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Abstract. The energetics of internal waves in the presence
of a background sheared current is explored via numerical
simulations for four different situations based on oceano-
graphic conditions: the nonlinear interaction of two internal
solitary waves; an internal solitary wave shoaling through a
turning point; internal solitary wave reflection from a sloping
boundary and a deep-water internal seiche trapped in a deep
basin. In the simulations with variable water depth using the
Boussinesq approximation the combination of a background
sheared current, bathymetry and a rigid lid results in a change
in the total energy of the system due to the work done by a
pressure change that is established across the domain. A fi-
nal simulation of the deep-water internal seiche in which the
Boussinesq approximation is not invoked and a diffuse air-
water interface is added to the system results in the energy
remaining constant because the generation of surface waves
prevents the establishment of a net pressure increase across
the domain. The difference in the perturbation energy in the
Boussinesq and non-Boussinesq simulations is accounted for
by the surface waves.

1 Introduction

The fate of energy associated with large amplitude internal
solitary-like waves (ISWs) in the ocean is an important prob-
lem that has received considerable attention primarily be-
cause of its implications for mixing. For exampleSandstrom
and Elliott(1984) concluded that dissipation of ISWs consti-
tutes the primary mixing mechanism inshore of the Scotian
Shelf break whileJeans and Sherwin(2001) concluded that
ISWs on the Portuguese Shelf provide an important energy
source for mixing. The energetics of ISWs have been studied
in many localities, including the Monterey Bay and Ore-
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gon shelves (Carter et al., 2005; Moum et al., 2007), in the
St. Lawrence Estuary (Bourgault et al., 2007), Massachusetts
Bay (Scotti et al., 2006) and in the South China Sea (Klymak
et al., 2006) as well as in laboratory studies (Helfrich, 1992;
Michallet and Ivey, 1999). Recent theoretical and numerical
studies have proposed the use of an available potential en-
ergy (APE) density to calculate ISW energies (Scotti et al.,
2006; Lamb, 2007, 2008; Lamb and Nguyen, 2009).

In this paper we investigate the energetics of ISWs prop-
agating in the presence of a vertically-sheared background
current. While many authors have investigated the vertical
propagation of internal waves through a vertically varying
background current, relatively little attention has been fo-
cussed on ISWs. Weakly nonlinear models of KdV type have
been derived for stratified fluids with background sheared
currents (Benney, 1966; Gear and Grimshaw, 1983). Zhou
and Grimshaw(1989) extended these results to obtain evo-
lution equations for weakly-nonlinear ISWs propagating
through a slowly varying background state, including vari-
ations of the stratification, currents and water depth. Higher-
order KdV-type models for ISWs in a non-Boussinesq strati-
fied shear flow with a free surface have also been investigated
(Grimshaw et al., 2002). The properties of exact ISWs in the
presence of background currents were considered byStastna
and Lamb(2002). None of these authors considered wave
energies, which is the focus of this paper.

In a turbulent flow or in the study of slowly varying wave
trains, a background flow is normally defined using some
type of averaging. In studies of turbulence an ensemble av-
erage is usually used in theoretical formulations, however
in field observations or laboratory experiments it is neces-
sary to use a spatial or temporal average. A similar ap-
proach can be used when studying slowly varying wave trains
(Bretherton and Garrett, 1968; Bretherton, 1969; Whitham,
1974; Grimshaw, 1985; Craik, 1985). If the wave train varies
slowly in space one may choose to define an averaging op-
erator over several wave lengths. In the cases of turbulence
and slowly varying wave trains the result is that the velocity
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field is split into a mean and perturbation via

u = 〈u〉+u′
= U +u′, (1)

where 〈·〉 denotes the averaging operator. The averaging
operator has the property that〈Uiu

′

j 〉 = Ui〈u
′

j 〉 = 0 since
〈u′

i〉 = 0. Here the subscripts denote components of the ve-
locity vector. The consequence of the use of this type of
averaging is that the mean kinetic energy per unit mass (the
Boussinesq approximation is used in this discussion) is

〈
1

2
uiui〉 =

1

2
UiUi +〈

1

2
u′

iu
′

i〉 (2)

where repeated indices denote summation over the velocity
components. The first term on the right is the kinetic en-
ergy density of the mean flow while the second term is the
mean perturbation kinetic energy density (“wave” or “turbu-
lent” kinetic energy in the context of slowly varying waves
or turbulence, respectively). Both terms are positive definite.
Strictly speaking, for slowly varying wave trainsU varies on
slow length and time scales in which case〈Uiu

′

j 〉 may not be
precisely zero. Such terms make higher-order contributions
to the kinetic energy than the terms retained above.

In the context of internal solitary waves one could like-
wise define a background flow via averaging. For example
for a two-dimensional flow a background horizontal current
U(z,t) could be defined as

U(z,t)=
1

L

∫ xr

xl

u(x′,z,t)dx′ (3)

whereL = xr − xl is the length of the domain of interest.
Then the contribution to the kinetic energy density per unit
mass from the horizontal velocity component would be

1

2
U2

+Uu′
+

1

2
u′2. (4)

Integrating over the domain of interest the integrated kinetic
energy per unit mass is

L

2

∫ 0

−H

U2dz+

∫ xr

xl

∫ 0

−H

1

2

(
u′2

+w2
)
dzdx, (5)

where the fluid is assumed to lie betweenz = −H andz = 0,
because∫ xr

xl

Uu′dx = U

∫ xr

xl

u′dx = 0, (6)

by definition. Herew is the vertical velocity with zero mean.
With this formulation the integrated kinetic energy has two
parts, a “background” kinetic energy and a “perturbation” ki-
netic energy, both of which are positive definite.

In the context of internal solitary waves the definition of
a background current via horizontal averaging is problematic
because it depends on the length of the domain and it depends

on time (e.g., it will change as two internal solitary waves in-
teract). In this paper we use the far field state to define the
background velocity fieldŪ (z) which in the cases consid-
ered here is independent of time. The horizontal integral of
the horizontal velocity perturbation is no longer zero and the
perturbation kinetic energy includes a term̄Uu′ which may
be negative. Because it is first-order in the perturbation ve-
locity u′ it can dominate the second-order termu′u′/2 with
the result that the contribution to the perturbation kinetic en-
ergy can be negative if|Ū +u′

| < |Ū |. This paper explores
the implications of using the far-field state as the background
velocity.

