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Abstract. In coastal seas and straits, the interaction Of principal concern in this paper are the large-amplitude
of barotropic tidal currents with the continental shelf, internal solitary waves which propagate in the shallow water
seamounts or sills is often observed to generate largeef coastal oceans. It is now widely accepted that the basic
amplitude, horizontally propagating internal solitary waves. paradigm for internal waves in shallow seas is based on the
Typically these waves occur in regions of variable bottom KdV equation, first derived in this context by Benney (1966)
topography, with the consequence that they are ofterand Benjamin (1966) and subsequently by many others;
modeled by nonlinear evolution equations of the Korteweg-for recent reviews see, for instance, Grimshaw (2001),
de Vries type with variable coefficients. We shall review Holloway et al. (2001), Ostrovsky and Stepanyants (2005),
how these models are used to describe the propagatioelfrich and Melville (2006), Apel et al. (2007), Grimshaw
deformation and disintegration of internal solitary waves aset al. (2007), or the book by Vlasenko et al. (2005). However,
they propagate over the continental shelf and slope. in the coastal ocean, the waves are propagating in a region
of variable depth and also through regions of horizontally
varying hydrology. In this situation, the appropriate model
equation is the variable-coefficient KdV equation

1 Introduction

c
ng+MA Ax+8Axxx =0, 1)

Solitary waves are nonlinear localized waves of permanentAtJFCAx -
form, first observed by Russell (1844) as a free surface

solitary wave in a canal, and then in a series of experi-yere A(x,t) is the amplitude of the wave, and,  are
ments. Later, analytical studies by Boussinesq (1871) a”%pace and time variables, respectively. The coefficient
Rayleigh (1876) for small-amplitude water waves confirmedis the relevant linear long wave speed, whilgx) is the
Russell's observations. Then Korteweg and de Vries (1895)inear modification factor, defined so that 2A2 is the wave
derived their well-known equation, which contains the gction flux for linear long waves. The coefficientgr) and
“sech’® solitary wave as one of its main solutions. But it s(x) of the nonlinear and dispersive terms respectively, are
was not until the second half of the twentieth century thatgetermined by the properties of the basic state. All these
it was realised that the Korteweg-de Vries (KdV) equation, coefficients are slowly-varying functions ef The variable-
was, on the one hand, a notable integrable equation, angdoefficient KdV equation for water waves was developed by
on the other.hand a umve_rsal model f_or weakly no”“nearOstrovsky and Pelinovsky (1970) and later systematically
long waves in a wide variety of physical contexts. The dgerived by Johnson (1973b), while Grimshaw (1981) gave
KdV equation, together with various extensions, describes & getailed derivation for internal waves (see also Zhou and
balance between nonlinear wave-steepening and linear wav€rimshaw, 1989 and Grimshaw, 2001). The first two terms
dispersion. in (1) are the dominant terms, and hence we can make the
transformation
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Substitution into {) yields, to the same leading order of z
approximation wherelj holds,

Ué: +aU Ug‘ +)"USSS=0 (3)

)

LY " T
c c

The coefficientsy, A are functions of alone. Note thag T . =h

measures travel time along the spatial path of the wave, while i M

s is a temporal variable measuring the wave phase.
However because internal solitary waves are often of

large amplitudes, it is sometimes useful to include a

cubic nonlinear term in1) and @), which then become,

respectively (see the review by Grimshaw, 2001), Then, relative to this basic state, the outcome is, to leading
order in the small parametercharacterizing the long wave

Fig. 1. Coordinate system.

Ar+cAy— ngA—i—uA Ay +u1A%A, +8Ax =0, (5)  approximation,
(~EAX, T +..., X=€(x—ct), T=€X. (9)
Ug +aU Uy +[3U2Us+)\'USSS:07 (6) . . . . .
Here ¢ is the vertical particle displacement relative to the
2 basic state and the modal functi satisfies the system
where S= Q% . (7 o) y

¢ 2 2
c—u +pogN“¢p=0, for —h<z<0, 10
Equations 8) and 6), sometimes with various modifications [pO( 0’9 }z PoN"g ‘ (10)

such as with an additional dissipative term, or with a term 2
taking account of the Earth’s rotation, have been applied t? =0 &t z=—h. (c—uo0)°¢.=g¢ at z=0, (11)
the study of internal solitary wave wave transformation in

the coastal zone by many authors (for instance Cai et al. . . . .
R o équation, and with the boundary conditiodd);, determines
2002; Djordjevic and Redekopp, 1978, Grimshaw et al"the modal function and the linear long wave speed

2004, 2006, 2007; Holloway et al., 1997, 1999; Hsu et al., : : i )
2000; Liu et al., 1988, 1998, 2004: Orr and Mignerey, 2003: __/Pically, this boundary-value probleni 11) defines
an infinite sequence of regular modes;(z), n=0,1,2,...,
Shroyer et al., 2009 and Small, 20014, b, 2003). . . AN
. .. with corresponding speedg, where “+” indicates waves
In Sect. 2, we shall present a more detailed description ith o+ _ dom i vel
of the derivation of these model equations. Then in Sect SWIt Cn >ty = MaXio aNdc, < iy = MiMio, respective Y.
we shall describe the slowly-varying solitar.y wave solutioﬁs'\mte that it is useful to ek :I O_denote the surface gravity
of the evKdV equation®) and in particular examine the waves for whichc scales withy'gh, and them =1,2,3, ...

