
Nonlin. Processes Geophys., 17, 303–318, 2010
www.nonlin-processes-geophys.net/17/303/2010/
doi:10.5194/npg-17-303-2010
© Author(s) 2010. CC Attribution 3.0 License.

Nonlinear Processes
in Geophysics

A model for large-amplitude internal solitary waves
with trapped cores

K. R. Helfrich 1 and B. L. White2

1Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
2Department of Marine Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA

Received: 13 April 2010 – Revised: 21 June 2010 – Accepted: 22 June 2010 – Published: 15 July 2010

Abstract. Large-amplitude internal solitary waves in con-
tinuously stratified systems can be found by solution of the
Dubreil-Jacotin-Long (DJL) equation. For finite ambient
density gradients at the surface (bottom) for waves of de-
pression (elevation) these solutions may develop recirculat-
ing cores for wave speeds above a critical value. As typically
modeled, these recirculating cores contain densities outside
the ambient range, may be statically unstable, and thus are
physically questionable. To address these issues the problem
for trapped-core solitary waves is reformulated. A finite core
of homogeneous density and velocity, but unknown shape,
is assumed. The core density is arbitrary, but generally set
equal to the ambient density on the streamline bounding the
core. The flow outside the core satisfies the DJL equation.
The flow in the core is given by a vorticity-streamfunction
relation that may be arbitrarily specified. For simplicity, the
simplest choice of a stagnant, zero vorticity core in the frame
of the wave is assumed. A pressure matching condition is
imposed along the core boundary. Simultaneous numerical
solution of the DJL equation and the core condition gives
the exterior flow and the core shape. Numerical solutions of
time-dependent non-hydrostatic equations initiated with the
new stagnant-core DJL solutions show that for the ambient
stratification considered, the waves are stable up to a criti-
cal amplitude above which shear instability destroys the ini-
tial wave. Steadily propagating trapped-core waves formed
by lock-release initial conditions also agree well with the
theoretical wave properties despite the presence of a “leaky”
core region that contains vorticity of opposite sign from the
ambient flow.
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(khelfrich@whoi.edu)

1 Introduction

Oceanic observations of internal solitary-like waves show
clearly that waves of extremely large amplitude are possi-
ble, even common. For example, waves off the Oregon coast
have amplitudes of up to 25 m where the upper layer depth
is only 5 m (Stanton and Ostrovsky, 1998). The measure of
nonlinearityα=a/H≈5, wherea is the wave amplitude and
H is a depth scale (sayH=h1, the mean upper layer depth),
is well beyond the KdV limitα�1. While the Oregon ob-
servations are at the extreme end, values ofα=O(1) have
been observed in numerous other locations such as the South
China Sea (Orr and Mignerey, 2003; Duda et al., 2004) and
the New Jersey shelf (Shroyer et al., 2009).

An interesting and important aspect of such large waves
is the possibility of trapped, or vortex, cores.Klymak and
Moum (2003) and Scotti and Pineda(2004) found large-
amplitude solitary-like waves of elevation with trapped cores
propagating along the ocean bottom. The Morning Glory in
northeast Australia is an atmospheric example of a large-
amplitude internal undular bore that has been observed to
have trapped cores beneath individual crests (Clarke et al.,
1981). Doviak and Christie(1989) and Cheung and Little
(1990) report similar trapped-core waves propagating in the
atmospheric boundary layer. Both of these observations are
significant since they also have coincident measurement of
potential temperature that show that the cores contained fluid
with densities near those of the ground-level ambient envi-
ronment.

The first experimental study of internal solitary waves with
trapped cores were reported byDavis and Acrivos(1967).
They produced mode-two solitary waves with recirculating
cores riding on a thin interface between two uniform den-
sity layers. Maxworthy (1980), Stamp and Jacka(1995)
and, more recently,Sutherland and Nault(2007) have studied
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experimentally the properties of mode-two solitary waves
with trapped cores. However, there is a subtle, but impor-
tant issue with the mode-two waves. Regardless of whether a
trapped core is present, localized, stationary mode-two soli-
tary wave solutions can not be found because of a reso-
nance with finite-wavenumber mode-one waves (Akylas and
Grimshaw, 1992). From a physical point of view, these
mode-two waves do exist, but only for a finite time before
the mode-one radiation destroys them.

Grue et al.(2000) andCarr et al.(2008) carried out exper-
imental studies of large-amplitude, mode-one internal soli-
tary waves of depression. The waves were generated by a
partial-depth lock-release into a two-layer ambient stratifica-
tion. The lower layer had uniform density, the upper layer
was linearly stratified and the fluid released by the lock has
an upper layer with density equal to the density of the free
surface. The focus of these experiments was on the pres-
ence of instability, both shear and convective, in the waves.
However, they also found some waves with regions of fluid
velocityu>c, i.e. trapped cores.

Despite the atmospheric, oceanic and laboratory observa-
tions of large-amplitude internal solitary waves with trapped
cores there remain many unaddressed issues. Foremost
among these is the need for a physically consistent theory
for waves with trapped cores. As discussed below, models
for waves with trapped cores have, with one exception, been
based on a questionable approach.

Large-amplitude internal solitary waves can be found
by solutions of the Dubreil-Jacotin-Long (DJL) equation
(Dubreil-Jacotin, 1934; Long, 1953) in a Boussinesq fluid of
depthH (cf. Stastna and Lamb, 2002)

∇
2η+

N2(z−η)η

c2
= 0, (1)

whereη(x,z) is the departure of a streamline from its initial
vertical position,z̄= z− η, far away from the wave since
η→0 as |x| → ∞ (see Fig.1). The boundary conditions
along the flat bottom and rigid lid areη(x,0)= η(x,H)= 0.
In (1) the buoyancy frequencyN2

= −(g/ρ0)dρ̄/dz̄ is found
from the ambient density distribution̄ρ(z̄). The density of
the fluid at any point in the flow isρ(x,z)= ρ̄ (z−η(x,z)).
The wave is held stationary by a uniform oncoming flow
u=−c. Herec is the phase speed of the wave and the hor-
izontal and vertical velocities in the frame of the wave are,
respectively,u=c(ηz−1) andw=−cηx . The total stream-
functionψ=c(η−z).

In what follows, the variables are non-dimensionalized us-
ing the depthH for x andz and

√
g′H for u, w, andc. Here

g′
= g(ρb−ρt)/ρ0 is the reduced gravity based on the den-

sities at the bottom,ρb, and top,ρt, of the ambient stratifica-
tion. The densities are scaled by a reference densityρ0 and
N2 by g′/H .

Mode-one solitary wave solutions of (1) are found for
phase speedsc>c0, wherec0 is the linear long-wave phase
speed (found by solving (1) for ∂/∂x = 0 andN2

=N2(z)).

0
x

z

h(x)

!

Lc−Lc
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0 

Fig. 1. Sketch showing the core boundaryh(x) and the streamline
displacementη. The stagnation points are atx=±Lc.

The wave amplitude increases withc until the solutions
end in one of three outcomes (Lamb, 2002). One is a low
Richardson number shear instability limit. If the shear limit
does not occur the solutions may reach the limiting flat-top
wave, or conjugate state, solution. In some cases the solu-
tions reach a breaking limit defined by the presence of in-
cipient overturningηz=1, oru=0 in the frame of the wave,
at z=0 (z=1) just beneath the wave crest (trough) for waves
of elevation (depression). The phase speed at the point of
incipient breaking is denotedc∗. A necessary condition for
overturning is that the ambient stratification have finiteN2 at
the bottom (top) for elevation (depression) waves (cf.Lamb,
2002). In the following only waves of elevation will be con-
sidered since the fluid is assumed to be Boussinesq. Waves
of depression can be obtained by symmetry.

