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Abstract. The complex spatial and temporal characteristics
of European dry spell lengths, DSL, (sequences of consec-
utive days with rainfall amount below a certain threshold)
and their randomness and predictive instability are analysed
from daily pluviometric series recorded at 267 rain gauges
along the second half of the 20th century. DSL are ob-
tained by considering four thresholds,R0, of 0.1, 1.0, 5.0
and 10.0 mm/day. A proper quantification of the complexity,
randomness and predictive instability of the different DSL
regimes in Europe is achieved on the basis of fractal analyses
and dynamic system theory, including the reconstruction the-
orem. First, the concept of lacunarity is applied to the series
of daily rainfall, and the lacunarity curves are well fitted to
Cantor and random Cantor sets. Second, the rescaled analy-
sis reveals that randomness, persistence and anti-persistence
are present on the European DSL series. Third, the complex-
ity of the physical process governing the DSL series is quan-
tified by the minimum number of nonlinear equations deter-
mined by the correlation dimension. And fourth, the loss of
memory of the physical process, which is one of the reasons
for the complex predictability, is characterized by the val-
ues of the Kolmogorov entropy, and the predictive instability
is directly associated with positive Lyapunov exponents. In
this way, new bases for a better prediction of DSLs in Europe,
sometimes leading to drought episodes, are established. Con-
cretely, three predictive strategies are proposed in Sect. 5. It
is worth mentioning that the spatial distribution of all fractal
parameters does not solely depend on latitude and longitude
but also reflects the effects of orography, continental climate
or vicinity to the Atlantic and Arctic Oceans and Mediter-
ranean Sea.

Correspondence to:X. Lana
(francisco.javier.lana@upc.edu)

1 Introduction

As in many other fields of Geosciences, fractal concepts
are very useful for a better knowledge of the physical laws
governing the complex natural processes of the pluviomet-
ric regimes and their time predictability. The applicability
of these physical laws (differential equations of the atmo-
spheric dynamics) is limited by several factors such as their
intrinsic complexity, the necessity of reliable data (empirical
initial conditions free of errors) to solve the equations, and
the effects of a complex topography. In this paper, the fractal
analysis is constrained to a particular aspect of a pluviometric
regime: the dry spell lengths, DSL, which can be defined as
the number of consecutive days with rain amounts lowering
a certain thresholdR0 (mm/day).

The fractal nature of rainfall processes is an accepted fact,
confirmed by numerous studies along the last decades. It can
be cited Lovejoy and Mandelbrot (1985), Rodrı́guez-Iturbe et
al. (1989), Olsson et al. (1993), Hubert et al. (1993), Tessier
et al. (1996), Harris et al. (1996), Veneziano et al. (1996),
Svensson et al. (1996), Lima and Grassman (1999), Maz-
zarella (1999), Mazzarella and Tranfaglia (2000), Sivaku-
mar (2001a, b), Sivakumar et al. (2001), Salas et al. (2005)
and Mart́ınez et al. (2007a), among many others. Multifrac-
tality, chaotic behaviour, time persistence and predictability
have been concepts considered by these authors and many
variables closely related to rainfall regimes have been analy-
sed. Rain intensity, annual amounts, precipitation linked to
convective storms, rain gauge network design and episodes
of dry spell lengths are some illustrative examples.

Notable efforts have been devoted along many years to
analyse dry spells from a statistical point of view, quantifying
for instance return periods for severe drought episodes, and
several drought indices have been developed and proposed in
Hydrology and Climatology for a better quantification of the
drought phenomena. Nevertheless, analyses of predictability
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of the DSL series, necessary for a better prediction of drought
periods, are not so common in the scientific literature. These
analyses of predictability should include estimation of pos-
sible random components, complexity of the physical mech-
anisms generating the DSL episodes, predictive instability
of the equations governing the process, and qualification of
chaotic behaviour.

The analysis developed in this study is based on the non-
linear character of the DSL series and it consists of four
steps involving lacunarity, rescaled analysis, the reconstruc-
tion theorem and predictive instability. The main objec-
tive is to analyse spatial and temporal fractal patterns of the
dry spell regime in Europe, which cannot be described by
means of statistical tools, as those used, for instance, by
Lana et al. (2004, 2006), Burgueño et al. (2005), Martı́nez
et al. (2007b), who made use of statistical distributions, re-
turn periods and spectral analyses for studying the dry spell
behaviour of NE Spain and the Iberian Peninsula.

A similar analysis was performed by Martinez et
al. (2007a) for DSL series on the Iberian Peninsula. The
present paper should not be considered as a simple exten-
sion to a broader area. First, an interpretation of the la-
cunarity in terms of Cantor and random Cantor sets is for
the first time successfully attempted now. Second, results
concerning rescaled analysis and predictive instability (Lya-
punov exponents) for the Iberian Peninsula can be compared
now with those obtained for the rest of Europe. Third, the
analyses based on the reconstruction theorem, not applied by
Mart́ınez et al. (2007a), are now developed for the European
database. In addition, the concept of Kaplan-York dimension
is used also for the first time to characterise other aspects
of the predictive instability for European DSL series. In this
way, common patterns and outstanding differences on the dry
spell regimes throughout Europe would be manifested.

The contents of the paper are arranged as follows. Col-
lected database and methodology are introduced in Sects. 2
and 3, respectively. Section 4 is devoted to introduce the
main concepts, basic formulations and results concerning la-
cunarity, rescaled analysis and reconstruction theorem (com-
plexity and predictive instability). The most relevant re-
sults and conclusions regarding the fractal analysis of DSL
regimes in Europe are summarised in Sect. 5.