. L ) . ) denotes the internal gravity waves for whictscales with
behaviour at certain critical points where eithasr 8 vanish. Nh. In general, the boundary-value problef011) is
Then in Sect. 4 we shall indicate how these theoretical results__° g f y P '

! . . " Solved numerically. Typically, the surface modg has no
can be applied for realistic oceanic conditions, such as thos%xtrema N the int)(/ario?/%f thg fluid and takes its maximum
found in the South China Sea.

value at the surface= 0, while the internal mode$,jf(z),
n=123,..., haven extremal points in the interior of the

Equation (0) is the long-wave limit of the Taylor-Goldstein

2 Evolution equations fluid, and vanish near=0 (and, of course, also at= —h).
Since the modal equations are homogeneous, a normalization
2.1 Constant depth condition can be imposed. Here we chogsey) = 1 where

|¢(z)| achieves a maximum value at= zy, with respect to
The KdV equation is obtained by a weakly nonlinear long ;. In this case the amplitude’ A is uniquely defined as the
wave expansion from the fully nonlinear equations (seeamplitude of; (to leading order ir) at zm.
Grimshaw, 2001 or Grimshaw et al., 2007). We shall |t can then be shown that, within the context of linear long
consider only a two-dimensional configuration, see Fig. 1,wave theory, any localised initial disturbance will evolve
but initially we assume that the fluid has constant deépti into a set of outwardly propagating modes, each propagating
the basic state the fluid has densitz), a horizontal shear  with the relevant linear long wave speed. Assuming that
flow uo(2) in the x-direction, and a pressure figig(z) such  the speeds:* of each mode are distinct, it is sufficient for
that po; = —gpo. The density stratification is described by |arge times to consider just a single mode, as expressed

the buoyancy frequency (z), where by (9) Then, as time increases, the hitherto neglected
2 800; nonlinear terms come into play and cause wave steepening.
N ()=~ (8) However, this is opposed by the terms representing linear
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wave dispersion, also neglected in the linear long wave 12
theory. A balance between these effects emerges as time
increases, technically obtained as a compatibility condition A

at the second order in the expansion. The outcome is the 8
Korteweg-de Vries (KdV) equation for the wave amplitude

Ar+pA Ax+8Axxx =0. (12) 4

The coefficientg. ands are given by

0 2.3 0 7 T T T T T 7 1
I,u=3/ po(c—uo) ¢, dz, (13) -6 -3 0 3 6
—h X
0 2,2 60
15:[ polc—uo)“¢p<dz, (14) 1
—h A a0
0 20
I =2/ po(c—ug)p2dz . (15) .
—h .
Note that after reverting to the original variabkeandz, and 207
using ) Eq. (12) is equivalent to 1) for the case when all 40
coefficients are constant al. = 0. The KdV equationX?2) o]
is integrable and the long-time evolution from a localized ]
initial condition is a finite number of solitary waves (solitons) -80 , y , Y , y , |
and dispersing radiation. 08 04 3 04 08

A particularly important special case arises when the
nonlinear coefficient defined by the expressiohd) is close Fig. 2. Solitary wave family (17). The upper panel is fag <0
to zero. In this situation, a cubic nonlinear term is needed ang the lower panel is fqr1 > 0; in both panelg. > 0, 8 > 0.
and this can be achieved with a rescaling. The optimal choice
is to assume that is O(¢), and then replacd with A /e in
(9); in effect the amplitude parameter dsin place ofe2. upper panel in Fig. 2. Fatu > 0 there are two branches;
The outcome is that the KdV equatioh?j is replaced by  one branch has4 B < oo and ranges from small-amplitude
the extended KdV equation, widely known as the GardnerKdV-type waves B — 1), to large waves with a “sech’-

equation, profile (B — oo0). The other branch with-oco < B < —1,
2 has the opposite polarity and ranges from large waves with a
AT+ A Ax +p1ATAx +8Axxx =0, (16)  «sech™profile whenB — —oo, to a limiting algebraic wave

of amplitude—2u /w1 when B — —1, see the lower panel

in Fig. 2 Solitary waves with smaller amplitudes cannot
exist, and from the point of view of the associated spectral
problem are replaced by breathers, that is, pulsating solitary
gvaves, see, for instance, Pelinovsky and Grimshaw (1997),
Grimshaw et al. (1999, 2010), Clarke et al. (2000), Lamb et
al. (2007). Wheruj — 0, B — 1 and the family reduces to
the well-known KdV solitary wave family

Again, after reverting to the original variables B) Eq. (16)
is equivalent to §) (with Q, =0). Expressions for the
coefficient u1 are available, see Grimshaw et al. (2002)
and the references therein. Like the KdV equatidr®) (s
integrable and has solitary wave solutions. There are tw
independent forms of the eKdV equatidt6), depending on
the sign of§ 1.

The solitary wave family of the eKdV equatiod ) is

given by A=asec (K(X-VT)), V=" =a5K2. (19)
H
A= 1+ BCOShK (X —VT)’ 17 Here we have repla_ced, K with 2a, 2K to conform with
the usual KdV notation.
wH 651 K2
where V= "—-=6K? B®=1+ prant (18) 2.2 Variable background

characterized by a single parameBer The wave amplitude The derivation sketched above was for the case of constant
isa=H/(1+ B). Foréus <0, 0< B <1, and the family  depth, and when the basic state hydrology is independent
ranges from small-amplitude waves of KdV-type (“s&eh  of x. But in the ocean, the depth varies and the basic state
profile) (B — 1) to a limiting flat-topped wave of amplitude hydrology may also vary in the propagation direction. These
—u/u1 (B — 0), the so-called “table-top” wave, see the effects can be incorporated into the theory by supposing
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that the basic state is a function of the slow variaple- becomes just(0) =0. This is a good approximation for
€3x. Thatis,h = h(x), uo =uo(x,z) with a corresponding oceanic internal solitary waves. Then we find that
vertical velocity fielde3wo(z, x), a density fieldpo(z, x)

a corresponding pressure fiejgh(x,z) and a free surface ¢ = ll for —h<z<hi, ¢= _Z for —hy<z<0,
displacemento(x). This basic state is assumed to satisfy the h2 h

full equation set possibly with body forces in the momentum 2 _ §(p2—p1)hih2 (23)
equations. With this scaling, the slow background variability p1ho+ p1h2

enters the asymptotic analysis at the same order as the weak N .

