small-amplitude internal
solitary waves are expected to deform adiabatically (at least
within the framework of the vKdV equation). Examples
of this behaviour occur on the Malin Shelf off the North
West coast of Scotland (Small, 2003; Grimshaw et al., 2004;
Small and Hornby, 2005), in the Laptev Sea in the Arctic
(Grimshaw et al., 2004) and in the COPE experiment on the
Oregon shelf (Vlasenko et al., 2005).

The South China Sea (SCS) is well known as a location
where internal solitary waves have been commonly observed,
and has been intensively studied both experimentally and
through numerical simulations, see for instance the reports
based on the 2001 ASIAEX experiments by Duda et
al. (2004), Ramp et al. (2004) and Liu et al. (2004).
Typically, large amplitude internal waves are generated by
the barotropic tidal currents, possibly combined with the
Kuroshio current extension, interacting with the topography
in Luzon Strait, see Liu et al. (1998), Cai et al. (2002), Ramp
et al. (2004, 2006). Solitary-like waves with amplitudes up
to 80 m (in a depth of 300 m) have been observed at the
two underwater mountain ridges in Luzon Strait, see the
bathymetry in Fig. 7 and the wave field in Fig. 8, taken
from Liu et al. (2006). These waves cross the deep basin
and then shoal on the continental shelf in water of depth
400–200 m, see for example the reports of the ASIAEX
experiment by Duda et al. (2004), Ramp et al. (2004) and
Liu et al. (2004). Wave amplitudes can reach to 100 m
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Fig. 7. Bathymetry of the northern part of the South China Sea, from Liu et al. (2006).

Fig. 8. Displacement of the isotherms as measured in the South China Sea, from Liu et al. (2006).

Fig. 9. Time series of internal waves in the South China Sea, from
Duda et al. (2004).

and their shapes compare well with theoretical solitary wave
shapes, see Klymak et al. (2006) and Fig. 9 from Liu et
al. (2006). Numerical modeling of internal solitary wave
transformation on the continental slope and shelf of the SCS
has often been based on the vKdV and evKdV models, using
mainly two-layer representations of the density stratification,
and the results have been used to interpret the observed
solitary wave evolution and especially the observed polarity
changes, see Orr and Mingerey (2003), Zhao et al. (2003,
2004), Liu et al. (1998, 2004). There are also a few
numerical simulations using the full Euler equations for
stratified flow, see Buijsman et al. (2008), Du et al. (2008),
Scotti et al. (2008), Warn-Varnas et al. (2010) and Vlasenko
et al. (2010) for instance.
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Fig. 10.Bathymetry of the South China Sea, with the chosen cross-
sections.

We shall supplement these studies by a set of numerical
simulations of the evKdV equation (6) for two typical cross-
sections of the SCS, shown in Fig. 10. The first cross-
section is close to the conditions for ASIAEX 2001, where
the internal solitary waves are generated by westward tidal
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Fig. 11.Contour maps of the coefficients of the evKdV equation for
the South China Sea. The plots are those for the phase speedc, the
dispersion coefficientδ, the quadratic coefficientµ, and the cubic
coefficientµ1.

Fig. 12.Coefficients of the evKdV equation (5) along cross-section 1.

currents in Luzon Strait, see Liu et al. (2006) and Zhao
and Alford (2006) for instance. The second cross-section is
chosen to have a positive cubic nonlinear coefficient along
the whole wave path. Contour maps of the linear long wave
speed, the coefficients of the quadratic and cubic nonlinear
terms and the coefficient of the linear dispersive term in
the evKdV equation (5) are shown on Fig. 11. They are
based on the vertical density profiles from the database
GDEM for January (GDEM), while the bathymetry is taken
from GEBCO. The speedc and the dispersion coefficientδ
correlate well with the depthh as expected, see Talipova and
Polukhin (2001) and Polukhin et al. (2003). The quadratic
nonlinear coefficientµ is negative in the deep part of the
SCS, and changes its sign to positive everywhere on the
continental slope, as expected in the SCS, see Orr and
Mignerey (2003) and Zhao et al. (2003, 2004) for instance.
The cubic nonlinear coefficient,µ1 is very small and positive
in the deep part of the sea, but its sign changes in some parts
of the continental slope to negative, while in other places it
stays positive and grows in absolute value. To understand
the role of quadratic and cubic nonlinearity in internal wave
dynamics three values should be compared,c, µA, µ1A

2. In
the deep part of the SCSc= 2.5 m s−1 and even if the internal
wave amplitude is taken as 80 m (usually much less in
deep water)µA= 0.48 m s−1 andµ1A

2
= 0.13 m s−1; hence

nonlinear effects are small in the deep part of the SCS. But on
the continental slopec is less than 0.5 m s−1 and for the same
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Fig. 13. Transformation of an internal solitary wave along cross-section 1.

22

Fig. 13. Transformation of an internal solitary wave along cross-section 1.

