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Abstract. Recent developments of multi-point measure-
ments in space provide a means to analyze spacecraft data
directly in the wave vector domain. For turbulence study
this means that we are able to estimate energy, helicity, and
higher order moments in the wave vector domain without as-
suming Taylor’s hypothesis or axisymmetry around the mean
magnetic field. The methods of the wave vector analysis are
presented and applied to four-point data of Cluster in the so-
lar wind.

1 Introduction

Waves and turbulence observed in the interplanetary space
and the Earth’s magnetosphere are one of the most interest-
ing subjects in space physics, as plasmas allow various kinds
of linear wave modes as excitation states to exist (that are
well documented by, e.g.,Stix, 1992 and Gary, 1993) and
also various kinds of nonlinear waves and turbulent states
(Biskamp, 2003). One of the complexities in plasma turbu-
lence is that not only eddy splitting but also Alfvén waves
and other wave modes may be carriers of the energy cas-
cade through wave-wave interactions. Earlier spacecraft ob-
servations in 1960s revealed that magnetic field fluctuations
in the solar wind are reminiscent of turbulence, as their fre-
quency spectra often exhibited a power-law spectrum cha-
racterized by the spectral index−5/3, the index known as
Kolmogorov’s inertial-range spectrum for hydrodynamic tur-
bulence. Regions upstream and downstream of Earth’s bow
shock are also characterized by large-amplitude fluctuations,
and they are thought to be in a turbulent state, too.
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Earlier in-situ observations of space plasma turbulence
were primarily limited to analyzing time series data based
on single-spacecraft measurements, and the properties of
the fluctuating magnetic field and flow velocity were deter-
mined in the temporal or frequency domain. Investigation
of spatial properties of the fluctuating fields relied on Tay-
lor’s frozen-in flow hypothesis that neglects wave frequen-
cies in the flow-rest frame when a fluctuating field is sampled
in a fast-streaming medium (Taylor, 1938). This hypothe-
sis relates the observed frequency with the wave number in
the flow direction using the Doppler shift,ω ' k ·V , where
ω is the spacecraft-frame frequency, andk and V are the
wave vector and the flow velocity vector, respectively. The
solar wind is a fast-streaming plasma with the Mach num-
ber being 8 to 10 with respect to the sound speed and also
the Alfvén speed. Therefore, Taylor’s hypothesis is believed
to be valid and has been widely applied in studying solar
wind turbulence (Coleman, 1968; Matthaeus and Goldstein,
1982; Marsch and Tu, 1990; Podesta et al., 2007). Other
physical quantities relevant to plasma turbulence such as the
magnetic helicity density, the cross helicity, and the Elsässer
variable spectra were also determined by adapting and reduc-
ing these quantities to the context of single-spacecraft mea-
surements (Matthaeus and Goldstein, 1982; Matthaeus et al.,
1982; Glassmeier et al., 1989; Marsch, 1991; Tu and Marsch,
1995).

It should be noted here that some fundamental properties
of waves and turbulent fields are still missing because of the
limitations of single-point measurements. For example, wave
propagation speeds and directions, frequencies in the flow
rest frame (that needs Doppler correction), and wavelengths
cannot unambiguously determined in single-point measure-
ments, otherwise one has to assume a wave mode or a disper-
sion relation to estimate these quantities. Separation between
temporal and spatial variation in space plasma could not be
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achieved in early single-point measurements because the
Doppler shift was not corrected. Spatial properties of the
fluctuating fields can be determined only by multi-point mea-
surements: They allow us to determine the wave vectors, the
wave propagation speeds and directions, the rest-frame fre-
quencies by correcting the Doppler shift, and the fluctuation
amplitudes associated with the wave vectors and the rest-
frame frequencies. Furthermore, multi-point measurements
also provide the opportunity to verify Taylor’s hypothesis.

This paper reviews the wave vector analysis methods de-
veloped particularly for the Cluster mission (Escoubet et al.,
2001; Balogh et al., 2001) to make use of full potential of the
four-point measurements in space. Examples include (1) the
wave telescope technique, (2) the extended wave telescope
technique, and (3) the eigenvector analysis methods. The
mathematical foundation of these methods are explained as
well as application to the Cluster data. The wave telescope
technique performs a parametric projection of the measured
fluctuations into the wave vector domain and does not re-
quire any knowledge on dispersion relations nor Taylor’s hy-
pothesis. Using this technique and its extended methods,
the distributions of energy and helicity can be determined
in the frequency-wave vector domain. From the 3-D energy
distribution, Taylor’s hypothesis is verified for the first time
for solar wind turbulence. Also, the analysis of bispectrum
can be performed in the wave vector domain using the wave
telescope technique. The concept of bispectrum represents
a triple correlation that measures occurrence or strength of
wave resonance processes among three different wave com-
ponents, and therefore it serves as a useful analysis tool to in-
vestigate energy cascade process in turbulence. Details about
the bispectrum analysis are explained in Sect. 3.3. The eigen-
vector analysis is another approach in wave analysis and pro-
vides methods to determine dispersion relations and high-
resolution wave number spectra.

