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Abstract. Resonant interactions between relativistic charged
particles and oblique whistler mode waves are explored in
this work, and it is shown that nonlinear phase trapping could
happen in a gyrophase averaged sense, consistent with previ-
ous studies of interactions between nonrelativistic electrons
and oblique whistler mode waves. A dimensionless param-
eterχ is derived to represent the ratio of wave-induced mo-
tion to the adiabatic motion of the particle. We show that
phase trapping is likely to occur when the wave-induced mo-
tion dominates the adiabatic motion, which is caused mainly
by the background fields. A mapping of probable regions
of nonlinear interactions is shown based on the parameter
χ . We show that the nonlinear interactions might be impor-
tant near the equatorial plane for even moderate wave ampli-
tude, and the latitudinal range for nonlinear interactions to
occur is largest for electrons with local pitch angles around
50 degrees, consistent with previous findings. The results are
important for understanding the nonlinear dynamics of rela-
tivistic radiation belt electrons and the generation of chorus
waves.

1 Introduction

The Earth’s outer radiation belt contains relativistic elec-
trons and is very dynamic during disturbed times; electron
fluxes could vary by several orders of magnitude (Reeves
et al., 2003; Friedel et al., 2002), making the radiation belt
hazardous to spacecraft and astronauts (Baker et al., 1994,
1997). Interactions between electrons and whistler mode
waves have been established as one of the main mechanisms
for controlling the dynamics of Earth’s radiation belts from
both observation and simulation (Horne and Thorne, 1998;
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Horne et al., 2005a,b; Bortnik and Thorne, 2007; Furuya
et al., 2008; Varotsou et al., 2008; Albert et al., 2009). While
most of the previous research on wave particle interactions
in the outer radiation belt is based on the quasilinear theory,
nonlinear interactions between electrons and whistler mode
waves are considered to be important in two aspects.

First, recent observations of large amplitude whistler mode
chorus waves (Cattell et al., 2008; Cully et al., 2008) bring
question to the validity of using quasilinear theory to de-
scribe effects of chorus waves on electron dynamics. Quasi-
linear theory was developed to describe interactions between
charged particles and small amplitude broad band waves
(Kennel and Engelmann, 1966). Even though a small ampli-
tude monochromatic wave could be shown to give the same
diffusion coefficients as a narrow-band limit of quasilinear
theory when nonlinear effects such as phase trapping and
bunching are not important (Albert, 2010), increased am-
plitude of waves can introduce strong nonlinear effects and
bring the use of quasilinear theory into question (Bortnik
et al., 2008).

Second, chorus waves are ELF/VLF whistler mode waves
consisting of rising or falling tones seen at a fixed location
(Santoĺık et al., 2003; Inan et al., 2004; Breneman et al.,
2009; Chum et al., 2009). The generation mechanism of cho-
rus waves has been an outstanding question for some time
(Omura et al., 1991). Several mechanisms involving non-
linear interactions between electrons and waves have been
proposed to explain the formation of rising and falling tones
(Helliwell, 1967; Nunn et al., 1997; Omura et al., 2008,
2009). Omura et al.(2008) derived a simple equation for
calculating chorus wave frequency sweep rates based on the
inhomogeneity ratio for nonlinear interactions between rel-
ativistic electrons and a parallel propagating wave. Other
proposed mechanisms for chorus wave generation include
the backward wave oscillator model (Trakhtengerts, 1995)
among others (Omura et al., 1991).
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The criterion for nonlinear interactions between parallel
propagating whistler mode waves and nonrelativistic elec-
trons has been derived byDysthe(1971) and relativistic elec-
trons by Omura et al.(2008) from the Lorentz equations
of motion. The inhomogeneity parameter for nonrelativistic
electrons and oblique whistler mode waves has been derived
by Bell (1984). Bell (1984) shows that while phase trapping
could not exist in the ordinary sense as is the case of parallel
propagating waves, it does exist in a gyro-averaged sense. A
similar criterion has also been derived using Hamiltonian dy-
namics (Albert, 1993). In this article, we generalize the the-
ory of Bell (1984) to the relativistic case to explore nonlinear
interactions between relativistic radiation belt electrons and
oblique whistler mode waves.

