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Abstract. In this paper, classical surrogate data methods
for testing hypotheses concerning nonlinearity in time-series
data are extended using a wavelet-based scheme. This gives a
method for systematically exploring the properties of a signal
relative to some metric or set of metrics. A signal continuum
is defined from a linear variant of the original signal (same
histogram and approximately the same Fourier spectrum) to
the exact replication of the original signal. Surrogate data
are generated along this continuum with the wavelet trans-
form fixing in place an increasing proportion of the proper-
ties of the original signal. Eventually, chaotic or nonlinear
behaviour will be preserved in the surrogates. The technique
permits various research questions to be answered and ex-
amples covered in the paper include identifying a threshold
level at which signals or models for those signals may be
considered similar on some metric, analysing the complexity
of the Lorenz attractor, characterising the differential sensi-
tivity of metrics to the presence of multifractality for a turbu-
lence time-series, and determining the amplitude of variabil-
ity of the Hölder exponents in a multifractional Brownian
motion that is detectable by a calculation method. Thus, a
wide class of analyses of relevance to geophysics can be un-
dertaken within this framework.

1 Introduction

Because of the wide ranging occurrence and varied nature
of nonlinearity in geophysical time series (Johnson et al.,
2005; Khan et al., 2005; Roux et al., 2009), gaining an un-
derstanding of the sources of any nonlinearity is an impor-
tant topic. The presence of nonlinearity can be tested by ap-
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plying some metric, such as time asymmetry (Schreiber and
Schmitz, 1997) or maximal Lyapunov exponent to a time se-
ries of outputs from a system and comparing the response to
surrogate data that are linear variants of the original signal.
A test for any significant difference can be developed within
this framework (Theiler et al., 1992; Schreiber and Schmitz,
1996). The intention of this paper is to pursue this matter in
a new direction. The approach developed here moves away
from the acceptance/rejection framework of the hypothesis
test for nonlinearity to ask:How similar to the original data
do the surrogates need to be to avoid rejection of the null hy-
pothesis?From this, it is possible to develop new research
questions within a surrogate data framework, such as:

– Which parts of the time series need to be identical be-
tween the data and the surrogate in order to prevent the
rejection of the null hypothesis (i.e. what are the most
complicated parts of the original time series)?

– Does the range of values for a metric calculated for a
set of surrogates that are not statistically different to the
original data include the value of this metric for a model
of that system (i.e. is the model validated)?

– Do different, but related nonlinear or chaotic time series
exhibit differences in how similar their surrogates need
to be to the original data to avoid rejecting the null hy-
pothesis (i.e. are there differences in complexity of the
series)?

– Do different measures applied to a nonlinear or chaotic
time series exhibit differences in how similar the surro-
gates need to be to the original data to avoid rejecting
the null hypothesis (i.e. are there differences in sensitiv-
ity of the measures used to characterise chaotic or non-
linear systems)?
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616 C. J. Keylock: Gradual wavelet reconstruction

Our approach, which we termGradual Wavelet Recon-
struction, permits these questions to be answered. This is
illustrated by the examples presented in the final parts of the
paper. Before this, we explain the gradual wavelet recon-
struction approach, which requires us first to review briefly
relevant literature on hypothesis testing for surrogate data in
nonlinear science.

2 Hypothesis testing for nonlinear time series using
surrogate data

The surrogate data methodology as proposed byTheiler et
al. (1992) and enhanced bySchreiber and Schmitz(1996) is
a common technique with applications in studies of river me-
andering (Frascati and Lanzoni, 2010), ice core data (Kwas-
niok and Lohmann, 2009), environmental turbulence (Basu
et al., 2007; Keylock, 2009) and the magnetosphere (Pavlos
et al., 1999), as well as other disciplines beyond geoscience,
such as medicine (Mormann et al., 2005). Typically, one gen-
erates surrogate data that are stochastic realisations from a
Gaussian linear system with the same values and (to some
error tolerance) Fourier spectrum as the original data and
employs a metric to see if the observed time series is signifi-
cantly different to the surrogates. For a two-tailed hypothesis
test at a significance level,a, if the value of the metric for the
original data is less than or greater than that for all of the
(2/a)−1 surrogate datasets then the null hypothesis that the
original data is a realisation of a Gaussian linear process will
be rejected.

An effective method for producing surrogate data that
preserve the values and, to some error level, the Fourier
spectrum of the original data is the Iterated Amplitude Ad-
justed Fourier Transform (IAAFT) algorithm (Schreiber and
Schmitz, 1996). Given a discrete time seriesgn, n= 1,...,N
this algorithm proceeds as follows:

1. Store the squared amplitudes of the discrete Fourier
transform ofgn (i.e.G2

f = |
∑N

1 gne
i2πf n/N

|
2);

2. perform a random shuffle ofgn to giveg(0)n ;

3. Subsequently, iterate a power spectrum step and a rank-
order matching step ong(j)n as follows:

(a) Take the Fourier transform ofg(j)n and replace the
squared amplitudes withG2

f , while retaining the
phases. Given the initial random sort, this means
that the spectrum should be preserved but with ran-
dom phases. Invert the transformation with the am-
plitudes replaced;

(b) Replace the values in the new seriesg
(j)
n by those in

gn using a rank-order matching process. This pre-
serves the set of original values in the dataset but
deteriorates the quality of spectral matching, which
explains why the Fourier amplitudes are only repli-
cated approximately;

4. Repeat until a convergence criterion is fulfilled or any
changes are too small to result in any re-ordering of the
values.

The phase randomisation part of the algorithm will destroy
temporal organisation in the original series that contributes
to any nonlinearity, while the fact that the amplitudes of
the spectrum are approximately preserved and the values of
the original dataset are completely preserved mean that dif-
ferences on some metric between the data and the surro-
gates cannot be attributed to these sources, which could be
sources of difference between two linear time-series. Hence,
a significant difference implies, either the presence of some
form of nonlinearity in the original data or that these data
are sampled from a non-Gaussian, linear process. Subse-
quently, this algorithm has been refined by groups such as
Venema et al.(2006) who relaxed step 3(b), by imposing the
values ofgn more gradually in order to improve convergence.

The IAAFT algorithm was first implemented in the
wavelet domain byKeylock (2006) using a Maximal Over-
lap Discrete Wavelet Transform (MODWT), which is de-
scribed in the Appendix to this paper. Because a wavelet
transform is a time-frequency decomposition (see A1), the
use of a single IAAFT results in the constrained randomi-
sation of a time-series of wavelet coefficients representing
one particular frequency band (or scale). Thus, withJ dif-
ferent scales, performing an IAAFT at each scale, results
in a full-randomisation of the wavelet coefficients. Be-
cause the IAAFT algorithm does not alter the values for
these coefficients, the wavelet power spectrum obtained from
the MODWT (which is proportional to the variance of the
wavelet coefficients) is unaffected by this transformation.
The convergence of this method compared to the standard
IAAFT and the enhanced method ofVenema et al.(2006)
was tested byKeylock (2008a), while the approach devel-
oped inKeylock (2006) has subsequently sparked interest
in other new ways for describing stationarity of time series
(Borgnat and Flandrin, 2009, 2010).