The numerical model used in this study can be run with
and without making the Boussinesq approximation. It is de-
scribed in Sect. 2. Evolution equations for the perturbation
mechanical energies are derived in Sect. 3. When the Boussi-
nesq approximation is made the perturbation kinetic energy
can be split into two-terms, these being first- and second-
order in the perturbation velocity fields. Both the total per-
turbation energy and the second-order perturbation energies
are considered. This is done because the first-order term is
often not present because of the way the background veloc-
ity field is defined. While it is necessary to use the full per-
turbation energy, consideration of both terms illustrates the
significance of the first-order energy term. It is shown that
the total perturbation energy is conserved in a flat-bottomed
domain, however in a domain with variable depth a pressure
drop can be formed across the domain which results in net
work being done on the fluid within the domain of interest
and a concomitant change in energy. When the Boussinesq
approximation is not made the decomposition of the pertur-
bation energy into terms of different orders is more compli-
cated and in this situation we consider the total perturbation
energy only. The dependence of ISW energies on the strength
of the background current is discussed in Sect. 4. Hyperbolic
tangent density and velocity profiles are used for four sets of
cases with differing depths of the pycnocline and shear layer.
In Sect. 5 we turn to time-evolving wave fields. Results from
four cases are presented. For these simulations the Boussi-
nesq approximation is used and the model uses a rigid lid
at the water surface. The cases are based on oceanographic
conditions however the parameters are typical of laboratory
experiments. The first three cases involving internal solitary
waves: the nonlinear interaction of two ISWs; an ISW pass-
ing through a turning point as it shoals onto a shelf; and ISW
reflection from a sloping boundary. The interaction of two
ISWs is considered because it is a wave field undergoing sig-
nificant evolution in a flat-bottomed domain for which the to-
tal pertubation energy is conserved. In contrast, in the other
cases the total energy changes because of the variable water
depth. The fourth case considered is a deep-water internal
seiche trapped in a bottom basin. The mechanism behind the
energy change is discussed in Sect. 6. Results from a single
run of the deep-water seiche case which relaxes the Boussi-
nesq approximation, making it possible to add a diffuse free
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surface, are presented in Sect. 7. Conclusions are presented
in Sect. 8.

2 Numerical model

The Internal Gravity Wave (IGW) model is the two-
dimensional, non-hydrostatic, nonlinear model used in this
work. It was first introduced in Lamb (1994) to investigate
the generation and evolution of internal gravity waves in the
ocean and has been extended to solve the non-Boussinesq
equations. The governing equations we consider are the in-
compressible Navier-Stokes equations

ρ̃ (ut +u ·∇u) = −∇p̃− ρ̃gk̂+µ∇
2u, (7a)

ρ̃t +u ·∇ρ̃ = κ∇
2ρ̃, (7b)

∇ ·u = 0. (7c)

Hereu = (u,w) is the velocity in the verticalxz-plane,ρ̃ is
the density,p̃ is the pressure,µ the viscosity andκ the diffu-
sivity. The equations are solved by first splitting the density
and pressure into two parts via

ρ̃ = ρ0(1+ρ),

p̃ = −ρ0gz+ρ0p, (8)

whereρ0 is a reference density. In the following the scaled
non-dimensional densityρ will be referred to simply as the
density. The governing equations become

(1+ερ)(ut +u ·∇u) = −∇p−ρgk̂+ν∇
2u, (9a)

ρt +u ·∇ρ = κ∇
2ρ, (9b)

∇ ·u = 0. (9c)

The parameterε which has been introduced is set to zero
if the Boussinesq approximation is made and is set to one
otherwise.ν = µ/ρ0 is the kinematic viscosity.

The equations are solved using a second-order projection
method (Bell et al., 1989; Bell and Marcus, 1992; Lamb,
1994) on a domain

D=

{
(x,z)||xl ≤ x ≤ xr,−H(x) = −H +h(x) ≤ z ≤ ztop

}
,

(10)

There is no normal flow through the upper and the lower
boundaries. At the left boundary the inflow is specified while
a radiation condition is applied at the right boundary. For
these simulations there is a steady background currentŪ (z)

which is confined to a surface layer of thicknesshs. The
background current does not interact with the bathymetry.
The domain is sufficiently long that no perturbations reach
the boundary. The numerical model uses a quadrilateral grid
constructed using vertically stretched terrain-following coor-
dinates.

Some of the model simulations which use the Boussinesq
approximation are initialized with exact ISWs. These waves

are calculated by solving the Dubreil-Jacotin-Long (DJL)
equation, extended to include background currents (Stastna
and Lamb, 2002; Lamb, 2003), to find the vertical displace-
ment,η(x,z) of streamlines passing through(x,z) relative to
its far-upstream height in a reference frame moving with the
wave. The DJL equation is

∇
2η+

Ū ′(z−η)

c− Ū (z−η)

(
η2

x +(1−ηz)
2
−1

)
+

N2(z−η)(
c− Ū (c−η)

)2η = 0, (11)

which is solved with boundary conditionsη = 0 atz = 0,−H

andη = 0 at the lateral boundaries of the subdomain in which
the waves are computed. For a sufficiently wide subdomain,
as used here, these are equivalent toη = 0 asx → ±∞, as
appropriate for solitary waves. The propagation speed of the
solitary wave relative to the background flow̄U(z), c, is an
eigenvalue which is found as part of the solution. The DJL
equation is solved using an iterative method based on a vari-
ational formulation of the problem (Turkington et al., 1991;
Stastna and Lamb, 2002). This method yields an ISW with a
specified available potential energy.

3 Energy conservation and energy flux

Neglecting viscous and diffusive effects the pseudo-energy
equation is

∂

∂t
(Ek +Ea)+∇ ·(u(Ek +Ea+pd)) = 0, (12)

wherepd is the pressure disturbance relative to the hydro-
static pressure of the undisturbed flowp̄(z),

Ek =
1

2
ρ0(1+ερ)

(
u2

+w2
)
, (13)

is the kinetic energy density and

Ea(x,z,t) = ρ0g

∫ z∗(x,z,t)

z

(ρ̄(s)−ρ(x,z,t))ds, (14)

is the available potential energy density. Hereρ̄(z) is the ref-
erence density andz∗(x,z,t) is the height of the fluid particle
at (x,z,t) in the reference stratification (Scotti et al., 2006;
Lamb, 2007, 2008; Lamb and Nguyen, 2009). In the fol-
lowing we use the background stratification as the reference
density which is appropriate for calculating the available po-
tential energy in an infinitely long domainLamb(2008).

All the cases considered here involve a steady background
currentŪ . Let

u = Ū (z)+u′, (15)

whereu′ is the horizontal velocity perturbation.
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3.1 Energy equations under the Boussinesq
approximation

If the Boussinesq approximation is made the kinetic energy
density (per unit volume) can be split into three terms

Ek = Ek0+Ek1+Ek2, (16)

where

Ek0 =
ρ0

2
Ū2,

Ek1 = ρ0Ūu′,

Ek2 =
ρ0

2
(u′2

+w2), (17)

are the contributions to the kinetic energy density which are
of order zero, one and two in the perturbation velocities. We
will refer to

Ekp = Ek1+Ek2, (18)

as the perturbation kinetic energy density.
SinceŪ is independent of time∂

∂t
(Ek) =

∂
∂t

(Ek1+Ek2).
Now

∂

∂t
Ek1 = ρ0Ūu′

t ,

= −ρ0Ū∇ ·(uu)− Ū∇ ·(pd,0),

= −∇ ·
(
ρ0uŪu+(pd Ū ,0)

)
+ρ0uw

dŪ

dz
. (19)

Rewriting the last term using

uw
dŪ

dz
= u′w

dŪ

dz
+ Ūw

dŪ

dz
,

= u′w
dŪ

dz
+∇ ·

(
1

2
Ū2u

)
, (20)

allows us to write the evolution equation forEk1 as

∂

∂t
Ek1+∇ ·

(
u(Ek0+Ek1)+

(
pdŪ ,0

))
−u′w

dŪ

dz
=0. (21)

Subtracting this from (12) results in

∂

∂t
(Ek2+Ea)+∇ ·

(
u(Ek2+Ea)+pd(u

′,w)
)

+ρ0u
′w

dŪ

dz
= 0. (22)

This equation says that the second-order perturbation energy
is not conserved: it can change due to the shear production
termu′w dŪ

dz
which is familiar from turbulence theory. It acts

to exchange energy between the first- and second-order en-
ergy terms. Note however that the shear production term is
non-zero only in regions wheredŪ

dz
is non-zero, i.e., at the

depth of the shear layer in the background flow which does
not necessarily coincide with the depth of the perturbed shear

layer. The reason is thatu′ is the horizontal velocity pertur-
bation relative to the background flow̄U(z). When a fluid
particle moves vertically, with constant velocityu, through
a depth where the background flow has strong shear, the ki-
netic energy of the fluid particle may not change but asŪ

changes so doesu′ and there can be large changes inEk2.
In the following we will use bars over the various energy

densities to indicate values integrated over the domainD. In
the simulations initialized with ISWs considered below the
initial wave energies are based on integrals over a subdomain
containing a single ISW.