2 Projection methods

It is of course ideal to have as many properly positioned
spacecraft available as possible to Fourier transform ob-
served fluctuations from the spatial coordinates into the wave
numbers. The four measurement points of Cluster, from this
point of view, are too few for performing a Fourier transform
into the wave number domain, but it was proposed to esti-
mate the energy distribution in the 4-D frequency-wave vec-
tor domain using four point measurements only. The idea to
use multiple spacecraft as a plasma wave array experiment
was originally raised byMusmann et al.(1974) before the
concept of the Cluster mission was developed. The idea of
the array experiment using multi-spacecraft was further de-
veloped for the Cluster mission (Neubauer and Glassmeier,
1990; Pinçon and Lefeuvre, 1991; Motschmann et al., 1996;
Glassmeier et al., 2001), applying the projection methods

earlier used in seismic wave studies (Capon, 1969; Harjes
and Henger, 1973).

We define the state vector for anL-point measurements as

S(ω) =


S(ω,r1)

S(ω,r2)
...

S(ω,rL)

. (1)

Here each sensor measures a scalar quantityS at thei-th po-
sition of the sensorsr i . The fieldS is already transformed
from the time into the frequency domain, and is a function
of the frequencyω and the positionr i . Consider a projection
of the state vector, which provides the amplitude as a func-
tion of the frequency and the wave vector. In other words, the
state vector is reduced to a scalar by taking a dot product with
a suitable weight or projection vector. We measure a scalar
field using a sensor-array and determine the state vector in
the frequency domain; and then the state vector is reduced to
a scalar. The projected quantity is the wave amplitude given
as a complex number, retaining the phase information in the
frequency-wave vector domain:

S(ω,k) = w†(ω,k) ·S(ω), (2)

wherew†(ω,k) denotes the weight vector or the projection
vector (the dagger means Hermitian conjugate). One may
also estimate the wave power in the frequency-wave vector
domain as:

P (ω,k) = 〈|S(ω,k)|2〉 =w†(ω,k)R(ω)w(ω,k), (3)

whereR(ω) denotes theL-by-L cross spectral density (CSD)
matrix determined by the state vector:

R(ω) =
1

T

〈
S(ω)S†(ω)

〉
. (4)

The factor 1/T represents a division by the measured time
lengthT , so that the elements of the CSD matrix are given as
energy density in the frequency domain, in units of squared
amplitude per frequency. The angular bracket〈···〉 repre-
sents the operation of averaging. We use in our data analysis
the time averaging, assuming that fluctuations are stationary.
The task is now to find the weight vector in a suitable form
describing the amplitude or the power associated with the pa-
rameterk, the wave vector. We introduce two different pro-
jection methods: beam-former projection and Capon’s mini-
mum variance projection.

2.1 Beam-former projection

Let us define the steering vector that describes a plane wave
approximation characterized by the wave vectork:

h(k) =


eik·r1

eik·r2

...

eik·rL

. (5)
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The beam-former projection uses the steering vector as the
weight vector,

w = h, (6)

and the wave power is estimated as

PBF = h†Rh. (7)

An example of the wave number spectrum evaluated with the
beam-former projection technique is displayed in Fig.1 for
synthetic data. In this example, a single plane wave is gen-
erated with the wave numberk=0.021 rad/km and the fluctu-
ating field is sampled at four distinct points in a 1-D array
as time series data. The evaluated spectrum shows a max-
imum at the signal wave number, but the spectrum is very
broad and flat and identification of the signal wave number
under the high background level in the spectrum is difficult.
Furthermore, the spectrum exhibits a drop at relatively small
wave numbers. The result is therefore much different from
the spectrum of the synthetic data.

2.2 Capon’s minimum variance projection

To reduce the high background level of the beam-former
spectrum and to make the spectrum have a sharp peak at
the signal wave vector,Capon(1969) proposed the method
of minimum variance projection. Consider minimizing the
power while keeping the fluctuation amplitude at the look-
ing wave vectork unchanged (referred to as the unit gain
constraint). The task is to minimize the interference in the
spectrum that come from wave vectors other than the looking
wave vector. This problem can be formulated as an optimiza-
tion problem under a constraint as follows:

minimize w†Rw subject to w†
·h = 1

or

δ
[
w†Rw−λ

(
w†

·h−1
)]

= 0, (8)

with the Lagrangian multiplierλ. Capon(1969) obtained the
analytical solution for this problem as follows:

w =
R−1h

h†R−1h
. (9)

The projected power is therefore

PC =
1

h†R−1h
. (10)

See, for example,Haykin (1991) for the derivation. It is
worthwhile to note that Capon’s projection vector is deter-
mined not only by the steering vector but also by the mea-
surement itself through the state vector. An example of the
spectrum evaluated by Capon’s method is presented in Fig.1
for the same data as that used for the beam-former spectrum.
The Capon spectrum shows a much clearer peak at the sig-
nal wave number and the background level is significantly
reduced.

Fig. 1. Wave number spectra evaluated by the beam-former (BF)
and Capon’s projection methods.

2.3 Wave Telescope Technique

The projection method can be generalized to measurements
of vectors such as the magnetic field, and the state vector
has 3L elements (3 components of the vector measured by
L sensors). In the case of the Cluster magnetometer data the
number of sensor isL = 4, and the state vector is established
as:

S(ω) =


B1(ω)

B2(ω)
...