Keylock (2007) presented a refinement to the earlier
method, which still used the MODWT and the IAAFT, but
fixed in place particular wavelet coefficients to provide a flex-
ible means for designing surrogates. It is this algorithm that
underpins gradual wavelet reconstruction, as is explained in
the next section.

3 Gradual wavelet reconstruction

3.1 The algorithm

As established in the Appendix for the continuous wavelet
transform and as stated for the MODWT, the square of
the wavelet coefficientsw2(j,k)/j2 is the energy func-
tion of a time-series signal decomposed over different
scales/frequencies,j , and positions along the time series,k
(Vela-Arevalo and Marsden, 2004). For a signal of length
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N = 2J there will be a total ofk = 1,...,N wavelet coeffi-
cients at each scale,j produced by the MODWT. The total
energy content of the real-valued wavelet transformed signal
is proportional to

E=

J∑
j=1

N∑
k=1

w2
j,k (1)

and we defineρ as some chosen fraction ofE. If the w2
j,k

are placed in aJ ×N length vector in descending rank or-
der, the smallest number ofw2

j,k required to attainρ can be
determined by cumulating the squared wavelet coefficients
until their sum as a fraction ofE attainsρ. We term these
thefixedwavelet coefficients. The other coefficients are ran-
domised as explained below. Hence,ρ provides a measure
that can be used to vary the degree of similarity between the
surrogates and original data (Keylock, 2007). Forρ= 0 there
are no fixed coefficients and the resulting surrogate will be
similar to that obtained using the IAAFT. Trivially, forρ= 1
all coefficients are fixed, no randomisation occurs and the
surrogates and data are identical.

More formally, ifW ∈ R+ is the set ofJ ×N coefficients,
w2
j,k, placed in descending rank order then, with 1≤ n ≤

(J×N) acting as an index forW , the set of fixed coefficients,
F ⊆W , is given by the firstn elements ofW that fulfils the

condition

(∑n
i=1w

2
i

E

)
≥ ρ. Hence, the{w2

1,...,w
2
n} ∈ F are

the smallest number of coefficients that fulfils the energy pro-
portion,ρE.

The algorithm for generating a surrogate data series using
this approach may now be stated. This is an improved ver-
sion of the algorithm given byKeylock (2007). The wavelet
used in this paper is aDaubechies(1993) least-asymmetric
wavelet with 16 vanishing moments for effective frequency
localisation. The centre frequency (i.e. the frequency that
maximises the Fourier transform of the modulus of the
wavelet) is 0.6774 and the relation between scale,j , and the
negative logarithm of the pseudo frequencies has a propor-
tionality constant of 0.693. We made use of MATLAB and
software accompanyingPercival and Walden(2000), written
by Charlie Cornish and available fromWMTSA (2006) to
implement the MODWT.

1. Choose a value forρ;

2. Perform a wavelet decomposition of the time series into
a J ×N array using the MODWT and determine the
fixed coefficients for thisρ as explained, above;

3. For each wavelet scale, determine if any of theN
wavelet coefficients are to be fixed.
If they are not, apply the IAAFT algorithm to give a
randomised realisation of the coefficients at this scale.
If they are:
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Fig. 1. Two perpendicular components of turbulent velocity data
(u1 in black andu2 in grey) obtained in a wind tunnel at 5000 Hz.

(a) Fit an exact interpolator through the fixed coeffi-
cients and the end values; We used a piecewise
cubic Hermitian polynomial method (Fritsch and
Carlson, 1980);

(b) Add to this function the randomly shuffled, unfixed
coefficients at this scale and use this as the starting
point for the IAAFT algorithm;

(c) Run the IAAFT algorithm until convergence, reim-
posing the fixed values in the correct positions at
each rank-order matching step (see stage 3(b) of the
IAAFT algorithm in Sect. 2);

4. Invert the wavelet transform to produce a new time se-
ries of lengthN using the original approximation coef-
ficients (which will be a constant for a stationary series
if a full wavelet decomposition is undertaken, as is done
throughout this paper) and the randomised detail coeffi-
cients (see Eq. A9–A12 for an explanation of MODWT
approximation and detail coefficients).

5. Because of a loss of the original values in the dataset
from this operation (and a subsequent loss of matching
of the power spectrum when they are re-imposed), re-
peat stages (3) and (4) of the IAAFT algorithm to ensure
convergence for the dataset as a whole.

Fixing in place more coefficients asρ increases means that
the surrogates become progressively more similar to the data.
Applying the IAAFT algorithm to each scale of the wavelet
transform ensures that the coefficients have the appropriate
autocorrelation function and can be reconstructed appropri-
ately because they are a feasible realisation of a MODWT.

Note that by terminating the hierarchical MODWT algo-
rithm at any stage (thereby increasing the number of frequen-
cies contained within the approximation coefficients relative
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Fig. 2. Illustration of the surrogate generating algorithm foru1 with
ρ = 0.5 just showing MODWT scalej = 8. Thewj=8,k=1:N at
this scale from the original MODWT are shown in(a), while (b)
shows the fixed coefficients together with randomised values added
to a cubic Hermitian polynomial that is used to interpolate between
fixed values. The coefficients after one full iteration of the IAAFT
algorithm has been applied to the coefficients in (b) are shown in(c)
and the results after convergence (indicated by cv) are in(d). The
difference between (a) and (d) is indicated by the prime and is given
in (e), while (f) shows the differences for another realization of (b)
after convergence of the IAAFT algorithm.

to a full decomposition), this algorithm can be tailored to
only operate at selected scales. However, in this paper,ρ

pertains to the fraction of energy in a full decomposition of
the time series.

The re-introduction of unfixed coefficients in our method
provides a contrast with those techniques where some sub-
set of the initial wavelet coefficients are used to reconstruct
a process, such as the study byVenugopal and Foufoula-
Georgiou(1996). The primary advantages of our approach
are the preservation of the original values, the improved
preservation of the Fourier spectrum, and the ability to deter-
mine the effect of the unfixed coefficients upon some metric
applied to the data by consideration of the variability of the
surrogates. However, in the examples considered in Sects. 4
and 5, signal reconstructions based simply on the fixed co-
efficients in the style of Venugopal and Foufoula-Georgiou’s
work are also used. This helps illustrate the role played by
the unfixed coefficients for the chosen signal metric. The
black lines in Fig. 6b–d and the dotted lines in Fig. 8, are
examples of this approach.

Given a set of stochastic surrogates at various choices for
ρ, the research question stated in the introduction can be re-
expressed as:At what choice ofρ is there no longer any
difference between the value of our metric for the surrogates
and for the original data?

3.2 Illustration and explanation of the method

Consider the 1.64 s (213 values) of the longitudinal,u1, and
vertical,u2, components of turbulent velocity time series ob-
tained at 5000 Hz in a 1 m cross-section wind tunnel in the
wake of a 100 mm high fence, which are shown in Fig. 1.
Data were obtained by the author at a Taylor Reynolds num-
ber for the far field of 150 and recorded 0.5 m downwind of
the fence at a height of 55 mm above the base of the tun-
nel. Figure 2 shows the process of developing a surrogate
for u1 at ρ = 0.5, with just the operation of the algorithm
at wavelet scalej = 8 shown, which was a local maximum
for the wavelet spectrum and 23% of the coefficientswj=8,k
were fixed for thisρ. As the IAAFT algorithm converges, the
initially randomly located unfixed coefficients are adjusted
to respect the stored Fourier amplitudes of the original set
of coefficients. The fixed coefficients can be seen clearly as
smooth regions in Fig. 2b, while Fig. 2e and f show that the
parts of the surrogate time-series that differ most from the
original data are where the coefficients are not fixed, as ex-
pected.