Integrating (12) overD gives the energy balance equation

d

dt
Ēpseudo= (Kf +APEf +W)

∣∣∣x`

xr
, (23)

whereEpseudo= Ea+Ek is the total pseudo-energy density,

Kf =

∫ 0

−H(x)

uEkdz,

APEf =

∫ 0

−H(x)

uEadz, (24)

are the vertically integrated kinetic and available potential
energy flux densities, and

W =

∫ 0

−H(x)

upddz, (25)

is the rate work is done by the pressure perturbation. The
total energy flux through a horizontal locationx is Ef = Kf +

APEf +W .
By definitionĒk0 is constant in time so

d

dt

(
Ēkp+ Ēa

)
= (Kf +APEf +W)

∣∣∣x`

xr
, (26)

To further simplify the energy equation we assume that
no waves arrive at the boundaries in the time of interest.
In particular we will assume thatu′

= w = 0 at the lateral
boundaries. As we will see below we will have to allow for
a change in the pressurepd. Thus atx = xl andxr, APEf = 0
and

Kf =

∫ 0

−H(x)

ρ0

2
Ū3(z)dz. (27)

This integral has the same value at the two lateral boundaries,
hence

d

dt

(
Ēkp+ Ēa

)
=

∫ 0

−H

Ū (z)pd

∣∣∣x`

xr
dz. (28)

At the boundaries the pressure is in hydrostatic balance with
the undisturbed density field̄ρ(z) and hence is given by

p = ps+

∫ 0

z

ρ0gρ̄(z)dz, (29)
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whereps is the surface pressure, so

d

dt

(
Ēkp+ Ēa

)
= −1psM, (30)

where

M =

∫ 0

−H

Ū (z)dz, (31)

is the volume flux associated with the background current
entering through the left boundary and1ps= ps(xr)−ps(xl)

is the change in the surface pressure across the domain.
Since the volume flux∫ 0

−H(x)

udz (32)

is independent ofx andt

0=

∫ 0

−H(x)

ρ0ut dz = −

∫ 0

−H(x)

∇ ·(ρ0uu+(pd,0))dz,

= −

∮
(pd,0) · n̂ds, (33)

sinceu · n̂ = 0 along the lower and upper boundaries and the
integrals ofu · n̂ along the left and right lateral boundaries,
whereu = Ū , cancel.

If the water depthH is constant this gives

0 = −

∫ 0

−H

pd|
xr
xl

dz,

= −

∫ 0

−H

1ps|
xr
xl

dz,

= −1psH. (34)

Hence, if the depth is uniform the change in the surface pres-
sure across the domain is zero and (30) reduces to

d

dt

(
Ēkp+ Ēa

)
= 0. (35)

If the water depth is not uniform1ps is not necessarily zero
and the perturbation energȳEkp+ Ēa is not necessarily con-
stant in time.

Integrating the evolution forEk1 gives

dĒk1

dt
= −

∮
ρ0Ūu′u · n̂ds −

∮
Ū (pd,0) · n̂ds

+

∫ ∫
D

ρ0u
′wŪ ′dzdx. (36)

The first term on the right is zero because eitheru′ or u · n̂

are zero on the domain boundary. The second term is also
zero along the upper and lower boundaries since the back-
ground current is assumed to be confined to a region above
the bottom. Thus

dĒk1

dt
= −1psM +P, (37)

where

P =

∫ ∫
D

ρ0u
′w

dŪ

dz
dzdx (38)

is the (integrated) shear production term.
Subtracting this from (30) gives an evolution equation for

the second-order energy perturbation

d

dt

(
Ēk2+ Ēa

)
= −P. (39)

In this equation each term is second-order in the perturbation.

3.2 Energy equations without the Boussinesq
approximation

If the Boussinesq approximation is not made then it is less
convenient to separate the kinetic energy into terms of dif-
ferent order in the perturbation quantities as there are many
more terms and there is in addition a third-order term. Thus,
if the Boussinesq approximation is not made we only con-
sider the perturbation kinetic energy density which now has
the form

Ekp = Ek −
ρ0(1+ ρ̄)

2
Ū2. (40)

The integrated energy equation (30) is still satisfied.

4 Energetics of internal solitary waves under
the Boussinesq approximation

Before considering evolving internal wave fields some results
on the energetics of internal solitary waves are presented.
Further properties for linear and hyperbolic tangent back-
ground currents can be found inStastna and Lamb(2002).

We consider background stratification and velocity fields
of the form

ρ = ρ̄(z) = −
1ρ

2
tanh

(
z−zpyc

dpyc

)
, (41)

and

Ū (z) =
Um

2

(
1+ tanh

(
z−zs

ds

))
. (42)

and focus on wave energies for cases with waves propagating
against a surface current, that is, forUm < 0 and wave prop-
agation speedsc > 0. A water depth ofH = 1 m is used and
the reference density is taken asρ0 = 1000 kg m−3.

In Fig. 1 the integrated available potential energyĒa and
perturbation kinetic energies̄Ekp are plotted as a function
of wave amplitude max|η| for four sets of cases. They all
use a density jump of1ρ = 0.04 across the pycnocline and
the thickness of the pycnocline and shear layer are fixed at
dpyc = 0.05 m andds = 0.03 m, respectively. Note that scal-
ing 1ρ andUm by factors ofr and

√
r respectively yields
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Fig. 1. Ēkp (dashed) andĒa as a function of wave amplitude
using hyperbolic tangent stratifications with1ρ = 0.04, dpyc =

0.05 m and hyperbolic tangent shear layers withds = 0.03 m.
(a) Coincident pycnocline and shear layer near the surface with
(zs,zpyc) = (−0.2,−0.2) m. (b) Shear layer below the pycno-
cline with (zs,zpyc) = (−0.3,−0.2) m. (c) Shear layer above the
pycnocline with(zs,zpyc) = (−0.2,−0.3) m. (d) Coincident py-
cnocline and shear layer near the mid-depth with(zs,zpyc) =

(−0.3,−0.3) m. In each plot the sets of curves are for different
values ofUm starting atUm = 0 (left most curve) and decreasing by
increments of−0.05 m s−1. Total water depth isH = 1 m.

a wave with the same shape (i.e.,η(x,z) is unchanged) with
c, u′ andw increased by a factor of

√
r andĒa andĒkp in-

creased by a factor ofr. The density change corresponds to
upper and lower layer densities of 1000 and 1040 kg m−3,
typical of many laboratory experiments, using a reference
density ofρ0 = 1000 kg m−3. Waves were calculated for a
range of available potential energies withĒa varying from 1
to 100 J m−1 in increments of 1 J m−1 using a KdV internal
solitary wave withĒa= 1 J m−1 as the initial guess for the it-
erative solver. Thereafter as̄Ea is increased along each curve
the previous solution is used as the initial guess.