nonlinear and weakly dispersive effects. As noted in thegubstltutmn into13, 14, 19) yields

Introduction, it is now necessary to replace the variables 3¢ (p2h? — p1h3) chiha(paha+ pihi)
t with &, s (2), where it is also convenient to replace the u= Dhiha (pah1t prha) = 6(pah1+ pra)
slow variabley with £&. An asymptotic analysis analogous 12 ';2 1Pz p2i1TTpiitz
to that described above then produces the vKdV equatipn ( 0?=_———
(Grimshaw, 1981; Zhou and Grimshaw, 1989). The modal 28(p2=p1)c
system is again defined by 11), but nowc=c(§) and  Note that for the usual oceanic situation when- p1 < pz,

¢ = ¢(z,6), where thes-dependence is parametric. The the nonlinear coefficient: for these interfacial waves is
analysis then proceeds as in the constant depth case, byggative wherh; < h (that is, the interface is closer to the
with extra terms corresponding to the slow variability in free surface than the bottom), and is positive in the reverse
the basic state, while the compatibility condition then yields ;356 The case when ~ i leads to the necessity to use

the vKdV equation 1) now with variable coefficientgt = the extended KdV equatiori), where the coefficients is
w(&),8 =68(&), but which are again defined b$3, 14, 15) given by

(but the upper limit in the integrals is noyv= g replacing

(24)

z=0). For the present case of internal waves, we find —_ 3c
that the linear modification factor is given by, see Zhou and"? 8h2h3(p1h2 + p2h1)?
Grimshaw (1989), 2
1 { (plhg — pzh%) +8p1p2h1h2 (hy +h2)2} . (25)
02= 73 (20)

) ] ) Note thatui < 0, and so the eKdV equatiod) for a two-
where! is defined by 15). Note also that the expression for |ayer fluid always hassu; < 0.
: : . 242 ) , ,
Q can also be simply determined by requiring tigatA However, in a three-layer fluid there are parameter regimes
should be the wave action flux in the linear long wave ynere one or two modes may hawe > 0 (Grimshaw et al.,
limit. The variable-coefficient extended KdV equatid) ( 2002), and there are many cases for real oceanic conditions
is obtained in a similar manner. with smooth stratification and background shear when the

We shall F:onclude; this section with some illustrative parametep; > 0, see Grimshaw et al. (2004, 2007).
examples. First consider the casesafface wavesWe put

the densityp = constant so that theN? =0 (8). Then, for
the case when there is no background flow so that 0, 3 Deformation of internal solitary waves
no= 0, we obtain the well-known expressions

Tk 3.1 Slowly varying solitary wave

p=—— for —h<z<0, c=(gh)l/2. (22)
h In general the evKdV equatio®) with variable coefficients
3¢ ch? 1 a=wa), B=pB(E)L=xrE) must be solved numerically.
andso u= o S= - 0%= @ . (22) However, it is first instructive to consider the slowly-varying

solitary wave. This is described in detail in review article
Similarly, for interfacial wavesn a two-layer fluid, letthe ~ by Grimshaw et al. (2007), but for convenience we shall
density be a constant; in an upper layer of heighit; and ~ present a brief summary here. The slowly-varying solitary

p2 > p1 in the lower layer of height, =7 — k1. That is wave is an asymptotic solution based on the assumption
that the background state varies slowly relative to a typical
po(z) = p1H (z+h1) + p2H(—z—h1) , wavelength. Formally, we suppose that
2
sothat poN*=g(p2—p1)d(z+h1). a=a(0), B=P0), A=A(0), o=kt k<1  (26)
Here H (2) is the Heaviside function anilz) is the Diracs- e then invoke a multi-scale asymptotic expansion of the

function. Again we assume that there is no background flowform (see Grimshaw, 1979)
(up =0, no=0). and we replace the free boundary with a
rigid boundary so that the upper boundary conditiongfar) U=Ug({,0)+xUr(¥,0)+..., (27)
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o
Y=s— }/ V(o)do . (28) Thus Py is a constant, and as the solitary wat8)(has just
K one free parametd®, this condition suffices to determine its
. : . . . variation.
Herevr is a temporal variable in a frame moving with the : .
speedv. U is defined over the domainoo < ¥ < 0o, and Ia\,I\;isowever, the evKdV equatiorb) has two conservation

we will require thatU remain bounded in the limitg —

+o00. Since we can assume that 0 small-amplitude waves  dM _0 M= /"O Uds (35)
will propagate in the negative s-direction, and so we can g¢ Y ’

suppose that/ — 0 asy» — oco. However, it will transpire 9P <

that we cannot impose this boundary conditionjas> —occ. % =0, P= / OOU ds, (36)

