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Abstract. Large-amplitude internal solitary waves in con- 1 Introduction

tinuously stratified systems can be found by solution of the

Dubreil-Jacotin-Long (DJL) equation. For finite ambient Oceanic observations of internal solitary-like waves show
density gradients at the surface (bottom) for waves of declearly that waves of extremely large amplitude are possi-
pression (elevation) these solutions may develop recirculatble, even common. For example, waves off the Oregon coast
ing cores for wave speeds above a critical value. As typicallyhave amplitudes of up to 25m where the upper layer depth
modeled, these recirculating cores contain densities outsidis only 5m Stanton and Ostrovskyt998. The measure of
the ambient range, may be statically unstable, and thus argonlinearitya=a/H=~5, wherea is the wave amplitude and
physically questionable. To address these issues the probledi is a depth scale (sal/ =1, the mean upper layer depth),
for trapped-core solitary waves is reformulated. A finite coreis well beyond the KdV limite<1. While the Oregon ob-

of homogeneous density and velocity, but unknown shapeservations are at the extreme end, valuea#f0(1) have

is assumed. The core density is arbitrary, but generally sepeen observed in numerous other locations such as the South
equal to the ambient density on the streamline bounding théhina Sea@rr and Mignerey2003 Duda et al. 2004 and
core. The flow outside the core satisfies the DJL equationthe New Jersey shelShroyer et al.2009.

The flow in the core is given by a vorticity-streamfunction ~ An interesting and important aspect of such large waves
relation that may be arbitrarily specified. For simplicity, the is the possibility of trapped, or vortex, coreKlymak and
simplest choice of a stagnant, zero vorticity core in the frameMoum (2003 and Scotti and Pined42004 found large-

of the wave is assumed. A pressure matching condition i@mplitude solitary-like waves of elevation with trapped cores
imposed along the core boundary. Simultaneous numericapPropagating along the ocean bottom. The Morning Glory in
solution of the DJL equation and the core condition givesnortheast Australia is an atmospheric example of a large-
the exterior flow and the core shape. Numerical solutions of@mplitude internal undular bore that has been observed to
time-dependent non-hydrostatic equations initiated with thehave trapped cores beneath individual cre€isuke et al,

new stagnant-core DJL solutions show that for the ambienfl981). Doviak and Christig1989 and Cheung and Little
stratification considered, the waves are stable up to a criti{1990 report similar trapped-core waves propagating in the
cal amplitude above which shear instability destroys the ini-atmospheric boundary layer. Both of these observations are
tial wave. Stead"y propagating trapped-core waves formecﬁigniﬁcant since they also have coincident measurement of
by lock-release initial conditions also agree well with the potential temperature that show that the cores contained fluid
theoretical wave properties despite the presence of a “|eakyWith densities near those of the ground-level ambient envi-

core region that contains vorticity of opposite sign from the ronment.
ambient flow. The first experimental study of internal solitary waves with

trapped cores were reported Bavis and Acrivos(1967).
They produced mode-two solitary waves with recirculating
cores riding on a thin interface between two uniform den-
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experimentally the properties of mode-two solitary waves H i
with trapped cores. However, there is a subtle, but impor-
tantissue with the mode-two waves. Regardless of whether ¢
trapped core is present, localized, stationary mode-two soli- >
tary wave solutions can not be found because of a reso-

nance with finite-wavenumber mode-one wavkky{as and ey

Grimshaw 1992. From a physical point of view, these

mode-two waves do exist, but only for a finite time before hix
the mode-one radiation destroys them. 0 —ﬁ]\l_
Grue et al(2000 andCarr et al.(2009 carried out exper- ° oy c

imental studies of large-amplitude, mode-one internal soli-

tary waves of depression. The waves were generated by gig. 1. Sketch showing the core boundaryr) and the streamline

partial-depth lock-release into a two-layer ambient stratifica-displacemens. The stagnation points areet=+Le.

tion. The lower layer had uniform density, the upper layer

was linearly stratified and the fluid released by the lock has

an upper layer with density equal to the density of the free

surface. The focus of these experiments was on the pres-

ence of instability, both shear and convective, in the wavesThe wave amplitude increases withuntil the solutions

However, they also found some waves with regions of fluid€nd in one of three outcomekamb, 2002. One is a low

velocity u>c, i.e. trapped cores. Richardson number shear instability limit. If the shear limit
Despite the atmospheric, oceanic and laboratory observad0es not occur the solutions may reach the limiting flat-top

tions of large-amplitude internal solitary waves with trapped Wave, or conjugate state, solution. In some cases the solu-

cores there remain many unaddressed issues. Foremo#@ns reach a breaking limit defined by the presence of in-

among these is the need for a physically consistent theorgiPient overturning).=1, oru=0 in the frame of the wave,

for waves with trapped cores. As discussed below, modeldtt =0 (z=1) just beneath the wave crest (trough) for waves

for waves with trapped cores have, with one exception, beet®f €levation (depression). The phase speed at the point of

Large-amplitude internal solitary waves can be foundoverturning is that the ambient stratification have filNteat
by solutions of the Dubreil-Jacotin-Long (DJL) equation the bottom (top) for elevation (depression) waves (einb,
(Dubreil-Jacotin1934 Long, 1953 in a Boussinesq fluid of 2002. In the following only waves of elevation will be con-

depthH (cf. Stastna and Lam2002) sidered since the fluid is assumed to be Boussinesq. Waves
5 of depression can be obtained by symmetry.
V2n+L2_’7)’7 =0, (1) Solutions to the DJL equation can be found beyond the
C

critical point > c,) if one assumes that the function fo¢z)

wheren(x, z) is the departure of a streamline from its initial continues to increase smoothly for negative arguments (i.e.,
vertical position,z =z — 5, far away from the wave since outside the physical domain). That i§2(z — ) is defined
n—0 as|x| — oo (see Fig.1). The boundary conditions forz=z—n <0 (e.g.Davis and Acrivos1967 Tung et al,
along the flat bottom and rigid lid argx,0) =n(x, H) =0. 1982 Brown and Christie1998 Fructus and Grue2004.
In (1) the buoyancy frequenady? = —(g/po)d p/dz is found These solutions develop closed recirculation zones (trapped
from the ambient density distributiofi(z). The density of  cores) within a finite region bounded by the bottom and the
the fluid at any point in the flow ig(x,z) = p(z —n(x,2)). core boundaryi(x), |x| < L¢, shown schematically in Fig..
The wave is held stationary by a uniform oncoming flow Because the streamlines within this core havey <0, they
u=—c. Herec is the phase speed of the wave and the hor-are nominally linked to streamlines that “originate” beneath
izontal and vertical velocities in the frame of the wave are,the bottom and have densities outside the ambient range.
respectivelyu=c(n, — 1) andw=—cn,. The total stream- This is a consequence of the violation of the assumption in
functionyr=c(n —z). (2) that all streamlines in the fluid extend te=+oc0. Fur-

In what follows, the variables are non-dimensionalized us-thermore, trapped-core solutions found by extendiffgfor
ing the depth# for x andz and,/g’H for u, w, andc. Here ~ z—n<0 have the same relation between vorticity, stratifica-
g =g(pp—pt)/po is the reduced gravity based on the den- tion and streamfunction inside the core as in the exterior flow.
sities at the bottomyyp, and top,ot, of the ambient stratifica- While extension ofo for z<0 is mathematically acceptable
tion. The densities are scaled by a reference depgignd  and solutions toX) can be found, the presence of densities
N2byg'/H. outside the ambient range, statically unstable core density

Mode-one solitary wave solutions of)(are found for  structure, and the core vorticity-streamfunction relationship
phase speeds>cg, wherecy is the linear long-wave phase from the ambient upstream flow make these solutions physi-
speed (found by solvinglf for 3/dx =0 andN2= N2(z)).  cally questionable.