2 Databases

The database consists of 267 time series of daily rainfall
records corresponding to European rain gauges. These time
series were previously compiled, and their quality and ho-
mogeneity checked, by Klein Tank et al. (2002) and Wi-
jngaard et al. (2003). These data series are available at
http://eca.knmi.nl. Some of the Spanish data come from the
Agencia Estatal de Meteorologı́a (Spanish Ministry of Envi-
ronment) and similar homogeneity and quality controls were
applied (Lana et al., 2006). Figure 1a depicts the spatial
distribution of these rain gauges. It can be observed that
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Fig. 1. (a) Spatial distribution of the 267 rain gauges in Europe.
(b) Number of available records per year along the recording period.

for longitudes east of 15◦ E and latitudes north of 55◦ N the
density of rain gauges decreases remarkably. For this rea-
son, the discussion and interpretation of the fractal param-
eters will be especially restricted to areas within these lim-
its in latitude and longitude. Figure 1b shows the evolu-
tion of the number of available records by year. The lack
of data is almost null for the 1955–1990 recording period.
At the beginning (1951–1955) and at the end (1990–2000) of
the recording period, the number of available records dimin-
ishes, especially from 1998 to 2000. Given that all the frac-
tal analyses require long enough series, not necessarily with
common starting and ending years, slightly different periods
with good recording continuity are selected for every station
within years 1950–2000. Dry spells including periods with
isolated lack of records (at least a day with missing data) have
been discarded from the analysis because those DSL could
be fictitious. The removal of these uncertain DSLs from the
time series could bias the values of the fractal parameters.
However, this undesirable effect would be only remarkable
if there was a massive lack of data for specific rain gauges,
which is not the case for our database.

Nonlin. Processes Geophys., 17, 499–512, 2010 www.nonlin-processes-geophys.net/17/499/2010/

http://eca.knmi.nl


X. Lana et al.: Complex behaviour and predictability of the European DSL 501

3 Methodology

The concept of lacunarity introduced by Mandelbrot (1982),
which can be interpreted as a measure of clustering of gap
sizes in data series, is applied to the series of daily rainfall.
Given that the introduction of thresholds is needed for defin-
ing “gaps” in these series, lacunarity curves are computed for
four thresholds,R0, of 0.1, 1.0, 5.0 and 10.0 mm/day. These
same levels are considered to derive four different DSL se-
ries for every rain gauge. Lacunarities are then computed
by using moving windows of increasing length,r, from 1 to
100 days, thus covering different time scales as days, weeks,
months and seasons. As shown later, every lacunarity curve
is well described for every rain gauge by two power laws
with exponents and changing points depending onR0. Ad-
ditionally, in agreement with the basic lacunarity concept (a
cluster measure) and the intrinsic behaviour of DSL (lengths
increasing with the threshold), it is convenient to check that
lacunarity values increase systematically withR0. In addi-
tion, the best fit of empirical to synthetic lacunarities gen-
erated by Cantor or random Cantor sets is determined by
comparing the corresponding misfits. It is worth mentioning
that empirical curves reproduced by Cantor sets could repre-
sent pluviometric regimes governed by relevant deterministic
mechanisms, without excluding certain random components.
On the contrary, lacunarities governed by random Cantor sets
should be related to pluviometric regimes with very relevant
random components. A deterministic example could be the
Devil’s staircase model (Fedder, 1988), which is defined as
the cumulative Cantor set. Then, for instance, a Cantor set
can reproduce the sediment deposition rate paradox, and a
Devil’s staircase a stratigraphic thickness sequence (Korvin,
1992). An example of random behaviour is found in the anal-
ysis of the monthly North Atlantic Oscillation, NAO, index,
where lacunarity curves are well reproduced by a random
Cantor set (Martı́nez et al., 2010).

Additional information regarding the deterministic or ran-
dom character of a pluviometric regime could be obtained
through the rescaled analysis (Fedder, 1988; Korvin, 1992;
Turcotte, 1997), which is applied to the DSL series derived
for the different levelsR0. The interpretation of the Hurst
exponent,H , provides additional details which reinforce the
deterministic or random character of the series analysed. It
should be remembered thatH close to 0.5 is a clear sign
of randomness. On the contrary,H well above 0.5 sug-
gests persistence (time trends on previous DSL series con-
tribute to DSL prediction) andH well below 0.5 suggests
anti-persistence (an average of all previous DSL values con-
tributes to DSL prediction). Then, Hurst exponents con-
tribute to a better knowledge of the time behaviour of the dry
spell lengths, a very relevant question for assessing hazards
concerning water resources and supplies.