We start from the relativistic Lorentz equations of mo-
tion and perform a linear analysis to write the equations
in (p⊥,p‖,ζ ) coordinates in Sect.2. Herep⊥ andp‖ are
the momentum components perpendicular and parallel to the
ambient magnetic field, respectively, andζ is the phase angle
betweenp⊥ and the right hand component of the perpendic-
ular wave magnetic field. A dimensionless parameterχ is
derived as a criterion for nonlinear interactions in Sect.3. We
then produce a map ofχ as a function of latitude and wave
normal angle for a simplified case in Sect.4, and summarize
our results in Sect.5.

2 Equations of motion in (p⊥, p‖, ζ ) coordinates

We choose a Cartesian coordinate system withz axis along
the background field direction. The background field isB0 =

B0zez+B0⊥, with B0z the dipole field strength atz, which is
the length along its field line from the equatorial plane. We
choose

B0⊥ = −x
∂B0z

∂z
ex, (1)

so that∇·B0 = 0. Note thatB0⊥/B0z∼ ε0 ≡ ρ⊥/R, with ρ⊥

the particle’s gyroradius andR the planet radius. The above
choice of the background field is equivalent to ignoring the
curvature of the Earth’s dipole field.

2.1 Equations of whistler wave fields

We now consider the interaction between a charged parti-
cle and a whistler mode wave. The whistler mode wave
magnetic and electric fields with wave normal vectork =

k(sinψ,0,cosψ) are given by

Bw = exB
w
x cos8−eyB

w
y sin8+ezB

w
z cos8, (2)

Ew = −exE
w
x sin8−eyE

w
y cos8−ezE

w
z sin8, (3)

where8≡
∫

k ·dr −
∫
ωdt is the wave phase angle,ψ is the

wave normal angle, andei is the unit vector of thei-th axis.
Here the wave fields satisfy

Bx/By = −
D

(
P −n2sin2ψ

)
P

(
S−n2

) , (4)

Bz/By =
Dsinψ

(
P −n2sin2ψ

)
P cosψ

(
S−n2

) , (5)

Ex/By =
c
(
P −n2sin2ψ

)
nP cosψ

, (6)

Ey/By =
Dc

(
P −n2sin2ψ

)
nP cosψ

(
n2−S

) , (7)

Ez/By = −
cnsinψ

P
, (8)

which can be derived from Maxwell equationsk × Ew =

ωBw andn× (n×Ew)+K ·Ew = 0 with n ≡ ck/ω the re-
fractive index, andK the dielectric tensor (Stix, 1962, p. 10).
HereP , S, andD are the usual Stix parameters, defined in
Stix (1962, p. 10), andc is the speed of light in vacuum.

It is convenient to define the R- and L-components of the
perpendicular wave magnetic field according to

BR =
Bw

x +Bw
y

2

(
excos8−eysin8

)
, (9)

BL =
Bw

x −Bw
y

2

(
excos8+eysin8

)
, (10)

so thatBw
⊥

= BR +BL . The relationship betweenBR, BL ,
andp⊥ is shown in Fig.1. Similarly we define the R- and
L-components of the perpendicular electric field as

ER =
Ew

x +Ew
y

2

(
−exsin8−eycos8

)
, (11)

EL =
Ew

x −Ew
y

2

(
−exsin8+eycos8

)
, (12)

andEw
⊥

= ER+EL .

2.2 The Lorentz equation of motion

The relativistic Lorentz equation of motion is

ṗ = q

[
Ew +

p

γm
×(Bw +B0)

]
, (13)

Here q is the charge of the particle,m its mass, andγ ≡√
1+p2/m2c2 the relativistic factor. Note that the sign of

the charge is contained inq, so for an electronq = −1.6×

10−19 C in SI units.
We now write the Lorentz equation using coordinates

(p⊥,p‖,ζ ). Usingθ ≡ tan−1(py/px), the angle betweenp⊥

andex (as shown in Fig.1), we have the angle betweenp⊥

andBw
⊥

asζ = θ +8. To the lowest order inε ≡ |Bw|/B0,
which is about 10−5

∼ 10−3 for typical chorus waves ob-
served in space (Bell, 1984; Tsurutani et al., 2009), we have