3.3 Surrogate representations of multifractal signals

Various types of geophysical data have been analysed in
terms of their multifractal characteristics, including atmo-
spheric processes (Tessier et al., 1993; Venugopal et al.,
2006), topography (Gagnon et al., 2003), and seismicity
(Nakaya and Hashimoto, 2002). The aim of this paper is
not to replicate such characteristics explicitly in the surro-
gates, but to provide a means of generating surrogates that
vary in their nature as a function ofρ. As ρ increases,
any multifractality in the underlying dataset will be increas-
ingly preserved. To see this, note that while it is possible
to analyse the multifractal characteristics of a signal using
windowed spectra (Pikovsky et al., 1995), it is more com-
mon to adopt a wavelet perspective (Muzy et al., 1991). It is
well known (e.g.,Mallat, 1999) that the multifractal charac-
teristics of a signal can be approximated by calculating the
wavelet transform modulus maxima, chaining together max-
ima across scales and then forming the partition function

Z(q,j)=
∑
Li

|w(j,ξLi)|
q (2)

whereq ∈ < is a selected power that measures the scaling
behaviour ofZ(q,j), ξ is a maximum of the wavelet trans-
form modulus maxima, andLi indexes each of these max-
ima. Scaling exponents are calculated by

τ(q)= liminf
j→0

logZ(q,j)

logj
(3)

and it has been shown byBacry et al.(1993) and Jaffard
(1997) that these scaling exponents can be related to the sup-
port of the multifractal distribution via a Legendre transform:

τ(q)= min[q(α+1/2)−D(α)] (4)
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Fig. 3. Surrogate time series for theu1 dataset from Fig. 1 are shown in the left hand column for stated values ofρ, while the right hand
column gives the corresponding absolute part of the continuous wavelet transform for each surrogate series using a Mexican Hat wavelet
applied to the first 5 scales (formed using 81 voices). Differences would be less visible if more scales had been displayed because the higher
energy at higherj means that a greater proportion of coefficients are fixed.

where the Ḧolder/lipshitz exponents,α fall within the sup-
port of the multifractal spectrumD(α). Figure 3 shows that
asρ increases, the time series converges upon that in Fig. 1a.
In addition, it illustrates how the resulting wavelet modulus
maxima are preserved. For example, note that at scale≈ 5
andt ≈ 10.9 s an energetic feature is fixed forρ ≥ 0.3, but the
feature at scale≈ 5 andt ≈ 11.25 s is only fixed forρ ≥ 0.5.

For the replication of the wavelet transform modulus max-
ima it is necessary for the surrogates to preserve the mul-
tifractal spectrum of the original data, and that this is only
accomplished over all scales at high values forρ. However,
it is also the case that there is both an imprecision in the cal-
culation of theα exponents due to the limitations of the reso-
lution and length of the datasets, as well as imprecision in the
signal itself owing to instrument noise etc. Hence, at a some-
what lower value forρ there will be no significant difference
between surrogates and a multifractal dataset, depending on
the width of the support of the multifractal spectrum. This
issue is examined in Sects. 6.3 and 7.

3.4 Evaluating finite size effects on randomisation

Clearly, in the limit ofρ = 1 the surrogates and dataset are
identical and no randomisation occurs. Hence, the issue of
finite size effects is complex as it will be a function of the
length and nature of the time series, and the chosen value
for ρ. For example, the highest value (ρ = 0.999) used in
this paper leaves, on average (calculated over 200 surrogates)

447 values in the same positions in Fig. 1 as they are in
the surrogate (≈ 5% of N = 8192). For a very short seg-
ment of this time series of 256 velocity values and averaged
over 500 surrogates, forρ ∈ {0.5,0.9,0.99}, 2.7 (1%), 15.5
(6%) and 49.4 (19%) of values were fixed in place. These
values may be compared to similar results for a time series
also of 256 points, but of a very different structure - the
sunspot data analysed inKeylock (2007). In that case, for
ρ ∈ {0.5,0.9,0.99}, on average 2.8 (1%), 13.4 (5%) and 37.5
(15%) of values were fixed in place. Hence, finite size ef-
fects need to be considered for very high values forρ when
datasets are short because a perceived increase inρ will not
have altered the nature of the time series. However, the exam-
ple applications of the technique in this paper retain sufficient
degrees of freedom for sufficient randomisation to occur.

Please note that in all the examples presented in the rest
of the paper, unless otherwise stated, 19 surrogates are gen-
erated. As explained in the introduction, this is sufficient for
a one-tailed test at the 5% significance level (Sects. 4, 6 and
7) or a two-tailed test at the 10% significance level (Sect. 5).
An increase in the number of surrogates can be used to either
reduce the significance level or enhance the statistical power
of the test but becomes computationally demanding when a
number of surrogates must be generated for various choices
of ρ. The value used here is not dissimilar to that used else-
where in the literature (e.g.,Pavlos et al., 1999) and can be
increased for more accurate discrimination between choices
of ρ.
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Fig. 4. Example realisations of the Santa Fe laser intensity data,xL,
for various choices ofρ. Figure 4a is the original data series. The
other 5 time series are those for the surrogate with the median value
for Aλ=1

s at the appropriate value forρ in Fig. 5. The values forρ
are 0.00 (3b); 0.20 (3c); 0.50 (3d); 0.70 (3e); 0.97 (3f).

4 An application to the time asymmetry behaviour of a
laser intensity time series

Figure 4a shows 1024 values from the Santa Fe laser time
series,xL, (Huebner et al., 1989). This is a well-known test
data series in nonlinear science. Example surrogate series
for different choices ofρ are given in Fig. 4b–f. The surro-
gates shown in Fig. 4 are those corresponding to the median
value for the surrogate asymmetry in Fig. 5. While visually,
a choice ofρ≈ 0.5 qualitatively begins to resemble the orig-
inal data, gradual wavelet reconstruction is used to study the
behaviour of these data using the temporal asymmetry (or
skewness) measureA (Schreiber and Schmitz, 1997):

Aλ=

〈
(xt −xt−λ)

3
〉
/
〈
(xt −xt−λ)

2
〉 3

2
(5)

where the standard choice in testing for nonlinearity is to
chooseλ= 1 (Schreiber and Schmitz, 1997). There is a logic
for choosingλ= 1 for this dataset because the autocorrela-
tion function has crossed zero byλ= 2, going from 0.53 at
λ= 1 to −0.19 atλ= 2. Adopting an ensemble of different
choices forλ gives additional information on the nature of
the nonlinearity within the dataset and provides further crite-
ria that one could aim to replicate when attempting to model
a time series.