Beside lacunarity and rescaled analyses, which quantify
gap clustering and randomness versus predictability respec-
tively, an additional insight into the characterization of the

dynamical system governing the dry spell time sequence and
its predictability is achieved by means of the reconstruction
theorem (Grassberger and Procaccia, 1983a; Diks, 1999).
Three main parameters are derived from this reconstruction
process. First, the correlation dimension,µ∗, can be esti-
mated from the analysis of the correlation integral curves
(Grassberger and Procaccia, 1983a). This parameter repre-
sents the minimum number of nonlinear equations needed
for describing the physical mechanism. Second, the Kol-
mogorov entropy,κ, is also determined from the same cor-
relation curves (Grassberger and Procaccia, 1983b; Cohen
and Procaccia, 1983). It represents the loss of memory of
the physical process and it could be taken to some extent as
a reference for the number of consecutive dry spell lengths
to be considered in autoregressive predictive processes. The
reconstruction process of the DSL series, for every levelR0
and rain gauge, is repeated by successively increasing dimen-
sionm. This process can be shortened and automated under
some conditions developed in the present manuscript. A fast
automated method for computingκ is proposed andµ∗ is
assumed to be the asymptotic value of the slope of the corre-
lation integral curve for a high enough reconstruction dimen-
sionm of the DSL series. And third, the Lyapunov exponents
(Turcotte, 1997) for a reconstruction dimensionm, which
quantify the degree of predictive instability of the DSL series,
are computed by following an algorithm proposed by Eck-
mann et al. (1986) and Stoop and Meier (1988). Addition-
ally, the Kaplan-Yorke dimension (Kaplan and Yorke, 1979;
Grassberger et al., 1991; Diks, 1999) is evaluated taking into
account all Lyapunov exponents for every DSL series. Then,
the fractal dimension of the strange attractor representing the
dynamical system governing DSL can be quantified.

4 Formulation and results

4.1 Lacunarity

The lacunarity is a way of quantifying the distribution of gap
sizes within a set of data (Mandelbrot, 1982). It also repre-
sents the measure of the failure of a fractal to be transitionally
invariant and plays a relevant role in the study of critical phe-
nomena. Additionally, several fractal sets with the same frac-
tal dimension can be distinguished by their lacunarities, due
to their different gap distribution. Large lacunarities imply
large gaps and clumping of points, whereas small lacunarities
suggest a rather uniform distribution of small gaps. Several
illustrative examples can be found in Turcotte (1997), where
quite uniform and clumped distributions are related to small
and high lacunarities, respectively. Other examples of lacu-
narity are those corresponding to series generated by Cantor
and random Cantor sets.

An alternative to the analysis in terms of lacunarity is
given by the concept of the cluster dimensionD (Korvin,
1992). Some examples in Climatology and Seismology can
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be found in Mazzarella (1999) and Lana et al. (2005), respec-
tively. Very briefly, referring to the daily rainfall series, the
more isolated the clusters of rainy days, the smaller the value
of D. Thus, small values ofD should be related to high val-
ues of lacunarityL. On the contrary, high values of D should
represent quite uniformly distributed consecutive rainy days,
only separated by short gaps, which would correspond to low
values ofL.

At the present application, lacunarity represents a measure
of the distribution of segments, defined as the number of con-
secutive days with rain amounts equalling or exceeding some
threshold valuesR0, and gaps, introduced as the number of
consecutive days with rain amounts belowR0. The proba-
bility of detecting s segments within a moving window of
lengthr (in days) is given by

p(s,r)= n(s,r)/N(r) (1)

whereN(r) is the total number of possible windows of length
r, that isN(r) = `−r+1, with` the whole number of record-
ing days.n(s,r) is the number of moving windows of length
r containing s segments. Finally, the lacunarity, as a function
of the segment length,r, is defined as

L(r) =
M2(r)

[M1(r)]2
(2)

with

M1(r) =

r∑
s=1

s ·p(s,r) ; M2(r) =

r∑
s=1

s2
·p(s,r) (3)

the first and second order moments ofr.
The evolution of the lacunarity for the 267 series is analy-

sed by means of moving windows of lengthr ranging from
1 to 100 days, which is equivalent to consider short (daily),
medium (monthly) and long (seasonal) scales.

Figure 2 depicts an example of the evolution ofL(r) at
a particular rain gauge for the four levelsR0. As expected
from the concept of lacunarity and Eqs. (1)–(3),L(r) tends
to 1.0 for r tending to∞ and the lacunarity increases sys-
tematically with the thresholdR0. Moreover, the evolution
of L(r) with r can be analytically described by two power
laws for everyR0

L(r) = α1 ·rβ1 ; r = 1,...,rc (4)

L(r) = α2 ·rβ2 ; r = rc,...,` (5)

with parameters (α1, β1) changing to (α2, β2) for a critical
window lengthrc. Parametersα1, β1, α2 andβ2 of the power
laws (4a, b) are determined by linear regression on a log-log
scale. The critical valuerc is the value leading to the best
square regression coefficient for segments within intervals
[1− rc] and [rc −`]. A systematic analysis of the 267 time
series for the four threshold levels permits to ascertain that
all lacunarity curves fulfil Eqs. (4) and (5). Given that the
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Fig. 2. An example of lacunarity curves for a daily rainfall series
and the four thresholds (0.1, 1.0, 5.0 and 10.0 mm/day).

most relevant changes in lacunarity are always detected be-
fore the critical valuerc, Fig. 3 represents the geographical
distribution of parametersα1 andβ2 and critical lengthsrc,
for the four thresholdsR0.