B4(ω)

, (11)

and the generalized CSD matrix is

R(ω) =
1

T
〈S(ω)S†(ω)〉. (12)

The CSD matrix is a 3L×3L matrix and depends on the fre-
quency. After the projection, the CSD matrix is reduced to
a 3×3 matrix, and each element of the matrix represent the
correlation among thex, y, andz component of the fluctu-
ating magnetic field as a function of the frequency and the
wave vector. The steering vector is a 3L×3 matrix:

H(k) =


I eik·r1

I eik·r2

I eik·r3

I eik·r4

, (13)

where I denotes the 3× 3 unit matrix. The formula of
Capon’s projection can be generalized to matrix operations,
and we obtain the projection matrix as (Pinçon and Lefeuvre,
1991; Motschmann et al., 1996)

W = R−1H
[
H†R−1H

]−1
(14)

under the unit gain constraint:

W†H = I . (15)
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The projected matrix is expressed as:

P=

[
H†R−1H

]−1
. (16)

This is a 3×3 correlation matrix in the frequency-wave vec-
tor domain. The diagonal and off-diagonal elements repre-
sent the fluctuation power and wave helicity, respectively.
The trace of the matrix gives the total fluctuation power.

In addition, one may impose an additional constraint that
the field satisfies the divergence-free condition (Pinçon and
Lefeuvre, 1991; Motschmann et al., 1996). This can be ex-
pressed as

k ·W†S = 0. (17)

This condition may be reflected to the state vectorS such
that S is replaced byVS, where the matrixV represents a
projection of the state vector onto the plane perpendicular to
the wave vector:

V = I +
kk

k2
. (18)

The matrixV can be directly incorporated in Capon’s spec-
trum and we obtain the projection matrix as

W = R−1HV
[
V†H†R−1HV

]−1
(19)

and the projected matrix:

PWT =

[
V†H†R−1HV

]−1
. (20)

The trace of the projected matrix gives the total fluctuation
power at frequencyω and the wave vectork:

PWT = tr

([
V†H†R−1HV

]−1
)

. (21)

Estimating the power in the wave vector domain using
the three matricesR, H, and V is called the wave tele-
scope technique or k-filtering (Pinçon and Lefeuvre, 1991;
Motschmann et al., 1996; Glassmeier et al., 2001; Pinçon
and Motschmann, 1998; Pinçon and Glassmeier, 2008), and
it provides the means to determine the energy distribution in
the 4-D frequency-wave vector domain using Cluster data.
Note that the projection vectorw and the projection matrix
W are the dimensionless operators and they do not change
the units of the spectrum after the projection, i.e., the same
dimension as the CSD matrix (squared amplitude per fre-
quency). A suitable procedure is needed to properly evalu-
ate Capon’s spectra as energy distributions or energy density
spectra. After integration of Capon’s spectra over frequen-
cies the spectra are given in units of power (squared ampli-
tude), and the division by the wave number interval after the
integration the spectra are adapted to the energy density spec-
tra in units of squared amplitude per wave number.

An example of the 3-D energy distribution in the wave
vector domain evaluated by the wave telescope technique is
displayed in Fig.2. In this example, synthetic time series
data are generated from the model energy distribution (which
is an isotropic distribution in the wave vector domain) with
random phases. The fluctuations are sampled at four dis-
crete points forming a tetrahedron. The energy distribution is
then reconstructed from four-point time series data using the
wave telescope technique. Although the reconstructed distri-
bution is not exactly the same as the model distribution, the
overall structure can be reasonably well reconstructed (Narita
et al., 2010a). The wave telescope technique has the advan-
tage that it does not require any knowledge on the number of
signals. In the MUSIC algorithm (presented later), one has
to know the number of signals. It is worthwhile to note that
Capon’s projection method is valid not only for plane waves
but also for other spatial structures.Constantinescu et al.
(2006, 2007) generalized the wave telescope technique for
spherical wave patterns.Plaschke et al.(2008) generalized it
to field-line-resonant phase patterns of ULF pulsations of the
geomagnetic field using phase-shifted waves. The associated
spatial patterns are displayed in Fig.3.

The wave telescope technique was extensively tested using
synthetic data set (Pinçon and Lefeuvre, 1991; Motschmann
et al., 1996; Glassmeier et al., 2001; Narita et al., 2010a;
Sahraoui et al., 2010), and limitations of the wave telescope
technique have been discussed, too. From the viewpoint
of calculation, the spectral estimator of the wave telescope
technique works for arbitrary wave vectors as they are a pa-
rameter in the analysis. In practice, tetrahedral configura-
tion imposes the upper and lower limits of the range of wave
vectors. The upper limit of the wave number is determined
by the spacecraft separation (Nyquist wave number), while
the lower limit is determined by the cognition of large-scale
wavelength. Sahraoui et al.(2010) argue that 1/50 of the
maximum or Nyquist wave number is a reasonable choice as
the lower limit of the wave number: below this limit the un-
certainty in the relation between the estimated power and the
wave numbers is too large. The mean field should be uni-
form in the collected data for the wave telescope technique
to be applicable (Glassmeier et al., 2001). The tetrahedral
configuration should also be carefully checked when apply-
ing the wave telescope technique. The Nyquist wave number
is, strictly speaking, dependent on the directions because the
sensor separation distance changes when projected to various
directions. The tetrahedral configuration of the sensors there-
fore imposes a particular window or cell in the wave vector
domain where the wave telescope analysis is valid (known as
the first Brillouin zone in solid state physics). It was dis-
cussed recently that the shape of the Brillouin may influ-
ence the shape of evaluated spectral distribution, known as
the spatial aliasing problem (Narita and Glassmeier, 2009a;
Sahraoui et al., 2010). This effect can be minimized when
the tetrahedral configuration is regular.
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Fig. 2. Comparison of energy distribution in the 3-D wave vector domain. Left panel displays the model distribution from which synthetic
data are generated and sampled at four different positions in the spatial coordinate. Right panels displays the energy distribution reconstructed
using the wave telescope technique. Adapted from the numerical test of the wave telescope technique inNarita et al.(2010a).