Nonlin. Processes Geophys., 17, 3888 2010 www.nonlin-processes-geophys.net/17/303/2010/



K. R. Helfrich and B. L. White: Trapped-core internal solitary waves 305

One solution to this problem is to specify a uniform core trapped cores is given in the next section where the match-
density pc>pp. This follows from Derzho and Grimshaw ing conditions on the core boundary are given. The nu-
(21997 who derived a nonlinear, long-wave theory for a back- merical procedure for finding the steady solutions is pre-
ground stratification withV ~constant and witlc=pp. This sented in Sect. 3. The solitary wave solutions are explored
ambient stratification is a special case since the maximunfor a particular class of ambient stratification that lead to
height of the trapped coréic=h(0), remains small, per- trapped cores in Sect. 5. Because the stagnant-core assump-
mitting analytical progress. For more general stratificationstion is just one of many possible choices, these new model
there is no guarantee that the core height will remain small. solutions are compared to two-dimensional numerical solu-

In this paper a model of internal solitary waves with ar- tions of the time-dependent, non-hydrostatic Euler equations
bitrary stratifications with trapped cores is developed. Once(described in Sect. 4) initiated with the new theoretical solu-
c>c, and a trapped core forms, the model consists of solv-tions and to solitary waves produced by a lock-release initial
ing the DJL equation outside the core and matching this socondition.
lution to another model of the core structure. We will follow
Derzho and Grimshad997 and assume a finite core with
uniform densitypc. For generality, we allow:>pp, butthe 2 The model
physically consistent choice for steady motion at long times
in flows with weak diffusion is for the core density to homog- AS already stated, the flow in the ambient fluid outside the
enize topc=pp by the Prandtl-Batchelor theorefdtchelor ~ core is governed by the DJL equatidh) (ith the boundary
1956 Grimshaw 1969. conditions

In general, the flow in an inviscid recirculating core with

. _ ’ 0.
uniform density obeysRatchelor 1956 nx,z) - aslx| — oo

n(x,1) =0, forallx
Vi = f(y), 2  5x,0 =0 |x|>Le

where f () is some unknown function. Frequently in prob- 7(+(¥) = hx). x| < Le.

lems of this type, the Prandtl-Batchelor theorem is used t\hen there is no core-kcy), h(x) =0 (andL¢=0) so that
argue that vorticity within the closed recirculation region ho- the last condition is reduntiént When a corce is present, the
moghem;es tg. the value I9f the vorticity Ofdth\? ambggt fluid |35t condition is a statement of the kinematic constraint that
on the bounding stream iné (e-®hines an oungl 3 fluid parcels flowing along=0 upstream of the core must
However, from (), the vorticity of the ambient fluid flowing remain adjacent to the core boundary.if) were a topo-

along the core boundary€h (x)), graphic feature, rather than a internal fluid boundary requir-
N2(O)h(x) ing dynamical considerations, then the problem statement
o would be complete.

¢ In general, inside the core£h(x) for |x|<Lc) the flow

is not constant and the Prandtl-Batchelor argument can nof 9overned by Z) with ¢=0 on the unknown boundary
be invoked. Just inside the homogeneous core, the vorticitg=/(x)- Along the boundary the core and ambient pressures
on the bounding streamline is constant regardlesg (@f) mg;t be equal. Consider the ambient flow s.tream!lne that
sincey is constant on a streamline. Thus the vorticity in any Originates upstream at=co along z=0. The dimensional
inviscid, uniform density core model will be discontinuous Bérnoulli constant on this streamline is
across the core boundary. 2

In the Derzho and Grimshay1997 model the core is B =P(0)+ro, (4)
shown to have zero vorticity (i.e. was stagnant in the frame
of the wave) to leading order and the vorticity discontinuity where
could also be ignored. This was confirmed in subsequent nu- "
merical studiesAigner et al, 1999 Aigner and Grimshaw 7(0) :f 9B (&)dE
2001). However, with arbitraryW?(z) and inviscid dynamics 0

there is no similar theoretical limit on the core circulation. In . the (hvdrostati o Th
principal anyf (v) is possible. Consideration of the forma- Is the (hydrostatic) pressure aslx|—oo. The pressure

tion process, viscous effects and stability may constrain the" the ambient bounding streamline is then given by

possible solutions. 2 1
To make progress we will make the assumption that thep(x,z) =p(0) —gﬁ(o)neroE — P05 [M§+wt2)]~ (5)
core has zero vorticity. In the reference frame moving with
the wave phase speedthe core is stagnant. The full model The subscript b is used to denote this ambient streamline that
for internal solitary waves with stagnant, uniform density originates upstream gt= 0 wherep=pp.

3

V2 =V =
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The Bernoulli function on the bounding streamline in the 3 Stagnant-core DJL solution method
core is equal to the pressure at the stagnation peit.

2 Turkington et al.(1991) developed an efficient variational
Be= p(L¢,0) :ﬁ(o).g_poc__ technique that is frequently employed for solving the DJL
_2 ) o equation in the absence of a core<¢,), or when the am-
Thus the pressure on this bounding streamline is bient stratification is extended far—n<0 (c>c,). How-

_ c2 ir, o ever, this method is not easily adapted to the current problem
pe(x.h(x)) =Pp(0) = gpch(x) + po— — po [”c + wc] - (6)  with uniform density cores. Numerical solutions will instead
The subscript ¢ indicates core quantities agdandw, are P& found using the Newton-Raphson technicees et .
the core fluid velocities in the general case where the core-989. In order to solve the DJL equation outside the trapped
fluid is recirculating. core, which is for the moment assumed to be knovi,g