θ̇ =
1

1+
(
py/px

)2

d

dt

(
py

px

)
= −�, (14)

where�≡ qB0z/γm. Note that we have dropped theO(ε)
term in the above equation, because its gyro-averaged value
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isO(ε2) (Bell, 1984), thus the term will not contribute to the
analysis in Sect.3, where only terms up toO(ε) are kept.
Thus

ζ̇ = θ̇+8̇= −�+k‖v‖ +kxvx −ω (15)

The equation describinġp‖ is

ṗ‖ = q

[
Ew +

p

γm
×(Bw +B0)

]
·ez. (16)

By using the vector relations betweenp⊥ andBR andBL as
shown in Fig.1 and keeping only first order terms inε and
ε0, it can be shown that

ṗ‖ = −qEw
z sin8−ωRp⊥sinζ−ωLp⊥sin(ζ −28)+A1,(17)

whereωR,L = qBw
R,L/γm and

A1 =

(
qp⊥

γm
×B0⊥

)
·ez. (18)

The equation ofṗ⊥ = q [Ew +(p/γm)×(Bw +B0)] · e⊥,
wheree⊥ ≡ p⊥/p⊥, could be shown similarly to be

ṗ⊥ =
(
p‖ −κR

)
ωRsinζ+

(
p‖ +κL

)
ωL sin(ζ −28)+A2,(19)

where

κR = γm
Ew

R

Bw
R

= γm
Ew

x +Ew
y

Bw
x +Bw

y
, (20)

κR = γm
Ew

L

Bw
L

= γm
Ew

x −Ew
y

Bw
x −Bw

y
, (21)

and

A2 ≡
q

γm
(p× B0) ·e⊥. (22)

3 Conditions for nonlinear interactions

As shown byBell (1984) for the nonrelativistic case, phase
trapping could happen in a gyro-averaged sense for obliquely
propagating waves. To find the condition under which phase
trapping could occur, we apply d/dt to Eq. (15) giving

ζ̈ = −�̇− ω̇+ λ̈+
d

dt

(
k‖v‖

)
, (23)

whereλ≡
∫
kxdx= [kxv⊥/(−�)]sinθ = kxρ⊥sinθ = βsinθ

to the lowest order inε. We have assumed thatkxρ⊥ does not
vary significantly during one gyroperiod. Expanding the last
term on the right hand side of the above equation, we have

ζ̈ = −�̇− ω̇+ λ̈+ k̇‖v‖ +k‖v̇‖. (24)

For interactions near thel0-order resonance so thatl0�+

k‖v‖ −ω' 0 is satisfied, we defineη= ζ −λ− (l0 +1)θ so
that η̇= l0�+k‖v‖ −ω and

η̈= l0�̇+ k̇‖v‖ +k‖v̇‖ − ω̇. (25)

Fig. 1. An illustration of the relative positions of wave fieldsBR
andBL and particle’s perpendicular momentump⊥.

Here the time derivative of� andv‖ could be found simply
from their definitions as

�̇ ' v‖
∂�

∂z
−�

γ̇

γ
, (26)

v̇‖ =
ṗ‖

γm
−v‖

γ̇

γ
. (27)

The time rate of change ofγ in Eqs. (26) and (27) could be
found from the dot product ofp and Eq. (13), which gives

dp2

dt
= 2qEw ·p, (28)

and this leads to

dγ 2

dt
=

dp2

dt

1

m2c2
= 2q

Ew ·p

m2c2
(29)

by the use ofγ 2
= 1+p2/m2c2. Consequently,

dγ

dt
=
q

γ

Ew ·p

m2c2
=

q

γm2c2[
−p‖E

w
z sin8−Ew

Rp⊥sinζ+Ew
L p⊥sin(ζ−28)

]
.