As an application to the Cluster data, Fig.4 displays the
3-D energy distribution in the wave vector domain for mag-
netic field fluctuations in the solar wind. The energy distri-
bution is determined in the 4-D frequency-wave vector do-
main in the spacecraft frame, and then the Doppler shift is
corrected and the distribution is transformed into the flow
rest frame. Finally, the 4-D distribution is reduced to the
3-D distribution by integrating over the rest-frame frequen-
cies. The distribution is anisotropic and exhibits an extended
structure perpendicular to the mean magnetic field direction,
suggesting that the observed solar wind fluctuations repre-
sent the geometry of quasi-2-D turbulence. While earlier
measurements based on single-point measurements already
revealed the anisotropy in solar wind turbulence, Taylor’s hy-
pothesis and axisymmetry around the mean field had to be
assumed to infer the energy distribution in three-dimension
(Matthaeus et al., 1990; Carbone et al., 1995; Dasso et al.,
2005). The wave telescope technique does not require such
assumptions and determines the 3-D energy distribution di-
rectly in the wave vector domain. One of the most important
conclusions of the 3-D energy distribution is that the turbu-
lence in solar wind is not axisymmetric about the background
magnetic field (Narita et al., 2010c). This was not seen be-
fore the Cluster mission. Various interpretations are possible
to explain the non-axisymmetric structure: it may originate
in the coronal magnetic field structure, or perhaps it is caused
by the radial expansion of solar wind. Statistical study of the
3-D energy distributions on various spatial scales would be
a suitable task for this problem, which is being carried out
currently.

It is furthermore possible to verify Taylor’s hypothesis us-
ing the 3-D energy distribution. The 1-D energy spectrum
is estimated by reducing the 3-D distribution into 1-D wave
number domain in the flow direction and transforming it into
the energy density in the wave number domain (in units of

Phase-shifted plane wavePlane wave Spherical wave

Fig. 3. Spatial patterns that can be used for the Capon’s projection
technique, afterConstantinescu(2007).

Fig. 4. Cubic representation of magnetic energy distribution in the
3-D wave vector domain for solar wind turbulence measured by
Cluster. The cube shows the distribution in the GSE coordinate
system. The 3-D distribution is projected onto three planes by aver-
aging over the wave vector components perpendicular to the planes.
The 95% confidence interval is displayed at the contour scale bar.
Directions of the mean magnetic fieldB0 is indicated as well (Narita
et al., 2010c).
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squared amplitude per wave number interval). The energy
spectrum in the flow direction is then compared with that
evaluated using Taylor’s hypothesis in Fig.5. The spectrum
estimated from the wave telescope technique (upper panel)
shows deviation from the power-law spectrum with the index
−5/3 at larger wave numbers. The spectrum estimated from
Taylor’s hypothesis (lower panel) can be fitted on the whole
by a power-law with the index−5/3, but the spectrum shows
deviations (or fluctuations) from the power-law curve at var-
ious wave numbers. The direct comparison between the two
spectra suggests that Taylor’s hypothesis appears to be valid,
but one should keep in mind that the resolution of the wave
numbers is not very satisfactory in the reduced spectrum (up-
per panel), and further investigations would be needed to ver-
ify on what scales Taylor’s hypothesis clearly breaks down.
Taylor’s hypothesis neglects wave frequencies in the flow-
rest frame compared to the Doppler term, the breakdown of
Taylor’s hypothesis is expected when the rest-frame frequen-
cies cannot be neglected. Another possibility of the break-
down of Taylor’s hypothesis is that there is no dispersion re-
lation in the fluctuations and the energy distribution spreads
both in the frequency and wave vector domain, such that
higher frequencies in the flow-rest frame contribute signifi-
cantly as well as lower frequencies. Therefore, whether or
not a dispersion relation exists and how the energy spectrum
in the rest-frame frequency domain looks like are very impor-
tant questions in turbulence. The energy spectra in the wave
vector domain are evaluated for magnetic field fluctuation in
various regions: in the solar wind (Narita et al., 2010a,b,c),
foreshock (Narita et al., 2006; Narita and Glassmeier, 2010d)
and magnetosheath (Sahraoui et al., 2003, 2006; Narita and
Glassmeier, 2010d).