Fig. 14. Contour plot in the space-time domain of an internal
solitary wave transformation along cross-section 1.

internal wave amplitude of about 80 m,µA= 0.48 m s−1,
comparable withc, andµ1A

2
= 1.28 m s−1, much large than

the quadratic nonlinear term. Thus in the the shelf zones
the waves are strongly nonlinear. Indeed the ratio of the
nonlinear terms to the speed of propagation is about 3.5.
Nevertheless, the eKdV (Gardner) model may be used as
demonstrated by Maderich et al. (2009, 2010). However, it
is pertinent to note that several other higher-order KdV-type
models have been proposed, see the recent review by Apel et
al. (2007) for instance.

4.1 Numerical results for cross-section 1

The wave path is close to the conditions of the ASIAEX
2001 experiment on the shelf (Ramp et al., 2004) and is here
extended to the Luzon Strait to the site where the westward
propagating solitary waves were observed see (Liu et al.,
2006; Zhao and Alford, 2006 for instance). The model
coefficients are shown on Fig. 12. The depth decreases from
2.5 km to 200 m, the linear long wave speedc varies from
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2.5 m s−1 to 0.2 m s−1, the linear modification factorQ is
equal to 1 initially, then decreases to 0.5 at the locationx =

250 km, before increasing to 2.5 on the shelf. Corresponding
to the change of depth, the dispersion coefficientδ decreases
along the cross-section. The nonlinear quadratic coefficient
µ is negative for most of the wave path, but changes sign
once only at a depth about 100 m. The cubic nonlinear
coefficientµ1 is positive in the deep water and becomes
negative at a depth of about 400 m. Hence here there are
two critical points, both on the shelf. The amplitude of the
initial solitary wave (17) is chosen as 49 m atx= 0 in Fig. 14.
This is less than that mentioned by Liu et al. (2006) where
the amplitude of an observed solitary wave was estimated as
140 m, but it is large enough for our purposes.

The solitary wave evolution is shown in Fig. 13. The
leading wave amplitude has decreased by a factor of two at
x= 220 km from 49 m to 25 m. Over this same distance, the
cubic nonlinear coefficient is almost constant, the quadratic
nonlinear coefficient has decreased, the dispersive coefficient
has decreased, while the linear modification factor has
decreased by a factor of one-half; together these have
the effect that the initial wave has started to deform with
formation of a trailing tail. At the locationx = 350 km the
linear modification factor is decreasing, the cubic nonlinear
coefficient changes sign and quadratic nonlinear coefficient
tends to zero. The leading solitary wave now has an
amplitude of about 35 m and is wider than at the locationx=

220 km. At x = 400 km the quadratic nonlinear coefficient
changes sign, and we see the typical destruction of the
negative solitary wave, and the consequent generation of
several positive solitary waves. The space-time contour plot
of this internal wave transformation is shown in Fig. 14.

4.2 Numerical results for cross-section 2

On this cross-section, the initial point lies in deep water of
depthh= 3 km, and the last point lies near Hainan Island.
Here, the cubic nonlinear coefficient is positive everywhere,
while the quadratic nonlinear coefficient changes sign on the
shelf. The model coefficients are shown in Fig. 15. The depth
decreases from 3 km to 200 m non-monotonically, producing
the analogous tendencies for the dispersion coefficientδ,
and the linear long wave speedc. The linear modification
factorQ is initially close to one, and then decreases before
increasing after the locationx = 700 km. The quadratic
coefficientµ grows afterx = 400 km in absolute value and
afterx= 580 km tends to zero, changing sign at the location
x= 700 km. The cubic coefficientµ1 is positive everywhere,
but grows by an order of magnitude.

This is a scenario when we might expect the formation
of a breather from a solitary wave at the location of where
the quadratic coefficient changes sign, provided the leading
wave amplitude is large enough. Here we did two runs
with initial solitary wave amplitudes of 23 m and 41 m. The
solitary wave transformation for the first run is shown in

Fig. 15.Coefficients of the evKdV equation (5) along cross-section 2.

Fig. 16. Due to the increase of the cubic nonlinear coefficient
the initial solitary wave becomes narrower and a trailing
tail emerges, developing oscillations afterx = 600 km. This
process occurs without a significant change in the leading
wave amplitude because the modification factor increases
slowly. At the locationx = 700 km a “sech”-like solitary
wave has appeared. Then, at the locationx = 730 km the
quadratic nonlinear coefficient changes sign, but the leading
wave amplitude is then not large enough for transformation
into a “sech”-like solitary wave of negative polarity, but
with a positive quadratic coefficient. Instead, the wave
disintegrates and at the locationx = 760 km, we see the
formation of secondary solitary waves of opposite polarity.
The space-time contour plot of this run is shown in Fig. 17.

The second run has an initial amplitude of 41 m. The
solitary wave transformation is shown in Fig. 18. Again a
“sech”-like solitary wave forms by the locationx = 500 km,
and its amplitude grows to 60 m. At the locationx = 600 m
a second solitary waves begins to form, and due to the
increase of the linear modification factorQ, the amplitude
of leading wave decreases to about 45 m. Then as the
quadratic nonlinear coefficient tends to zero, the cubic
nonlinear coefficient grows rapidly, and the leading solitary
wave begin to destruct around the locationx = 700 km,
until at the locationx = 720 km there is a strong indication
that an internal breather has formed in association with an
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Fig. 16. Transformation of an internal solitary wave along cross-section 2, initial amplitude 23m.
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Fig. 16. Transformation of an internal solitary wave along cross-section 2, initial amplitude 23 m.