Solutions to the DJL equation can be found beyond the
critical point (c>c∗) if one assumes that the function forρ̄(z̄)
continues to increase smoothly for negative arguments (i.e.,
outside the physical domain). That is,N2(z−η) is defined
for z̄= z−η < 0 (e.g.Davis and Acrivos, 1967; Tung et al.,
1982; Brown and Christie, 1998; Fructus and Grue, 2004).
These solutions develop closed recirculation zones (trapped
cores) within a finite region bounded by the bottom and the
core boundaryh(x), |x| ≤Lc, shown schematically in Fig.1.
Because the streamlines within this core havez−η<0, they
are nominally linked to streamlines that “originate” beneath
the bottom and have densities outside the ambient range.
This is a consequence of the violation of the assumption in
(1) that all streamlines in the fluid extend tox=±∞. Fur-
thermore, trapped-core solutions found by extendingN2 for
z−η<0 have the same relation between vorticity, stratifica-
tion and streamfunction inside the core as in the exterior flow.
While extension ofρ̄ for z̄<0 is mathematically acceptable
and solutions to (1) can be found, the presence of densities
outside the ambient range, statically unstable core density
structure, and the core vorticity-streamfunction relationship
from the ambient upstream flow make these solutions physi-
cally questionable.
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One solution to this problem is to specify a uniform core
densityρc≥ρb. This follows from Derzho and Grimshaw
(1997) who derived a nonlinear, long-wave theory for a back-
ground stratification withN≈constant and withρc=ρb. This
ambient stratification is a special case since the maximum
height of the trapped core,hc=h(0), remains small, per-
mitting analytical progress. For more general stratifications
there is no guarantee that the core height will remain small.

In this paper a model of internal solitary waves with ar-
bitrary stratifications with trapped cores is developed. Once
c>c∗ and a trapped core forms, the model consists of solv-
ing the DJL equation outside the core and matching this so-
lution to another model of the core structure. We will follow
Derzho and Grimshaw(1997) and assume a finite core with
uniform densityρc. For generality, we allowρc≥ρb, but the
physically consistent choice for steady motion at long times
in flows with weak diffusion is for the core density to homog-
enize toρc=ρb by the Prandtl-Batchelor theorem (Batchelor,
1956; Grimshaw, 1969).

In general, the flow in an inviscid recirculating core with
uniform density obeys (Batchelor, 1956)

∇
2ψ = f (ψ), (2)

wheref (ψ) is some unknown function. Frequently in prob-
lems of this type, the Prandtl-Batchelor theorem is used to
argue that vorticity within the closed recirculation region ho-
mogenizes to the value of the vorticity of the ambient fluid
on the bounding streamline (e.g.,Rhines and Young, 1982).
However, from (1), the vorticity of the ambient fluid flowing
along the core boundary (η=h(x)),

∇
2ψ = c∇2η= −

N2(0)h(x)

c
,

is not constant and the Prandtl-Batchelor argument can not
be invoked. Just inside the homogeneous core, the vorticity
on the bounding streamline is constant regardless off (ψ)

sinceψ is constant on a streamline. Thus the vorticity in any
inviscid, uniform density core model will be discontinuous
across the core boundary.

In the Derzho and Grimshaw(1997) model the core is
shown to have zero vorticity (i.e. was stagnant in the frame
of the wave) to leading order and the vorticity discontinuity
could also be ignored. This was confirmed in subsequent nu-
merical studies (Aigner et al., 1999; Aigner and Grimshaw,
2001). However, with arbitraryN2(z) and inviscid dynamics
there is no similar theoretical limit on the core circulation. In
principal anyf (ψ) is possible. Consideration of the forma-
tion process, viscous effects and stability may constrain the
possible solutions.

To make progress we will make the assumption that the
core has zero vorticity. In the reference frame moving with
the wave phase speedc, the core is stagnant. The full model
for internal solitary waves with stagnant, uniform density

trapped cores is given in the next section where the match-
ing conditions on the core boundary are given. The nu-
merical procedure for finding the steady solutions is pre-
sented in Sect. 3. The solitary wave solutions are explored
for a particular class of ambient stratification that lead to
trapped cores in Sect. 5. Because the stagnant-core assump-
tion is just one of many possible choices, these new model
solutions are compared to two-dimensional numerical solu-
tions of the time-dependent, non-hydrostatic Euler equations
(described in Sect. 4) initiated with the new theoretical solu-
tions and to solitary waves produced by a lock-release initial
condition.

2 The model

As already stated, the flow in the ambient fluid outside the
core is governed by the DJL equation (1) with the boundary
conditions

η(x,z) → 0, as|x| →∞

η(x,1) = 0, for all x

η(x,0) = 0, |x| ≥Lc

η(x,h(x)) = h(x), |x| ≤Lc.

(3)

When there is no core (c<c∗), h(x)= 0 (andLc=0) so that
the last condition is redundant. When a core is present, the
last condition is a statement of the kinematic constraint that
fluid parcels flowing alongz=0 upstream of the core must
remain adjacent to the core boundary. Ifh(x) were a topo-
graphic feature, rather than a internal fluid boundary requir-
ing dynamical considerations, then the problem statement
would be complete.

In general, inside the core (z≤h(x) for |x|≤Lc) the flow
is governed by (2) with ψ=0 on the unknown boundary
z=h(x). Along the boundary the core and ambient pressures
must be equal. Consider the ambient flow streamline that
originates upstream atx=∞ along z=0. The dimensional
Bernoulli constant on this streamline is

B =p(0)+ρ0
c2

2
, (4)

where

p(0)=
∫ H

0
gρ(ξ)dξ

is the (hydrostatic) pressure atz=0 as|x|→∞. The pressure
on the ambient bounding streamline is then given by

p(x,z)=p(0)−gρ(0)η+ρ0
c2

2
−ρ0

1

2

[
u2

b+w2
b

]
. (5)

The subscript b is used to denote this ambient streamline that
originates upstream atz̄= 0 whereρ=ρb.
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The Bernoulli function on the bounding streamline in the
core is equal to the pressure at the stagnation pointx=Lc

Bc =p(Lc,0)=p(0)+ρ0
c2

2
.

Thus the pressure on this bounding streamline is

pc(x,h(x))=p(0)−gρch(x)+ρ0
c2

2
−ρ0

1

2

[
u2

c +w2
c

]
. (6)

The subscript c indicates core quantities anduc andwc are
the core fluid velocities in the general case where the core
fluid is recirculating.

The pressure must be continuous at the core boundary
z= h(x) (for |x|<Lc). Thus from (5) and (6) the matching
condition is(
u2

b+w2
b

)
−

(
u2

c +w2
c

)
= 2g

(ρc−ρb)

ρ0
h. (7)

This can be simplified using the kinematic boundary condi-
tionw=uhx on z= h(x) for both the core and ambient flow
to give

u2
b−u2

c = 2g
(ρc−ρb)

ρ0

h

1+h2
x

. (8)

When ρc=ρb, the horizontal velocity is continuous at the
core boundary.