3 Extended wave telescope technique

3.1 Magnetic helicity density

The wave telescope technique provides a 3×3 matrix with
each element representing a correlation amongBx , By , and
Bz components of fluctuations in the frequency-wave vector
domain. While the diagonal elements of the CSD matrix rep-
resent the wave power, the off-diagonal elements represent
cross-correlations and contain information about the mag-
netic helicity density. To relate the projected CSD matrix
with the magnetic helicity density, we use the expression of
the vector potentiala for the fluctuating magnetic fieldb:

a = −
i

k2
k×b. (22)

The magnetic helicity density can be determined by build-
ing a scalar product between the vector potentiala and the
magnetic fieldb:

hM
= 〈a†

·b〉, (23)

where the angular bracket〈···〉 represents the averaging over
different ensembles, e.g., averaging over different time se-

Fig. 5. Comparison of the wave number spectra. The upper panel
is the energy spectrum for the wave number in the flow direction,
reduced from the 3-D energy distribution using Cluster data and
the wave telescope technique. The lower panel displays the energy
spectrum transformed from the frequency into the wave number do-
main using Taylor’s hypothesis (solid line) and the reduced spec-
trum shown in the upper panel (squares) with adjustment for com-
parison of the spectral slope.

ries data. The magnetic helicity density is related to the off-
diagonal elements of the projected CSD matrix as (Narita
et al., 2009b):

hM
=−

i

k2

[
kx(Pyz−Pzy)+ky(Pzx−Pxz)+kz(Pxy−Pyx)

]
.

(24)

It is worthwhile to note that the estimate of the helicity den-
sity Eq. (24) is constructed as gauge-independent, and it is
evaluated in the frequency-wave vector domain.

As an example, the distributions of the magnetic heli-
city density in the frequency-wave number domain along the
mean magnetic field is displayed and compared with that of
the fluctuation energy (Fig.6). The data are taken from Clus-
ter magnetometer data in the terrestrial foreshock region. The
distributions are corrected for the Doppler shift. The helicity
density can take both a positive and a negative value, and the
magnitude of the helicity density is plotted here. Both the
energy and the helicity density distributions exhibit several
peaks almost at the same frequencies and the wave numbers.
While the energy distribution shows wave activities for any
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Fig. 6. Energy and helicity density in the frequency-wavenumber
domain for a synthetic data set of four-point measurements of mag-
netic field (Narita et al., 2009b).

kind of polarization or helicity (i.e., linear, circular, and el-
liptical polarization), the helicity distribution shows the ac-
tivities for the circular or elliptical sense of field rotation.
The peaks are located on the positive wave number side, pa-
rallel to the mean magnetic field and it is also in the direc-
tion away from the shock to the interplanetary space. From
the rest-frame frequencies and the wave numbers one may
estimate the phase speeds, and they are aboutvph=40 km/s
andvph=88 km/s atk=0.0010 rad/km andk=0.0017 rad/km,
respectively. The latter peak is close to the Alfvén speed of
the background plasma, about 77 km/s, while the first one
is about half of the Alfv́en speed. Figure6 suggests that
the foreshock waves represent the growth of ion instabilities
driven by ion beams moving sunward from the shock. The
energy and magnetic helicity distributions in the frequency-
wave number domain essentially agree with the predictions
based on the wave kinetic theory (Gary, 1993).

3.2 Wave telescope for flow velocity data

Although the wave telescope technique was developed par-
ticularly for analyzing multi-point magnetic field data, it can
be applied to to the multi-point flow velocity data. For exam-
ple, Cluster electron data are available at four spacecraft and
the data is suitable for the wave telescope analysis. However,
the divergence-free condition is not always valid for flow ve-

locity fields and the wave telescope technique for the flow
velocity should use the form of Eq. (16). In a similar fashion
to the approach used in the magnetic helicity density, various
quantities relevant to fluid turbulence may be evaluated using
the flow velocity data. The kinetic energy is the trace of the
projected CSD matrix, and the off-diagonal elements of the
matrix provide the kinetic helicity densityhK

= 〈u ·�〉. The
symbol� denotes the vorticity, the curl of the flow velocity.
The kinetic helicity density is related to the projected CSD
matrix as:

hK
=

〈
u†

·�
〉

(25)

= i
[
kx(Pu,yz −Pu,zy)+ky(Pu,zx −Pu,xz)

+kz(Pu,xy −Pu,yx)
]
. (26)

In this expression we used the vorticity in the Fourier do-
main:

� = ik× ũ, (27)

where the tilde-hat represents the Capon projection into the
frequency-wave vector domain, andPu,ij denotes the the
(i,j)-component of the projected CSD matrix for the flow
velocity. It is also possible to evaluate the enstrophy (the
squared vorticity) and the dilatation (the divergence of the ve-
locity, which is a measure of the fluid compressibility). The
former is given as

�2
= |k× ũ|

2, (28)

and the latter is

d2
= |k · ũ|

2, (29)

Finally, the correlation between the flow velocity and the
magnetic field gives the cross helicity density,hC

= 〈ũ†
· b̃〉.

This can be evaluated in the frequency-wave vector domain,
too.

3.3 Higher order moments

Using the wave telescope technique it is possible to esti-
mate higher order moments which are useful quantities to
study wave-wave interactions. For example, third order mo-
ments (also named bispectra or three-point correlations) are
the measure of three-wave couplings and can be determined
in the frequency-wave vector domain. Three-wave processes
are characterized by the resonance condition of frequencies
and wave vectors, described asω′′

= ω±ω′ andk′′
= k±k′.