This procedure is well-known for the vKdV equation (see
Johnson, 1973a for the case of water waves, and Grimshavipr “mass” and “momentum” respectively. In physical terms,
1979 for the general case) and is readily extended to th€35) is an approximation to the conservation of physical
evKdV equation (see the recent reviews by Grimshaw, 2007mass, while 86) expresses conservation of wave action

and Grimshaw et al., 2007). flux at the leading order. The conditior84) is easily
Substitution of 7) into (3) yields, recognized as the leading order expression for conservation
) of momentum 86). But since this completely defines the
— VUoy +alUoUoy+BUgUy+AUoyyy =0, (29)  slowly-varying solitary wave, we now see that this cannot

simultaneously conserve mass. This is also apparent when
—VUiy+a(UoU1)y +B (U§U1> +AU1yyy = —Ugs.  (30) one examines the solution 08@) for Uy, from which it is
v readily shown that althougti; — 0 asyr — oo, Uy — D1 as

Equation R9) has the solitary wave solution ¥ — —oo where
o0
Vo= P2 (31) VDi=—Mo,, where Mo= f Uod. (37)
14 BcoshK 00

61K ?
Ol2 ’

This non-uniformity in the slowly-varying solitary wave

has been recognized for some time, see, for instance,
VKnickerbocker and Newell (1978, 1980), Grimshaw (1979)
or Grimshaw and Mitsudera (1993) and the references
therein. The remedy is the construction of a trailing shelf

D
where V:%:M(z, B2=1+ (32)
When the coefficients are constants, this is just the eKd
solitary wave 17). Here it is a slowly-varying solitary wave

as the parametdf = B(o) and hence = D/(1+B) =a(0), ;) of small amplitudeO () but long length-scal® (1/x),

V=V(0), K=K(c). The main aim of the analysis is .which thus ha®) (1) mass, buiD (x) momentum. It resides

then to determine how these parameters vary, and this B hi : . S
. . ehind the solitary wave, and to leading order is given by
determined at the next order of the expansion.

We now seek a solution of3Q) for Uy — 0, ¥ — oo ) 17() _ Y
and for whichU; is bounded asy — —oco. In order to U =*U (1), for T_K‘§<ql(o)_/ V(e)do . (38)
determine the conditions that need to be imposed on the _ ) ,
right-hand side of 30) to ensure that such a solution can Here T = W(o) defines the location of the solitary wave.

be obtained, we need to consider the adjoint equation to thé](é)(T) IS _|ndep_endent o, and is deter_mlned SO th"?lt the
homogeneous operator on the left-hand sid&6f, which is shelf amplltpde is just D1(o) at the location Qf the solitary
for the dependent variabld, wave, that |sl](s)(\lf(g)) = D1(0) (37). At higher orders
in k¢ the shelf itself will evolve and may generate secondary
_ VUlw +“U001w +/3U§l71¢ +u~/ww =0. (33) solitary waves, see El and Grimshaw (2002) and Grimshaw
and Pudjaprasetya (2004). The slowly-varying solitary wave
The required compatibility conditions are then that the and the trailing shelf together satisfy conservation of mass.

right-hand side of30) should be orthogonal to all linearly  Supstitution of the solitary waved{) into the expression
independent solutions of the adjoint E§3) which decay at  (34) for Py yields

infinity. Two linearly independent solutions of the adjoint

Eq. 33) are 1,Up. While both of these are bounded, only P D? [ du
Ve D he o= [ (39)
the second solution satisfies the condition that— 0 as K J_o (14 Bcoshy)
¥ — oo. The third solution is unbounded ag — +oo.
Hence only one compatibility condition can be imposed, 3 |12
namely that the right-hand side Q) is orthogonal tolp, ~ Of GB)=Po|:—5| - (40)
which leads to
Poy, =0 where Pp= / ~ U2y (34)  where G(B)= ‘32 1‘3/2 / ” du (41)
0o = o=/ Tt - — o (1+ Bcoshi)2
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The expression 40) determines the variation of the 44
parameteiB since Py is a constant, determined by the initial l
conditions. The integral term iG;(B) can be explicitly |
evaluated, 0-

B—1 2
B?>1: B)=2(B%2—1)V2x4arctan/ —— 42
> G(B)=2( ) EF arcaQ/B+1, (42) ]

. B 1-B A\ 1/2 N
0<B<1: G(B)_4arctantQ/lJTB—2(1—B) . (43) _

The alternative signs im@) correspond to the cas@s> 1 or 520 560 600 640 680 720
B < —1. Next, the trailing shelf is found fron8{, 38) where s

61 B-1 -
B?>1: Mo=i|g|1/24arctan,/B—+l, (44) U,

61 1-B
+|— |2 4arctank/ =—— . (45)
B 1+B

O<B<l: My=

Here the alternative signs id4) and @5) correspond to the
casesxB>0oraB <0.

The expressiond()) provides an explicit formula for the 4 N,
dependence a® on the basic state parametetss, A, v. Itis 520 560 600 640 680 720
readily shown thatG(B) (42) is a monotonically increasing s

functlon.of |B] fo'r 1<|B| <oo, and is a monotonically Fig. 3. Numerical simulation of the vKdV equation (3) with=1
decreasing function oB for 0 < B <1 (43). Thus as  gnd asa varies from—1 to +1. The upper panel is when=0
|B3/1a?| — o0, then so doesG(B). If B <0 sothat O<  and the lower panel is when= 1. The simulation shows a strong

B <1, B— 0 and the wave approaches the limiting “table- deformation of the initial solitary wave of depressioncat 0,

top” shape. On the other handdf> 0 and 1< | B| < oo then followed ata = 1 by the emergence of a number of solitary waves
|B| — oo and the wave shape approaches the “sech’-profileof elevation riding on a negative pedestal.