(30)

Substituting Eqs. (26) and (27) into Eq. (25) and using (30)
gives us

η̈=h(r,t)+C1sin8+C2sinζ +C3sin(ζ −28), (31)

where

C1 =
(
l0�+k‖v‖

) q

γ 2m2c2
p‖E

w
z −

k‖

γm
qEw

z , (32)
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C2 =
(
l0�+k‖v‖

) q

γ 2m2c2
p⊥E

w
R −

k‖

γm
p⊥ωR, (33)

C3 = −
(
l0�+k‖v‖

) q

γ 2m2c2
p⊥E

w
L −

k‖

γm
p⊥ωL, (34)

and

h(r,t)= l0v‖
∂�

∂z
+ k̇‖v‖ − ω̇+A1

k‖

γm
. (35)

Making use of the Bessel function identity

eiβsinθ
=

∞∑
l=−∞

Jl(β)e
ilθ , (36)

whereJl(β) is thel-th order Bessel function of the first kind
with argumentβ, we have

η̈ = h(r,t)+C1

∑
l

Jl(β)sin[η+(l+ l0)θ ]

+C2

∑
l

Jl(β)sin[η+(l+ l0+1)θ ]

−C3

∑
l

Jl(β)sin[η+(l+ l0−1)θ ] . (37)

Averaging over the rapidly oscillating gyrophase angleθ
and using thatη' 〈η〉 throughO(ε) near thel0-th order res-
onance, we have

η̈+ω2
t sinη=h(z,t), (38)

where

ω2
t = −

[
〈C1〉J−l0 +〈C2〉J−l0−1−〈C3〉J−l0+1

]
(39)

with the argument of Bessel functionsβ and

h(z,t)≡〈h(r,t)〉=l0v‖
∂�

∂z
+k̇‖v‖−ω̇−

k‖

2�

p2
⊥

(γm)2

∂�

∂z
. (40)

Here 〈C1〉,〈C2〉, and 〈C3〉 have the same expressions as
Eqs. (32)–(34), but with all variables understood to be gyro-
averaged.

Equation (38) has the form of a driven pendulum equa-
tion. We define a dimensionless parameterχ = |ω2

t |/|h(z,t)|

to represent the ratio of the wave-induced motion (ω2
t ) and

the adiabatic motion (h(z,t)). Whenχ < 1, no phase trap-
ping is expected. On the other hand, ifχ > 1, an electron
might be phase trapped so thatη oscillates around some equi-
librium value and the electron stays resonant with the wave,
causing large changes of its energy and pitch angle. Previous
theory also suggests that chorus waves are generated because
of phase trapping of resonant electrons (Omura et al., 2008).

4 Applications to interactions between electrons and
whistler mode waves

To estimate the importance of nonlinear interactions and to
illustrate the use of the dimensionless parameterχ , we con-
sider nonlinear interaction regions (in latitudeλ and wave

normal angleψ) for an electron resonant with a constant
frequency whistler mode wave atL = 5 with frequency
ω = 0.1�ce0, where�ce0 is the electron gyrofrequency on the
equatorial plane. A constant frequency whistler wave could
come from VLF ground transmitters. For a discrete chorus
element with rising or falling tones (Santoĺık et al., 2004),
the time rate change ofω should be considered in the cal-
culation (e.g.,Omura et al., 2008). For simplicity, we also
assume a constant density (ne = 10.0 cm−3) along the mag-
netic field line. Note that the second term in Eq. (40) is pro-
portional to k̇‖. This term is of the order of∂�/∂z for a
parallel propagating wave with constant frequency, assum-
ing constant electron density along the background magnetic
field. However, so far there is no analytical model for calcu-
lating general̇k‖ for oblique waves along a field line. A full
treatment of the problem could be conducted in combination
of ray-tracing programs to calculate variation ofk‖ along a
magnetic field line. In this work, we ignore thek̇‖ term for
illustration purposes. Nonetheless, the main feature of the
nonlinear interaction regions are retained, as shown below.