With the assumption of a stagnant core,uc=0, (8) be-
comes, after using the non-dimensionalization introduced
with (1),

ub = c(ηz−1)= −

[
2
(
S−1

−1
) h

1+h2
x

]1/2

, (9)

or

ηz = 1−

[
2(S−1

−1)

c2

h

1+h2
x

]1/2

, z=h(x), |x|<Lc. (10)

HereS= (ρb−ρt )/(ρc−ρt )∈ [0, 1]. The negative root was
chosen so thatub≤0, avoiding overturning in the free stream.
Note that whenρc=ρb, S = 1 and (10) give ηz=1. In this
case the velocity in the exterior flow adjacent to the core is
zero (in the wave frame) and just at the overturning limit. For
ρc>ρb, ub<0 along the core.

When c0≤c≤c∗ there is no core and the DJL equation
must be solved forη(x,z) subject to (3) with Lc=0. For
c>c∗ the unknown core boundaryh(x) is found by solution
of (1) subject to (3) along with the core condition (10). These
stagnant-core solitary wave solutions should exist fromc∗ up
to the limiting conjugate state solutions with stagnant cores
found byLamb and Wilkie(2004) for ρc=ρb andWhite and
Helfrich (2008) for ρc≥ρb. The conjugate state solutions are
found in a one dimensional version (∂/∂x=0) of the DJL
problem, along with additional conditions that impose en-
ergy and momentum flux conservation between the flows up-
stream and over the uniform section of the wave. The con-
jugate states have core heightshcs and speedsccs. Therefore
the solitary wave solutions have core heights 0≤hc≤hcs for
c∗≤c≤ccs.

3 Stagnant-core DJL solution method

Turkington et al.(1991) developed an efficient variational
technique that is frequently employed for solving the DJL
equation in the absence of a core (c<c∗), or when the am-
bient stratification is extended forz− η<0 (c>c∗). How-
ever, this method is not easily adapted to the current problem
with uniform density cores. Numerical solutions will instead
be found using the Newton-Raphson technique (Press et al.,
1986). In order to solve the DJL equation outside the trapped
core, which is for the moment assumed to be known, (1) is
re-written in a coordinate system where the physical coor-
dinates(x,z) outside the core are mapped to a new coordi-
nate systemσ=σ(x,z) andξ = ξ(x,z) (i.e., x=x(ξ,σ ) and
z=z(ξ,σ )). With this transformation (1) becomes(
αηξ

)
ξ
+

(
βηξ

)
σ
+(βησ )ξ +(γ ησ )σ

+J
N2[z(ξ,σ )−η]η

c2
= 0, (11)

where

α =

(
x2
σ +z2

σ

)
J−1,

β = −
(
xσxξ +zσ zξ

)
J−1,

γ =

(
x2
ξ +z2

ξ

)
J−1 (12)

and

J = xξzσ −xσ zξ (13)

is the Jacobian of the transformation. The subscripts indi-
cate partial differentiation. Here a standard boundary-fitted
system

σ =
z−h(x)

1−h(x)
, ξ =0(x), (14)

is employed. The function0(x) is introduced to allow a
stretched grid inx.

The mapped DJL equation (11) is solved in a domain
0≤σ≤1 and 0≤ξ≤1. Care is taken thatL, the domain
length in x, is sufficiently large to minimize effects of a
finite length domain. The wave is symmetric about the
crest so thatηx=hx=0 at ξ=0. From (3) and usingηx =

ηξ −(1−σ)(1−h)−1hξησ , the boundary conditions become

η(ξ,1)= 0, η(1,σ )= 0, η(ξ,0)=h(ξ), ηξ (0,σ )= 0, (15)

where it is understood thath(ξ)=0 for ξ ≥ ξc =Lc/L. Fi-
nally, in the mapped coordinate system the core pressure
matching condition (10) becomes, usingηz = (1−h)−1ησ ,

ησ = 1−h−

[
2
(
S−1

−1
)

c2

(1−h)2h

1+h2
ξx

−2
ξ

]1/2

(16)

for σ = 0, ξ <Lc.
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Treating the core boundaryz= h(x) as known (in each it-
eration of the Newton method), (11)–(16) are approximated
using second-order finite-differences. The grid hasσ dis-
cretized intoM+1 uniformly spaced points inσ andN+1
uniformly spaced points inξ , with a ξ -grid point located at
ξc. The core boundaryhi is then defined atNc grid points
where h>0. The discretized system (11)–(16) results in
(M − 1)(N − 1)+Nc equations for the interior valuesηij
(i = 2−N, j = 2−M) and theNc non-zero values ofhi .
This set is solved by the Newton-Raphson method. After a
Newton update, the newhi (i≤Nc) will have changed and a
new estimate of the end pointξc is found by a quadratic ex-
trapolation of the last three (i =Nc −2 to Nc) core points.
The solution is then interpolated onto a new grid with a grid
point located at the newLc. Theξ grid is arranged such that
there is approximately the same grid spacing inside and out-
side the core (i.e.1ξ ≈ 1/N everywhere). Thus the number
of points,Nc, that define the core varies as the core length
changes. For very small cores care is taken thatNc>3.

This solution and remapping procedure is repeated until
the sum of absolute value of the variable increments and the
sum of the absolute values of function residuals each drop
below specified tolerances. Particular care is taken that the
core lengthLc and heighthc (=h(0)) are not changing. For
solutions discussed hereM=50 andN≈50L. Thus in the
absence of a core the grid is approximately isotropic. In the
presence of a core the grid provides sufficient resolution inx

andz to resolve the core stagnation point atLc. This solu-
tion procedure is not sophisticated; however, it does produce
solutions that, as will be shown below, remain essentially un-
changed when used as initial conditions in time-dependent,
non-hydrostatic numerical calculations. The exceptions are
waves that appear to be unstable due to a physical shear in-
stability.

A trapped core solutionc>c∗ found using the Newton-
Raphson procedure withN2(z− η) extended forz− η < 0
provides an initial guesses forh(x), Lc, and the exterior
η(x,z) for the same stratification andc. Once a converged
solution is obtained, it is used as the initial guess for a newc,
leading to a family of solutions forc>c∗ with a given ambi-
ent stratification.

4 Time-dependent non-hydrostatic numerical model

The theoretical solutions obtained with the trapped-core
model will be tested using numerical solutions of the invis-
cid, two-dimensional non-hydrostatic equations of motion

ut +uux+wuz = −px (17)

wt +uwx+wwz = −pz−s (18)

ux+wz = 0 (19)

st +usx+wsz = 0. (20)

Hereu andw are the horizontal and vertical velocities in the
laboratory frame,s = (ρ−ρ0)/(ρb−ρt ) andp is the pres-

sure (less the hydrostatic pressure fromρ0). Theu,w, x, and
z have been non-dimensionalized as (1). Pressure is scaled
with ρ0g

′H and time t with (H/g′)1/2. These equations
are solved using the finite-volume, second-order projection
method ofBell and Marcus(1992). Because of the upwind-
biased Godunov evaluation of the nonlinear terms the method
is stable, requires no explicit dissipation, and introduces sig-
nicant numerical dissipation only when large gradients oc-
cur on the grid scale. The numerical method has been used
successfully for studies of large-amplitude internal solitary
waves (e.g.,Lamb, 2002; White and Helfrich, 2008), and
tests of the code show that large internal solitary waves with-
out trapped cores propagate distances of more than 100H

with the correct phase speed, amplitude, shape, and minimal
loss of energy (<1%).