The pressure must be continuous at the core boundarfe-Written in a coordinate system where the physical coor-
z=h(x) (for |x|<L¢). Thus from B) and ) the matching  dinates(x,z) outside the core are mapped to a new coordi-

condition is nate systenv=o (x,z) andé = &(x, z) (i.e., x=x(&,0) and
= . With this transformationl) becomes
2 2 2 2 (pc—pb) z=z2(5.0))
up+wp ) —(ug+we ) =2g——h. @)
( ) ( ¢ C) £0 (0”75)54‘(,3775)0"'(:8770)5+(V770)U
This can be simplified using the kinematic boundary condi- )
tion w=uh, onz = h(x) for both the core and ambient flow +JN2[Z(550) -nln 0 (11)
to give - =2 =2
(bc—pp) h where
u%—u%:ZgC— 5 (8)
po  1+hg 2, .2\ -1
. o . o= (x +z )J ,
When pc=pp, the horizontal velocity is continuous at the o e
core boundary. . B = —(xoxs+202¢) I,
With the assu'mptlon of a s'tagnarlt co.u%,:'o, (3) be- _ (x2+z2)J‘l (12)
comes, after using the non-dimensionalization introduced” g T4
with (1),
12 and
_ h
ub:C(nZ_l):_[z(S 1_1) 1+h2} ) (9) J=X§ZU—XUZ§ (13)
X
is the Jacobian of the transformation. e subscripts indi-
or is the Jacobi f th f i Th bscripts indi
2571-1) 1/2 cate partial differentiation. Here a standard boundary-fitted
n.=1— |:c—21+h§:| , 2=h(x), x| < L. (10) system
. —h
HereS = (op— p1)/ (0c— pr) € [0, 1]. The negative rootwas ¢ = i_ hg; , £=T(x), (14)

chosen so thaty <0, avoiding overturning in the free stream.

Note that whenoc=pp, S =1 and (0) give n,=1. In this  js employed. The functio (x) is introduced to allow a

case the velocity in the exterior flow adjacent to the core isstretched grid in.

zero (in the wave frame) and just at the overturning limit. For  The mapped DJL equatiorl]) is solved in a domain

pc>pp, up<0 along the core. O<o<1 and G<t<1. Care is taken thaL, the domain
When co<c=c, there is no core and the DJL equation |ength inx, is sufficiently large to minimize effects of a

must be solved for(x,z) subject to 8) with Lc=0. For finite length domain. The wave is symmetric about the

c>c, the unknown core boundary(x) is found by solution  crest so that),=h,=0 at£=0. From @) and usingy, =

of (1) subject to B) along with the core conditiorL(). These e — (1_0)(1_;1)—1;15 1, the boundary conditions become

stagnant-core solitary wave solutions should exist frorap

to the limiting conjugate state solutions with stagnant cores?(§.1) =0, n(1,6)=0, 1(§,00=h(§), 1¢(0,0) =0, (15)

E’“l?q l;ylégrgbfand VZlIkle(_I_Zr(])Oéy fo_r pCprta?dWT'tf and where it is understood thd#(§)=0 for & > &= L¢/L. Fi-
elfrich (200 for pc>pp. The conjugate state solutions are nally, in the mapped coordinate system the core pressure

found in a one dimensional versiod/px=0) of the DJL hi . . _1
. o L . =(1-
problem, along with additional conditions that impose en_matc ing condition10) becomes, using, = (1—/)~"1o

ergy and momentum flux conservation between the flows up- [2(5_1 —1) 1—h)2h ]1/2

stream and over the uniform section of the wave. The con#, =1—h—
jugate states have core heights and speedss. Therefore
the solitary wave solutions have core heightsh@<h.s for
Cx=C=Ccs-

(16)
c? 14hZx?

foroc =0, &£ < Lc.

Nonlin. Processes Geophys., 17, 3888 2010 www.nonlin-processes-geophys.net/17/303/2010/



K. R. Helfrich and B. L. White: Trapped-core internal solitary waves 307

Treating the core boundary=h(x) as known (in each it- sure (less the hydrostatic pressure fragh Theu, w, x, and
eration of the Newton method)1{)—(16) are approximated z have been non-dimensionalized 43. (Pressure is scaled
using second-order finite-differences. The grid hadis- with pog’H and timer with (H/g")Y/2. These equations
cretized intoM+1 uniformly spaced points ir and N+1 are solved using the finite-volume, second-order projection
uniformly spaced points i, with a&-grid point located at method ofBell and Marcug1992. Because of the upwind-

&.. The core boundary; is then defined ai, grid points biased Godunov evaluation of the nonlinear terms the method
where h>0. The discretized systenll)—(16) results in s stable, requires no explicit dissipation, and introduces sig-
(M —1)(N —1) + N equations for the interior valueg; nicant numerical dissipation only when large gradients oc-
(i=2-N, j=2— M) and theN; non-zero values of;. cur on the grid scale. The numerical method has been used
This set is solved by the Newton-Raphson method. After asuccessfully for studies of large-amplitude internal solitary
Newton update, the new; (i <N.) will have changed and a waves (e.g.Lamb 2002 White and Helfrich 2008, and

new estimate of the end poig&g is found by a quadratic ex- tests of the code show that large internal solitary waves with-
trapolation of the last three & N. — 2 to N¢) core points.  out trapped cores propagate distances of more thaii/ 100
The solution is then interpolated onto a new grid with a grid with the correct phase speed, amplitude, shape, and minimal
point located at the nelic. Theé grid is arranged such that loss of energy € 1%).

there is approximately the same grid spacing inside and out- Two types of calculations are considered. In the first, the
side the core (i.eA& =~ 1/N everywhere). Thus the number stagnant-core DJL solitary waves are tested by using these
of points, N¢, that define the core varies as the core lengthsteady solutions as initial conditions. In the second, trapped-

changes. For very small cores care is taken Mat 3. core waves are generated by a lock-release initial condition
This solution and remapping procedure is repeated until _

the sum of absolute value of the variable increments and the ), x=Ld

sum of the absolute values of function residuals each drop (x,z,t =0)={ p(z—hq), x<Lg and z>hq (21)

below specified tolerances. Particular care is taken that the
core lengthL; and height:c (= (0)) are not changing. For
solutions discussed hef#=50 andN~50L. Thus in the The region of fluid held behind the lock extends frara0
absence of a core the grid is approximately isotropic. In thet0 x = Ld. Herehq is the depth of a lower uniform-density
presence of a core the grid provides sufficient resolution in layer, pa>pp, beneath the ambient stratification. This initial
andz to resolve the core stagnation pointlat This solu-  condition mimics the experiments Gfrue et al(2000 and
tion procedure is not sophisticated; however, it does producéarr et al.(2008. In both cases the solutions use uniform
solutions that, as will be shown below, remain essentially un-grids with vertical grid cell size ofAz =1/150. The hor-
changed when used as initial conditions in time-dependentizontal resolutionAx = 0.01 in the DJL model initial con-
non-hydrostatic numerical calculations. The exceptions ardlition cases andx =0.01—-0.02 for the lock-release runs.
waves that appear to be unstable due to a physical shear if-he time-stepping is controlled internally to keep maximum
stability. Courant number less than 0.625. The DJL solution initial
A trapped core solutiore>c, found using the Newton- condition runs use no normal flow boundary conditions in
Raphson procedure with?(z — ) extended forz — < 0 and inflow/outflow boundary conditions in A uniform flow
provides an initial guesses fdr(x), Lc, and the exterior = —c With s =5(2) is imposed at the right boundary with
n(x,z) for the same stratification and Once a converged an open boundary at the left. The waves are traveling in the
solution is obtained, it is used as the initial guess for anew Positivex direction in the laboratory frame. The lock-release
leading to a family of solutions far>c, with a given ambi- ~ runs have no normal flow conditions on all boundaries.
ent stratification.