Figure 5 gives values forAλ=1 for 19 surrogates, at 14
choices forρ, as well as the value for the laser data,Aλ=1

L ,
which is indicated by a dotted line. From Fig. 5, the null hy-
pothesis is rejected untilρ= 0.97. Hence, although there are
visual similarities between Fig. 4d and the original intensity
data, a much higher choice forρ is required to preserve the
key elements of the signal with respect to asymmetry.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.99 0.999

1.8

1.85

1.9

1.95

2

A
λ 

=
 1

ρ

Fig. 5. Gradual wavelet reconstruction of the laser intensity data
based on the one step time asymmetry,Aλ=1. The dotted line gives
the value forAλ=1

L
. The boxplots are the values for the 19 surro-

gates, where the box indicates the upper and lower quartiles, the
central line is the median and the whiskers extend up to 1.5 times
the interquartile range, with outliers indicated by a +. Note the non-
linear scale on the abscissa.

Figure 6 shows the original Santa Fe laser series,xL, for
reference (Fig. 6a) together with the difference,x

/
L, between

xL and surrogate data series (in grey and displaced vertically
by ±40 (Fig. 6b and c) or±140 (Fig. 6d), as well as a series
defined by the fixed wavelet coefficients (i.e. with no stochas-
tic, unfixed coefficients added), which is shown in black, for
the three choices ofρ. In every case, the surrogate series for
x
/
L that is displaced downwards is that with the median value

for Aλ=1 in Fig. 5, and that displaced upwards is the series
with the maximum. The key difference between the series
whose value forAλ=1 exceeds that forAλ=1

L (the upper grey
line in Fig. 6b) and all the other data shown (including the
fixed part of the data series forρ = 0.97) is that the unfixed
coefficients have acted to remove the discontinuity that oc-
curs after 70 samples, where there is a sudden transition in
the behaviour ofxL. Hence, it would appear that, in addition
to the general saw-tooth nature of the laser intensity, repre-
senting this type of discontinuity correctly is essential if a
model for this system is to replicate the asymmetry charac-
teristics of the original data.

StudyingAλ=4 andAλ=6, which are the lags greater than
zero with the minimum and maximum autocorrelations (R=

−0.62 andR = 0.75, respectively), one finds that the null
hypothesis is rejected untilρ= 0.97 and untilρ= 0.999, re-
spectively. Thus, more rigorous model validation can be ac-
complished by deploying additional choices forλ. Going
further, an ensemble of different metrics could also be em-
ployed, a topic that is considered in Sect. 6.

Huebner et al.(1989) propose two models for their laser
data, one based on the Lorenz equations (Lorenz, 1963):

Nonlin. Processes Geophys., 17, 615–632, 2010 www.nonlin-processes-geophys.net/17/615/2010/



C. J. Keylock: Gradual wavelet reconstruction 621

0

100

200

x L

−40
0

40

x L/

   

−40
0

40

x L/

0 200 400 600 800 1000

−140
0

140

time (no. of samples)

x L/

(a)

(b)

(c)

(d)

Fig. 6. xL is shown in(a), while (b–d) illustrate the difference (in-
dicated by a prime) between this time series and various surrogates
series at 3 choices forρ (0.97 in 6b, 0.95 in 6c, and 0.50 in 6d).
The black line in these cases representsxL−xF , wherexF is a data
series produced solely from the fixed wavelet coefficients. The grey
lines showxLxs where the upper surrogate series maximizesAλ=1

s

at thisρ in Fig. 5, and the lower series has the median value for
Aλ=1
s .

ẏ1 = σ(y2−y1)

ẏ2 = −y1y3+Ry1−y2 (6)

ẏ3 = y1y2−by3

and one on a set of five ordinary differential equations that
constitute a complex-valued Lorenz model due toZeghlache
and Mandel(1985):

ẏ1 = −σ(y1+δy2−y3)

ẏ2 = −σ(y2−δy1−y4)

ẏ3 = −y3+Ry1+δy4−y1y5 (7)

ẏ4 = −y4+Ry2−δy3−y2y5

ẏ5 = −by5+y1y3+y2y4

whereb, the Rayleigh number,R, and the Prandtl number,
σ , are the three classic parameters of the Lorenz model and
δ represents the detuning between the frequencies for the
electric field and the atomic polarization in this application.
Hence, whenδ= 0 andy2 = y4 = 0 we recover the standard
Lorenz model.

Huebner et al.(1989) found that these two models gave a
reasonable fit to the original data in terms of their value for
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Fig. 7. Output from the two models for the laser series, formed
by squaring they1 output from Eqs. (6) and (7), which may be
compared to the series,xL, in Fig. 4a and a surrogate withρ= 0.97
in Fig. 4f.

the correlation dimension measure adopted in Sect. 5, imply-
ing that Lorenz-type models are suitable for modelling such
time-series. To test this hypothesis with respect to our skew-
ness/asymmetry measure, we integrated both sets of equa-
tions using a time step of 0.01 and choosing the values:
b = 0.25, R = 15, σ = 2, andδ = 0.05, as perHuebner et
al. (1989). In both cases, the time series fory2

1 was down-
sampled such that the time to the first zero crossing of the
autocorrelation function matched that in the original dataset
(2 samples) andAλ=1 was calculated for series of 1024 val-
ues. We obtainedAλ=1

= 2.207 for the Lorenz model and
Aλ=1

= 2.624 for the complex Lorenz model. These results
are higher than the value for the laser data ofAλ=1

= 2.008,
but it is not immediately clear if this difference is significant.

Using the results in Fig. 5 we see that atρ = 0.97 there
is no significant difference between the original data and the
surrogates forAλ=1. Both asymmetry values for the mod-
els are much greater than the largest value ofAλ=1

= 2.017
found for the 19 surrogates at this choice ofρ. Going fur-
ther, 200 surrogates were generated forρ= 0.97 and a Ryan-
Joiner test for normality showed theAλ=1 values to be nor-
mal at the 10% significance level. Based on the standard de-
viation of 0.0078, the asymmetry values for the models are
79 and 25 standard deviations from the value for the data.
Hence, the probability of obtaining the models’ asymmetry
values based on surrogates at a value forρ with the greatest
intrinsic variability that preserve the asymmetry properties, is
vanishingly small. The difference in the nature of the model
signals is illustrated in Fig. 7. For the additional choices of
Aλ=4 andAλ=6, marked differences are also evident, with
only the results using Eq. (6) forλ= 4 anywhere close to
those for the data (3.5 standard deviations too high). Hence,
the gradual wavelet reconstruction approach to model valida-
tion would suggest that Lorenz-type models are not validated
with respect to the asymmetry of the original data.
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5 An application to the Lorenz system

The Lorenz equations are the paradigmatic chaotic system,
although it is only relatively recently that a comprehensive
study of all three parameters of this model has been under-
taken (Barrio and Serrano, 2007, 2009). In this section of the
paper we employ classical choices forb= 8/3 andσ = 10,
but consider values for the Rayleigh number,R, that include
the classical, globally attracting chaotic attractor (R = 28),
a value (R = 24.29) that gives a chaotic attractor with a
pair of stable attracting rest points, a value ofR= 24.75 by
which the stable points have been eliminated (seeKaplan and
Yorke, 1979), and a value within the regime of an intermit-
tent transition to chaos identified byManneville and Pomeau
(1979) andPomeau and Manneville(1980) (R= 167.0).

The Lorenz equations were solved with a time step of
t = 0.01, with results recorded every tenth time step fromt =
1000. The accuracy of our numerical method was checked by
using theGottwald and Melbourne(2005) test for chaos ap-
plied to y1. The transition to chaos atR= 166.0616 found
using this method was in agreement with the value found us-
ing the methods ofBarrio and Serrano(2007) (personal com-
munication from Roberto Barrio).