One of the third order moments relevant in plasma physics
the triple correlation of two fluctuation components of the
magnetic field and a density fluctuation component under the
conditionsω′′

= ω+ω′ andk′′
= k+k′:

F
(
ω,ω′,k,k′

)
=
〈
b(ω,k)n

(
ω′,k′

)
b∗
(
ω+ω′,k+k′

)〉
, (30)

where we used, for simplicity, the scalar fields of the
magnetic fieldb and number densityn. These fields are
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projected into the frequency-wave number domain using
Capon’s method:

b(ω,k) = w
†
b(ω,k) ·Sb(ω) (31)

n(ω,k) = w†
n(ω,k) ·Sn(ω). (32)

HereSb(ω) andSn(ω) are the state vectors of the magnetic
field and the number density, andwb and wn are the re-
spective projection vectors. The asterisk denotes the oper-
ation of complex conjugate. The meaning of the bispectrum
is as follows. If three waves are in resonance in the mea-
sured data, the bispectrum returns a non-zero quantity, other-
wise the bispectrum for the other non-resonant waves returns
a small value close to zero due to the averaging operation.
The bispectrum can be investigated for the plus-sign coupling
(ω+ω′ andk+k′) and for the minus-sign coupling (ω−ω′

andk−k′).
The bispectrum was evaluated using Cluster data in the

wave vector domain for the couplingkb +kn = k′

b (Fig. 7),
wherekb andkn denote the wave numbers of the fluctuat-
ing magnetic field and the electron density, respectively. The
primed wave vectork′

b is another wave vector of the fluc-
tuating magnetic field. The data are taken from the Cluster
observation in the foreshock region. The bispectrum is eval-
uated at various combinations ofkb andkn using the reso-
nance condition, and its distribution exhibits a peak at one
particular combination of these two wave vectors.

The magnetic field and the electron data were used for
the bispectral analysis for the following reason. There are
various types of wave-wave interactions proposed in plasma
physics, and one of them describes the interaction of an
Alfv én wave (that is a fluctuation in the magnetic field) with a
sound wave (that is a density fluctuation), generating another
Alfv én wave at the resonant frequency and wave vector. The
decay and the modulational instabilities belong to this fam-
ily of interaction (Derby, 1978; Goldstein, 1978; Longtin and
Sonnerup, 1986; Mjølhus, 1976; Spangler, 1999; Terasawa
et al., 1986; Wong and Goldstein, 1986). The displayed ex-
ample does not immediately imply an evidence of these in-
stabilities in space plasma observation, but suggests that such
an analysis can be performed both in the frequency and in the
wave vector domain, which provides a means to study, either
to prove or to disprove, these instabilities using spacecraft
data. It is worth noting that Fig.7 not only provides the direct
evidence of wave-wave resonance in the spatial domain but
also suggests that the parametric instability of Alfvén wave
may be occurring in the foreshock region, in which an Alfvén
wave collapses into another Alfvén wave and a density fluc-
tuation (e.g., sound wave). However, more careful studies
are needed to confirm the existence of parametric instability,
for example, by investigating the bispectrum in the both fre-
quency and wave vector domain; comparing the background
condition such as the plasma beta with the theoretical predic-
tions.

Fig. 7. Bispectrum using magnetic field and electron density data
of Cluster in the foreshock under the resonancekb +kn, wherekb

andkn represent the wave number of the fluctuating magnetic field
and electron density parallel to the mean magnetic field. The dotted
line denotes the level of 95 % confidence (Narita et al., 2008).

4 Eigenvector analysis

The CSD matrices of the state vectors are Hermitian-
symmetric and they may be decomposed into a set of eigen-
values and eigenvectors, which have information about spa-
tial structure of waves. Investigation of the eigenvectors of
the CSD matrix represents provides another useful wave vec-
tor analysis tools. We present in this section two applica-
tions: the wave surveyor technique (Vogt et al., 2008) and the
multi-point signal resonator (MSR) technique (Narita et al.,
2010b). The former provides a wave vector identification
method for the dominant wave components and the latter pro-
vides a high-resolution wave number spectrum.

4.1 Wave surveyor technique

The wave surveyor technique (Vogt et al., 2008) is a direct
identification tool of wave dispersion relations in the sense
that the wave vectors are computed directly as a function of
the frequencies. The wave telescope technique, in contrast,
provides the wave power in the frequency-wave vector do-
main and one has to search peaks of the energy distribution
in the wave vector domain to identify the wave vectors of
the dominant wave components, which is computationally
demanding. The wave surveyor technique makes use of the
eigenvectors of the CSD matrix, and it determines the wave
vectors directly from the difference of wave phases measured
at array-sensors, assuming a propagating plane wave. The
eigenvectors of the CSD matrix are given as a set of com-
plex numbers, and the phaseθi at thei-th sensor should be
equal or close to the phase of propagating plane wave in the
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observer’s frame. We therefore minimize the deviation or
difference between the ideal phases and the measured phases,
i.e., minimize the following function

Q(k,φ) =

L∑
i=1

[θi −k ·r i −φ]2, (33)

with respect to the wave vectork and the initial phaseφ. It
can be shown that the wave vector can be directly obtained
from the eigenvector phases as (Vogt et al., 2008):

k =

(∑
i

r ir
t
i

)−1∑
i

θir i . (34)