Maps ofα1 (Fig. 3a) represent the lacunarity at daily scale,
asL(1) is equal toα1. For the first three levelsR0, it can be
observed a northwest-southeast gradient ofα1 in the Iberian
Peninsula and Eastern Mediterranean. The highest lacunari-
ties are reached in the south of the Iberian Peninsula. The rest
of Europe, except the Eastern Mediterranean, is characterised
by an almost constant value ofα1. Some signs suggesting
a more complex spatial distribution for 5.0 mm/day are con-
firmed in the 10.0 mm/day map, with outstanding lacunarities
in Eastern Europe and latitudes north of 60◦ N. High lacunar-
ities are still observed in the Southern Iberian Peninsula for
10.0 mm/day map. Maps of parameterβ1 (Fig. 3b) describe
the spatial distribution of the power decay of lacunarity when
increasing moving window lengthr (days). It is relevant
that the fastest decay of lacunarity is reached for some areas
faced to the Atlantic Ocean (West of the Iberian Peninsula
and Scandinavia for instance) and close to the Alps, what-
ever the levelR0.

Maps of Fig. 3c show the geographical distribution of the
critical values ofrc. Differences are very remarkable, es-
pecially for the first three levels ofR0, with the longestrc,
related to notable reductions ofL(r), detected in the Iberian
Peninsula. Notably lower values are found for North, Cen-
tral and Eastern Europe. Once again, the distribution ofrc
for 10.0 mm/day is more complex than for the rest of thres-
holds. Strong gradients in the Iberian Peninsula and a re-
markable increase ofrc for many other areas of Europe are
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Fig. 3. (a) Spatial distribution of parameterα1 in the power law relating lacunarities and moving window lengths, for 0.1, 1.0, 5.0 and
10 mm/day.(b) The same distribution for parameterβ1. (c) Spatial distribution of the critical value,rc, for the same thresholds.

observed, which could be reasonably expected taking into ac-
count that gap sizes in rainfall series tend to increase with the
threshold levelR0. In short, areas with long-lasting rainfall
deficits (high values ofrc) would be characterised by low ab-
solute values ofβ1. On the contrary, in areas with short rain-
fall deficits (low values ofrc), absolute values ofβ1 would
be high, and the lacunarity relevantly decreases in a limited
range of days. It should be emphasised that in many places

of Europe the decrease of the lacunarity becomes quite irrele-
vant forrc longer than 10–20 days, especially for 0.1, 1.0 and
5.0 mm/day, in contrast with other areas where 40–50 days
are necessary.

Additional valuable information can be obtained from la-
cunarity curves if they can be reproduced by series gener-
ated from Cantor or random Cantor sets. The fractal dimen-
sion of the Cantor set is equal to log2/log[(1−G)/2] (Ko-
rvin, 1992), given that for each iteration of the Cantor set
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Fig. 4. Spatial distribution of sites where lacunarity curves are best fitted to Cantor (open squares) or random Cantor (solid circles) sets.

generation an element is fragmented into two new pieces and
a gap of relative sizeG. If empirical lacunarity curves are
well fitted to random Cantor series, there are clear signs of
randomness governing the daily rainfall process, especially
if this fit is confirmed for all theR0 values. Conversely, if
empirical lacunarity curves are best fitted to a Cantor set, it
can be assumed that a deterministic behaviour is more rele-
vant in the rainfall process that a possible background ran-
domness. This kind of analysis, discriminating between pure
randomness and pure deterministic behaviours, has been re-
cently applied to monthly series of the North Atlantic Oscil-
lation (NAO) index (Mart́ınez et al., 2010).

Figure 4 shows the spatial distribution of sites where la-
cunarity curves are best fitted to random Cantor or Cantor
sets. It is observed that a pure single model (either random
or deterministic) for all the rainfall series would be an ex-
cessively simple description. First, the number of lacunar-
ity curves best fitted to a random Cantor model increases
with R0. Second, although for 10.0 mm/day many lacunar-
ity curves, mostly corresponding to the Atlantic coast of the
Iberian Peninsula and to high latitudes, are best fitted to a
random Cantor set, a non negligible number of empirical la-
cunarities are not well enough fitted to any of the two mo-
dels. Table 1 summarises the results of the fits obtained for
the different levelsR0. It is observed that the expected value
of the relative gap size,G, generating the best fit to deter-
ministic/random Cantor lacunarities tends to increase with
R0, in agreement with the increase of empirical lacunarities

Table 1. Average relative gap size,< G >, and standard deviation,
SD(G), of the lacunarity curves for 267 rainfall daily series and four
thresholdsR0. C and RC are the percentage of lacunarity curves
fitted to Cantor and random Cantor sets, respectively. MF designs
the ratio of empirical lacunarity curves not well enough fitted to any
of the two models.

R0 < G> SD(G) C RC MF
(mm/day) (%) (%) (%)

0.1 0.10 0.05 59.2 40.8 0.0
1.0 0.16 0.04 31.7 68.3 0.0
5.0 0.25 0.04 15.8 84.2 4.5
10.0 0.38 0.08 14.7 85.3 32.1

with R0. Whereas for 0.1, 1.0 and 5.0 mm/day the ratio of la-
cunarity curves best fitted to a random Cantor set increases,
with only a small ratio (null for 0.1 and 1.0 mm/day) of ave-
rage misfits between empirical and synthetic lacunarities ex-
ceeding 0.5, this ratio increases up to 32% for 10.0 mm/day.
In consequence, a single model reproducing the lacunarity
curves of the different pluviometric regimes of Europe can-
not be established. First, the random Cantor set tends to be
dominant, but is never the single best model. On the other
hand, although the ratio of local pluviometric regimes simu-
lated by this model tends to increase withR0, a notable num-
ber of rainfall series cannot be fitted either to the random or
deterministic Cantor model.
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Fig. 5. An example of rescaled analysis for the DSL series and the four thresholds (0.1, 1.0, 5.0 and 10.0 mm/day).