In this study we employed the correlation dimension,Dc,
as a means of characterising the attractor (Grassberger and
Procaccia, 1983) based on a Gaussian kernel method and
using the output fory1, with lags and Theiler windows de-
fined based on the decay of the autocorrelation function and
on false nearest neighbours, respectively. We tested our
method for long (40 960 points) and short (4096 points)
datasets.Grassberger and Procaccia(1983) quote a value of
Dc = 2.05± 0.01 for the correlation dimension atR = 28,
which was matched successfully by both of our datasets
(Dc = 2.052 andDc = 2.055, for long and short datasets, re-
spectively). Hence, we employed the shorter series in analy-
sis. It is possible to obtain erroneous, finite correlation di-
mensions for stochastic processes (Schertzer et al., 2002).
However, by working with a system that is known to ex-
hibit chaos and by deploying high values forρ that ensure
the basic structure of the Lorenz attractor is fixed in place
(much as it would be for data from a Lorenz attractor with
noise),means that we have generated correlation dimensions
for data that are approximating the original, chaotic attrac-
tors.

Figure 8 illustrates short time series fory1 for the four
choices ofR examined here. Figure 9 gives the correlation
dimension as a function of embedding dimension,De, for our
four choices ofR. The embedding dimension is the dimen-
sion of the phase space into which the time series is embed-
ded based on delayed versions of the original series (Takens,
1981). An accurate estimate forDc requiresDe to be suffi-
cienly large to capture the dimension of the attractor (i.e. at
least 3 for the Lorenz system) but not so great as to intro-
duce errors from finite size effects. For a time series,y1 it is
possible to form a set ofN−(De−1)L vectors:
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Fig. 8. Subsections for time series from the Lorenz equations for
different choices ofR.

Yi = (yi,yi+L,...,yi+(De−1)L) (8)

each of which defines a point in this embedding space, where
L is a lag andN is the number of values in the time series.

Gradual wavelet reconstructions based on 19 surrogates
are shown for two choices ofρ, 99% (blue error bars) and
99.9% (red error bars). In addition, reconstructions at these
values forρ are shown based purely on the fixed wavelet co-
efficients without using the IAAFT algorithm to re-introduce
the unfixed coefficients (as described at the end of Sect. 3.1).
These are indicated by the dotted lines, with the circles show-
ing ρ = 0.99 and the squaresρ = 0.999. The error bars are
displaced a small horizontal distance from the integer value
for De and indicate the mean and±2 standard deviations by
horizontal lines.

The most similar plots are Fig. 9b and c, both of which
are within the same regime of behaviour forR according to
Kaplan and Yorke(1979). In these cases, atρ = 0.99 the
dataset built from just the fixed coefficients clearly differs
from the original data. The surrogate data (blue error bars)
are generally even further from the original data on average,
but within the±2 standard deviation tolerance of both the
original data and the fixed coefficient surrogate (particularly
whenR= 28.00). The higher choice forρ results in a conver-
gence of both types of surrogate to the original data. Thus, at
ρ = 0.99, on average for these two cases, the addition of the
unfixedwj,k to the surrogates results in greater error than a
lack of precise preservation of the data histogram or wavelet
spectrum from just using the fixed coefficients. However, by
ρ= 0.999 this other error source is dominant and realisations
built from just the fixed coefficients contain greater error. A
more in-depth analysis could examine the precise values for
ρ at which this transition in the dominance of different error
sources occurred.
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Table 1. The proportion of wavelet coefficients fixed in place as a
function ofR for our two choices ofρ.

Rayleigh number (R) ρ= 0.99 ρ= 0.999

24.29 58.2% 68.8%
24.75 57.5% 68.6%
28.00 56.8% 67.4%
167.0 40.4% 81.9%

The situation differs in Fig. 9a, where the error bars for
the gradual wavelet reconstruction are all small and lie close
to the original data. However, forρ = 0.99 there is a clear
difference for the surrogate built purely from the fixed coef-
ficients, which sits outside the error bars for the surrogates.
In this case, failure to preserve the wavelet spectrum and his-
togram accurately has had a significant effect onDc, while
randomisation by the unfixed coefficients has a minimal ef-
fect.

The situation differs again in Fig. 9d, where this time at
ρ = 0.99 it is the realisation from the fixed coefficients that
lies significantly closer to the original data than the surro-
gates. Hence, the randomised coefficients generate greater
error than the failure to preserve the histogram or spectrum.
For this case, it is also notable that byρ= 0.999, while both

types of surrogates have converged upon one another, none
have converged on the original data. Table 1 lists the propor-
tion of coefficients fixed at the two chosen thresholds. For
ρ = 0.99 andR= 167.0 there is a small proportion of fixed
coefficients (i.e. there is high energy in relatively few val-
ues). This means that the randomisation within the surro-
gates is causing a relatively weak convergence on the scal-
ing behaviour ofDc. However, byρ = 0.999 more coeffi-
cients are preserved for this dataset than the others yet the
surrogates still differ significantly (at the 10% level) from the
original data. This shows that the attractor for the Pomeau
and Manneville intermittency regime is more complex than
for the other values forR used here in the sense that, the
value forDc in the data can only be replicated by fixing in
place a higher proportion of the wavelet energy and a greater
proportion of the wavelet coefficients. In contrast, while the
dimension of the attractor is higher whenR= 24.29, surro-
gate series atρ = 0.99 can adequately capture its behaviour.
Thus, gradual wavelet reconstruction can be used to elucidate
additional information on the nature of an attractor, here pro-
viding a classification of complexity ranging from the sim-
pler case of Fig. 9a (lowerρ is sufficient to capture the be-
haviour) through the intermediate cases shown in Fig. 9b–
c, to the more complex case in Fig. 9d. ThatR = 24.75
andR= 28.00 exhibit similar behaviour mimics the similar
structure of their attractors.
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6 The Hölder characteristics of a turbulence time series

There have been a number of studies that have tried to char-
acterise the multifractal characteristics of turbulence (e.g.,
Meneveau and Sreenivasan, 1987; She and Leveque, 1994)
owing to the well-known intermittency characteristics (e.g.,
Frisch et al., 1978) that lead to a departure from Kol-
mogorov’s 1

3 scaling as discussed byKolmogorov (1962).
However, the predictions of the latter’s log-normal model
differ from the log-Poisson model ofShe and Leveque
(1994) and analyses based on universal multifractal scaling
(Schertzer and Lovejoy, 1992; Schmitt et al., 1992) provide
an alternative framework for classifiying these processes.

It has recently been proposed to make use of the point-
wise roughness characteristics of a turbulence velocity time
series,u(t), to isolate the periods of high activity in en-
vironmental turbulence data (Keylock, 2008b, 2009) using
Hölder/Lipshitz exponents,αu(t). That is, the differentiabil-
ity of a signal relative to polynomial approximations within
the local domain of a specific point are used to deriveαu(t).
Hence, studyingu(t) in a neighbourhood,δ, about a posi-
tion, T , and takingt andT to be rescaled over the unit inter-
val (ranging from 0.0 to 1.0), we obtain from a Taylor series
expansion:

pT (t)=

m−1∑
i=0

u(i)(T )

i!
(t−T )i (9)

wherem is the number of times thatu is differentiable in
T ±δ. Defining the error in approximatingu(t) atT bypT (t)
as

εT (t)= u(t)−pT (t) (10)

means that the order of differentiability ofu(t) close toT
gives an upper bound onεT (t):

|εT (t)| ≤
|t−T |

m

m!
(11)

This upper bound is then given by a non-integer
Hölder/Lipshitz exponent, where a functionu(t) has a point-
wise Hölder exponent,αu ≥ 0 if a constantK > 0 and the
polynomialpT (t) of degreem exists such that

|u(t)−pT (t)| ≤K|t−T |
β (12)

The Hölder regularity,αu(t), of u(t) atT is then given by the
supremum ofβ that fulfil Eq. (12).
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series(d), and the average standard deviation of the Hölder series(e).