The behaviour of the wave amplitude in these limits depends

on the behaviour of each of the parameterg, A. But since

we can usually expeg to be finite and\(> 0) to be non-  |ocated ino <0 and has negative polarity, corresponding
zero, we see that these limiting shapes are usually achieved @ the usual oceanic situation. Then, near the transition
the critical point wherer — 0. This case is discussed below point, the amplitude of the wave decreases to zera as

in Sect. 3.2. On the other hand,|B3/Aa2| — 0, then so —|Ol|1/3, while K ~ |Ol|2/3; the momentum of the So|itary
doesG(B). In this caseB — 1, G(B) ~|B—1/*? (see 82,  wave is of course conserved (to leading order), but the
43)) and the wave profile reduces to the KdV “sétkhape,  mass of the solitary wave increases (in absolute value) as
provided that eithep <0 when O< B < 1, orif 8 > 0, then 1/|Ol|1/3, its speed decreases aq4/3, and the amplitude

the wave belongs to the branch defined by 8 < co. These  p; > 0 of the trailing shelf just behind the solitary wave
scenarios are usually achieved at the alternative critical poingrows as|«|~8/3; the total mass of the trailing shelf is

whereg =0, discussed below in Sect. 3.2. positive and grows as/lx|*/3, in balance with the negative
mass of the solitary wave, while the total mass remains a
3.2 Passage through a critical point negative constant. Since the tail grows to be comparable

with the wave itself, the adiabatic approximation breaks
The adiabatic deformation of a solitary wave discussed abovelown as the critical point is approached. Nevertheless,
in Sect. 3.1 shows that the critical points where-0, or  we can infer that the the solitary wave itself is destroyed
where 8 =0, are sites where we may anticipate a changeas the wave passes through the critical peint 0. The
in the wave structure. First we recall the vkKdV mod8) (  structure of the solution beyond this critical point has been
wherep = 0. In this case the adiabatic law#() collapses to  examined numerically by Knickerbocker and Newell (1980)
a® xa/1 wherea is the solitary wave amplitudel®), and  and revisited by Grimshaw et al. (1998a), who showed
the expression37) collapses toD; = a, /21K3. Suppose that the shelf passes through the critical point as a positive
thate =0 ato =0, where, without loss of generality, we disturbance, which then being in an environment with O,
can assume that passes from a negative to a positive value can generate a train of solitary waves of positive polarity,
aso increases through zero. Initially the solitary wave is riding on a negative pedestal, see Fig. 3.
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U 15__ a=+1 /‘\ U 15 T
. . N
-15 - , . | -15 ; , . |
1550 500 550 15—
|l a=0 | 2T
0 _K/\ (] ——\/‘—\/¥
-15 : I : I -15 T I T I
500 550 600 15 -
15 | at
. a=-— 1 0 _\/\’—
0 |
] \/ -15 . , ; |
-15 - I - | 140 150 160
500 550 600
S S
Fig. 4. Numerical simulation of the evKdV equation (6) wish=1, Fig. 5. Numerical simulation of the evKdV equation (6) for the

B =-0.083 and as varies from 1 to—1. The upper panel shows case whers =1, 8 =0.3, v =0 anda varies from 1 to—1. The

the initial condition of a “table-top” solitary wave of elevation at initial wave (not shown) is a solitary wave of elevation belonging

a =—1, the middle panel shows a strong deformatioa &0, and  to the branch for whictB > 0. It then passes adiabatically through

the lower panel shows the leading wavevat —1. This wave isa  the critical point, changing the sign @ to B <0, and arrives at

“table-top” wave of depression riding on a small positive pedestal. the locationoe = —1 where¢ = T with only a small deformation.
However, at this stage its amplitude is below that allowed for a
steady solitary wave, and so it deforms into a breather, shown in

We next take account of the cubic nonlinear term@h ( the middle panel fof =27 and the lower panel fay = 47

and suppose again thatpasses through zero at=0 but

that 8 # 0 at the critical point. First, let us suppose that

B<0,0<B<1. Then asx — 0, we see from40) and limiting amplitude of—2w/B is reached, then there can be
(43) thatG(B) ~1/]a|, and B — 0 with B ~ 2exp(—G/2). no further reduction in amplitude for a solitary wave, and
Thus the approach to the limiting “table-top” wave is quite instead a breather will form. An example of this outcome is
rapid. From 81) K ~ || in this limit, and the amplitude shown in Fig. 5, where the wave has entered this regime after
approaches the limiting value ~ —a/B. Thus the wave passing through the critical point.