Two types of calculations are considered. In the first, the
stagnant-core DJL solitary waves are tested by using these
steady solutions as initial conditions. In the second, trapped-
core waves are generated by a lock-release initial condition

ρ(x,z,t = 0)=


ρ̄(z̄), x≥Ld

ρ̄(z̄−hd), x<Ld and z̄≥hd

ρd, x<Ld and z̄<hd

(21)

The region of fluid held behind the lock extends fromx = 0
to x =Ld. Herehd is the depth of a lower uniform-density
layer,ρd≥ρb, beneath the ambient stratification. This initial
condition mimics the experiments ofGrue et al.(2000) and
Carr et al.(2008). In both cases the solutions use uniform
grids with vertical grid cell size of1z= 1/150. The hor-
izontal resolution1x = 0.01 in the DJL model initial con-
dition cases and1x = 0.01−0.02 for the lock-release runs.
The time-stepping is controlled internally to keep maximum
Courant number less than 0.625. The DJL solution initial
condition runs use no normal flow boundary conditions inz
and inflow/outflow boundary conditions inx. A uniform flow
u= −c with s = s̄(z̄) is imposed at the right boundary with
an open boundary at the left. The waves are traveling in the
positive-x direction in the laboratory frame. The lock-release
runs have no normal flow conditions on all boundaries.

5 Results

To illustrate the solutions to the DJL model for large-
amplitude waves a background density given by

ρ̄(z̄)= 1+
(ρb−ρt )

ρ0
s̄(z̄), (22)

with

s̄(z̄)= 1−
tanh(λz̄)

tanhλ
(23)

is used. This form for̄s(z̄) gives bottom-trapped stratification
for increasingλ (≥ 0) andN2(0)>0 so that trapped cores are
possible.

www.nonlin-processes-geophys.net/17/303/2010/ Nonlin. Processes Geophys., 17, 303–318, 2010



308 K. R. Helfrich and B. L. White: Trapped-core internal solitary waves

z
t = 0 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

z
t = 30 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

z
t = 70 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

z
t = 200 

x − ct
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

Fig. 2. Evolution of an extended-s̄ DJL solution forλ=8 andc=

0.4. Contours ofs in intervals of 0.1 fors≤1 (outside the core) and
0.025 for s>1 (inside the core) are plotted. Times are indicated in
the panels. Note that only part of the domain is shown.

5.1 Extended-̄s DJL waves

We first examine waves obtained by extending the ambient
N2(z̄) for z̄ < 0 and call those solutions “extended-s̄ DJL”
waves. The time-dependent evolution of an extended-s̄ DJL
wave forλ=8 andc=0.4 is shown in Fig.2. Figure3 shows a
larger wave withc=0.58 and the sameλ=8. The top panel of
each figure shows the theoretical solutions with recirculating
(negative vorticity) cores with densities greater than the am-
bient density along the bottom,s̄(0)=1 and statically unsta-
ble core density distributions. The amplitudeηM , core height
hc and core lengthLc of these extended-s̄ DJL solutions for
λ= 8 and 4 are shown by the dashed lines in Fig.8. The
wave amplitudeηM is defined as the maximum streamline
displacement of the flow outside the core at the wave crest.
For λ= 8 (4), the linear long-wave phase speedc0=0.226
(0.285), the critical overturning speedc∗ = 0.331 (0.383)
and the extended-s̄ DJL conjugate state speedccs = 0.582
(0.505).

The Richardson number,Ri, of each of these waves falls
between 0 and 0.25 in a region in the upper, stably-stratified
portion of the core that extends in thinning bands to the two
stagnation points as shown in Fig.4. Recent work byCarr
et al. (2008), Fructus et al.(2009), andBarad and Fringer
(2010) has shown that internal solitary waves are unstable
to Kelvin-Helmholtz instability when the minimum Richard-
son number is less than about 0.1 and the ratiolRi/lW≥0.86.
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Fig. 3. Evolution of an extended-s̄ DJL solution forλ= 8 andc=

0.58. Contours ofs in intervals of 0.1 are plotted.
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HerelRi is the horizontal length of theRi≤0.25 region andlW
is the solitary wave width (twice the distance from the crest
to whereη of the maximum amplitude streamline equals
0.5ηM). The latter condition is related to the time (or dis-
tance) required for the unstable waves to grow before they
are swept out of the unstable region and left behind the soli-
tary wave. However, the extended-s̄ waves are different from
the situations considered inFructus et al.(2009) andBarad
and Fringer(2010) in two important ways. The lowRi region
is confined to the recirculating core where disturbances could
re-enter the unstable region. Furthermore, streamlines in the
low Ri region also pass through the gravitationally unstable
lower core.

In the time-dependent solution for thec = 0.4 wave in
Fig. 2 the trapped core does become unstable. The instability
first appears as a wobble, or distortion, of the core center as
shown att = 30. By t = 70 the core begins to breakdown and
density inversions are evident. Betweent = 70 andt = 200
the flow stabilizes to a new trapped core wave with wave am-
plitudeηM = 0.208 and speedc= 0.394 that are only slightly
different from the original wave. However, the trapped core
is smaller and the maximum core density has decreased from
s= 1.192 to 1.092 and become more homogeneous. The ori-
gins of the instability are not clear in this case. The initial
wobble could be the result of either gravitational or shear in-
stability.

The instability and its consequences are much more dra-
matic for the larger,c= 0.58, wave in Fig.3. This exam-
ple also provides a clearer indication of the processes in-
volved. At t = 7.5 the first disturbances have developed in
the lower, gravitationally unstable part of the core. These
disturbances grow and are swept up into the upper half of the
core near the forward stagnation point. They then appear to
excite Kelvin-Helmholtz billows near the wave crest in the
low Ri band (t = 10). An analysis of the energetics of the
disturbances at small times would be informative but is be-
yond the current scope of this work which is focussed on the
stable core states. Byt = 30 the instability has nearly de-
stroyed the wave. Amazingly, betweent = 50 and 100 a new
trapped-core solitary wave forms from the disorganized flow.
Betweent = 100 and 200 the flow completely stabilizes to a
slower wave withc= 0.558.

Figure 5 shows a comparison of the vertical profiles of
u− c, s, andRi at the crests of the initial (t = 0) and the
equilibrated (t = 200) waves. The final core has a nearly ho-
mogeneous density core,s≈1.18, that is much less than the
maximum value ofs= 1.829 att = 0. The horizontal veloc-
ity along the bottom is larger than the initial wave, indicat-
ing an increase in the magnitude of the core vorticity. The
wave is stable even thoughRi<0.25 in the upper part of the
core (0.38< z< 0.58). This unstable region extends to the
two stagnation points similar to the unstable band att = 0 in
Fig. 4b. But unlike the initial wave, the uniform density of
the final core inhibits the gravitational instability. It appears
that shear instabilities are unable to grow sufficiently without
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Fig. 5. The vertical profiles of(a) u−c, (b) s, and(c) Ri through
the center of the solitary waves att = 0 (solid) andt = 200 (dashed)
in Fig. 3.
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Fig. 6. Scatterplot (black) of the core vorticity versus streamfunc-
tion att = 200 for the case in Fig.3. The light gray region indicates
the values of streamfunction and vorticity in the core att = 0.

coupling with the gravitational instability. The lowRi region
nearz= 0.9 is a result of the vanishing stratification there
and remained stable in the calculation.