Fig. 17. Transformation of an internal solitary wave along cross-
section 2, initial amplitude 23 m.

oscillatory trailing wave train. The division of the initial
solitary wave into two is clearly shown in the space-time
contour plots in Fig. 19, from the locationx = 400 km
to the locationx = 650 km, with breather formation after
x = 700 km.

5 Discussion

As we have mentioned in the Introduction, the vKdV
equation (3) and its extension to allow for cubic nonlinearity,
the evKdV equation (6) have been widely used to model
the propagation of large amplitude internal solitary waves
in coastal seas. In this review article we have presented
a brief outline of the derivation of these models by an
asymptotic expansion from the full Euler equations. Then
we have described how an examination of the slowly-
varying solitary wave solutions lead to the concept that
the critical point where the coefficient of the quadratic,
or of he cubic, nonlinear term is zero defines a location
of special interest where a solitary wave may undergo a
dramatic transformation, often involving a polarity change
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Fig. 18. Transformation of an internal solitary wave along cross-section 2, initial amplitude 41m.

27

Fig. 18. Transformation of an internal solitary wave along cross-section 2, initial amplitude 41 m.

Fig. 19. Contour plot in the space-time domain of an internal
solitary wave transformation along cross-section 2, initial amplitude
41 m.

and a disintegration into a wave train. We have illustrated
this in detail for two contrasting cross-sections of the coastal
shelf of the South China Sea. Each cross-section is based on
the GDEM database of sea stratification, and the bathymetry
database GEBCO. The first cross-section is taken across the
shelf where the ASIAEX 2001 experiment took place, and
we have simulated the transformation of an internal solitary
wave generated in the Luzon Strait, propagating across the
cross deep part of the sea to the opposite shelf, where a
change in its polarity takes place, The second cross-section
is taken across a region where the cubic nonlinear coefficient
is positive everywhere. In this case an initial solitary
wave of moderate amplitude transforms into two solitary
waves. Th first wave is a ”sech”-like solitary wave, and
the two waves interact near the location where the quadratic
nonlinear coefficient changes sign, with transformation into
a breather This demonstrates the possibility of internal
breather generation from an initial solitary wave in a realistic
ocean situation. It is the the second example of such a
transformation, the first being a simulation for the North
West Australian Shelf, see Grimshaw et al. (2007).
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There are several important issues relating to internal
solitary waves, which we have not considered here, notably
stability, transverse structure, the effect of the background
earth rotation and the effect of friction. An extension of the
evKdV model (6) which takes into account of the last three
factors could be{
At +cAx−

cQx

Q
A+µAAx+µ1A

2Ax+δAxxx +ν|A|A

}
x

+
c

2

(
Ayy −

f 2

c2
A

)
= 0. (46)

The transverse termAyy is just that which converts the KdV
equation into its well-known two-dimensional extension,
the KP equation, while the rotation term contains the
Coriolis parameterf and was originally introduced by
Ostrovsky (1978) and later by Grimshaw (1985) with the
transverse term added as well. It is known that the effect
of background rotation is to cause a solitary wave to decay
through the radiation of inertia-gravity waves, see the review
by Helfrich and Melville (2006) and the recent studies by
Grimshaw and Helfrich (2008) and Sánchez-Garrido and
Vlasenko (2009). In practice, the time-scale for this decay
is one or two inertial periods. In (46) we have chosen Chezy
friction, as this is the one most commonly used, although
other forms of friction such as boundary-layer friction or
Burgers-type friction have been proposed. The friction
coefficient is given by

Iν= ρ0CD(c−u0)
2
|φz|

3, at z= −h, (47)

whereCD is the usual drag coefficient, while the modal
functions and the integralI are defined by (10, 11, 15).
Clearly friction will cause the solitary wave to decay, but
as oceanic internal solitary waves are observed to be long-
lived, this decay is evidently quite slow. There have been
several recent observational studies of the decay of shoaling
internal solitary waves from which we infer that the time
scale is around an inertial period, and the decay process
itself is complicated by the generation of localized shear
instability, see for instance Moum et al. (2007) and Shroyer et
al. (2010). We also note the interesting theoretical prediction
by Grimshaw et al. (2003) that a decaying solitary wave
with the parameterB <−1 (which requires thatδµ1 > 0)
may transform into a breather. Finally, we comment that
although solitary waves are stable in the framework of the
KdV or eKdV equations, in practice they can be unstable
due to localized shear instability. This is a high-wavenumber
phenomenon, which is not captured in the present long-
wave asymptotic models. There have been several laboratory
studies of shear instabiity of internal solitary waves, see
Fructus et al. (2009) for a recent study, and several analogous
ocean observations, see Moum et al. (2003, 2007).
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