Figure 2 shows the parameterχ for the main counter-
streaming gyroresonancel0 = −1, for different local pitch
angles and wave amplitudes. Theχ is estimated by calcu-
lating the absolute value of the ratio ofω2

t (Eq.39) to h(z,t)
(Eq. 40), where the factor∂�/∂z is estimated using Earth’s
dipole magnetic field. We choose the electron’s parallel and
perpendicular velocities so that the first order resonance con-
dition η̇ = −�+ k‖v‖ −ω = 0 is always satisfied for each
pitch angle, latitude, and wave normal angle. Regions where
phase trapping could happen (χ > 1) are indicated by red
color. From Fig.2, several features of phase trapping re-
gions can be seen. First, it is easier for nonlinear interactions
to occur near the equatorial region, where the inhomogene-
ity factor h(z,t) is small. Second, as the wave amplitude
increases, the latitude range where phase trapping could hap-
pen becomes larger for a givenα andψ . At E= 1 MeV, the
nonlinear effect is important and should be considered for
α= 50◦ and 70◦ whenBw

y = 1 nT. Third, the latitude range
for phase trapping is larger atα = 50◦ than at 10◦ and 70◦

for a givenα andψ , thus it might be easier for nonlinear
interactions to occur for electrons with medium pitch angles.
This result is consistent withInan et al.(1978) that deals with
nonlinear interactions between nonrelativistic electrons and a
parallel propagating wave.Inan et al.(1978) showed that, for
the case they considered,χ is roughly proportional to tanα
whenα is small and(tanα)−1 whenα is large, with a lo-
cal maximum atα∼ 75◦ for the parameters they used, if all
other parameters are kept constant (see Eq. 9 of (Inan et al.,
1978)). Fourth, the particular shape of nonlinear resonance
regions whenα= 70◦ contains periodic “nulls” inψ , and is
related to a phenomenon called “anomalous phase trapping”
by Bell (1984). This anomalous phase trapping is caused by
the change of sign ofω2

t as explained inBell (1984). These
features are consistent with previous results.
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Fig. 2. The nonlinear parameter χ plotted as a function of latitude and wave normal angle for a whistler

wave with ω = 0.1Ωce0 at selected pitch angles, with effects of time rate change of k‖ ignored. Here Ωce0

is the electron angular gyrofrequency at the equatorial plane. The first three rows correspond to different

wave amplitudes: Bw
y = 0.01 nT (first row), 0.1 nT (second row), and 1.0 nT (third row). Different columns

correspond to different local pitch angles: α = 10.0◦(left), 50.0◦(middle), and 70.0◦(right). All black lines

show the location of Eres =1 MeV. The fourth row shows the electron resonant energy in MeV.

13

Fig. 2. The nonlinear parameterχ plotted as a function of latitude and wave normal angle for a whistler wave withω= 0.1�ce0 at selected
pitch angles, with effects of time rate change ofk‖ ignored. Here�ce0 is the electron angular gyrofrequency at the equatorial plane. The
first three rows correspond to different wave amplitudes:Bw

y = 0.01 nT (first row), 0.1 nT (second row), and 1.0 nT (third row). Different
columns correspond to different local pitch angles:α= 10.0◦ (left), 50.0◦ (middle), and 70.0◦ (right). All black lines show the location of
Eres= 1 MeV. The fourth row shows the electron resonant energy in MeV.

5 Discussion and conclusions

In this work, we derived the equations that describe nonlin-
ear interactions between relativistic electrons and obliquely
propagating whistler mode waves from the Lorentz equation
of motion. Previous work has been done on nonlinear inter-
actions between nonrelativistic electrons and oblique waves
or relativistic electrons and parallel propagating waves, but
not both. Thus this work generalizes previous results ofBell
(1984) andOmura et al.(2008) and is applicable to interac-
tions between relativistic radiation belt electrons and oblique
whistler mode waves.

Using a simplified model and ignoring effects ofk̇‖, we
showed potential regions of nonlinear interactions between
electrons and a constant frequency whistler wave. The main
features we found are consistent with previous results, and
nonlinear interactions might be important for electrons even
with moderate amplitude whistler waves (0.1 nT) near the
equatorial region. In general, the nonlinear parameterχ de-
pends on wave amplitude, background inhomogeneity, parti-
cle’s pitch angle, and the time variations ofω andk‖.

Effects ofk̇‖ should be considered in a more careful eval-
uation of nonlinear interaction regions with the aid of a ray-
tracing program. The overall importance of nonlinear inter-
actions in radiation belt dynamics is currently under intensive

research from the point of view of both theory and observa-
tion. Furthermore, phase trapping is generally considered to
be important in the generation of chorus waves. Thus un-
derstanding the nonlinear interactions is an important step to
better understand the dynamics of radiation belts.
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