6.1 Calculating Hölder exponents

A rapid method for evaluatingαu(t) is based on a log-log
regression of the signal oscillations,OT±δ, within some dis-
tanceδ of T againstδ, whereOT±δ is given by:

OT±δ = max(ut∈(T−δ,...,T+δ))−min(ut∈(T−δ,...,T+δ)) (13)

and δ is distributed logarithmically (from 21 to 210 in this
study).

This approach was discussed byKolwankar and Ĺevy Ve-
hel (2002) and considered to be more accurate than wavelet
based methods. For the comparison of the differential sensi-
tivity of metrics to the presence of multifractality (Sect. 6.2),
using correlation, non-linear association by phase synchro-
nisation, and on the variance of the estimatedαu(t), as de-
scribed below), we require a precise and consistent estimator
for the Hölder regularity.

Figure 10 evaluates different methods for calculating
Hölder exponents and supports the use of the oscillation-
based method. Figure 10a shows the power spectral den-
sity for a fractional Brownian motion (N = 4096) and the
fitted slope (red line) from this plot is shown as a Hölder
exponent in Fig. 10b with a black dotted line. The DWT
(see Appendix A) wavelet-based method using a Daubechies
wavelet with 8 vanishing moments is clearly the least precise
method. The accuracy and precision of the oscillation-based
method increases as the size of the bins used to estimateδ

increases. The results are much more sensitive to this than
the particular method used to fit the log-log regression line.
Figure 10c shows a sinusoidal curve in blue that was used to
prescribe the variation ofα(t) for a multifractional Brown-
ian motion. This signal itself is not shown but attempts to
back-estimate theα(t) from this signal are given in black

(DWT-based method), green (least-squares oscillation-based
method with the bins forδ ranging from 21 to 25 - O5) and
red (least-squares oscillation-based method with the bins for
δ ranging from 21 to 210 - O10). Our choice of the O10 algo-
rithm is the most precise. These calculations were performed
using the FRACLAB toolbox (FRACLAB, 2006).

6.2 The differential sensitivity of particular metrics to
the presence of multifractality

For a choice ofρ = 0, the surrogate series will preserve the
Fourier spectrum to some error level, but not the intermit-
tency (multifractal characteristics). Asρ→ 1, the variance
of the Hölder series tends towards that for the original data.
Our gradual wavelet reconstruction of the turbulence data in
Fig. 1 is based on 19 surrogates and compares the sensitivity
of five metrics to the presence of (multifractal) nonlineari-
ties: correlations between the velocity series,R(u1u2), and
Hölder series,R(αu1u2), the phase synchronisation between
these respective series,γ ∗

S (u1u2), andγ ∗

S (αu1u2), and the av-
erage standard deviation of the Hölder series across the two
components:

σav = [σ(αu1)+σ(αu2)]/2 (14)

Phase synchronisation is a nonlinear method of association
between data series and the procedure we adopted for its cal-
culation is given in Appendix B.

These results are shown in Fig. 11. The surrogate tests
show that the two velocity series in this region of turbulent
mixing appear independent as no significant difference be-
tween data and surrogates occurs for either their linear corre-
lation or their phase synchronisation. This also shows that, as
expected, linear correlation does not contain information on
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the multifractal characteristics of the signal. However, when
the Hölder series are examined, both of these two measures
show significant differences forρ < 0.40. The null hypothe-
sis is rejected at all our choices forρ using the average stan-
dard deviation measure, indicating that this is the most sensi-
tive to the multifractal characteristics of the two series. Our
technique permits the relative sensitivity of different metrics
to be determined empirically for particular data and it is in-
teresting here that the sensitivity of the correlation and its
nonlinear, phase synchronisation counterpart appears to be
approximately the same.

From Fig. 11e it follows that intermittency in the surro-
gates has yet to converge on the data at the highest choices
for ρ used in this paper. Part of the reason for this is the
broad-band nature of the turbulence signal compared to the
Lorenz attractor, for example. Table 1 has typical values of

57% and 68% of wavelet coefficients fixed forρ = 0.99 and
ρ= 0.999, respectively, while the equivalent percentages are
26.1% and 40.1% for u1, and 17.4% and 30.8% for u2. In-
creasingρ to 0.9999 still only fixes 55.1% and 45.1% of the
coefficients, respectively. This is why a sparse, wavelet rep-
resentation of a turbulence signal is such an effective descrip-
tor (half the coefficients contain 99.99% of the energy).

Figure 12 shows, for two wavelet scales, the modulus max-
ima of the wavelet coefficients for the data (black) and the
difference between this series and that for surrogates gener-
ated atρ = 0.99 (red) andρ = 0.999 (blue). Note that while
the values in Fig. 12d are roughly double those in Fig. 12a,
the errors are an order of magnitude lower. Hence, for both
choices forρ there are a number of features at the finest
wavelet scales whose energy is too small to be fixed, yet
which contribute actively to the singularity structure of the
time series, affecting the values for the Hölder series in the
surrogates and the value forσav for these data.

However, it is also the case that:

1. Determining the multifractal properties of a signal is a
difficult task (Lux, 2004; Seuret, 2006);

2. The variance measure given by Eq. (14) is more depen-
dent on the absolute accuracy of our method for eval-
uating Ḧolder exponents than the other metrics used in
Fig. 11; and,

3. Different realisations of a stochastic multifractal pro-
cess will lead to intrinsic variability in the estimated
values forα(t).

Hence, the fact that Fig. 11e indicates that the multifractal
characteristics are only preserved asρ → 1 may be due to
the nature of these particular data, or may be an artefact of
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the finite precision of the O10 algorithm. A comparison with
another multifractal dataset helps to interpret these results
appropriately.

6.3 The standard deviation of Ḧolder exponents for
multifractal data

We employed a wavelet-based algorithm for generating mul-
tifractal data due toBenzi et al.(1993). This is a stochas-
tic algorithm based on a discrete wavelet transform, whereby
wavelet coefficients are assigned and then the inverse wavelet
transform is used to construct the time series. Here we follow
Benzi et al.(1993) and take an initial, arbitrary coefficient,
χ0,0, representing theJ +1 wavelet scale, and then form the
wavelet coefficients at scalesj = J,...,1, hierarchically ac-
cording to the recursion:

χj,k = εj,kηj,kχj+1,k′ (15)

wherek
′

=
1
2k, εj,k takes the values±1 with equal probabil-

ity, and the random variableηj,k here takes the values 2−5/6

or 2−1/2 with probabilities of 0.875 and 0.125, respectively.
Fifty datasets were generated and two example realisations
are shown in black in Fig. 13.