The final core vorticity is the same sign as the initial core
and ambient vorticities. A scatter plot of vorticity versus
streamfunction within the core is shown in Fig.6. A clear
relationship,∇2ψ = f (ψ), has developed in the core. It is
distinct from the broad range of core vorticity and stream-
function values att = 0 (the light gray area in Fig.6). The
increase in the magnitude of the core vorticity following the
instability and equilibration is clear from this figure. A sim-
ilar, although different, relationship develops for the smaller
wave in Fig.2.

It is not possible to predict the vorticity-streamfunction re-
lationships,f (ψ), of the equilibrated waves. They are de-
pendent on the turbulent flow, baroclinic vorticity produc-
tion, vorticity advection, and slight numerical diffusion that
occur in the flows. The important point of these two ex-
amples is that these extended-s̄ waves, at least for thēρ(z̄)
considered, are unstable. What emerges from the instability
are new trapped-core internal solitary waves that have nearly
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Fig. 7. Stagnant-core DJL solution forλ = 8, sc=1, andc=0.4. The
core is indicated by the shading and the thin lines ares contours in
increments of 0.1. The area inside the heavy line and above the core
hasRi≤0.25. Note that only the lower half of the water column is
shown.

homogeneous density cores with distinct relationships be-
tween core vorticity and streamfunction. Both of these out-
comes support the theoretical model introduced in Sect. 2.
However, the current restriction of the theoretical model to
stagnant-core solutions is a clear limitation. Regardless, it
is useful to explore the stagnant core solution properties, in-
cluding stability, and ask if this model provides reasonable
estimates of trapped-core waves that develop from a general
initial-value problem such as a lock-release.

5.2 Stagnant-core DJL waves

An example of a stagnant-core solution forλ= 8, sc = 1, and
c= 0.4 is shown in Fig.7. This wave has the same ambi-
ent stratification and phase speed as the extended-s̄ wave in
Fig. 2. It has slightly larger amplitude, smaller core height,
and larger core length than the extended-s̄ wave. Another
difference is that the stagnant-core wave has a region of
Ri<0.25 above the core (bounded by the heavy line in Fig.7).
The minimumRi=0.154 andlRi/lW = 0.37. Recall that the
extended-̄s examples above had the region of low Richardson
numbers located entirely within the core (with the exception
of low values in the the very weakly stratified region near the
upper boundary; cf. Fig. 5).

Figure 8 summarizes the properties of the stagnant-core
DJL solutions. The wave amplitude,ηM , core heighthc, and
core lengthLc are shown as functions ofc for λ= 4 and 8.
For comparison, the extended-s̄ DJL wave properties are also
plotted. For both values ofλ, the stagnant-core solutions be-
gin at the incipient overturning wave speedc∗ and end before
reaching the limiting conjugate state solutions (open circles)
at c= 0.446 and 0.468 forλ= 4 and 8, respectively. It was
not possible to continue the solutions beyond what is shown
in the figure. The reason for the failure of the numerical solu-
tion procedure is unclear, although the likely candidate is the
emergence of the regions of lowRi. Similar numerical diffi-
culties have been encountered byLamb(2002) when solving
for solitary waves in nearly two-layered stratifications using
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Fig. 8. The wave amplitudeηM , core heighthc, and core lengthLc
vs. wave speedc from the stagnant-core DJL solutions are shown
by the solid lines forsc=1 andλ= 8, (a)–(c), andλ= 4, (d)–(e).
The open circles indicate the conjugate state solutions. The dashed
lined and open squares show the same quantities from the extended-
s̄ DJL solutions.
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Fig. 9. Evolution of a stagnant-core DJL solution forλ= 8, sc = 1,
andc= 0.4. The panels show contours ofs at the times indicated.
The contour intervals are 0.1 fors ≤ 0.9 and 0.025 fors >0.9. Note
that only the lower half of the domain is shown.

theTurkington et al.(1991) solution method. Forλ= 8 (4)
the Richardson number first drops below 0.25 atc= 0.368
(0.395) and by the last solution found the minimumRi above
the crest is 0.073 (0.115) and the ratiolRi/lW=0.8 (0.38).

FromFructus et al.(2009) andBarad and Fringer(2010),
these waves should be stable to shear instability. Figure9
shows the time-dependent evolution of the stagnant-core DJL
wave in Fig.7 (λ= 8 andc = 0.4). In this case, the ini-
tial stagnant-core wave is subject to an instability that orig-
inates along the core boundary in the lowRi zone. The
Kelvin-Helmholtz billows are clear att = 20. The instabil-
ity is rather mild and betweent = 50 and 100 the flow re-
stabilizes to a wave that is only slightly different from the ini-
tial wave. Figure10a–d shows the wave properties (s, u−c,
w, and vorticity∇

2ψ) from the numerical solution averaged
betweent = 90 and 100. The core density is slightly inho-
mogeneous. The instability has injected ambient fluid into
the core and baroclinic vorticity production and advection
produces a weak positive vorticity (the initial and ambient
vorticity is everywhere negative) (see Fig.10d). The flow in
the core is very weak (see Fig.10b and c), but does include
a band ofu− c > 0 located above the bottom. In contrast,
in the extended-̄s solutions the region ofu−c > 0 lies along
the bottom (i.e. core vorticity is negative). The phase speed
of the equilibrated wavec=0.399 is nearly the same as the
stagnant-core model wave. The core boundary from the ini-
tial wave (heavy solid line in Fig.10a–c) also agrees with
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Fig. 10. Averages overt = 90−100 for the run in Fig.9. (a) s, (b)
u−c, (c)w, (d) ∇

2ψ . Thes contour interval is 0.1 fors ≤ 0.9 and
0.025 fors > 0.9. The contour interval is 0.03, 0.015, and 0.5 for
(b)–(d), respectively, with solid lines for values≥ 0. (e) Vertical
profiles of u− c and s at x− ct = 0 from the theory (solid) and
numerical model (dashed). The heavy solid line in (a)–(d) shows
the core boundary from stagnant-core DJL solution.

the apparent core shape in the equilibrated wave. In particu-
lar, the region of near-zero vertical velocities in Fig.10c lies
entirely with the initial core boundary.

Further agreement between the final wave and the ini-
tial stagnant-core model wave is shown in Fig.10e where
the vertical profiles ofu− c and s at x− ct = 0 (appropri-
ate c values used) from the theory and equilibrated wave
in the numerical model are compared. The agreement is
very good. The only significant differences are within the
core, where the weak positive vorticity is clear, ands≈ 0.97.
The latter is close to the values = 0.973 in the bottom cell
(0≤ z≤ 1/150) in the ambient flow ahead of the wave. Thus,
in the numerical solution the instability replaces the initial
core fluid (s = 1) with dense ambient fluid. This is to be
expected if the effect of the instability is a turbulent diffu-
sion. The Prandtl-Batchelor theorem then says that the core
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Fig. 11. Evolution of a stagnant-core DJL solution forλ= 8, sc =

1.1, andc= 0.4. (a)–(d) Contours ofs are shown in at the times
indicated. The contour intervals are 0.1 fors ≤ 0.9 and 0.025 for
s > 0.9. Note that only the lower half of the domain is shown.(e)
Comparison ofu−c ands at the wave crest att = 100 (dashed) with
the stagnant-core DJL solution withλ= 8, sc = 1 andc = 0.394
(solid).

should equilibrate tos= 0.973, the value of the density flow-
ing along the bounding streamline. The transport of ambient
fluid into the core and the expelling of core fluid out the back
of the wave is an example of Lagrangian advection across a
hyperbolic trajectory (Wiggins, 2005). The shear instability
along the core boundary provides the time-dependent forc-
ing of the hyperbolic trajectory (the bounding streamline ap-
proaching the rear stagnation point), subsequent lobe forma-
tion and transport.