pd, x<Lq and z<hgq

5 Results

4 Time-dependent non-hydrostatic numerical model i i
To illustrate the solutions to the DJL model for large-

The theoretical solutions obtained with the trapped-coreamplitude waves a background density given by
model will be tested using numerical solutions of the invis-

. : . . . : - (pb—p1) _ _
cid, two-dimensional non-hydrostatic equations of motion £(2) =1+ TIS(Z), (22)
Uy tuuy +wu, = —p;y a7 with
wy Fuwy +ww; = —p;—s s tanh(A2)
uy+w, =0 (19) S@=1-—— (23)
st +usy +ws; = 0. (20)

is used. This form foF(z) gives bottom-trapped stratification
Hereu andw are the horizontal and vertical velocities in the for increasing. (> 0) andN?(0) > 0 so that trapped cores are
laboratory frames = (o — po)/(p» — p;) and p is the pres-  possible.
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Fig. 2. Evolution of an extended-DJL solution forA=8 andc =
0.4. Contours of in intervals of 0.1 fors<1 (outside the core) and
0.025 fors>1 (inside the core) are plotted. Times are indicated in
the panels. Note that only part of the domain is shown.

5.1 Extendeds DJL waves
X —ct
We first examine waves obtained by extending the ambien
N2(z) for z <0 and call those solutions “extendéddJL”
waves. The time-dependent evolution of an extend&diL
wave fora=8 andc=0.4 is shown in Fig2. Figure3 shows a
larger wave withr=0.58 and the same=8. The top panel of
each figure shows the theoretical solutions with recirculating (a)
(negative vorticity) cores with densities greater than the am-_ 0.2¢
bient density along the bottorfi(0)=1 and statically unsta-

}:ig. 3. Evolution of an extended-DJL solution forr =8 andc =
0.58. Contours of in intervals of 0.1 are plotted.

ble core density distributions. The amplitugig, core height 0.1r 1

h¢ and core lengtiL of these extendesl-DJL solutions for

A =28 and 4 are shown by the dashed lines in Bg.The 25 05

wave amplitudeny is defined as the maximum streamline

displacement of the flow outside the core at the wave crest.

For » =8 (4), the linear long-wave phase spegd0.226 0.6k '(b) A

(0.285), the critical overturning speeq = 0.331 (0.383)

and the extendegl-DJL conjugate state speegds= 0.582 Z 0.4r 1

(0.505). I |
The Richardson numbeRi, of each of these waves falls

between 0 and 0.25 in a region in the upper, stably-stratified 92 15 e >

portion of the core that extends in thinning bands to the two
stagnation points as shown in Fi§j. Recent work byCarr Fig. 4.Th oninth fthe extende®JL solutions ina)
et al. (2008, Fructus et al(2009, andBarad and Fringer "'9- 7 '€ region inthe core ortne extendedL solutions ina
(201()( hasgshown that intérnalgsolitary waves are ungstable':'g'zand(b) Fig. 3where G<Ri<0.25. The heavy solid line shows
. . .. .. . th bound =1) and the thin i howi=0 (| li
to Kelvin-Helmholtz instability when the minimum Richard- e core boundans (= 1) and the thin fines shoRi=0 (lower line)

. . andRi=0.25 (upper line) contours.
son number is less than about 0.1 and the gatip/\yy >0.86.
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Herely; is the horizontal length of thRi<0.25 region andyy 1
is the solitary wave width (twice the distance from the crest
to wheren of the maximum amplitude streamline equals 8
0.5nv). The latter condition is related to the time (or dis-
tance) required for the unstable waves to grow before theyzo'6
are swept out of the unstable region and left behind the soli-
tary wave. However, the extendédvaves are different from
the situations considered Fructus et al(2009 andBarad 02
and Fringe(2010 in two important ways. The loWiregion
is confined to the recirculating core where disturbances could o
re-enter the unstable region. Furthermore, streamlines in the
low Ri region also pass through the gravitationally unstable
lower core. Fig. 5. The vertical profiles ofa) u — ¢, (b) s, and(c) Ri through
In the time-dependent solution for the= 0.4 wave in  the center of the solitary wavesrat 0 (solid) and: = 200 (dashed)
Fig. 2 the trapped core does become unstable. The instabilityn Fig. 3.
first appears as a wobble, or distortion, of the core center as
shown at = 30. Byr = 70 the core begins to breakdown and
density inversions are evident. Betweea 70 and: = 200
the flow stabilizes to a new trapped core wave with wave am-
plitudeny = 0.208 and speed= 0.394 that are only slightly
different from the original wave. However, the trapped core
is smaller and the maximum core density has decreased from
s =1.192 to 1092 and become more homogeneous. The ori-
gins of the instability are not clear in this case. The initial
wobble could be the result of either gravitational or shear in-

0.4

stability. ‘ ‘ ‘ ‘
The instability and its consequences are much more dra- 0 0.05 0.1 0.15 0.2
matic for the largerc = 0.58, wave in Fig.3. This exam- Y