amplitude decreases to zero, and, interestingly, this is a more Finally, consider the case wheh— 0, o #0. This case
rapid destruction of the solitary wave than for the case when a5 peen studied by Nakoulima et al. (2004) using both an
B =0. The mass4o (45) of the solitary wave grows da| asymptotic analysis similar to that used here, and numerical
and so the amplitud®; of the trailing shelf 87) grows as  gjmylations. As already noted above, in this c#ses 1,
1/]«|*. The overall scenario after has passed through zero G(B) ~ |B —1/%2 (42, 43), and it then follows from 40)
is similar to that described above for the vKdV equatiB) ( that G ~ 18132 and so|B — 1| ~ |8]. There are three sub-
and has been discussed in detail by Grimshaw et al. (1999)%45es to consider. First, suppose that initiglly 0 and so
see Fig. 4 for a case when a “table-top” solitary wave isg - g - 1. As |8l — 0, 1— B ~ |B| and the wave profile
converted to another such wave of opposite polarity, ridingpecomes the familiar Kdv “se@frshape. It is readily shown
on a pedestal. from (31) that thenk, a, Mo, D1 ~ 1 and so the wave can
Next, let us suppose tha# > 0 so that 1< |B| < o© pass through the critical poimt = 0 without destruction.
There are two sub-cases to considgr- 0 or B <0, when  However, after passage through the critical point, the wave
the the solitary wave has the same or opposite polarity tchas moved to a different solitary branch (see Fig. 2), and this
«. Then ase — 0,|B| — oo as |B| ~ 1/|«|. It follows may change its ultimate fate. A typical scenario is shown
from (31) that thenK ~1, D ~1/|x|,a~1, Mg~ 1. It in Fig. 6, which shows the transformation of a “table-top”
follows that the wave adopts the “sech”-profile, but finde solitary wave (upper panel in Fig. 2) to a KdV “sé&iKdV
amplitude, and so can pass through the critical peiat0 solitary wave at the critical point, and further evolution as
without destruction. But the wave changes branches froma solitary wave of the upper branch in the lower panel of
B >0to B <0 as|B| — oo, or vice versa. An interesting Fig. 2. Second, suppose that initialB/> 0 and 1< B <
situation then arises when the wave belongs to the brancho. Now B —1~ g and again the wave profile becomes
with —oo < B < —1 and the amplitude is reducing. If the the familiar KdV “secR”-shape, whilek, a, Mo, D1~ 1,
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31 4 Application to internal solitary waves in the South
u China Sea

In a typical oceanic situation, where there is a relatively

sharp near-surface pycnocline, an internal solitary wave of
p=—1 depression is generated in the deep water and propagates

shorewards until it reaches a critical point. For a simple
11 two-layer model, this is where the pycnocline is close to
the mid-depth, see2f). The theory described above then
predicts that this wave will be destroyed in the vicinity of this

0 , ) : , , critical point and replaced in the shallow water shorewards
0 40 80 120 160 200 of the critical point by one or more internal solitary waves
. S of elevation riding on a negative pedestal. This basic

u

scenario has been observed in several places in the ocean,
For instance, this phenomena has been reported by Salusti
et al. (1989) in the Eastern Mediterranean, by Holloway et
al. (1997, 1999) and Grimshaw et al. (2004) in the North
West Shelf of Australia, by Hsu et al. (2000) in the East
China Sea, during the ASIAEX experiment in the South
1 China Sea by Duda et al. (2004), Liu et al. (1998, 2004), Orr
and Mignerey (2003), Ramp et al. (2004), Yang et al. (2004),
Zhao et al. (2003, 2004) and Zheng et al. (2003), and on
0 ‘ ‘ ‘ ‘ ‘ the New Jersey shelf by Shroyer et al. (2009). Further,
numerical simulations of the full Euler equations predict
s polarity reversal in Lake Constance (Vlasenko and Hutter,
31U 2002), in the Andaman Sea (Vlasenko and Staschuk, 2007)
and in the Saint Lawrence estuary (Bourgault et al., 2007).
But elsewhere in the ocean, where there are no such critical
24 points, the shoreward propagating small-amplitude internal
solitary waves are expected to deform adiabatically (at least
B=+1 within the framework of the vKdV equation). Examples
of this behaviour occur on the Malin Shelf off the North
West coast of Scotland (Small, 2003; Grimshaw et al., 2004;
Small and Hornby, 2005), in the Laptev Sea in the Arctic
(Grimshaw et al., 2004) and in the COPE experiment on the
0 40 80 120 160 200 Oregon shelf (Vlasenko et al., 2005).

s The South China Sea (SCS) is well known as a location
where internal solitary waves have been commonly observed,
A =1 andg varies from—1 to 1, showing the transformation of a and has been _inten.sively.studied both.experimentally and
“table-top” solitary wave to a KdV “se@i-KdV solitary wave at through numerical simulations, see fo_r instance the reports
the critical point, and further evolution as a solitary wave tending toPased on the 2001 ASIAEX experiments by Duda et
a “sech”-profile. al. (2004), Ramp et al. (2004) and Liu et al. (2004).

Typically, large amplitude internal waves are generated by

the barotropic tidal currents, possibly combined with the
allowing the wave to pass through the critical poiht 0 Kuroshio current extension, interacting with the topography
without destruction, but moving now from the upper branchin Luzon Strait, see Liu et al. (1998), Cai et al. (2002), Ramp
in the lower panel of Fig. 2 to the “table-top” branch in the et al. (2004, 2006). Solitary-like waves with amplitudes up
upper panel of Fig. 2. Third, suppose that initigy>-0and  to 80m (in a depth of 300 m) have been observed at the
—1> B > —o0. In this case it an be shown from2) that  two underwater mountain ridges in Luzon Strait, see the
G (B) decreases fronv to a finite value of 2 asB increases  bathymetry in Fig. 7 and the wave field in Fig. 8, taken
from —oco to —1. Consequently the limiB — 0 in (40) from Liu et al. (2006). These waves cross the deep basin
cannot be achieved. Insteadmsecreases the limig = —1 and then shoal on the continental shelf in water of depth
is reached, when the wave becomes an algebraic solitar400-200 m, see for example the reports of the ASIAEX
wave, and a further decreasefrgenerates a breather. experiment by Duda et al. (2004), Ramp et al. (2004) and
Liu et al. (2004). Wave amplitudes can reach to 100 m