To reduce the variability in the data that would contribute
to changes in the variance of theαbenzi values for the 50
datasets, the stationarity of each realisation was improved by
setting MODWT approximation and the detail coefficients at
j = J −2,...,J to zero (the red signals in Fig. 13). Thus,
variability at scales that are affected by the finite length of
the record (212 values) was removed. Furthermore, to elim-
inate any problems due to end effects, theα(t) values were
calculated over the central 211 values. The degree of vari-
ability for σ(αbenzi) for all 50 realisations based on this pro-
cedure is given by the left-hand boxplot in Fig. 14. A gradual

wavelet reconstruction for the dataset with the median value
for σ(αbenzi) (shown in Fig. 13a) is then undertaken on the
right-hand side of Fig. 14.

The first thing to note is that the multifractal properties
of the time series are recovered some way before the limit
of ρ→ 1. Hence, the result from Fig. 11e is not generally
true for all multifractal datasets. For theBenzi et al.(1993)
process, IAAFT surrogates are able to match the values for
σ(αbenzi) and, working from the right, the surrogates become
significantly different to the dataset atρ = 0.95. Given that
we took care to minimise variability in the calculation of
σ(αbenzi) resulting from finite size effects, it is also note-
worthy that the variability for the 50 realisations on the left
of Fig. 14 is greater than for even the IAAFT surrogates.
Hence, the O10 algorithm used here would appear to be suffi-
ciently precise both in absolute terms (Fig. 10c) and relative
to the intrinsic variation of similarly generated, sotchastic,
multifractal time series. Thus, the analysis of the turbulence
dataset in Sect. 6 shows thatσav is the measure most sen-
sitive to the presence of multifractality, but the observation
that even whenρ= 0.999 the surrogates differ from the data
is not true in general for all multifractal series. I.e. gradual
wavelet reconstruction can mimic relevant properties of mul-
tifractal data at values forρ <1.

7 The precision of our technique for evaluating Ḧolder
exponents

The analysis in Sect. 6.3 implies that we can use gradual
wavelet reconstruction to study the precision of our tech-
nique for evaluatingα(t). Multifractional Brownian motions
were generated similar to those shown in Fig. 10c, based on
the expression:
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Fig. 15. Gradual wavelet reconstruction of multifractional Brownian motions given by Eq. (16) withf = 0.005 (a), f = 0.010 (b), and
f = 0.015(c). The metric employed is the standard deviation of the calculated Hölder exponents.

αx(t)= 0.33+f sin(4π t) (16)

wheret ranges from 0 to 1 and containsN = 2048 values,
and the amplitude,f ∈ {0.005,0.01,0.015}. Hence, the mean
value forαu equates to that for inertial range turbulence. As
f → 0 we should reach a value where imprecision in our
algorithm means that we cannot discriminate between a truly
(but weak) multifractional Brownian motion and a fractional
Brownian motion with a Hurst exponent of 0.33. That is, the
values for the metric applied to the IAAFT surrogates do not
differ significantly than that for the data.

The Hölder characteristics of the derived time series and
their surrogates were evaluated using the O10 method. From
Fig. 15, it is clear that asf increases,σ(αx) for the data
(the dotted blue lines) also increases, as expected. Moving
leftwards from the right-hand side of these plots a significant
difference emerges in Fig. 15a atρ= 0.95, while it occurs at
ρ = 0.97 in Fig. 15b and c. Both of these values are lower
than seen in Fig. 11e, while the results in Fig. 15a are very
similar to those in Fig. 14. The variability whenρ= 0 is rela-
tively constant for varyingf , meaning that, becauseσ(αx) is
lower in Fig. 15a, there is no significant difference between
the observed value and those for IAAFT surrogates when
f = 0.005. The complex nature of Fig. 15a (and Fig. 14)
shows that no significant difference occurs when the surro-
gates are unconstrained, owing to the relatively large inher-
ent variation in the time-series and the relatively weak ex-
pression of the multifractality. However, asρ ∼ 0.9, suffi-
cient energy has been fixed in place for the surrogates to be a
trained upon the original data, but with such random variabil-
ity thatσ(αx) is too low. It is only byρ= 0.97 that sufficient
energy is fixed for no significant difference to occur again.
In contrast, the degree of multifractality in Fig. 15b and c is
sufficient for the gradual wavelet reconstructions to be more

simply structured, meaning that the precision of our O10 al-
gorithm is sufficient to detect variability in Ḧolder exponents
at a value for 0.005<f <0.01 and above.

8 Conclusions

This paper has presented a methodology for exploring prop-
erties of nonlinear time series through the systematic vary-
ing of an energy threshold and the construction of surro-
gate datasets that conform to this threshold using a wavelet
transform. For a given threshold, either one realisation can
be obtained based on the wavelet coefficients fixed at that
threshold, or the unfixed coefficients can be added back to the
wavelet template in an appropriately constrained, stochastic
fashion using the IAAFT algorithm to give multiple realisa-
tions. Comparing the value of a metric with the values for the
wavelet reconstructed series at multiple choices forρ permits
certain properties of the signal or the metrics to be elucidated
including:

1. the parts of the signal that need to be preserved to give
a value for the metric similar to the original data (laser
data example in Sect. 4);

2. assessing how closely model results match the value for
the metric for the data (Sect. 4);

3. classification of time series complexity (Lorenz equa-
tions example in Sect. 5);

4. the sensitivity of different metrics (turbulence example
in Sect. 6); and,

5. the precision of a method for generating Hölder expo-
nents (Sect. 7).
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With regards to the multifractal characteristics of geophysi-
cal data, an alternative perspective on the methodology pre-
sented here would be to re-define the analysis such that the
starting point is not a linear variant of the original signal, but
a multifractal variant of the original signal. Recently,Palus
(2008) has proposed a pertinent multifractal surrogate gener-
ation algorithm. This development would see the work pre-
sented herein take a new direction. In this paper, departures
from monofractality of increasing strength will correspond
to increases in the value forρ at which significant departures
are first detected (Sect. 7). Imposing the multifractal struc-
ture at the start would be potentially of interest if one wished
to see how a metric that was not directly related to the multi-
fractality of the signal (e.g. Eq. 5) was conserved by the sur-
rogates as a version ofρ increased but with the multifractal
spectrum fixed in addition to the Fourier spectrum and his-
togram of values in the data, as is the case in this study. This
alternative version of gradual wavelet reconstruction will be
explored in the future.

Appendix A

Wavelet transforms

A1 The continuous transform

A continuous wavelet transform (CWT),w(j,k) of a time
seriesx(t) at a scale,j >0, and a position,k ∈ <, is given by
the convolution of the time series with a wavelet function,ψ ,
whose integral is zero, and whose square integrates to unity:

w(j,k)=
1

√
j

∫
+∞

−∞

x(t)ψ∗(t−k/j)dt (A1)

where∗ is the complex conjugate. An additional admissibil-
ity constraint on the form of the wavelet function, which per-
mits a reconstruction of the original signal, is that its Fourier
transform

9(f )≡

∫
+∞

−∞

ψ(t)e−2πf ti dt (A2)

is such that 0<Cψ <∞, where

Cψ ≡

∫
∞

0

|ψ(f )|2

f
df (A3)

As such, it follows that∫
+∞

−∞

x2(t)dt =
1

Cψ

∫
∞

0

[∫
+∞

−∞

w2(j,k)dt

]
dj

j2
(A4)

which shows thatw2(j,k)/j2 is the energy function of the
signal decomposed over different scales and positions. This
is important in this study as the key parameter,ρ, may be
defined in terms of the square of the wavelet coefficients.