The equilibrated wave has a region ofRi<0.25 just above
the core with minimumRi≈0.15 andlRi/lW ≈ 0.37, nearly
identical to the initial wave. This suggests that the instability
observed in the numerical solution could be a consequence of
the initial vorticity discontinuity at the core boundary. One
effect of the instability is to eliminate the vorticity disconti-
nuity and reduce the vertical shear at the core boundary (see
Fig. 10d).

Another example of the evolution of a stagnant-core DJL
wave is shown in Fig.11. As in the previous exampleλ= 8
and c = 0.4, but the core of the initial wave has density
sc = 1.1. Recall from the boundary condition (8) that the
jump in density across the core boundary gives a jump in ve-
locity, which should enhance the likelihood of shear instabil-
ity. The time-dependent solutions show that large overturns
develop at the core boundary byt = 20. However, byt = 40
the instability has weakened considerably and byt = 100 the
wave has stabilized. This final wave propagates at a speed
c= 0.394 and has a core that is nearly stagnant and homoge-
neous as shown by the dashed lines in Fig.11e. The mixing
from the instability has again replaced the initial core fluid
with s= 0.97 fluid. Thus the new wave is close to a stagnant-
core DJL wave withsc = 1. The solid lines in Fig.11e show
the vertical profiles ofu−c ands from the stagnant-core DJL
solution withc= 0.394. With the exception of the weak core
circulation and the slightly lower density of the core fluid,
the equilibrated wave agrees very well with the theory.

Time-dependent numerical solutions initialized with
stagnant-core DJL waves withsc = 1 and other values ofc
for both λ=4 and 8 show similar behavior. An initial pe-
riod of shear instability is followed by flow stabilization to
a large-amplitude wave with properties very close to those
predicted by the stagnant-core DJL model. The amplitude
ηM , core heighthc, and core lengthLc of these equilibrated
waves forλ= 4 and 8 are shown in Fig.12 (by the open
circles). The equilibrated wave from Fig.11 is indicated by
the open diamonds in Fig.12a–c. The valueshc andLc are
determined from the vertical and horizontal extent of the re-
gion of near-zero vertical velocities (i.e. thew= 0 contours)
as shown in Fig.10c. There is some uncertainty in choosing
these values that is reflected in the slight scatter of the data.
However, the agreement between the stagnant-core DJL the-
ory and the numerical results is quite good.

These results support the stagnant-core theory despite the
fact that the full numerical solutions produce cores with weak
circulation with positive vorticity and nearly homogeneous
density. However, this is not too strict a test of the theory
as it says that if flow starts close enough to the stagnant-core
solution, it will remain near it. The calculations shown in
Figs. 2 and 3, on the other hand, show that solutions with
nearly homogeneous density, but vastly different core circu-
lation are possible. In those cases the wave propertiesηM ,
hc, andLc do not agree with the stagnant-core model (not
shown).

Additional tests of the stagnant-core theory were con-
ducted with full time-dependent numerical solutions initial-
ized with the lock-release initial condition (21) for λ=4 and
8. Figure13 shows one example forλ= 8, hd = 1,Ld = 0.6
andρd = ρb (sd = 1). One large solitary wave emerges from
the release. Betweent = 20 and 30 the wave is still evolving,
but propagates with a speedc≈0.435, which is greater than
the critical speed for core formationc∗ = 0.331 forλ= 8.
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Fig. 12. Comparison of wave amplitudeηM , core heighthc, and
core lengthLc versus wave speedc from the stagnant-core DJL so-
lutions (solid lines), numerical solutions initiated with the model so-
lutions (open circles), and from the lock-release runs (open squares)
for λ= 8, (a)–(c), andλ= 4, (d)–(f). The solid circles show the the-
oretical conjugate state limits. The open diamonds in (a)–(c) show
the equilibrated wave initiated with a stagnant-core DJL solution
with sc = 1.1 and the open triangles show the conjugate state prop-
erties from a lock-release numerical run fromWhite and Helfrich
(2008).
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Fig. 13. Lock-release run forλ= 8, hd = 1, Ld = 0.6 andsd = 1.
Contours ofs are shown at the indicated times. The contour interval
is 0.1 for s ≤ 0.9 and 0.025 fors > 0.9. Note that part of vertical
domain is shown fort >0.

A close-up of the wave att = 300 is shown in Fig.14.
This long-time evolution is found by taking the leading wave
from the lock-release run att = 30 as the initial condition
for a run with inflow-outflow boundary conditions with a
uniform inflow velocity magnitude equal to the propagation
speedc= 0.435 from the lock-release run. The wave contin-
ues to adjust until aboutt = 180 after which the phase speed,
c= 0.417, is constant. This final wave has a well-defined
core region from thew= 0 contour (Fig.14c). There is a re-
circulation cell shown by the streamfunction in Fig.14d and
the horizontal velocitiesu−c > 0 (Fig. 14b). However, the
recirculation cell (with positive vorticity) sits above the bot-
tom. Streamlines from the ambient flow ahead of the wave
split to flow around this recirculation cell. This is an instan-
taneous picture of the flow. The flow over the core is still
weakly unstable (see the cat’s eye of the Kelvin-Helmholtz
billows on the trailing side of the wave), inducing a slow,
continuous transport of ambient fluid into the core, and ex-
pelling core fluid out the back of the wave. This results in a
nearly uniform density in the recirculation cell ofs ≈ 0.88.
The densest ambient fluid flows beneath this cell and is less
involved in the cross-boundary transport than the (less dense)
ambient streamlines that pass over the cell.

This “core” is quite different than those in either the
stagnant-core or extended-s̄ DJL models. There are no stag-
nation points along the bottom boundary. The density within
thew ≈ 0 region (Fig.14a) is not uniform and closely re-
flects the streamfunction shown in panel d. We note that
a similar circulation pattern was found in numerical solu-
tions of large-amplitude internal solitary wave breaking over

www.nonlin-processes-geophys.net/17/303/2010/ Nonlin. Processes Geophys., 17, 303–318, 2010



314 K. R. Helfrich and B. L. White: Trapped-core internal solitary waves

(a) s
z

−3 −2 −1 0 1 2 3
0

0.5

−3 −2 −1 0 1 2 3
0

0.5
(b) u − c

z

−3 −2 −1 0 1 2 3
0

0.5
(c) w

z

x−ct

z
(d) !