Fig. 6. Numerical simulation of the evKdV equation (6) with=1,

Nonlin. Processes Geophys., 17, 6839 2010 www.nonlin-processes-geophys.net/17/633/2010/
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(a) Bathymetry of South China Sea
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Fig. 7. Bathymetry of the northern part of the South China Sea, from Liu et al. (2006).
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Fig. 9. Time series of internal waves in the South China Sea, from
Duda et al. (2004).
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and their shapes compare well with theoretical solitary wave
shapes, see Klymak et al. (2006) and Fig. 9 from Liu et
al. (2006). Numerical modeling of internal solitary wave
transformation on the continental slope and shelf of the SCS _ |
has often been based on the vKdV and evKdV models, using
mainly two-layer representations of the density stratification,Fig. 10. Bathymetry of the South China Sea, with the chosen cross-
and the results have been used to interpret the observeggctions.

solitary wave evolution and especially the observed polarity

changes, see Orr and Mingerey (2003), Zhao et al. (2003,

2004), Liu et al. (1998, 2004). There are also a few We shall supplement these studies by a set of humerical
numerical simulations using the full Euler equations for simulations of the evKdV equatio®) for two typical cross-
stratified flow, see Buijsman et al. (2008), Du et al. (2008), sections of the SCS, shown in Fig. 10. The first cross-
Scotti et al. (2008), Warn-Varnas et al. (2010) and Vlasenkosection is close to the conditions for ASIAEX 2001, where
et al. (2010) for instance. the internal solitary waves are generated by westward tidal

5000 m

L 6000 m
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— currents in Luzon Strait, see Liu et al. (2006) and Zhao
and Alford (2006) for instance. The second cross-section is
chosen to have a positive cubic nonlinear coefficient along
the whole wave path. Contour maps of the linear long wave
-0.005 speed, the coefficients of the quadratic and cubic nonlinear
15°N : - terms and the coefficient of the linear dispersive term in
0.01 the evKdV equation§) are shown on Fig. 11. They are
based on the vertical density profiles from the database
. ! - GDEM for January (GDEM), while the bathymetry is taken
osE  110E 115% from GEBCO. The speed and the dispersion coefficiest
cubic nonlinearity, 1/(ms) correlate well with the depth as expected, see Talipova and
N . . = Polukhin (2001) and Polukhin et al. (2003). The quadratic
nonlinear coefficienty is negative in the deep part of the
SCS, and changes its sign to positive everywhere on the
continental slope, as expected in the SCS, see Orr and
Mignerey (2003) and Zhao et al. (2003, 2004) for instance.
The cubic nonlinear coefficient,; is very small and positive
in the deep part of the sea, but its sign changes in some parts
of the continental slope to negative, while in other places it
stays positive and grows in absolute value. To understand
the role of quadratic and cubic nonlinearity in internal wave
dynamics three values should be compareg,A, 1142, In

the deep part of the SGS=2.5ms L and even if the internal
Fig. 11. Contour maps of the coefficients of the evKdV equation for yy,5ve amplitude is taken as 80m (usually much less in

the South China Sea. The plots are those for the phase spte deep wateri A = 0.48 m g1 andulAz —0.13ms! hence

dispersion coefficient, the quadratic coefficient, and the cubic nonlinear effects are small in the deep part of the éCS But on
fficientuq. . ; i

coetlicienti the continental slopeis less than 0.5 nTs and for the same
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Fig. 14. Contour plot in the space-time domain of an internal
solitary wave transformation along cross-section 1.
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internal wave amplitude of about 80 m,A = 0.48mst,
comparable withr, andu142 =1.28 ms1, much large than

the quadratic nonlinear term. Thus in the the shelf zones
the waves are strongly nonlinear. Indeed the ratio of the
nonlinear terms to the speed of propagation is about 3.5.
Nevertheless, the eKdV (Gardner) model may be used as
demonstrated by Maderich et al. (2009, 2010). However, it
is pertinent to note that several other higher-order KdV-type
models have been proposed, see the recent review by Apel et
al. (2007) for instance.

4.1 Numerical results for cross-section 1

The wave path is close to the conditions of the ASIAEX
2001 experiment on the shelf (Ramp et al., 2004) and is here
extended to the Luzon Strait to the site where the westward
propagating solitary waves were observed see (Liu et al.,
2006; Zhao and Alford, 2006 for instance). The model
coefficients are shown on Fig. 12. The depth decreases from
2.5km to 200 m, the linear long wave speedaries from

Nonlin. Processes Geophys., 54963310
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25ms?tto 0.2ms?, the linear modification factop is 8E-005

equal to 1 initially, then decreases to 0.5 at the locatien n 1
250 km, before increasing to 2.5 on the shelf. Corresponding £ =

to the change of depth, the dispersion coeffickdécreases

along the cross-section. The nonlinear quadratic coefficient “-0'32'_ ' ' ' ' '
w is negative for most of the wave path, but changes sign %  °1
once only at a depth about 100m. The cubic nonlinear = -0.004
coefficient u1 is positive in the deep water and becomes 0.008 . Y ———— “ . Y

negative at a depth of about 400m. Hence here there are

[
two critical points, both on the shelf. The amplitude of the T \_’\
initial solitary wave (7) is chosen as 49 m at=0in Fig. 14. )
This is less than that mentioned by Liu et al. (2006) where B y T g T T T T 1
the amplitude of an observed solitary wave was estimated as | \/

140 m, but it is large enough for our purposes.