4.2 Rescaled analysis

The rescaled analysis, and more specifically the Hurst expo-
nent (Fedder, 1988; Goltz, 1997), provides us with criteria to
qualify the predictability of a complex dynamic system such
as the dry spell regime. Applications to a variety of fields
in Geology and Geophysics are shown by Korvin (1992) and
Turcotte (1997). Some applications in Climatology and more
specifically to rainfall regimes can be found in Oñate (1997),
Miranda and Andrade (1999, 2001), Whiting et al. (2003),
Miranda et al. (2004) and Martı́nez et al. (2007a), among
others.

The predictability of the DSL series is quantified by inter-
preting the meaning of the Hurst exponentH . For every DSL
series, mean values and cumulative differences are computed
for subsets of DSL series with different number of elements
τ . After that, maximum range,R(τ), of the integrated signal
and standard deviation,s(τ ), for the subsets are computed. If
the fractal behaviour exists, the relationship

R(τ)/S(τ) = a ·τH (6)

is accomplished. As mentioned in Sect. 3, the value ofH

and its uncertainty are useful tools to quantify the random-
ness, persistence or anti-persistence of the physical process
governing the sequence of dry spells. The reliability of the
estimated values ofH is based on three constraints. First, a
low uncertainty onH ; second, an acceptable square regres-
sion coefficient for the representation of log{R/S} in terms
of log(τ ); third, the linear evolution of the log-log plot should
cover at least two magnitude orders ofτ .

Figure 5 shows an example of rescaled analysis for a rain
gauge and the four levelsR0. It can be observed that the
squared regression coefficient exceeds 0.96 in all cases, the
uncertainty onH affects the second decimal digit and the re-
quirement of a minimum of two magnitude orders forτ is
also accomplished. Values ofτ less than 10 have not been
considered to avoid computational artefacts. This is an ex-
ample where the randomness of the physical process govern-
ing dry spells would be relevant, as all Hurst exponents are
very close to 0.5.

The same procedure for obtaining the Hurst exponentH

shown in Fig. 5 is repeated for the other 266 series and the
four levels R0. Figure 6 shows the spatial distribution ofH
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throughout Europe for the four thresholds. The thick con-
tour line (H = 0.5) delimits areas of persistence and anti-
persistence. For 0.1 mm/day, some sites at low latitudes are
characterised by anti-persistence, whereasH exceeds 0.5 for
the rest of Europe. A quite similar pattern is obtained for
1.0 mm/day, with a nucleus of anti-persistence in the Scan-
dinavian Peninsula. The spatial distribution is much more
complex for the other two levels. Even though the values of
H keep within the same range, a simple geographical delim-
itation of areas of persistence and anti-persistence is not evi-
dent. Then, Fig. 6 suggests that the same local rainfall regime
frequently generates DSL series with predictive characteris-
tics varying from persistence to anti-persistence depending
on the thresholdR0, as for example, in some areas of Scan-
dinavian Peninsula. This is a sign of complexity of the rain-
fall regime, and particularly, of the DSL series. This feature
is to be confirmed by the reconstruction theorem and related
parameters quantifying complexity and predictive instability.

4.3 Reconstruction theorem

The reconstruction theorem (Takens, 1981; Grassberger and
Procaccia, 1983a, b) permits a useful analysis of the com-
plexity and predictive instability of the rainfall regime and,
in particular, of the DSL series. The space of the dynamical
system governing the dry spells is reconstructed by generat-
ing a set

{
zj

}
of m-dimensional vectors

zj =
{
xj , xj+1,... xj+m−1

}
j = 1,...,n−m+1 (7)

beingxj the elements (lengths given in days) of the DSL se-
ries for a givenR0 andm the dimension of the reconstructed
space. From the set of vector generated by Eq. (6) the corre-
lation function

C(r) = lim
N→∞

1

N2

N∑
i,j=1

H
{
r −

∣∣Zi −Zj

∣∣} (8)

is straightforward to compute, wherer are distances in the
m-dimensional space andH { · } is the Heaviside function.
According to Diks (1999),C(r) behaves as

C(r) = Amrµ(m)e−mκ (9)

µ(m) being the correlation dimension,Am the correlation
amplitude andκ the Kolmogorov entropy. It should be re-
membered that for a high enough dimensionm, usually de-
signed as embedding dimension,dE, µ∗ =µ(dE) represents
the minimum number of nonlinear equations required to de-
scribe the physical system governing the DSL series, andκ

the loss of memory of this system with time. Consequently,
both parameters represent an insight into the complexity and
predictability of DSL. For instance,κ could help us to select
the number of consecutive DSL elements to be considered in
an autoregressive process.
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Fig. 6. Spatial distribution of the Hurst exponent for the four thres-
holds (0.1, 1.0, 5.0 and 10.0 mm/day).