Figure1 shows results for four sets of values of(zs,zpyc).
In each set waves are calculated for different values of
Um, starting atUm = 0 and decreasing by increments of
−0.05 m s−1.

Figure1a shows the results for a coincident shear layer and
pycnocline using(zs,zpyc) = (−0.2,−0.2) m. The leftmost
curves show the results forUm = 0. AsĒa increases the wave
amplitude asymptotes to a limiting value. This is indicative
of the conjugate flow limit being reached at which waves flat-

ten in the centre and broaden as the energy in the waves is in-
creased (Tung et al., 1982; Turner and Vanden-Broeck, 1988;
Lamb and Wan, 1998). When there is no background current
the maximum ISW amplitude is−0.32 m (negative imply-
ing a wave of depression), slightly larger than the distance
of the pycnocline from the mid-depth. For a two layer fluid
the maximum displacement would be−0.3 m but because
of the relatively thick pycnocline the maximum amplitude is
slightly larger. Wave propagation speeds increase from 0.253
to 0.296 m s−1 as the wave amplitude increases. The kinetic
energy of the wave is slightly larger than the available po-
tential energy (it must always be larger in the absence of a
background current – seeTurkington et al.(1991); Lamb and
Nguyen(2009)).

The limiting amplitudes increase linearly asUm decreases
which is consistent with theoretical predictions for conjugate
flows. Conjugate flows for two- and three-layer flows were
explored inLamb(2000). There it was shown that under the
Boussinesq approximation the conjugate flow amplitude for
a two layer flow with coincident density and velocity jumps
is

ηconj= −zpyc+0.5

(
−H +

√
H

1ρg
Um

)
, (43)

whereH = 1 m is the water depth. For the cases withzpyc=

zs= −0.2 m shown in Fig.1a this gives

ηconj= −0.3+0.7982Um. (44)

For Um = −0.2 m s−1 we haveηconj = −0.46 m. For the
computed ISWs, the largest wave amplitude forUm =

−0.2 m s−1 is−0.47 m. Differences can be expected because
the density and velocity profiles used to calculate ISWs un-
dergo smooth transitions with a relatively broad pycnocline.

As Um decreases the kinetic energy decreases, becoming
negative for small amplitude waves, and then positive for suf-
ficiently large waves. The kinetic energy is always less than
the available potential energy for the cases withUm < 0. The
negativeĒkp values occur because the wave induced veloc-
ity is positive in the upper layer. Because it is in the opposite
direction to the background flow the result is a decrease in
the horizontal velocity in the upper layer, i.e.,|Ū +u′

| < |Ū |,
with a corresponding decrease in kinetic energy. Beneath the
pycnocline, where there is no background flow, the wave in-
duced currents are negative and act to increase the kinetic en-
ergy. The reduction in kinetic energy above the pycnocline,
being first-order in the wave amplitude for small waves, is
larger than the increase beneath it and the total kinetic energy
in the system is reduced untilU +u′ becomes sufficiently
large.

For Um = 0 the largest wave has a minimum Richardson
number (Ri) in the pycnocline of 0.24. ForUm = −0.2 m s−1,
the background state has a minimumRi in the pycnocline of
0.35. For small waves the minimumRi initially increases
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because the wave induced shear has the opposite sign to the
background shear, before decreasing as the wave amplitude
continues to increase. For the largest wave computed the
Richardson number in the pycnocline has two minimums:
0.4 at z = −0.61 m and 0.28 at= −0.69 m. WhenUm is
decreased to−0.25 m s−1 the background state has a mini-
mum Richardson number in the pycnocline of 0.23. When
Ēa = 2 J m−1 the maximum ofu exceeds the wave propaga-
tion speed of 0.11 m s−1 hence there is a wave induced crit-
ical level where the horizontal velocity is equal to the wave
propagation speed. Figure2 compares the background veloc-
ity profile with the wave induced velocity profiles down the
centre of the waves for̄Ea= 1 and 2 J m−1. For the larger of
these two waves there is a small density overturn in the pyc-
nocline implying the formation of closed streamlines. Waves
as large as̄Ea= 5 J m−1 were computed before the numerical
method failed to converge.

When the pycnocline thickness is reduced the wave ampli-
tudes are smaller, becoming closer to the two-layer conjugate
flow values, while the integrated kinetic energy perturbation
is almost unchanged. For example, forUm = −0.2 m s−1

whendpyc is reduced to 0.025 m the wave amplitude for the
largest wave is reduced by 2.5% while the largest change
(over the range of̄Ea values) of the integrated kinetic energy
perturbation is 1% of that of the largest wave. One significant
difference is that now waves forUm = −0.25 m s−1 can be
computed up toĒa = 100 J m−1. Figure2 includes the wave
induced velocity profile down the centre of the wave with
Ēa = 1 J m−1. Compared with the corresponding case using
dpyc = 0.05 m the positive velocity maximum is no longer
present. ForUm = −0.3 m s−1 it reappears and waves with
Ēa larger than 1 J m−1 could not be computed.

When the shear layer is moved below the pycnocline to
zs = −0.3 m, Fig.1b, wave amplitudes are slightly smaller
and Ēkp becomes significantly more negative over a wider
range of wave amplitudes. ForUm = −0.25 m s−1 waves
could be computed up tōEa = 68 J m−1. The Richardson
number of the background state has a minimum of 0.0135
in the shear layer and is extremely large in the pycnocline.
For the largest wave computed the minimumRi is 0.03 in the
shear layer and 0.2 in the pycnocline. Whendpyc is reduced
to 0.01 m waves could be computed up toĒa = 100 J m−1

at which point the minimum Richardson number in the py-
cnocline is 0.042 while the Richardson number in the shear
layer is extremely small due to the now very weak stratifica-
tion across it.

For these cases̄Ekp becomes significantly more negative
over a wider range of wave amplitudes compared with the
cases in Fig.1a.

When the shear layer is above the pycnocline,(zs,dpyc) =

(−0.2,−0.3) m, limitations on wave amplitudes that could
be calculated were encountered forUm = −0.15 and
−0.2 m s−1 (Fig. 1c). ForUm = −0.2 m s−1 the Richardson
number of the background state has a minimum of 0.02 in
the shear layer. The largest wave,Ēa = 36 J m−1, has mini-

−0.3 −0.2 −0.1 −0.0 0.1 0.2
u (m/s)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

z 
(m

)

Fig. 2. Horizontal velocity profiles for waves using1ρ = 0.04,
Um = −0.25 m s−1, (ds,zs) = (0.03,−0.2) m andzpyc = −0.2 m.
Shown is the background velocity profile (solid). The other curves
are horizontal velocity profiles down the centre of an ISW. Two
cases usingdpyc = 0.05 m are shown forĒa = 1 (dots) and 2
(dashed) J m−1. The dash-dot curve shows the velocity profile
for a wave with a thinner pycnocline,dpyc = 0.025 m, withĒa =

1 J m−1.

mum Richardson numbers of 0.015 and 0.182 in the shear
layer and pycnocline, respectively. The wave amplitudes are
smaller than in the previous cases because the pycnocline is
closer to the mid-depth. The maximum wave amplitude is
−0.214 m whenUm = 0.