Herer t is the transposed vector of the sensor positions mea-
sured from the center of the sensor array. The position vec-
tors satisfy the condition

∑
i r i = 0. In the case of four sen-

sors (L = 4) like the Cluster mission, the solution can be
given as a linear combination of the reciprocal vectors of
the spacecraft positionsκ i (Neubauer and Glassmeier, 1990;
Chanteur, 1998),

k(ω) =

4∑
i=1

θi(ω)κ i . (35)

This method directly determines the wave vector associated
with the frequencyω is called the wave surveyor technique
(Vogt et al., 2008). The wave surveyor technique gives a very
similar result in the dispersion relation analysis to that of the
wave telescope technique. Figure8 displays the comparison
of the dispersion relation for foreshock waves measured by
Cluster. The dispersion relations in Fig.8 agree with the
theoretical prediction of ion beam instability (Gary, 1993),
and therefore comfirm that the foreshock waves are driven
by the backstreaming ion beams from the shock.

4.2 MUSIC algorithm and MSR technique

The eigenvectors of the CSD matrix are strictly orthogo-
nal to one another, and this fact can be used for establish-
ing another estimator of the wave number spectrum. The
MUSIC algorithm (Multiple SIgnal Classification) was pro-
posed bySchmidt(1986) on the assumption that the mea-
sured data contains signal and noise such that the CSD
matrix can be decomposed into two parts. The state vec-
tor is therefore interpreted as a combination of the signal
term and the noise term. Under this concept the CSD ma-
trix is decomposed into the signal term and the noise term,
too. The eigenvalues and eigenvectors ofR are denoted
by λ1 ≥ λ2 ≥ ··· ≥ λL ande1, e2, ···, eL, respectively. For
the noise part the eigenvalues are given as the “noise floor”
(Haykin, 1991) such thatλM+1 = λM+2 = ···= λL = σ 2. We
split the eigenvectors of the CSD matrixR into two parts: the
signal subspaceEs = [e1,e2,··· ,eM ] and the noise subspace
En = [eM+1,eM+2,··· ,eL].

Fig. 8. Dispersion relation of foreshock waves measured by Cluster.
Left panel displays the dispersion relation determined by the wave
telescope technique (Narita et al., 2007), and right panel displays
that determined by the wave surveyor technique (Vogt et al., 2008).
Wave numbers are in the direction to the mean magnetic field and
frequencies are given in the flow rest frame after the Dopper correc-
tion.

The power estimation in the MUSIC method is given as

PMUSIC =
1

|h†En|
2

(36)

=
1

h†EnE†
nh

, (37)

which makes use of the orthogonality between the steering
vectorh(ki) (i = 1,··· ,M) and the eigenvector for the noise
partej (j = M +1,··· ,L):

h†(ki) ·ej = 0. (38)

The MUSIC spectrum is also expressed using all eigenvec-
tors as

PMUSIC =
1

h†FLF†h
, (39)

whereF is the eigenvector matrix ofR sorted in descending
order of the eigenvalues

F = [Es En] =
[
e1 ··· eM eM+1 ··· eL

]
. (40)

The matrixF is an arrangement of the eigenvectors of the
CSD matrix, placing the signal-associated eigenvectors on
the left side in the matrix and the noise-associated eigenvec-
tors on the right side. The matrixL is a diagonal matrix and
is defined as

L = diag

0,··· ,0︸ ︷︷ ︸
M

,1,··· ,1︸ ︷︷ ︸
L−M

. (41)

The MUSIC algorithm is based on finding the eigenvec-
tors associated with noise that are orthogonal to the steering
vector with the signal wave vector. The spectrum estimated
by the MUSIC algorithm uses the product of the noise eigen-
vectors and the steering vectors, and therefore the method
gives the spectrum in the dimensionless unit. It should also

www.nonlin-processes-geophys.net/17/383/2010/ Nonlin. Processes Geophys., 17, 383–394, 2010



392 Y. Narita et al.: Wave vector analysis methods

be noted that the MUSIC algorithm requires that the number
of signals must be known in the analysis to extract the set of
the eigenvectors associated with noise. One method to deter-
mine the number of signals is to investigate the noise floor
of the eigenvalues, for example, in a plot of eigenvalues in
descending order (Haykin, 1991).

The problem that the number of signal sources must be
known in the MUSIC algorithm was solved byChoi et al.
(1993) by replacing the diagonal matrixL by 3−n with

3−n
= diag

((
λ1

λL

)−n

,

(
λ2

λL

)−n

,··· ,

(
λL

λL

)−n
)

. (42)

Here the power−n is an adjustable parameter (n = 1,2,···)
in the analysis that controls the asymptotic behavior of the
estimator such that the matrix3−n becomesL in the limit
n → ∞. In other words, replacing the matrixL by 3−n au-
tomatically selects the noise subspace of the CSD matrixR.
It should be noted that the procedure of the matrix replace-
ment by3−n does not stem from any mathematical theory
guaranteeing better functionality of the technique, but it rep-
resents an intuitive picture of generalization of the matrixL
to soften its sharp transition of the diagonal elements from
zero to one. Therefore, other extensions or generalizations
are possible for the MUSIC algorithm.Choi et al.(1993)
found that even a small number ofn such asn = 2 can suc-
cessfully reproduce the MUSIC spectrum without knowing
the number of signal sources. The spectrum using the ex-
tended MUSIC algorithm is given as