The solitary wave evolution is shown in Fig. 13. The
leading wave amplitude has decreased by a factor of two at ’ " T " T " T " 1
x =220km from 49 m to 25 m. Over this same distance, the
cubic nonlinear coefficient is almost constant, the quadratic
nonlinear coefficient has decreased, the dispersive coefficient
has decreased, while the linear modification factor has
decreased by a factor of one-half; together these have
the effect that the initial wave has started to deform with
formation of a trailing tail. At the location = 350km the
linear modification factor is decreasing, the cubic nonlinear 200 400 &0 800
coefficient changes sign and quadratic nonlinear coefficient distance, km
tends to zero. The leading solitary wave now has an
amplitude of about 35 m and is wider than at the locatiea Fig. 15. Coefficients of the evKdV equation (5) along cross-section 2.
220km. Atx =400km the quadratic nonlinear coefficient
changes sign, and we see the typical destruction of the
negative solitary wave, and the consequent generation ofig. 16. Due to the increase of the cubic nonlinear coefficient
several positive solitary waves. The space-time contour plothe initial solitary wave becomes narrower and a trailing

Q

c, m/s
- N
J

km
O = N W -

o 4

of this internal wave transformation is shown in Fig. 14. tail emerges, developing oscillations after 600 km. This
process occurs without a significant change in the leading
4.2 Numerical results for cross-section 2 wave amplitude because the modification factor increases

slowly. At the locationx = 700km a “sech”-like solitary

On this cross-section, the initial point lies in deep water of wave has appeared. Then, at the locatiog 730 km the
depths = 3km, and the last point lies near Hainan Island. quadratic nonlinear coefficient changes sign, but the leading
Here, the cubic nonlinear coefficient is positive everywhere,wave amplitude is then not large enough for transformation
while the quadratic nonlinear coefficient changes sign on thénto a “sech™like solitary wave of negative polarity, but
shelf. The model coefficients are shown in Fig. 15. The depthwith a positive quadratic coefficient. Instead, the wave
decreases from 3 km to 200 m non-monotonically, producingdisintegrates and at the location= 760 km, we see the
the analogous tendencies for the dispersion coefficient formation of secondary solitary waves of opposite polarity.
and the linear long wave speed The linear modification =~ The space-time contour plot of this run is shown in Fig. 17.
factor Q is initially close to one, and then decreases before The second run has an initial amplitude of 41m. The
increasing after the locatiomn = 700km. The quadratic solitary wave transformation is shown in Fig. 18. Again a
coefficientu grows afterx =400 km in absolute value and “sech”-like solitary wave forms by the location= 500 km,
afterx = 580 km tends to zero, changing sign at the locationand its amplitude grows to 60 m. At the locati®m 600 m
x =700km. The cubic coefficient; is positive everywhere, a second solitary waves begins to form, and due to the
but grows by an order of magnitude. increase of the linear modification factd, the amplitude

This is a scenario when we might expect the formationof leading wave decreases to about 45m. Then as the
of a breather from a solitary wave at the location of wherequadratic nonlinear coefficient tends to zero, the cubic
the quadratic coefficient changes sign, provided the leadingionlinear coefficient grows rapidly, and the leading solitary
wave amplitude is large enough. Here we did two runswave begin to destruct around the locatior= 700 km,
with initial solitary wave amplitudes of 23 m and 41 m. The until at the locationx = 720 km there is a strong indication
solitary wave transformation for the first run is shown in that an internal breather has formed in association with an

Nonlin. Processes Geophys., 17, 6839, 2010 www.nonlin-processes-geophys.net/17/633/2010/
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600

oscillatory trailing wave train. The division of the initial
solitary wave into two is clearly shown in the space-time
contour plots in Fig. 19, from the locatiom = 400 km

to the locationx = 650 km, with breather formation after
x =700km.

5 Discussion

As we have mentioned in the Introduction, the vKdV
equation B) and its extension to allow for cubic nonlinearity,
the evKdV equation &) have been widely used to model
the propagation of large amplitude internal solitary waves
in coastal seas. In this review article we have presented
a brief outline of the derivation of these models by an
asymptotic expansion from the full Euler equations. Then
we have described how an examination of the slowly-
varying solitary wave solutions lead to the concept that
the critical point where the coefficient of the quadratic,
or of he cubic, nonlinear term is zero defines a location
of special interest where a solitary wave may undergo a
dramatic transformation, often involving a polarity change

Nonlin. Processes Geophys., 54963310
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and a disintegration into a wave train. We have illustrated
this in detail for two contrasting cross-sections of the coastal
shelf of the South China Sea. Each cross-section is based on
the GDEM database of sea stratification, and the bathymetry
database GEBCO. The first cross-section is taken across the
shelf where the ASIAEX 2001 experiment took place, and
we have simulated the transformation of an internal solitary
wave generated in the Luzon Strait, propagating across the
cross deep part of the sea to the opposite shelf, where a
change in its polarity takes place, The second cross-section
is taken across a region where the cubic nonlinear coefficient
is positive everywhere. In this case an initial solitary
wave of moderate amplitude transforms into two solitary
waves. Th first wave is a "sech”-like solitary wave, and
the two waves interact near the location where the quadratic
nonlinear coefficient changes sign, with transformation into
a breather This demonstrates the possibility of internal
breather generation from an initial solitary wave in a realistic

It is the the second example of such a

solitary wave transformation along cross-section 2, initial amp"t“detransformation the first being a simulation for the North

41m.
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West Australian Shelf, see Grimshaw et al. (2007).
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There are several important issues relating to internalAcknowledgementsThis work was partially supported by grants
solitary waves, which we have not considered here, notablyRFBR 09-05-90408, 09-05-20024 (TT), and by RFBR 10-05-
stability, transverse structure, the effect of the background?0199, Russian Grant for young scientists MK-846.2009.1 (O.K).
earth rotation and the effect of friction. An extension of the
evKdV model 6) which takes into account of the last three
factors could be
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