When the shear layer and pycnocline are both centred at
z = −0.3 m waves were obtained for all values ofĒa and
Um. The largest negative integrated perturbation kinetic en-
ergy values are attained, and forUm = −0.25 m s−1 they are
negative for the largest wave computed, with a minimum of
−13.8 J m−1.

Figure 3 shows the shape of the isopycnal undergoing
maximum displacement for a series of waves with varying
Um andĒa fixed to 10 J m−1. The stratifications and back-
ground currents used are the same as those in Fig.1.

5 Energy evolution for cases using the Boussinesq
approximation

We now turn to the results of numerical simulations. Using
the Boussinesq approximation four different physical situa-
tions are considered. The first three involve internal solitary
waves while the fourth is a deep-water seiche. The first two
of these, the interaction of two ISWs and a shoaling ISW
passing through a turning point, do not include viscous or
diffusive terms. Nor does the deep seiche simulation. For
the case of an ISW reflecting off a sloping bottom viscosity
and diffusion are included. A deep water depth ofH = 1 m
is used with the surface atztop= 0.
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Fig. 3. Isopycnals undergoing maximum displacement for waves
with Ēa = 10 J m−1. Stratifications and currents as in Fig.1. As
Um decreases from 0 the waves get narrower and the maximum
isopycnal displacement increases. The isopycnal undergoing maxi-
mum displacements shifts downward except for the cases in(c), for
which it initially shifts downward and then upwards.

5.1 ISW interaction

The first example is the interaction of two ISWs of differ-
ent amplitude. For this simulation the bottom is flat and as
shown above the pressure drop across the domain must be
zero. Hence the perturbation energyĒkp+ Ēa is conserved.
The background density and velocity profiles are given by
(41) and (42) with 1ρ = 0.04, (zpyc,dpyc) = (−0.2,0.03) m,
Um = −0.1 m s−1 and (zs,ds) = (−0.3,0.03) m. These are
the parameters used for cases depicted in Fig.1b.

Results from a simulation with waves having initial avail-
able potential energies of̄Ea = 2.5 and 80 J m−1 are shown
in Fig. 4. The simulation is done in a reference frame mov-
ing with the average propagation speed of the two right-ward
propagating waves. The figure shows the fluid velocity rel-
ative to the bottom layer. Initially the large wave trails the
smaller wave (panel a). The initial waves have amplitudes of
−0.11 and−0.38 m with corresponding initial perturbation
kinetic energiesĒkp of −2.0 and 46.4 J m−1. The waves at
approximately the mid-point of the interaction are showed in
panel b while the two waves after they separate are shown in
panel c.

The energetics for the interacting ISWs is shown in Fig.5.
The top panel shows the time evolution ofĒa, Ēkp andĒk2.
To more clearly show the relative changes the variation of
Ēkp andĒa and their sum from their initial values is shown in

Fig. 4. Contour plots of the density field (solid lines) and horizontal
velocity field (colours) for two interacting ISWs with initial APEs
of 2.5 and 80 J m−1. Simulation is done in a reference frame mov-
ing with the average propagation speed of the waves. The horizontal
velocity field shown is that in a reference frame fixed with the far
field fluid below the surface current.(a) Initial waves. (b) Waves
at middle of the interaction (t = 310 s). (c) t = 400 s. The white
regions indicate regions where|u| < 0.0013 m s−1.
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Fig. 5. Energetics for ISW interaction.(a) Solid curve:Ēa. Dots:
Ēkp. Dashed:Ēk2. (b) Dashed:Ēkp− Ēkp(0). Dots: Ēa− Ēa(0).
Solid curve: their sum.(c) Dashed:Ēk2 − Ēk2(0). Dots: Ēa−

Ēa(0). Solid curve: their sum.

Fig. 5b. During the wave interaction the perturbation kinetic
energy rises while the available potential energy drops. They
return to their original values after the interaction. The total
perturbation energy stays constant during the interaction as
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Table 1. Change inĒa andĒkp during the interaction of two ISWs. In all cases1ρ = 0.04,(zpyc,dpyc) = (−0.2,0.05) m andds= 0.03 m.

zs Um Ēa1 Ēa2 % decrease Ēkp(0) max|1Ēkp| % increase
(m) (m s−1) (J m−1) (J m−1) in Ēa (J m−1) (J m−1) in Ēkp

–0.3 0.0 2.5 80 1.8 85.2 1.5 1.7
– –0.05 – – 1.8 63.0 1.5 2.3
– –0.1 – – 1.7 43.9 1.4 3.2
– – 5 – 1.7 44.8 1.4 3.1

–0.2 –0.05 2.5 – 1.7 61.8 1.4 2.3
– –0.1 – – 1.5 42.9 1.3 2.9
– –0.15 – – 1.3 27.6 1.0 3.8
– –0.2 – – 1.0 15.2 0.8 5.3

expected. In Fig.5c the relative changes of̄Ek2 andĒa and
their sum is shown. During the interaction̄Ek2 + Ēa rises
by about 1.2% above its initial value. During the interaction
the increase inĒk2 is slightly more than twice the increase
in Ēkp. Figure6 shows the energy balance for the second-
order wave energies. Shown is the time rate of change of the
Ēk2 + Ēa and the negative of the shear production termP

along with their sum. Note values have been multiplied by
102. The sum is nearly constant but is noisy with fluctuations
with amplitude approximately 2.5% of the variations of the
largest term (i.e., with an amplitude of about 10−3 W m−1).
This plot illustrates that the 1.2% rise ofĒk2+Ēa during the
interaction is much larger than the numerical errors in the
simulation.

Percentage changes ofĒa and Ēkp for several cases are
given in Table 1. For the simulations that have been done,
during the interactionĒkp increases by between 2.1 and
3.4%. It increases asUm increases in magnitude.̄Ea de-
creases by between 1.1 and 1.7%. It decreases asUm in-
creases in magnitude. Only runs with waves of very different
amplitudes have been done, otherwise the difference in prop-
agation speeds is very small and the interaction takes a long
time.

5.2 Shoaling ISW wave passing through a turning point

The second case considered is that of an ISW shoaling
through a turning point. The bathymetry has the form

h(x) = 0.25
(
1+ tanh

( x

7.0

))
, (45)

the sheared current is the same as in the previous case, and
the background density field is given by (41) with 1ρ = 0.04,
(zpyc,dpyc) = (−0.3,0.025) m. The pycnocline and shear
layer are now at the same depth and the pycnocline is slightly
thinner than the shear layer. In the deep/shallow water
the shear layer and the pycnocline are in the upper/lower
half of the water column, hence ISWs are waves of depres-
sion/elevation. As an ISW shoals from deep water it passes
through the turning point, where the pycnocline and shear
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Fig. 6. Second-order energy balance for ISW interaction.

Dots: d(Ēk2 + Ēa)/dt . Dashed:P =
∫ ∫
Du′w dŪ

dz
. Solid curve:

their sum.

layer are at mid-depth, and the ISW is transformed into
a train of ISWs of elevation riding on a broad depression
(Grimshaw et al., 1999) as depicted in Fig.7 for a wave with
initial APE of Ēa= 10 J m−1.