A reiterative search of parametersµ∗ and κ for the
267 daily rainfall records and the four thresholdsR0 would
be very tedious and time spending. Then, an automated pro-
cedure is proposed. If logarithms are taken in Eq. (8)

log{C(r)} = log{Am}+µ(m)log(r)−mκ (10)

the slope of the log-log representation is the correlation di-
mension,µ(m), for them-dimensional space. The correla-
tion curves behave in different ways for three ranges ofr. In
the first range ofr, a quite irregular evolution attributable to
the lacunarity and an average slope, notably less than that es-
timated for the next range ofr, are observed. In the second
range, an almost perfect linear evolution of log{C(r)} with
log(r) permits to computeµ(m), which will be the highest
slope of the three ranges. For the last range, the correlation
function saturates to 1.0 and its average slope is again no-
tably smaller thanµ(m). Consequently, the largest quotient
for finite differences of log{C(r)} and log(r) for moving win-
dows along the correlation curves has to be a good approach
of µ(m). Then, if the correlation curves are calculated for
a high dimensionm, a stationary value of the correlation di-
mension,µ∗, is reasonably determined.

Another aspect is the estimation of the Kolmogorov en-
tropy, κ. Coming back to Eq. (9), the slope of the evolution
of

α(m) = log{Am}−mκ (11)

permits an accurate estimation ofκ, provided that Eq. (10)
is used for a high enough values of dimensionm, which is
equivalent to assume that log{Am+1/Am} tends to zero.
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Fig. 7. An example of the correlation function (dashed lines) of a
DSL series and linear evolution on a log-log scale (solid line) for m
ranging from 2 to 19.

An example of the assumed behaviour for theC(r) curves
of DSL is shown in Fig. 7. The effects of lacunarity are de-
tectable from a dimensionm equal to 4 or 5 and saturation
to 1.0 is always present, whatever the dimensionm. At the
same time, the largest slopes,µ(m), indicated by solid lines,
tend asymptotically towards a constant value,µ∗.

Figure 8 depicts an example of the evolution of the correla-
tion dimension and the determination of the Kolmogorov en-
tropy. Remembering the meaning of the correlation dimen-
sion (Diks, 1999), it would be necessary at least six nonlin-
ear equations to describe the physical process generating the
DSL series. An attempt to quantify more accuratelyµ∗ by
exploring reconstruction dimensionsm higher than 20 would
not be advisable. Three issues need to be discussed. First,
the constraintdE > 2µ∗

+1 for a right quantification ofµ∗

(Mart́ınez et al., 2010) is still fulfilled, taking into account
that the highest exploring dimension is 20 andµ∗ is very
close to 6.0. Second, as can be observed in the example of
Fig. 7, the range of r for which there is a linear relationship
between log{C(r)} and log(r) diminishes withm due to the
above mentioned effects of lacunarity and saturation. In con-
sequence, additional estimations ofµ could not be extremely
accurate. Third, asµ∗ is only a lower bound to the required
number of nonlinear equations, and considering the evolution
of µ for high values ofm, a substantial change onµ∗ would
be unlikely. Finally, some fluctuations in the evolution ofµ

towardsµ∗ would be attributable to errors on the slope of the
linear relationship between log{C(r)} and log(r). These er-
rors could be attributable to missing DSLs or departures of
C(r) from the power law given by Eq. (8). Remembering
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Fig. 8. (a) An example of the evolution of the correlation dimen-
sion,µ(m) towards a stationary value,µ∗. (b) An example of the
right (solid line) and wrong (dashed line) computation of the Kol-
mogorov entropy.

how lack of data is managed (Sect. 2), it should be accepted
that discarded dry spells might be a cause for these fluctua-
tions.

With respect to the estimation of the Kolmogorov entropy,
it is relevant to observe that whereas entropy close to 0.5 is
obtained by consideringm ranging from 16 to 20, a linear fit
for the whole range ofm (from 2 to 20) would lead to a wrong
determination ofκ, close to 0.9. For a right computation,Am

must be very close toAm+1, and the linear fit be almost per-
fect. On the contrary, considering the whole range ofm, the
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Fig. 9. Spatial distribution of the asymptotic values of the correla-
tion dimension for thresholds of 0.1, 1.0, 5.0 and 10.0 mm/day.

linear fit is deceptive and the Kolmogorov entropy is over-
valued. An additional issue to be considered is the high di-
mensionm needed to obtain asymptotic values of the correla-
tion dimension and a right estimation ofκ. This fact is com-
mon to all series and levelsR0. This necessity for a high re-
construction dimension also manifests the complexity of the
DSL predictive processes. If the right reconstruction of DSL
series was achieved with low dimensions, a dry spell episode
would solely depend on a few previous episodes and, pos-
sibly, a quite simple autoregressive process could be a good
predictive tool. Nevertheless, the real physical process gov-
erning DSL series (differential equations of the atmospheric
dynamics and effects of the topography, vicinity to oceans,
etc) is much more complex. Even higher complexities in the
atmosphere-ocean coupled dynamics have been found in the
analysis of the NAO index (Martı́nez et al., 2010).

Figure 9 depicts the spatial distribution ofµ∗ for thres-
holds of 0.1, 1.0, 5.0 and 10.0 mm/day. According to Ru-
elle (1990), the stationary value of the correlation dimension
accomplishesµ∗ < 2loge(M), beingM the number of DSL
elements for a series. The values ofµ∗ for all thresholds
R0 vary within a wide range, from 3 to 8. Their spatial pat-
terns also change with the threshold. In consequence, for ev-
ery rain gauge, the required minimum number of nonlinear
equations changes withR0. Figure 10 shows that a similar
situation is detected for the entropyκ. Besides the range ofκ
increases withR0, spatial patterns change depending on the
threshold. Once again, additional complexities appear be-
cause the loss of memory of the physical system governing
DSL depends on the levelR0 and the geographical location
of rain gauges. Remembering shortcomings affecting the es-
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Fig. 10. Spatial distribution of the Kolmogorov entropy for thres-
holds of 0.1, 1.0, 5.0 and 10.0 mm/day.

timation ofµ∗ andκ, it is obvious that an automated selec-
tion of these two parameters is not convenient and a one-by-
one revision for every DSL series is advisable.