ple also provides a clearer indication of the processes in-
volved. Atr=7.5 the first disturbances have developed in Fig. 6. Scatterplot (black) of the core vorticity versus streamfunc-
the lower, gravitationally unstable part of the core. Thesetion atr =200 for the case in Figs. The light gray region indicates
disturbances grow and are swept up into the upper half of thdhe values of streamfunction and vorticity in the core at0.
core near the forward stagnation point. They then appear to
excite Kelvin-Helmholtz billows near the wave crest in the
low Ri band ¢ = 10). An analysis of the energetics of the coupling with the gravitational instability. The loRi region
disturbances at small times would be informative but is be-N€arz = 0.9 is a result of the vanishing stratification there
yond the current scope of this work which is focussed on the2nd remained stable in the calculation.
stable core states. By= 30 the instability has nearly de- The final core vorticity is the same sign as the initial core
stroyed the wave. Amazingly, betwees: 50 and 100 anew and ambient vorticities. A scatter plot of vorticity versus
trapped-core solitary wave forms from the disorganized flow.Streamfunction within the core is shown in FigJ. A clear
Betweery = 100 and 200 the flow completely stabilizes to a relationship,v2y = f(y), has developed in the core. It is
slower wave withr = 0.558. distinct from the broad range of core vorticity and stream-
Figure 5 shows a comparison of the vertical profiles of function values at =0 (the light gray area in Fig5). The
u—c, s, andRi at the crests of the initialr < 0) and the  increase in the magnitude of the core vorticity following the
equilibrated { = 200) waves. The final core has a nearly ho- instability and equilibration is clear from this figure. A sim-
mogeneous density corer1.18, that is much less than the ilar, although different, relationship develops for the smaller
maximum value of = 1.829 atr = 0. The horizontal veloc- Wwave in Fig.2.
ity along the bottom is larger than the initial wave, indicat- It is not possible to predict the vorticity-streamfunction re-
ing an increase in the magnitude of the core vorticity. Thelationships, f (v), of the equilibrated waves. They are de-
wave is stable even thoud®i<0.25 in the upper part of the pendent on the turbulent flow, baroclinic vorticity produc-
core (038 < z < 0.58). This unstable region extends to the tion, vorticity advection, and slight numerical diffusion that
two stagnation points similar to the unstable band=a0 in occur in the flows. The important point of these two ex-
Fig. 4b. But unlike the initial wave, the uniform density of amples is that these extendedvaves, at least for thg(z)
the final core inhibits the gravitational instability. It appears considered, are unstable. What emerges from the instability
that shear instabilities are unable to grow sufficiently without are new trapped-core internal solitary waves that have nearly
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p 08 (b) o1
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Fig. 7. Stagnant-core DJL solution far= 8, sc=1, andc=0.4. The 0.4r © - g
core is indicated by the shading and the thin linessazentours in ol P
increments of (L. The area inside the heavy line and above the core 0. =
hasRi<0.25. Note that only the lower half of the water column is 0 . .
shown. 0.2 0.3 0.4 0.5 0.6
homogeneous density cores with distinct relationships be- L1t (c) /’ ]
tween core vorticity and streamfunction. Both of these out- c Y
comes support the theoretical model introduced in Sect. 2. o5l 7
However, the current restriction of the theoretical model to ' -
stagnant-core solutions is a clear limitation. Regardless, it
is useful to explore the stagnant core solution properties, in- %_2 05 0.6
cluding stability, and ask if this model provides reasonable
estimates of trapped-core waves that develop from a general 0.8
initial-value problem such as a lock-release. d o
n 06l (@) S
M - -
5.2 Stagnant-core DJL waves 0.4} c -
An example of a stagnant-core solution foe 8, sc =1, and 0.2r
¢=0.4 is shown in Fig.7. This wave has the same ambi- 0

ent stratification and phase speed as the extefdeale in 03 03 04 045 05

Fig. 2. It has slightly larger amplitude, smaller core height,

and larger core length than the extendedlave. Another 08

difference is that the stagnant-core wave has a region of h 06f (e) 7
Ri<0.25 above the core (bounded by the heavy line inBig. ¢ 04l o - -
The minimumRi=0.154 andg;/lw = 0.37. Recall that the _ -

extendeds examples above had the region of low Richardson 0.2} /

numbers located entirely within the core (with the exception o _ . ) ) )

of low values in the the very weakly stratified region near the 0.3 0.35 0.4 0.45 0.5
upper boundary; cf. Fig. 5).

Figure 8 summarizes the properties of the stagnant-core ' ' ' ' "
DJL solutions. The wave amplitudsy, core height:¢, and L 1571 () I
core lengthL. are shown as functions effor A =4 and 8. c /’
For comparison, the extendéd>JL wave properties are also -
plotted. For both values df, the stagnant-core solutions be- 0.5 -7
gin at the incipient overturning wave spegdand end before /
reaching the limiting conjugate state solutions (open circles) 0 03 035 04 045 05
atc=0.446 and 0468 forA =4 and 8, respectively. It was c

not possible to continue the solutions beyond what is shown _ _

in the figure. The reason for the failure of the numerical solu-F19- 8- The Wa‘;efamp'gq“dat’\/" Coret he'ghgg’l_andl Ct‘?re 'engmﬁ
tion procedure is unclear, although the likely candidate is the’s: "Wave speed from the stagnant-core DL solutions areé snown
emergence of the regions of IdRi. Similar numerical diffi- eby the solid lines forsc=1 and1 =8, (a}c), and1 =4, (d)e).

- . The open circles indicate the conjugate state solutions. The dashed
culties have been encounterediamb (2002 when solving lined and open squares show the same quantities from the extended-

for solitary waves in nearly two-layered stratifications using ; pj|_ solutions.
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Fig. 9. Evolution of a stagnant-core DJL solution fo=8, s, =1,

andc =0.4. The panels show contours oft the times indicated. 0.8} 1

The contour intervals are 0.1 for< 0.9 and 0.025 fos > 0.9. Note

that only the lower half of the domain is shown. 2081 |
0.41 1
0.2 1

the Turkington et al(1991) solution method. Fok =8 (4)

the Richardson number first drops below 0.2% at 0.368

(0.395) and by the last solution found the minim&Rirabove  Fig. 10. Averages over = 90—100 for the run in Fig9. (a) s, (b)

the crest is 0.073 (0.115) and the raltig/ lw=0.8 (0.38). u—c, (c)w, (d) V2. Thes contour interval is 0.1 for < 0.9 and
From Fructus et al(2009 andBarad and Fringef2010), 0.025 fors > 0.9. The contour interval is 0.03, 0.015, and 0.5 for

these waves should be stable to shear instability. Figure (b)-(d), respectively, with solid lines for values0. (e) Vertical

shows the time-dependent evolution of the stagnant-core DJProfiles ofu —c ands atx —cr =0 from the theory (solid) and

wave in Fig.7 (\ =8 andc = 0.4). In this case, the ini- numerical model (dashed). The heavy solid Ilng in (a)—(d) shows

. . . . - . the core boundary from stagnant-core DJL solution.

tial stagnant-core wave is subject to an instability that orig-

inates along the core boundary in the I&®v zone. The

Kelvin-Helmholtz billows are clear at=20. The instabil-

ity is rather mild and between= 50 and 100 the flow re- the apparent core shape in the equilibrated wave. In particu-

stabilizes to a wave that is only slightly different from the ini- lar, the region of near-zero vertical velocities in Figc lies

tial wave. FigurelOa—d shows the wave properties g —c, ~ €ntirely with the initial core boundary.

w, and vorticityV2y) from the numerical solution averaged  Further agreement between the final wave and the ini-

betweerr =90 and 100. The core density is slightly inho- tial stagnant-core model wave is shown in Fife where

mogeneous. The instability has injected ambient fluid intothe vertical profiles ot — ¢ ands at x — ¢t =0 (appropri-

the core and baroclinic vorticity production and advection ate ¢ values used) from the theory and equilibrated wave

produces a weak positive vorticity (the initial and ambient in the numerical model are compared. The agreement is

vorticity is everywhere negative) (see Fig)d). The flowin  very good. The only significant differences are within the

the core is very weak (see FijOb and c), but does include core, where the weak positive vorticity is clear, arrd 0.97.