PEM =
1

h†F3−nF†h
. (43)

The spectrumPEM is given in the dimensionless unit, but
it may be used as a filter to Capon’s spectrum. The MSR
technique (Multi-point Signal Resonator) makes use of this
notion to establish an estimator of high-resolution wave num-
ber spectra: We use Capon’s estimator and obtain the power
spectrum that exhibits the right value of the spectrum at the
signal wave number; and we use additionally the extended
MUSIC spectrum with a proper normalization as a dimen-
sionless filter to enhance the signal-to-noise contrast of the
Capon spectrum. The power spectrum in the MSR technique
is therefore given as

PMSR=
1

PEM0
PEMPC. (44)

Here the factor 1/PEM0 denotes normalization of the ex-
tended MUSIC spectrum, and is a sum of the extended-
MUSIC spectrum over the frequency-wave vector domain:

PEM0 =

∑
ω,k

PEM(ω,k). (45)

The normalized, extended MUSIC spectrum
PEM(ω,k)/PEM0 serves as a filter that returns the value

Fig. 9. Capon and MSR spectra for the synthetic data with two wave
components that have similar or very close wavelengths (Narita
et al., 2010b).

of almost one at the signal wave numbers and almost zero
values otherwise, which enhances the quality of Capon’s
spectrum. Another merit of the MSR technique is that it can
resolve waves with slightly different wavelengths or wave
numbers. Figure9 displays the spectral curves determined
by the Capon and the MSR technique for a synthetic data set
in which two wave components have close wave numbers
to each other. The MSR spectrum can resolve two peaks
at the signal wave numbers, whereas Capon’s spectrum
exhibits a peak with broadening. The peak at the smaller
wave number in the MSR spectrum appears as a hump in the
Capon spectrum, and identification of this peak is difficult.
This example shows the ability of the MSR technique: much
reduced background level; and high-resolution in the wave
vector domain. The MSR technique can also be used for a
measurement of a vector quantity such as the magnetic field.
It is also possible to set the divergence-free condition as
an additional constraint. Details of the MSR technique are
discussed inNarita et al.(2010b).

5 Conclusions

“Cluster is more than just a four spacecraft mission” so ini-
tiates the paper presenting the first result of the wave tele-
scope technique using Cluster data (Glassmeier et al., 2001).
The motivation to analyze data in the wave vector domain
despite the small number of measurement points has been
worked out and is still being developed for more than two
decades. Fluctuation energy, helicity, and higher order mo-
ments are very important quantities characterizing properties
of plasma turbulence, and with Cluster one can evaluate them
in the 3-D wave vector domain. Taylor’s hypothesis or ax-
isymmetry around the mean magnetic field are not any more
necessary assumptions in interpreting Cluster data, and fur-
thermore, Cluster provides the opportunity to verify these as-
sumptions. Although the range of wave vectors is rather nar-
row because it is determined by the inter-spacecraft separa-
tion and the tetrahedral configuration, Cluster offers various
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separation and configuration phases in its operation, rang-
ing from 100 km to 10 000 km separation. It would be inter-
esting to study turbulent fluctuations in the solar wind and
the magnetosphere using the methods presented in this pa-
per, to see how spatial properties change from a large scale
to a small scale. Also, the analysis methods can be applied
to the plasma data, in particular, the flow velocity. The wave
vector analysis using both the magnetic field and the flow ve-
locity data would provide more complete information about
the nature of plasma turbulence.
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M., and Fornaçon, K.-H.: Low frequency wave sources in the
outer magnetosphere, magnetosheath, and near Earth solar wind,
Ann. Geophys., 25, 2217–2228, doi:10.5194/angeo-25-2217-
2007, 2007.

Constantinescu, O. D.: Wave sources and structures in the Earth’s
magnetosheath and adjacent regions, Ph.D. thesis, Copernicus
GmbH, Katlenburg-Lindau, 2007.

Dasso, S., Milano, L. J., Matthaeus, W. H., and Smith, C. W.:
Anisotropy in fast and slow solar wind fluctuations, Astrophys.
J., 635, L181–L184, 2005.

Derby Jr., N. F.: Modulational instability of finite-amplitude, cir-
cularly polarized Alfv́en waves, Astrophys. J., 224, 1013–1016,
1978.

Escoubet, C. P., Fehringer, M., and Goldstein, M.:Introduc-
tion The Cluster mission, Ann. Geophys., 19, 1197–1200,
doi:10.5194/angeo-19-1197-2001, 2001.

Gary, S. P.: Theory of space plasma microinstabilities. Cambridge
Atmos, Space Science Series, Cambridge, 1993.

Glassmeier, K.-H., Coates, A. J., Acuña, M. H., Goldstein, M. L.,
Johnstone, A. D., Neubauer, F. M., and Rème, H.: Spectral
characteristics of low-frequency plasma turbulence upstream of
Comet P/Halley, J. Geophys. Res., 94, 37–48, 1989.

Glassmeier, K.-H., Motschmann, U., Dunlop, M., Balogh, A.,
Acuña, M. H., Carr, C., Musmann, G., Fornaçon, K.-H.,
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