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

u − c s

(e)

Fig. 14. The leading solitary wave from Fig.13 at t = 300. (a) s,
(b) u− c (c) w and (d) ψ . The wave travels at a constant speed
c= 0.417 for t > 100. Thes contour interval is 0.1 fors ≤ 0.9 and
0.025 fors >0.9. The contour interval is 0.05 in (b) and 0.02 in (c),
with solid lines for values≥ 0. Theψ contour intervals in (d) are
0.001 forψ ≥ 0.01 and 0.04 otherwise.(e)Vertical profiles ofu−c

and s at x− ct = 0 from the theory (solid) and numerical model
(dashed). Note that the horizontal and vertical scales in (d) differ
from those in (a)-(c).

slope-shelf topography (Lamb, 2002). Figure14e shows the
vertical profiles ofu− c ands at x− ct = 0 from the wave
at t = 300 and the stagnant-core theory prediction for a wave
with c = 0.409 andλ= 8. The agreement above the core
(z>0.2) is very good.

From theu− c profile it can be seen that the vorticity in
the core is positive and opposite sign from the vorticity in
the ambient fluid. This positive vorticity is not a direct prod-
uct of the initial adjustment immediately following the lock-
release. Rather, it is a product of vorticity produced in the
unstable shear flow surrounding the core. Figure15 shows
a close-up of the vorticity structure att = 10 from Fig.13.
At this time the vorticity within the developing core is nearly
zero. Patches of positive vorticity from baroclinic produc-
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Fig. 15. The vorticity structure of the leading wave att = 10 from
the lock-release numerical run in Fig. .
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Fig. 16. Scatterplot of the core vorticity versus streamfunction for
the wave in Fig.14.

tion are present in the unstable flow around the core. Over
time, some of this positive vorticity fluid is entrained into
the core. In general, the lock-release runs lead to cores with
larger magnitude positive vorticity than the stagnant-core ini-
tial conditions. This appears to be a consequence of an initial
wave that is more unstable to shear instability along the core
boundary, and hence greater baroclinic vorticity production
and subsequent entrainment of this vorticity into the evolving
core.

A scatterplot of vorticity versus streamfunction from
within the core is shown in Fig.16. For this plot the core
region is defined to lie below the arc fromx− ct = ±0.48
through the center of the chain of cat’s-eye vortices (which
corresponds closely to the core defined byw= 0 in Fig.14c).
Within the closed recirculation cell whereψ ≤ −0.005, a
clear streamfunction-vorticity relation has emerged with the
positive vorticity values clustering along a linear trend with
ψ .

By varying Lc andhd (both ≤ 1) in (21), waves with a
range of amplitudes and speeds are produced. As shown
by the open squares in Fig.12a and d forλ = 8 and 4,
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respectively, the amplitudes and speeds of these waves agree
quite well with the stagnant-core theory. Furthermore, ifhc
andLc are defined by thew = 0 contours (see above) the
agreement with the theory is also good. If the fluid behind
the dam has densitysd> 1, the solitary wave that emerges
will, after enough time, expel the dense fluid and have a
leaky core with densitys ≤ 1. Despite the significant dif-
ferences between the waves produced via a lock-release and
the stagnant-core DJL theory, the theory does a surprisingly
good job of capturing the overall wave properties.

The lock-release runs produced solitary waves that forλ=

8 were always slower and smaller than the fastest stagnant-
core DJL wave found and forλ= 4 were only slightly faster
than the maximum theoretical solution. This was the case
despite initial conditions that have a larger volume of fluid of
densityρb behind the dam than the core volume of the largest
wave. The available potential energy of the initial state is also
greater than the total energy of the largest theoretical solitary
wave. White and Helfrich(2008) did find conjugate state
solutions (indicated by the open triangles) from lock-release
runs withLd � 1 andhd → 1 when the initial available po-
tential energy per unit length of the region behind the dam
was greater than the total energy per unit length of the (in-
finitely long) conjugate state. The leading face of the conju-
gate state waves were smooth, but intense Kelvin-Helmholtz
billows formed on the uniform region of the conjugate state
wave crest (see Fig. 17b inWhite and Helfrich, 2008).

The wave produced in the lock-release example in Fig.13
appears to be more unstable than the waves in the laboratory
experiments ofGrue et al.(2000) andCarr et al.(2008). One
possible reason for this difference is that initial dam height
hd = 1, which is the maximum possible, is larger than the lab-
oratory experiments (Grue et al., 2000usedhd ≈ 0.5 in ex-
periments that produced large trapped-core waves). Thus the
initial state in the model has more available potential energy.
The stratification is also different. In the laboratory exper-
iments an equivalentλ≈ 6. Lastly, the two-dimensionality
of the numerical model prohibits the transverse breakdown
of the Kelvin-Helmholtz billows. Detailed wave properties
will depend on whether the third dimension is included, es-
pecially if a careful comparison is to be made with the exper-
iments. However, the calculations still provide insight into
wave development and a systematic test of the theory.

One last example of wave evolution is shown in Fig.17
for a case initiated with the largest stagnant-core wave found
with λ= 8 andsc = 1 at c= 0.45 . As in the earlier exam-
ples the wave is initially unstable to shear instability local-
ized along the core boundary. Unlike the previous exam-
ples, the instability does not weaken. Rather, the instability
strengthens betweent = 60 and 90 such that the wave con-
tinually diminishes in size and speed untilt = 200 when the
wave reached the downstream end of the domain and the cal-
culation was stopped. If the domain were longer, the flow
might eventually equilibrate to a new wave as in the ear-
lier examples, but any final wave will be very much smaller

t = 0z

−5 0 5
0

0.5

t = 30z

−5 0 5
0

0.5

t = 60z

−5 0 5
0

0.5

t = 90z

−5 0 5
0

0.5

t = 160

x − ct

z

−5 0 5
0

0.5

Fig. 17. Evolution of the largest stagnant-core DJL solution found
for λ= 8 andsc = 1 atc= 0.45. Contours ofs are shown at intervals
of 0.1 for s ≤ 0.9 and 0.025 fors > 0.9. Note that only the lower
portion of the domain is shown.

than the initial wave. Recall that the initial wave has a min-
imum Richardson number above the core of 0.073 and that
lRi/lW = 0.8. These values put the wave closer to the insta-
bility boundary found byFructus et al.(2009) andBarad and
Fringer(2010). It is also consistent with the suggestion that
the failure to find stagnant-core DJL solutions forc >0.45 is
related to flow instability and helps explain why the lock-
release runs produced solitary waves within the range of
stagnant-core solutions.

6 Conclusions

In this paper we have developed a model of large-amplitude
internal solitary waves with trapped cores that avoids the
questionable approach of earlier models that use the ambi-
ent stratification-vorticity-streamfunction relation in the re-
circulating core. The new model consists of a finite size,
homogeneous density core beneath a stratified exterior. The
exterior flow satisfies the usual Dubreil-Jacotin-Long equa-
tion for fully nonlinear internal solitary waves and is matched
to the core flow through a pressure continuity condition. The
flow within the core must satisfy a relation between stream-
function and vorticity that can be specified arbitrarily in this
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inviscid theory. For simplicity, and to make progress, we
have chosen the simplest possible core flow – a stagnant flow
in the steady frame of the wave. This homogeneous density,
stagnant-core DJL model connects the incipient overturning
solitary wave to the limiting amplitude stagnant-core conju-
gate state solutions ofLamb and Wilkie(2004) andWhite
and Helfrich(2008).