a band ofu — ¢ > 0 located above the bottom. In contrast, The latter is close to the value=0.973 in the bottom cell

in the extended-solutions the region of —c¢ > 0 liesalong  (0<z <1/150) in the ambient flow ahead of the wave. Thus,

the bottom (i.e. core vorticity is negative). The phase speedn the numerical solution the instability replaces the initial

of the equilibrated wave=0.399 is nearly the same as the core fluid ¢ = 1) with dense ambient fluid. This is to be

stagnant-core model wave. The core boundary from the iniexpected if the effect of the instability is a turbulent diffu-

tial wave (heavy solid line in FiglOa—c) also agrees with sion. The Prandtl-Batchelor theorem then says that the core

ol— . . . . . .
-06 -04 -02 0 02 04 06 08 1
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0.5

=3 2 4 0 1 2 3

Fig. 11. Evolution of a stagnant-core DJL solution foe=8, s, =
1.1, andc =0.4. (a)~«(d) Contours ofs are shown in at the times
indicated. The contour intervals are 0.1 fox 0.9 and 0.025 for
s > 0.9. Note that only the lower half of the domain is showa)
Comparison of: —c ands at the wave crest at= 100 (dashed) with
the stagnant-core DJL solution with=_8, s, =1 andc¢ =0.394
(solid).

should equilibrate te = 0.973, the value of the density flow-

Another example of the evolution of a stagnant-core DJL
wave is shown in Figll As in the previous example=8
and ¢ = 0.4, but the core of the initial wave has density
sc =1.1. Recall from the boundary conditioB)(that the
jump in density across the core boundary gives a jump in ve-
locity, which should enhance the likelihood of shear instabil-
ity. The time-dependent solutions show that large overturns
develop at the core boundary by 20. However, by =40
the instability has weakened considerably and £y100 the
wave has stabilized. This final wave propagates at a speed
¢=0.394 and has a core that is nearly stagnant and homoge-
neous as shown by the dashed lines in Efg. The mixing
from the instability has again replaced the initial core fluid
with s =0.97 fluid. Thus the new wave is close to a stagnant-
core DJL wave withsc = 1. The solid lines in Figlle show
the vertical profiles ofi — ¢ ands from the stagnant-core DJL
solution withc = 0.394. With the exception of the weak core
circulation and the slightly lower density of the core fluid,
the equilibrated wave agrees very well with the theory.

Time-dependent numerical solutions initialized with
stagnant-core DJL waves with =1 and other values af
for both =4 and 8 show similar behavior. An initial pe-
riod of shear instability is followed by flow stabilization to
a large-amplitude wave with properties very close to those
predicted by the stagnant-core DJL model. The amplitude
nMm, core heightic, and core lengtlL. of these equilibrated
waves forA =4 and 8 are shown in Fidl2 (by the open
circles). The equilibrated wave from Fifjl is indicated by
the open diamonds in Fig2a—c. The values. and L. are
determined from the vertical and horizontal extent of the re-
gion of near-zero vertical velocities (i.e. the= 0 contours)
as shown in Figl0c. There is some uncertainty in choosing
these values that is reflected in the slight scatter of the data.
However, the agreement between the stagnant-core DJL the-
ory and the numerical results is quite good.

These results support the stagnant-core theory despite the
fact that the full numerical solutions produce cores with weak
circulation with positive vorticity and nearly homogeneous
density. However, this is not too strict a test of the theory

ing along the bounding streamline. The transport of ambientas it says that if flow starts close enough to the stagnant-core
fluid into the core and the expelling of core fluid out the back solution, it will remain near it. The calculations shown in
of the wave is an example of Lagrangian advection across &igs. 2 and 3, on the other hand, show that solutions with

hyperbolic trajectory\(Viggins, 2005. The shear instability

nearly homogeneous density, but vastly different core circu-

along the core boundary provides the time-dependent forclation are possible. In those cases the wave propefties
ing of the hyperbolic trajectory (the bounding streamline ap-h¢, and L; do not agree with the stagnant-core model (not
proaching the rear stagnation point), subsequent lobe formashown).

tion and transport.
The equilibrated wave has a regionRift<0.25 just above
the core with minimunRi~0.15 and/y; /lw ~ 0.37, nearly

Additional tests of the stagnant-core theory were con-
ducted with full time-dependent numerical solutions initial-
ized with the lock-release initial conditio21) for A=4 and

identical to the initial wave. This suggests that the instability 8. Figurel3 shows one example far=8,hq=1, Lq=0.6
observed in the numerical solution could be a consequence @nd pg = pp (sg = 1). One large solitary wave emerges from
the initial vorticity discontinuity at the core boundary. One the release. Between= 20 and 30 the wave is still evolving,
effect of the instability is to eliminate the vorticity disconti- but propagates with a speeet0.435, which is greater than
nuity and reduce the vertical shear at the core boundary (sethe critical speed for core formatia = 0.331 fori = 8.

Fig. 10d).
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0.4f
nMo.s»
0.2f
01f

hc 04F (b)
0.3f
0.2t
0.1t
025~ 03 0.35 04 045 0.5
0.8
L osf
Cc
0.4t
0.2 Fig. 13. Lock-release run foh =8, hg=1, Ly=0.6 andsq= 1.
0 Contours ofs are shown at the indicated times. The contour interval
025 05 is 0.1 fors < 0.9 and 0.025 for > 0.9. Note that part of vertical
o domain is shown for > 0.
0.4r (d) .
n,f-‘*M A close-up of the wave at= 300 is shown in Figl4.
0.2y This long-time evolution is found by taking the leading wave
01 from the lock-release run at= 30 as the initial condition
0 : : for a run with inflow-outflow boundary conditions with a
0-35 04 045 uniform inflow velocity magnitude equal to the propagation
speed = 0.435 from the lock-release run. The wave contin-
oal ues to adjust until about= 180 after which the phase speed,
' (e) i ¢ =0.417, is constant. This final wave has a well-defined
hC°'3' core region from thew = 0 contour (Fig14c). There is a re-
0.2} circulation cell shown by the streamfunction in Figid and
0.1} the horizontal velocities — ¢ > 0 (Fig. 14b). However, the
0= 07 s recirculation c_:eII (with positive vprticity) sits above the bot-
’ ' ' tom. Streamlines from the ambient flow ahead of the wave
split to flow around this recirculation cell. This is an instan-
06} O taneous picture of the flow. The flow over the core is still
() o weakly unstable (see the cat’s eye of the Kelvin-Helmholtz
L o4y Q0 billows on the trailing side of the wave), inducing a slow,
ool continuous transport of ambient fluid into the core, and ex-
pelling core fluid out the back of the wave. This results in a
P 502 045 nearly uniform density in the recirculation cell of 0.88.
¢ The densest ambient fluid flows beneath this cell and is less

involved in the cross-boundary transport than the (less dense)