The energy evolution is depicted in Fig.8. Panel a shows
the time evolution ofĒa, Ēkp andĒk2. The perturbation ki-
netic energyĒkp is initially negative as the addition of the
wave decreases the kinetic energy in the system. As the
wave shoals both̄Ekp and Ēa increase. This result can be
contrasted with the results ofLamb and Nguyen(2009) who
found that for shoaling waves (in this case with the pycno-
cline intersecting the sloping bottom), as waves shoaled the
kinetic energy dropped and the APE rose while the sum was
almost constant (it decreased slowly due to viscous losses be-
fore dropping rapidly when the waves broke). In the current
situation both rise. This can be attributed to a decrease in
wave induced currents (Ēk2 drops slightly, see panel c) dur-
ing the early stages of shoaling which in this case results in
an increase in kinetic energy.

Figure8b shows the change in̄Ea andĒkp from their ini-
tial values along with their sum. In panel c the change in the
second-order kinetic energȳEk2 andĒa along with their sum
is shown. Both the total perturbation energy and the second-
order perturbation energy rise as the waves shoal. After the
waves are on top of the shelf the total perturbation energy
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Fig. 7. Contour plots of the density field (solid lines) and horizontal
velocity field (colours) for an ISW shoaling through a turning point.
(a) Initial wave (t = 0). (b) t = 150 s. (c) t = 300 s. The white
regions indicate regions where|u| < 0.0013 m s−1.
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Fig. 8. Energetics for an ISW shoaling through a turning point.
(a) Solid curve: Ēa. Dots: Ēkp. Dashed:Ēk2. (b) Dots: Ēa−

Ēa(0). Dashed:Ēkp − Ēkp(0). Solid curve: their sum.(c) Dots:
Ēa− Ēa(0). Dashed:Ēk2− Ēk2(0). Solid curve: their sum.

decreases. The increase in the total perturbation energy is
approximately double that of the second-order perturbation
energy.

The energy balance is shown in Fig.9. The top panel com-
pares the terms in the perturbation energy balance equation
(30), while the lower panel shows the terms in the second-
order energy balance equation (39). These show that the si-
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Fig. 9. Energy balance for an ISW shoaling through a turning point.
(a) Dots: d(Ēkp + Ēa)/dt . Dashed: 1psM. Solid: their sum.

(b) Dots:d(Ēk2+Ēa)/dt . Dashed:
∫ ∫
Du′w dŪ

dz
. Solid: their sum.

Note different scales used in each panel.

mulation is conserving energy to high accuracy and that the
changes in the total and second-order perturbation energies
shown in Fig.8 are accurate. It also shows the importance of
the pressure work and shear production terms in maintaining
the energy balance.

Results from several simulations are shown in Figs.10
and 11. Three runs, using initial available potential ener-
gies of 10, 20, and 30 J m−1 were done forUm = −0.1 and
−0.2 m s−1. The simulations using the largest waves were
discontinued part-way through because of strong overturn-
ing. One run using an initial APE of 10 J−1 for a surface
current flowing on to the shelf, withUm = 0.1 m s−1, was
also done. Figure10 compares the evolution of̄Ea, Ēkp and
their sum. For the cases with flow off the shelf both the avail-
able and perturbation kinetic energies increase initially as the
waves shoal. The increase becomes larger as the wave am-
plitude and strength of the counter-current increase. For the
case with an on-shelf current both̄Ea and Ēkp decrease as
the wave shoals. This wave propagates faster than the oth-
ers and reached the right boundary shortly before the end of
the run. This accounts for the slight dip in values starting at
aboutt = 360 s.

Figure11shows the relative change in the total energy. For
the cases withUm = −0.1 m s−1 the total energy increases by
a factor of about 2.2 for the smallest wave and by about 1.5
for the largest wave. For the case with an on-shelf current
the total energy decreases by about 50%. For the case with
the stronger off-shore currents the total energy increases by a
factor of about 35 for the smallest wave. This strong increase
occurs because the initial perturbation kinetic energy is neg-
ative with almost the same magnitude as the initial available
potential energy, making the total initial energy perturbation
very small.
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Fig. 10. Evolution of the perturbation energy for simulations of in-
ternal solitary waves passing through a turning point.(a, b) Avail-
able potential energȳEa. (c, d) Perturbation kinetic energȳEkp.
(e, f) Total perturbation energȳEa+ Ēkp. (a, c, e) and (b, d, f) are

for Um = −0.1 and−0.2 m s−1, respectively. Curves are for dif-
ferent initial wave amplitudes:̄Ea(0) = 10 (solid), 20 (dots) and 30
(dashed) J m−1. Dash-dot curve in panels (a, c, e) are for wave with
Ēa(0) = 10 J m−1 andUm = 0.1 m s−1.

5.3 ISW reflection

We next consider the case of an ISW reflecting from a sloping
boundary. Because strong wave breaking occurs in this case
we solve the Navier-Stokes equations with constant viscosity
and diffusivity (10−7 and 10−9 m2 s−1, respectively) (Lamb
and Nguyen, 2009). The choice of these sub-molecular val-
ues is explained below. A no-slip bottom boundary condition
is used. The bathymetry for this case is given by a smoothed
piecewise-linear topography of the form

h(x) =
Ss

2
(inttanh(x,x1,w)− inttanh(x,x2,w)), (46)

where

inttanh(x,x0,w) =

∫ x

−∞

(
1+ tanh

(
x′

−x0

w

))
dx′,

= x −x0+w ln

(
2cosh

(
x −x0

w

))
, (47)

is a function whose slope varies smoothly from 0 to 2 at
x = x0 over a length scalew. Thus, the slope of the topo-
graphyh(x) smoothly changes from 0 toSs at x = x1 and
then smoothly decreases to zero atx2. For this simulation
Ss= 0.2, w = 0.1 m andx1 = 0. The value ofx2 is chosen so
that the height of the shelf is 0.85 m. In contrast to previous
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Fig. 11. Evolution of total perturbation energy normalized by the
initial energy. Same cases as in Fig.10. (a) Um = −0.1 m s−1.
(b) Um = −0.2 m s−1.

Fig. 12. Contour plots of the density field (solid lines) and hor-
izontal velocity field (colours) for a shoaling ISW with the py-
cnocline intersecting a sloping bottom boundary.(a) t = 25 s.
(b) t = 45 s. (c) t = 60 s. The white regions indicate regions where
|u| < 0.0013 m s−1.

cases the background current is given by

Ū (z) = −0.1e−400z2
m s−1, (48)

which has a negligible value of 1.4×10−5 m s−1 at the top
of the shelf. The background density is the same as that used
in the shoaling ISW case. The pycnocline now intersects the
slope. The initial wave, located atx = −10 m, has an APE of
10 J m−1 and an amplitude of 0.15 m. As the wave shoals it
breaks and some of its energy is reflected and the rest is lost
to viscous dissipation and mixing. The wave breaking and
reflection process is shown in Fig.12 while the evolution of
the wave energies is shown in Fig.13. As the wave shoals the
APE increases while the perturbation kinetic energies (both
Ēkp andĒk2) decrease, before returning to close to their ini-
tial values. The total perturbation energy increases during the
breaking/reflection process after which it decreases slightly
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Fig. 13. Energetics for a shoaling ISW undergoing reflection.
(a) Solid curve: Ēa. Dots: Ēkp. Dashed: Ēk2. (b) Dots:
Ēa − Ēa(0). Dashed: Ēkp − Ēkp(0). Solid curve: their sum.
(c) Dots: Ēa− Ēa(0). Dashed:Ēk2 − Ēk2(0). Solid curve: their
sum.