Solutions for steady, stagnant-core DJL internal solitary
waves were obtained numerically and properties of the waves
were compared to those found by extending the ambient
stratification,s̄(z−η) for negative arguments. For the strati-
fications considered, differences in the resulting wave prop-
erties could be substantial, especially as the wave amplitude
increases. We note though, that if the ambient stratification is
extended differently, then the disagreement can be reduced.
For example, if̄s is extended with

s̄(z̄)= 1−
N2

0 z̄

1−N2
0 (sc−1)−1z̄

, for z̄≤ 0, (24)

whereN2
0 = −s̄z̄(0) from the ambient stratification. This

extension gives continuous density andN2 at z̄ = 0, and
avoids numerical problems associated with discontinuousN2

in the usual DJL solution methods. It asymptotes tosc for
z̄→ −∞, and forsc−1� 1, the core density will be nearly
homogeneous with maximum density only slightly greater
than the ambient environment and the recirculation will be
weak. Wave properties computed withsc = 1.02 are nearly
the same as the stagnant-core properties shown in Fig.8. The
solution branches even stop at nearly the same wave speed.
This extension procedure, though not the form fors̄ above,
has been previously proposed byBrown and Christie(1998).
While these special extended-s̄ solutions are only slightly
different from the new stagnant-core model, the latter pro-
vides a theoretical framework for developing homogeneous
core solutions with specified circulation.

Time-dependent numerical solutions of the Euler equa-
tions initiated with the stagnant-core DJL solutions agree
well with the theory, though the solutions exhibit shear in-
stability along the core boundary and develop a weak recir-
culation (of opposite sign vorticity) within the core. The
time-dependent solutions indicate that lowRi regions near
the wave crest lead to wave instability that appear to explain
the limited range of achievable wave amplitudes.

During the final stages of the submission process this pa-
per, the authors were made aware of a recently submitted
manuscript byKing et al. (2010) that described a new nu-
merical method for solving the DJL equation. They were
able to compute waves with stagnant, uniform density cores
using an extension of the ambient density structure similar to
(24), but with much more rapid transition than above. Two-
dimensional, time-dependent numerical calculations initi-
ated with both a stagnant-core wave and a wave found by
extending the ambient density profile, were qualitatively sim-
ilar to the results in this paper.

Solitary waves produced from a lock-release also agree
reasonably with the stagnant-core model for wave amplitude,
core height and core length. However, the core heights and
lengths used in the comparison are defined, somewhat arbi-
trarily, from the vertical velocity fields. There is a recircu-
lating core, but it has vorticity of opposite sign from the am-
bient flow and is off the boundary. Furthermore, the cores
are not isolated from the ambient flow. Unsteadiness from
shear instability gives rise to fluid transport into and out of
the nominal core region such that the core density is less
than the densest ambient fluid. As in the stagnant-core initi-
ated runs, the positive vorticity in the core must be the result
of baroclinic vorticity production as the ambient vorticity is
negative.

Very different core circulations from those described
above can occur, as illustrated by Figs.3 and6. In this ex-
ample, the core is nearly homogeneous and has vorticity of
the same sign as the initial condition, but with very a dif-
ferent vorticity-streamfunction relation. This emphasizes the
role of transient wave formation, instability and dissipative
processes on the final core structure and circulation. It also
raises the question of whether there are general principles
that place limits on the range of realizable core flows. Cer-
tainly, the presence of shear instability and the tendency of
the flow to adjust to marginal stability is one such limit. This
is an avenue for future investigation.

As mentioned in the Introduction,Grue et al.(2000) and
Carr et al.(2008) carried out experiments on internal solitary
waves produced from a lock-exchange and found that large
waves could have regions ofu > c. We have not made a
detailed comparison with their experiments. There are, how-
ever, several aspects of the experiments that are in qualitative
agreement with the results presented here. One is that in ex-
periments with apparent trapped cores, the vertical profiles of
horizontal velocity at the wave trough (the experiments pro-
duced waves of depression) show thatu/c≈ 1 in the upper
water column as shown in Figs. 14, 15, and 18 inGrue et al.
(2000) and Figs. 9 and 20 inCarr et al.(2008). It is not clear
that this depth range represents the full height of a core since
the authors do not provide independent estimates of the core
height (e.g. from the density fields). However, the height of
this zone at the wave center is approximately equal to the
depth of the upper, linearly stratified layer (hupper≈ 0.2H ).
The wave amplitudes, measured by the vertical displacement
of the interface between the two layers, are also approxi-
mately equal to the upper layer depth. From Fig.7 it is clear
that the height of the core is always less than the wave ampli-
tude (defined somewhat differently in the theory), except for
the largest waves where they are approximately equal. Thus
the experimental core heights defined by theu≈ c depth are
at least qualitatively similar to the theory. Of course, the
stratifications are different and this should be taken into ac-
count in any detailed comparison, but this is suggestive that
u≈ c in the wave cores observed in the experimental.
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Another important feature of the experiments is that the
cores are not completely stagnant. Small turbulent vortices
are present both within the core and along the core boundary
(e.g., Fig. 20 inGrue et al., 2000). And there is evidence
of small, but finite, vertical shear in the cores. As the free
surface is approached from below, the fluid velocity declines,
producing a zone of vorticity within the core with opposite
sign from the open portion of the flow (see Fig. 20 inCarr
et al., 2008, although this may be an artifact of the no-slip lid
in this particular experimental run). So while not conclusive,
these experiments do lend support to the stagnant-core theory
and numerical modeling results.

Grue et al.(2000) also report that instability limited the
maximum observed wave amplitude to be less than for the
theoretical maximum wave (found using an extended-s̄ DJL
model). The conclusion that the stagnant-core waves are lim-
ited by instability is in qualitative agreement with these ex-
periments. We note that in the experiments done byCarr
et al. (2008) the fluid behind the lock was not seeded with
particles (for PIV), yet the core regions in their Figs. 2–7
are filled with particles (M. Carr, personal communication,
2010), indicating that ambient fluid is incorporated into the
core. Unfortunately, neither study made direct measurements
of the densities within the core region and these, along with
experimental measurements of the trapped-core properties
over a broad range of parameters, would be valuable.

Mass transport by large-amplitude internal solitary waves
is thought to play an important role in cross-shore larvae
transport (Pineda, 1999; Helfrich and Pineda, 2003). If the
wave amplitude is large enough for trapped-core formation,
the question of core structure and leakiness will be important.
The streamline pattern in Fig.14d implies that larvae near
the free surface (for waves of depression) may not be incor-
porated into the core, while larvae residing slightly below the
free surface could be brought into the a leaky core for a finite
period of time and experience significant horizontal trans-
port during that period at the wave phase speed. Similar con-
cerns exist for possible transport of fine suspended sediment
by waves of elevation propagating along the sea floor. The
trapped-core waves observed byKlymak and Moum(2003)
show evidence of both acoustic backscatter from biological
activity and optical backscatter from fine sediments.

Finally, the time-dependent numerical calculations pre-
sented here are all two-dimensional. Clearly, the three-
dimensional evolution of the solutions needs to be explored.
The effects of the gravitational and Kelvin-Helmholtz insta-
bilities on the wave evolution and mixing will certainly be
different in three dimensions, possibly leading to different
core states. Fluid exchanges between the core and the am-
bient will likely be modified from the two-dimensional runs.
Also, waves with recirculating (or stagnant) cores may them-
selves be unstable to transverse perturbations.
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