Fig. 12. Comparison of wave amplitudgy, core heightic, and ambient streamlines that pass over the cell.
core lengthL¢ versus wave speedfrom the stagnant-core DJL so- This “core” is quite different than those in either the
lutions (solid lines), numerical solutions initiated with the model so- stagnant-core or extendéddJL models. There are no stag-

lutions (open circles), and from the lock-release runs (open square% : : : e
e ation points along the bottom boundary. The density within
for A =8, (a)Hc), andx =4, (d)—(f). The solid circles show the the- the w 30 region (gFig.l4a) is not unifor)r/n and closel>;/ re-

oretical conjugate state limits. The open diamonds in (a)—(c) show . .
the equilibrated wave initiated with a stagnant-core DJL solutionﬂec_tS .the ;tream_funcﬂon shown in pangl d. We. note that
with sc = 1.1 and the open triangles show the conjugate state prop@ Similar circulation pattern was found in numerical solu-

erties from a lock-release numerical run frafthite and Helfrich  tions of large-amplitude internal solitary wave breaking over
(2008.
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(c)w the lock-release numerical run in Fig. .
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Fig. 16. Scatterplot of the core vorticity versus streamfunction for
the wave in Figl14.
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Fig. 14. The leading solitary wave from Fid.3 atr = 300. (a) s,
(b) u—c (c) w and(d) . The wave travels at a constant speed
¢=0.417 fort > 100. Thes contour interval is 0.1 fos < 0.9 and

0.025 fors > 0.9. The contour interval is 0.05 in (b) and 0.02 in (c), . .
with solid lines for values> 0. They contour intervals in (d) are  tion are present in the unstable flow around the core. Over

0.001 fory > 0.01 and 0.04 otherwisée) Vertical profiles ofu —c ~ time, some of this positive vorticity fluid is entrained into

ands atx —cr =0 from the theory (solid) and numerical model the core. In general, the lock-release runs lead to cores with

(dashed). Note that the horizontal and vertical scales in (d) differlarger magnitude positive vorticity than the stagnant-core ini-

from those in (a)-(c). tial conditions. This appears to be a consequence of an initial
wave that is more unstable to shear instability along the core
boundary, and hence greater baroclinic vorticity production

slope-shelf topography_@mb, 2002. Figurel4e shows the and subsequent entrainment of this vorticity into the evolving

vertical profiles ofu —c ands at x —ct =0 from the wave  core.

atr = 300 and the stagnant-core theory prediction for awave A scatterplot of vorticity versus streamfunction from

with ¢ =0.409 andi =8. The agreement above the core within the core is shown in Figl6. For this plot the core

(z > 0.2) is very good. region is defined to lie below the arc from— ¢t = +0.48

From theu — ¢ profile it can be seen that the vorticity in through the center of the chain of cat's-eye vortices (which

the core is positive and opposite sign from the vorticity in corresponds closely to the core defineddsy: 0 in Fig. 14c).

the ambient fluid. This positive vorticity is not a direct prod- Within the closed recirculation cell wheng < —0.005, a

uct of the initial adjustment immediately following the lock- clear streamfunction-vorticity relation has emerged with the

release. Rather, it is a product of vorticity produced in the positive vorticity values clustering along a linear trend with

unstable shear flow surrounding the core. Figifeshows V-

a close-up of the vorticity structure at= 10 from Fig.13. By varying L; and zq (both < 1) in (21), waves with a

At this time the vorticity within the developing core is nearly range of amplitudes and speeds are produced. As shown

zero. Patches of positive vorticity from baroclinic produc- by the open squares in Fig.2a and d forr =8 and 4,
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respectively, the amplitudes and speeds of these waves agre osh i
quite well with the stagnant-core theory. Furthermoréyif 2
and L. are defined by thev =0 contours (see above) the
agreement with the theory is also good. If the fluid behind
the dam has densityy > 1, the solitary wave that emerges
will, after enough time, expel the dense fluid and have a o5}
leaky core with density < 1. Despite the significant dif- Z
ferences between the waves produced via a lock-release an
the stagnant-core DJL theory, the theory does a surprisingly
good job of capturing the overall wave properties.

The lock-release runs produced solitary waves that fer 05r
8 were always slower and smaller than the fastest stagnantz
core DJL wave found and for=4 were only slightly faster
than the maximum theoretical solution. This was the case 09—
despite initial conditions that have a larger volume of fluid of
densitypp behind the dam than the core volume of the largest 981
wave. The available potential energy of the initial state is also
greater than the total energy of the largest theoretical solitary =
wave. White and Helfrich(2008 did find conjugate state 95
solutions (indicated by the open triangles) from lock-release [
runs withLg > 1 andhg — 1 when the initial available po- >
tential energy per unit length of the region behind the dam
was greater than the total energy per unit length of the (in-
finitely long) conjugate state. The leading face of the conju-
gate state waves were smooth, but intense Kelvin-Helmholtz
billows formed on the uniform region of the conjugate state _ ,
v cres (sce Fig. b and Holfich2009, 10,1, Exlio o e g o B soueon e

The wave produced in the lock-release example in Fag. of 0.1 fors 5%.9 and 0.025 for > 0.9. Note that only the lower
appears to be more unstable than the waves in the Iaboratorlalortion of the domain is shown.
experiments o6Grue et al(2000 andCarr et al(2008. One
possible reason for this difference is that initial dam height

hq =1, which is the maximum possible, is larger than the lab-nan, the initial wave. Recall that the initial wave has a min-
oratory experiments@rue et al. 2000usedhq ~ 0.5 in €x-  jmum Richardson number above the core @3 and that
periments that produced large trapped-core waves). Thus the, ./, — 0.8. These values put the wave closer to the insta-
initial state in the model has more available potential energyyility boundary found byFructus et al(2009 andBarad and
The stratification is also different. In the laboratory exper- ringer(2010. It is also consistent with the suggestion that
iments an equivalent ~ 6. Lastly, the two-dimensionality  the fajlure to find stagnant-core DJL solutions fof 0.45 is

of the numerical model prohibits the transverse breakdowng|ated to flow instability and helps explain why the lock-

of the Kelvin-Helmholtz billows. Detailed wave properties rgqlease runs produced solitary waves within the range of
will depend on whether the third dimension is included, es-stagnant-core solutions.

pecially if a careful comparison is to be made with the exper-
iments. However, the calculations still provide insight into
wave development and a systematic test of the theory. 6 Conclusions

One last example of wave evolution is shown in Fig.
for a case initiated with the largest stagnant-core wave foundn this paper we have developed a model of large-amplitude
with . =8 andsc =1 atc =0.45 . As in the earlier exam- internal solitary waves with trapped cores that avoids the
ples the wave is initially unstable to shear instability local- questionable approach of earlier models that use the ambi-
ized along the core boundary. Unlike the previous exam-ent stratification-vorticity-streamfunction relation in the re-
ples, the instability does not weaken. Rather, the instabilitycirculating core. The new model consists of a finite size,
strengthens between=60 and 90 such that the wave con- homogeneous density core beneath a stratified exterior. The
tinually diminishes in size and speed unti: 200 when the  exterior flow satisfies the usual Dubreil-Jacotin-Long equa-
wave reached the downstream end of the domain and the cation for fully nonlinear internal solitary waves and is matched
culation was stopped. If the domain were longer, the flowto the core flow through a pressure continuity condition. The
might eventually equilibrate to a new wave as in the ear-flow within the core must satisfy a relation between stream-
lier examples, but any final wave will be very much smaller function and vorticity that can be specified arbitrarily in this