4.4 Predictive instability

Associated with the reconstruction theorem and recon-
structed vectors, the predictive instability is conceptually
defined as the effect of an inaccurate starting statez0 on
the uncertainty on the statezj , after j-steps of the dynam-
ical system. The validation of this effect could be ad-
dressed either to the computation of the largest positive
Lyapunov exponent,λmax (the main generator of predic-
tive instability), or the evaluation of them Lyapunov ex-
ponents{λmax= λ1 > λ2 > ...> λm}. With this second op-
tion, Kaplan-Yorke dimensions,DKY , are then determined
from the Lyapunov exponents. If the sum of all the Lya-
punov exponents is negative, the Kaplan-Yorke dimension is
expressed as

DKY = `0+
1∣∣λ`0+1

∣∣ `0∑
j=1

λj (12)

being`0 the largest integer for whichλ1+λ2+ ...+λ`0 > 0.
The different states of the reconstructed vectors in the m-
dimensional space would generate strange attractors if they
could be defined as bounded sets of aperiodic trajectories
asymptotically stables and sensitive to initial conditions. The
fractal dimension of these strange attractors would be then
quantified by the Kaplan-Yorke (or Lyapunov) dimension,
DKY .
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Table 2. Minimum, maximum and expected values and standard deviations of the sum of all Lyapunov exponents,ST, and the Kaplan-Yorke,
DKY , dimension. Range and expected values of the number,NP, of positive Lyapunov exponents are also included.

ST NP DKY

R0 (mm/day) Min Max < ST > σ(ST) <NP> Range Min Max < ST > σ(ST)

0.1 –0.99 –0.60 –0.78 0.07 6.7 5–8 12.61 14.08 13.45 0.20
1.0 –0.92 –0.56 –0.79 0.06 6.8 6–7 12.87 14.08 13.42 0.20
5.0 –0.96 –0.49 –0.79 0.07 6.6 5–7 12.89 14.11 13.38 0.21
10.0 –1.21 –0.37 –0.84 0.10 6.6 5–7 10.78 14.40 13.20 0.41

Wolf et al. (1985) proposed an algorithm to compute non-
negative Lyapunov exponents, responsible for predictive in-
stability. A more sophisticated computational algorithm
(Eckmann et al., 1986; Stoop and Meier, 1988) permits to
obtain all the Lyapunov exponents for a reconstruction space
of dimensionm. The step-by-step detailed procedure of this
algorithm can be found in Martı́nez et al. (2007a). It has to
be pointed out that it must be applied for many dimensions
m with the aim of obtaining a set ofm stationary Lyapunov
exponents. As verified by Martı́nez et al. (2010), it is usual
that these stationary values are achieved at values of m less
than those corresponding to the embedding dimension,dE,
determined in Sect. 4.3.

Figure 11 summarises the spatial distribution of the first
positive Lyapunov exponent, which is the main responsi-
ble of predictive instability. As for the previous fractal pa-
rameters, the spatial patterns are relatively complex because
they change withR0. For 0.1 and 1.0 mm/day, the dominant
value forλ1 is within a narrow range of 0.20–0.25, except
for the Southwest of the Iberian Peninsula, Southern Italy
and Turkey, where values from 0.30 to 0.35 are reached.
These would be areas where uncertainties on starting values
could lead to the largest erroneous long-term predictions of
DSL at theseR0 levels. On the contrary, the spatial distri-
bution for 5.0 and 10.0 mm/day becomes more complex, the
South-western Iberian Peninsula, Southern Italy and Turkey
still keeping the highest values ofλ1. Considerable values
also appear at high latitudes and the spatial heterogeneity in-
creases in Central and Western Europe. Then, whereas the
predictive instability of DSL does not generally increase with
R0, its spatial distribution becomes more complex. Addition-
ally, given that the first Lyapunov exponent is positive for all
rain gauges and levelsR0, the mechanism governing DSL
series has a degree of predictive instability and chaotic be-
haviour and it could be assumed as dissipative (Kolmogorov
entropy different from zero).

Table 2 lists expected values, standard deviations and
ranks of variation of the sum of all Lyapunov exponents,ST,
and Kaplan-Yorke dimension,DKY . It can be concluded that
slight spatial variation of these parameters exists. Whatever
the levelR0, the strange attractors corresponding to every
DSL series are characterised by a very similar fractal dimen-
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Fig. 11. Spatial distribution of the first positive Lyapunov exponent
for thresholds of 0.1, 1.0, 5.0 and 10.0 mm/day.

sion, close to 13.5 and hardly ever exceeding 14.0. The dis-
sipative and notable chaotic behaviour of the DSL series is
confirmed by the average number,< NP >, of positive Lya-
punov exponents for the four thresholdsR0, ranging from
6.6 to 6.8, in comparison with the maximum reconstructed
dimension (m = 15) used to obtain stationary values of the
Lyapunov exponents. Both characteristics, as theDKY di-
mension, depict a low spatial variety, as the maximum range
of NP (5–8) is detected for 0.1 mm/day and the minimum
(6–7) for 1.0 mm/day. Then, in spite of the spatial variabil-
ity of the other parameters of the reconstruction analyses, a
common feature of the dynamical system governing Euro-
pean DSLs is a structure of strange attractors with fractal di-
mensions within a narrow range (12.6–14.1), except for the
threshold of 10.0 mm/day, for which strange attractors with
dimensions below 11.0 are detected.
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5 Conclusions