(Fig.13b). At the end of the simulation it is about 10% larger
than it was initially. The small values of the viscosity and dif-
fusivity were used to illustrate the fact that the total perturba-
tion energy can increase after reflection in spite of the mixing
and dissipation associated with the wave breaking process.
In contrast, the second-order perturbation energy decreases
monotonically (panel c).

5.4 A deep water internal seiche

The final case considered is that of a deep water internal se-
iche. The symmetric bathymetry consists of two hyperbolic-
tangent shelves at either end of the domain of the form

h(x) =
a

2

(
2+ tanh

(
x +x0

d

)
− tanh

(
x −x0

d

))
, (49)

with shelf amplitudesa = 0.5 m and withx0 = 15 m and
d = 2.0 m. The left and right boundaries are atx = ±30 m.
The initial stratification stratification consists of a sloping py-
cnocline specified by

ρ(x,z,0) = ρ̄(z−αx) (50)

whereρ̄ is given by (41) with 1ρ = 0.04,zpyc= −0.8 m and
dpyc = 0.025 m. The initial slope of the pycnocline isα =

−0.005. Above the shelves a surface trapped current of the
form (42) is added usingUm = −0.1 m s−1, zs= −0.2 m and
ds= 0.05 m. Ū is effectively zero at the top of the shelves.

Figure 14 shows the density field and velocity fields at
t = 0 and at two later times. Att = 60 s, approximately a

Fig. 14. Contour plots of the density field (solid lines) and hori-
zontal velocity field (colours) for the deep seiche.(a) Initial state
(t = 0). (b) t = 60 s. (c) t = 120 s. The white regions indicate re-
gions where|u| < 0.0013 m s−1.

quarter of an internal seiche period, the pycnocline is hori-
zontal. Associated with the relaxation of the pycnocline are
rightward/leftward currents beneath/above the pycnocline. A
shear wave can be seen propagating leftward onto the shelf.
At t = 120 s the pycnocline is close to its maximum posi-
tive slope. Shear instabilities have formed in the shear layer
above.

To calculate the APE we usēρ(z) as the reference den-
sity. If the shelf was given by step like topography (given by
d → 0), this would be the sorted density field however be-
cause of the sloping sidewalls of the basin the sorted density
field will be slightly different. Thus there is a small time in-
dependent error in our calculation of the APE however we
are only interested in variations in the APE which are unaf-
fected by our choice of the reference density.

When the sloping pycnocline is released the internal se-
iche, confined to the basin, evolves as the initial APE is
converted to KE. Figure15 shows the evolution of the in-
ternal seiche energy. In panel (a) the perturbation kinetic
energyĒkp, the APEĒa and their sum are shown. Since
u′

= 0 initially Ēkp(0) = 0. It rises whileĒa falls as APE
is converted to kinetic energy. The total perturbation energy
Ēp = Ēkp + Ēa is not constant, rising by about 70% after a
quarter of a seiche period after which it falls until the end of
the run (at approximately 5/8 of a seiche period). Panel (b)
shows the time evolution of̄Ek2, Ēa and their sum. The to-
tal second-order energy perturbation is almost constant over
the first 60 s after which it rises. It has doubled by the end
of the run. In panel (c) we verify the energy balance equa-
tion (30). This shows that the change in the total energy seen
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Fig. 15. Energetics for deep seiche case.(a) Dots: Ēkp. Dashed:
Ēa. Solid: their sum.(b) Dots: Ēk2. Dashed:Ēa. Solid: their sum.
(c) Dots:d(Ēkp+ Ēa)/dt . Dashed:1psM. Solid: their sum.

in panel (a) is accounted for by the pressure drop across the
domain which results in fluid outside the domain doing net
work on the fluid in the interior.

Results for a case with the surface current in the opposite
direction are shown in Fig.16. The perturbation kinetic en-
ergy decreases initially and becomes negative as the induced
currents act to reduce the horizontal velocity in the surface
current. In contrast, the second-order energy rises monoton-
ically as in the previous case.

6 Mechanism for the change in total
perturbation energy

In the above cases that did not include viscosity we have seen
that the change in the total perturbation energy can be ac-
counted for by the net horizontal pressure gradient that forms
across the domain. This is a consequence of the boundary
conditions used in the model. Consider the deep seiche.
When the pycnocline is released the fluid beneath it flows
rightward as a consequence of a negative pressure gradient.
As the left half of the pycnocline drops and the right half rises
the fluid above the pycnocline will be accelerated to the left.
This requires a positive horizontal pressure gradient, i.e., the
pressure is higher above the right half of the pycnocline than
it is over the left half. On the shelves the boundary condi-
tions used in the model (ut = 0) prohibit the fluid from ac-
celerating. Thus the pressure is horizontally uniform on the
shelves. The result is that the pressure is higher at the right
boundary that it is at the left boundary. Because the fluid
enters the domain at the right boundary and leaves through
the left boundary (̄U is negative) the work done by the fluid
outside the domain, during the early stages of the flow evolu-
tion, acts to increase the energy in the system. This continues
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Fig. 16. Same as Fig.15 except that surface current is in opposite
direction.

until the pynocline levels out at aboutt = 60 s. Fluid above
the pycnocline is now accelerated to the right. The pressure
drop across the basin reverses sign and the pressure exerted
by fluid outside the domain acts to decrease the energy in the
system.

It is clear that this behaviour is associated with the choice
of boundary conditions. One can imagine constructing a pe-
riodic series of shelves and basins, arranged in an annulus,
with identically sloping pycnoclines in each basin. When
released from rest the flow would be somewhat different be-
cause the pressure perturbation would have to be periodic.
Now as the pressure rises/falls above the depressed/elevated
edges of the pycnocline a rightward flow would be forced
across the tops of the shelves. Associated with the acceler-
ation of this rightward flow the pressure perturbation would
decrease across the tops of the shelves in such a way that the
pressure perturbation remains zero at the midpoints of the
shelves.

The use of a rigid lid is an essential ingredient in the results
of these numerical simulations because it is responsible for
forcing the pressure field to remain constant on the top of the
shelves. If there was a free surface this would not be possible.
In the deep seiche case we can anticipate that surface waves
would be generated above the edges of the sloping pycno-
cline beyond which the pressure field would be unperturbed.
This is verified in the next section.

7 The deep internal seiche with a free surface

To further explore the mechanism behind the change in to-
tal perturbation energy we now modify the deep internal se-
iche case by adding a free surface. This is done by adding a
layer of air 0.5 m thick above the water column and solving
the non-Boussinesq equations. The background density field
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Fig. 17. Energetics for deep seiche case with a free surface.
Dots:Ēkp. Dashed:Ēa. Solid: their sum.

consists of a layer of air with density 1 kg m−3, a fresh wa-
ter surface layer of density 1000 kg m−3 and a bottom layer
of density 1040 kg m−3. A sharp interface has not been in-
corporated into the model so the “free” surface is a diffuse
surface of finite thickness. The background density is given
by

ρ0(1+ ρ̄(z)) = 1040−20

(
1+ tanh

(
z−zpyc

dpyc

))
−

999

2

(
1+ tanh

(
z−zsurf

dsurf

))
kg m−3. (51)

The free surface is atzsurf = 0 with a thicknessdsurf =

0.002 m. The pycnocline depth and thickness is the same as
in the Boussinesq version of the deep seiche. The same back-
ground velocity field is also used with the current extending
up above the free surface.