A2 The discrete transform

As shown for the IAAFT method in Sect. 2, surrogate data
algorithms involve a deconstruction of an original signal, a
manipulation and a subsequent reconstruction. The integral
in Eq. (A1) makes reconstruction using the continuous trans-
form problematic. The discrete wavelet transform (DWT)
is based on a hierarchical set of filtering operations that can
be readily used in signal reconstruction. Hence, the DWT
has been used in the past for generating surrogate data se-
ries (Breakspear et al., 2003). While we prefer an alterna-
tive approach, the essence of the DWT is briefly explained to
provide relevant context for our favoured transform. Results
using a DWT method are also given in Fig. 10b.

A DWT of a time series sampled atN = 2J points can
be formulated over the dyadic scales 2j ,j = 1,...,J using
a filter bank of low and high pass quadrature mirror filters
of even filter width,L, wherehl(l= 0,...,L−1) is the high
pass (or wavelet) filter,gl is the low pass (or scaling) filter
and

gl ≡ (−1)l+1hL−1−l (A5)

At the first stage of the algorithm,j = J , these filters are
circularly convolved withx(t) and then downsampled by a
factor of 2 to give a set of wavelet,w, and approximation,A,
coefficients of lengthN/2:

w1,k ≡
√

2w̃1,2k+1 k = 0,...,
N

2
−1

√
2w̃1,k ≡

L−1∑
l=0

hlxt−l modN k = 0,...,N−1 (A6)

A1,k ≡
√

2Ã1,2k+1 k = 0,...,
N

2
−1

√
2Ã1,k ≡

L−1∑
l=0

glxt−l modN k = 0,...,N−1 (A7)

At subsequent stages of the algorithm,j , the approximation
from the previous stage of the algorithm,Aj−1,k is used in-
stead ofxt in Eqs. (A6) and (A7) to give wavelet coefficients
over all scalesj = 1,...,J and a final approximation coeffi-
cient.

A3 The maximal overlap discrete transform

While the discrete transform gives a compact representation
of the signal, it suffers from certain analytical limitations
(Percival and Walden, 2000), which are important in the con-
text of surrogate generation:

– Circularly shiftingx(t) by some amount does not mean
that the corresponding wavelet and approximation coef-
ficients are translated by the same amount;
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– Because the wavelet filters are not zero phase, align-
ing the coefficients with the original time series is not
straightforward;

– Circularly shifting x(t), taking the discrete transform
and determining the wavelet power spectrum does not
necessarily return the same spectrum as forx(t).

Of these points, it is the last that is the most important from
our perspective. Approximate preservation of linear features
of the original data, such as the power spectrum is an es-
sential part of an algorithm for generating surrogates for
analysing nonlinear time series. However, the first point is
also relevant as it is desirable that the evaluation of the local
energy content of the signal has a certain universality and is
not altered by a circular rotation of the original dataset.

The translation invariant, stationary, or Maximal Overlap
Discrete Wavelet Transform (MODWT) avoids the above dif-
ficulties. It is an undecimated variant of the discrete trans-
form, which means that the downsampling undertaken in the
DWT is eliminated. This is a disadvantage if one wishes to
produce a compact representation of the signal, but has the
advantage for analysis of producingN wavelet coefficients
at each scale, similar to the CWT in Eq. (A1).

Effectively, a discrete transform is undertaken for allN

circular rotations ofx(t). For any given minimum rotation
of x(t) most coefficients will be identical to those at the pre-
vious iteration meaning that the computation of the MODWT
isO(N log2N) and notO(N2) (Liang and Parks, 1996).

Defining the filter width at scalej asLj ≡ (2j −1)(L−

1)+1 and expressing thej th level MODWT high and low
pass filters as

h̃j,l ≡hj,l/2
j/2

g̃j,l ≡ gj,l/2
j/2 (A8)

It is clear from Eq. (A5) that the MODWT filters are re-
lated to those used in the DWT except for a rescaling to ac-
count for the lack of downsampling. Hence, the MODWT
wavelet and approximation coefficients are given as (Perci-
val and Walden, 2000):

wj,k ≡

Li−1∑
l=0

h̃j,lxk−l modN

Aj,k ≡

Li−1∑
l=0

g̃j,lxk−l modN (A9)

which may also be compared to the equivalent expressions
for the DWT in Eqs. (A6) and (A7). Practical implementa-
tion of the MODWT first requires periodization of the filters
so that, instead of undertaking an explicit circular convolu-
tion with Eq. (A8), we perform implicit circular filtering us-
ing a standard convolution and a periodized filter, where

h̃◦

j,l ≡

+∞∑
n=−∞

h̃j,l+nN (A10)

Re-expressing Eq. (A9) in terms of Eq. (A10) gives

w◦

j,k ≡

N−1∑
l=0

h̃◦

j,lxk−l modN

A◦

j,k ≡

N−1∑
l=0

g̃◦

j,lxk−l modN (A11)

We may then evaluate Eq. (A11) from a recursion which
states that, given the approximationA◦

j,k, we may obtain
w◦

j+1,k andA◦

j+1,k from

w◦

j+1,k =

L−1∑
l=0

h̃◦

lA
◦

j,k−2j l modN

A◦

j+1,k =

L−1∑
l=0

g̃◦

l A
◦

j,k−2j l modN (A12)

Percival and Walden(2000) prove that within a MODWT
decomposition framework, the discrete variant of Eq. (A4)
holds true.

Appendix B

Phase synchronisation measure

The method for evaluating phase synchronisation in this pa-
per followsKreuz et al.(2007) based on a Hilbert transform
approach. Defining the analytic signal of a time seriesx(t)

as

x(t)+ ix̂(t)= ax(t)e
iφx (t) (B1)

wherex̂(t) is the Hilbert transform ofx(t):

x̂(t)=
1

π
p.v.

∫
+∞

−∞

x(t̆)/t− t̆ d t̆ (B2)

here p.v. is the Cauchy principal value. From Eq. (B1) it then
follows that the phase is given by

φx(t)= tan−1 x̂(t)

x(t)
(B3)

and given the phases for time seriesx(t) andy(t), the phase
difference is

1φ(t)=φx(t)−φy(t) (B4)

and the mean phase coherence can be obtained from1φ(t)

by averaging the angular distribution of phases on the unit
circle in the complex plane:

γ =

∣∣∣∣∣ 1

N

N∑
j=1

ei1φ(t)

∣∣∣∣∣ (B5)

One difficulty with applying Eq. (B5) as a measure of syn-
chronization is that the distribution ofγ is not uniform. To
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account for this, phase-shuffled data can be constructed from
one of the time series before the phase differences are cal-
culated. The mean value ofγ for some finite number of
phase-shuffled realisations (usually∼ 10, which is the case
in this paper),γ̄S , can then be used to normalise the value of
γ calculated from the data according to

γ ∗

S =

{
0 if γ < γ̄S

γ−γ̄S
1−γ̄S

if γ ≥ γ̄S
(B6)
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