Several concepts of fractal analysis and dynamic system the-
ory applied to 267 European daily rainfall series recorded
along 50 years, and distinguishing four different thresholds
of daily rainfall, have permitted to estimate the most relevant
features regarding randomness, predictability and predictive
instability of the DSL regime in Europe. The behaviour of
a DSL regime is a very relevant feature taking into account
that drought periods (long dry spells or successive dry spells
of moderate length) could affect water supplies, agriculture,
industry and many other human activities.

Dry spell regimes in Europe are characterised by a no-
table variety of spatial patterns depending on the threshold
R0. The main features are:

– The lacunarity can be represented by Cantor or random
Cantor sets. It is observed that the percentage of la-
cunarity curves represented by random Cantor sets in-
creases withR0. In spite of this, a non negligible per-
centage of DSL series for 10.0 mm/day should be bet-
ter represented by other models different than Cantor or
random Cantor sets.

– Hurst exponents suggest randomness, persistence or
anti-persistence, the most complex spatial distribution
of H corresponding to 5.0 and 10.0 mm/day. In agree-
ment with the meaning of the Hurst exponent, autore-
gressive processes would be only applicable to DSL se-
ries with clear persistence (H well exceeding 0.5). Al-
though Europe is characterised by Hurst exponents ex-
ceeding 0.5, especially for 0.1 and 1.0 mm/day, values
of H within the 0.6–0.7 interval are not very common.
Consequently, a predictive scheme based on time trends
(persistence) would not be very efficient, at least from
the point of view of the rescaled analysis.

– The minimum number of nonlinear equations (asymp-
totic correlation dimension,µ∗) required to describe
the physical process governing the DSLs varies from
one place to another and with the threshold, and ranges
from a relatively simple system of three equations up to
a much more complex eight-equation system. An ex-
ample of this variability is given by comparing the be-
haviour ofµ∗ for an area of Western Europe including
parts of France, Germany and Belgium. Whereas for
0.1 and 1.0 mm/day the necessary number of nonlinear
equations ranges from 7 to 8, it decreases to 5–6 for 5.0
and 10.0 mm/day. A similar decrease of the predictive
complexity is detected, for instance, for western Iberian
Peninsula.

– Random components disturbing the nonlinear system of
equations are notable in all cases taking into account
that a high embedding dimensiondE is always necessary
to reach stationary values ofµ.

– The loss of memory of the dynamic system governing
DSL regimes is quantified by the Kolmogorov entropy,
κ. The values ofκ vary within a wider range for 5.0
and 10.0 mm/day than for the lowest thresholds. This
is a relevant fact if a prediction is to be attempted in
terms of autoregressive processes, because the number
of useful consecutive DSLs for the predictive process
diminishes whenκ increases.

– The predictive instability is detected for all DSL se-
ries and thresholds, with ranges for the first positive
Lyapunov exponents (0.15 to 0.40) quite similar for 0.1,
1.0, 5.0 and 10.0 mm/day. Thus, predictive instability is
quite similar for all Europe, except for the southwest of
the Iberian Peninsula, where Lyapunov exponents reach
maxima close to 0.35 whatever the threshold.

– Only the Kaplan-York dimension,DKY , characterising
the fractal dimension of the strange attractors governing
the successive DSLs, shows a common pattern for all
thresholdsR0. This dimension is constrained to a nar-
row range from a minimum exceeding 12.0 to a max-
imum close to 14.0 and the number of positive Lya-
punov exponents is very similar for all gauges and thres-
holds. Only for 10.0 mm/day the minimum dimension
decreases to 11.0. The high dimensionDKY is a clear
sign of complexity. To obtain aperiodic stable trajecto-
ries around the attractor describing the physical process
it is necessary to generate reconstruction vectorszj of
dimension at least 11 or 12.

A single predictive strategy for all rain gauges and thres-
holds has to be discarded given that all fractal parameters
depend on the geographic location and the threshold level.
It can be assumed that, at local scale, the effects of atmo-
spheric dynamics governing the rainfall regime (and dry spell
regimes) may be influenced by the orography, continental cli-
mate or the vicinity to the Atlantic and Artic Oceans and
Mediterranean Sea. Thus, lacunarity, rescaled analysis and
reconstruction theorem results at local scale should be taken
into account to decide the best predictive strategy.

Some strategies could be based on time trends and autore-
gressive processes for evident persistence (H clearly exceed-
ing 0.5) and low Kolmogorov entropy, guaranteeing small
loss of memory of the physical system. These strategies
could be termed as statistical predictive methods. Other
strategies would be dynamical predictive methods, based on
solving nonlinear equation systems describing the physical
process, the minimum number of required equations fixed by
the correlation dimension. It should be remembered that the
success of this predictive process should be strongly based
on an accurate determination of starting conditions, due to
the predictive instability generated by positive Lyapunov ex-
ponents. Finally, if fractal parameters are not appropriate for
none of the previous predictive strategies, the generation of
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DSL series with the convenient gap sizeG is a viable alterna-
tive when lacunarity is well fitted to Cantor or random Cantor
sets.
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