The non-Boussinesq simulation with a free surface is very
computationally demanding for several reasons. First the
projection operator must be calculated at each time step
which increases the run time by a factor of 4–8 per time step
(depending on resolution). In addition a much higher vertical
resolution was required to resolve the thin free surface. There
is also a time step restriction associated with wave propa-
gation speeds. The use of a free surface introduces surface
waves into the system and a concomitant reduction in the
time step is necessary. The presence of surface waves also
results in the requirement for a longer domain. Hence only
one simulation has been done and it was run for 40 s.

Figure17 shows the time evolution of̄Ekp, Ēa and their
sum. The total energy remains nearly constant (it decreases
by less than 1.2%). In comparison, in the Boussinesq case
with a rigid water surface the total perturbation energy had
risen by about 50% in the same period of time. The fact that
the total energy is constant in this case is a consequence of
the pressure rise across the domain being reduced by three
orders of magnitude.

Figure18 compares the horizontal distribution of the ver-
tically integrated kinetic energy perturbation for the deep
internal seiche cases. The Boussinesq case discussed
above is obtained from the non-Boussinesq case by using
ρ0=1000 kg m−3 as the reference density. An additional
run usingρ0 = 1020 kg m−3 as the reference density (giving
1ρ = 0.0392) was done to test the sensitivity to the choice
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Fig. 18. Vertically integrated kinetic energy perturbation for the
deep seiche cases: comparison of Boussinesq and non-Boussinesq
simulations. Solid line: Boussinesq (domain between±30 m) us-
ing ρ0 = 1000 kg m−3. Dots: Boussinesq usingρ0 = 1020 kg m−3

(virtually indistinguishable from solid curve). Dashed line: non-
Boussinesq.(a) t = 10 s.(b) t = 20 s.

of reference density. The results from the two Boussinesq
simulations are indistinguishable in Fig.18. In the non-
Boussinesq case with a free surface the kinetic energy above
the basin is lower than in the Boussinesq simulations. In ad-
dition there are negative values at the two sides of the basin.
This is due to the presence of surface waves generated above
the edges of the pycnocline. At the right side the free sur-
face is pushed up and a rightward propagating surface wave
of elevation is generated. The currents induced by this wave
are negative above the free surface and positive below it. The
result is that the horizontal velocity in the surface current be-
low the free surface is reduced with a concomitant reduction
in the kinetic energy since the kinetic energy perturbation
in the overlying air is negligible. At the other end of the
basin the downwelling pycnocline results in the generation
of a leftward propagating surface wave of depression. The
associated induced currents are again positive below the free
surface and the kinetic energy perturbation is again negative.
By t = 20 s (panel b) these surface waves have propagated
further onto the shelves on either side of the basin with the
leftward propagating wave having a faster propagation speed.

An important question is how energy is split between the
surface waves and the internal waves. The energy in the sur-
face waves is dominated by the kinetic energy perturbation,
it being first-order in the wave amplitude while the potential
energy in the wave is second-order, which is negative. This
is illustrated in Fig.19 which compares the total vertically
integrated energy perturbation for the Boussinesq and non-
Boussinesq simulations att = 20 and 40 s. On the shelves
the perturbation energy in the non-Boussinesq simulation is
negative. Above the basin the energy is similar in the two
cases, being slightly smaller in the non-Boussinesq simula-
tion. Both cases agree in some of the fine details, such as the
feature betweenx = −18 and−16 m att = 40 s. In the non-
Boussinesq simulation an increase in total energy above the
basin is compensated for by a negative energy perturbation
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Fig. 19.Vertically integrated energy perturbation,Ekp+Ea, for the
deep seiche cases: comparison of Boussinesq and non-Boussinesq
simulations. Solid line: Boussinesq (domain between±30 m) us-
ing ρ0 = 1000 kg m−3. Dashed line: non-Boussinesq.(a) t = 20 s.
(b) t = 40 s.

associated with surface waves. The similarity of the ener-
gies above the basin in the two simulations suggests that the
change in total perturbation energy in the Boussinesq simu-
lation may be a useful approximation of the change in the
baroclinic wave field in the non-Boussinesq case, however
this does not take into account the fact that some barotropic
energy must be present over the basin in the non-Boussinesq
simulation. This needs further investigation.

8 Conclusions

The implications of a background sheared current on the
evolution of the mechanical energy in four physical situa-
tions based on oceanographic conditions have been explored.
Three of these involve internal solitary waves, the fourth case
being the evolution of an internal seiche trapped in a deep
basin. Evolution equations for the total perturbation energy
densityEkp +Ea and the second-order perturbation energy
densityEk2 +Ea were derived. An appropriate average of
the latter is often referred to as the “wave energy”. This is
appropriate in the context of slowly varying wave trains in
which case the background flow̄U can be defined by averag-
ing over the wave train. In that case the averages ofEkp and
Ek2 are identical. In the context of ISWs this procedure does
not make sense and the first-order kinetic energy perturba-
tion termŪu′ plays an important role in the evolution of the
mechanical energy of the system and must be included (see
alsoFabrikant and Stepanyants, 1998). This term makes it
possible for the addition of an ISW to reduce the mechanical
energy of the system.

The presence of a background sheared current has impor-
tant consequences for the evolution of the mechanical energy
in the system. The domain integrated perturbation energy
Ēkp + Ēa is conserved however work done on the flow do-
main by a net horizontal pressure change across the domain
can result in significant changes in the perturbation energy

if the water depth is not constant. This occurred in all three
cases in which the water depth varied and which used a rigid
lid at the water surface. In the case of a flat bottomed domain
it was shown that the net pressure change must remain zero
and hence the total perturbation energy remains constant. In
contrast the second-order perturbation energyĒk2+Ēa need
not remain constant. For the case of an ISW reflecting off a
sloping boundary it was demonstrated that it is possible for
the total mechanical energy to rise after wave breaking oc-
cured in spite of energy loss due to dissipation.

It was argued that the change in mechanical energy was a
consequence of the lateral boundary conditions which con-
strained the inflow/outflow fluid velocity to be constant, the
use of a rigid lid, and variable water depth which, in combi-
nation, can support a pressure change across the domain. To
test this the deep internal seiche case was repeated by drop-
ping the Boussinesq approximation and adding a layer of air
above the water column, the air and water being separated
by a diffuse free surface. In this simulation the pressure drop
across the domain was reduced by three orders of magnitude
and mechanical energy was almost constant (to within 1%).
Surface waves were generated which carried energy away
from the basin containing the deep seiche. It appears that
the absence of these waves in the rigid lid, Boussinesq simu-
lation may account for the increase in energy in that case and
that the change in total energy in the Boussinesq simulations
may accurately predict changes in baroclinic wave energy.

The results highlight the need to investigate the role of a
free surface in the context of shoaling ISWs. This will be the
subject of future research.
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