-5 0 5

0
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inviscid theory. For simplicity, and to make progress, we Solitary waves produced from a lock-release also agree
have chosen the simplest possible core flow — a stagnant floweasonably with the stagnant-core model for wave amplitude,
in the steady frame of the wave. This homogeneous densitycore height and core length. However, the core heights and
stagnant-core DJL model connects the incipient overturningengths used in the comparison are defined, somewhat arbi-
solitary wave to the limiting amplitude stagnant-core conju- trarily, from the vertical velocity fields. There is a recircu-
gate state solutions dfamb and Wilkie(2004 and White lating core, but it has vorticity of opposite sign from the am-
and Helfrich(2008. bient flow and is off the boundary. Furthermore, the cores
Solutions for steady, stagnant-core DJL internal solitaryare not isolated from the ambient flow. Unsteadiness from
waves were obtained numerically and properties of the waveshear instability gives rise to fluid transport into and out of
were compared to those found by extending the ambienthe nominal core region such that the core density is less
stratification,s (z — n) for negative arguments. For the strati- than the densest ambient fluid. As in the stagnant-core initi-
fications considered, differences in the resulting wave prop-ated runs, the positive vorticity in the core must be the result
erties could be substantial, especially as the wave amplitudef baroclinic vorticity production as the ambient vorticity is
increases. We note though, that if the ambient stratification isxegative.
extended differently, then the disagreement can be reduced. Very different core circulations from those described

For example, ifs is extended with above can occur, as illustrated by Fi@sand6. In this ex-
”- ample, the core is nearly homogeneous and has vorticity of
5E)=1— Noz —, forz=o, (24) the same .si_gn as the initia}l condit.ion, bu_t with very a dif-
1- Ng (sc—1) 7% ferent vorticity-streamfunction relation. This emphasizes the

role of transient wave formation, instability and dissipative

where N§ = —53(0) from the ambient stratification. This processes on the final core structure and circulation. It also
extension gives continuous density aNd at 7 =0, and  raises the question of whether there are general principles
avoids numerical problems associated with discontinaéfis  that place limits on the range of realizable core flows. Cer-
in the usual DJL solution methods. It asymptotes tdor tainly, the presence of shear instability and the tendency of
z — —oo, and fors, — 1« 1, the core density will be nearly the flow to adjust to marginal stability is one such limit. This
homogeneous with maximum density only slightly greateris an avenue for future investigation.
than the ambient environment and the recirculation will be  As mentioned in the IntroductioriGrue et al.(2000 and
weak. Wave properties computed with=1.02 are nearly  Carr et al(2008 carried out experiments on internal solitary
the same as the stagnant-core properties shown i8Fithe  waves produced from a lock-exchange and found that large
solution branches even stop at nearly the same wave speediaves could have regions af> c. We have not made a
This extension procedure, though not the formsfabove, detailed comparison with their experiments. There are, how-
has been previously proposedByown and Christi€1998. ever, several aspects of the experiments that are in qualitative
While these special extendédsolutions are only slightly —agreement with the results presented here. One is that in ex-
different from the new stagnant-core model, the latter pro-periments with apparent trapped cores, the vertical profiles of
vides a theoretical framework for developing homogeneoushorizontal velocity at the wave trough (the experiments pro-
core solutions with specified circulation. duced waves of depression) show thgt ~ 1 in the upper

Time-dependent numerical solutions of the Euler equa-water column as shown in Figs. 14, 15, and 1&mue et al.
tions initiated with the stagnant-core DJL solutions agree(2000 and Figs. 9 and 20 i€arr et al.(2008. It is not clear
well with the theory, though the solutions exhibit shear in- that this depth range represents the full height of a core since
stability along the core boundary and develop a weak recirthe authors do not provide independent estimates of the core
culation (of opposite sign vorticity) within the core. The height (e.g. from the density fields). However, the height of
time-dependent solutions indicate that |&®vregions near this zone at the wave center is approximately equal to the
the wave crest lead to wave instability that appear to explairdepth of the upper, linearly stratified layér,per~ 0.2H).
the limited range of achievable wave amplitudes. The wave amplitudes, measured by the vertical displacement

During the final stages of the submission process this paef the interface between the two layers, are also approxi-
per, the authors were made aware of a recently submittednately equal to the upper layer depth. From Fig.is clear
manuscript byKing et al. (2010 that described a new nu- that the height of the core is always less than the wave ampli-
merical method for solving the DJL equation. They were tude (defined somewhat differently in the theory), except for
able to compute waves with stagnant, uniform density coresghe largest waves where they are approximately equal. Thus
using an extension of the ambient density structure similar tahe experimental core heights defined by dtre ¢ depth are
(24), but with much more rapid transition than above. Two- at least qualitatively similar to the theory. Of course, the
dimensional, time-dependent numerical calculations initi- stratifications are different and this should be taken into ac-
ated with both a stagnant-core wave and a wave found byount in any detailed comparison, but this is suggestive that
extending the ambient density profile, were qualitatively sim-u ~ ¢ in the wave cores observed in the experimental.
ilar to the results in this paper.
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Another important feature of the experiments is that the AcknowledgementsThis work is supported as part of the Office of
cores are not completely stagnant. Small turbulent vorticedNaval Research NLIWI and IWISE program grants NO0O014-06-1-
are present both within the core and along the core boundar798 and N00014-09-1-0227.

(e.g., Fig. 20 inGrue et al.2000. And there is evidence
of small, but finite, vertical shear in the cores. As the free
surface is approached from below, the fluid velocity declines,
producing a zone of vorticity within the core with opposite
sign from the open portion of the flow (see Fig. 20CGarr

et al, 2008 although this may be an artifact of the no-slip lid
in this particular experimental run). So while not conclusive,

these experiments do lend support to the stagnant-core theorMgner, A. and Grimshaw, R.: Numerical simulations of the flow

and numerical modeling results. . o of a continuously stratified fluid, incorporating inertial effects,
Grue et al.(2000 also report that instability limited the Fluid Dyn. Res., 28, 323-347, 2001.

maximum observed wave amplitude to be less than for theaigner, A., Broutman, D., and Grimshaw, R.: Numerical simula-
theoretical maximum wave (found using an extengldaiL tions of internal solitary waves with vortex cores, Fluid Dyn.
model). The conclusion that the stagnant-core waves are lim- Res., 25, 315-333, 1999.
ited by instability is in qualitative agreement with these ex- Akylas, T. and Grimshaw, R.: Solitary internal waves with oscilla-
periments. We note that in the experiments doneCayr tory tails, J. Fluid Mech., 242, 279-298, 1992. o
et al. (2009 the fluid behind the lock was not seeded with Ba_ra_d, M. F. and Fringer, O. B.: Snr_nulatlons of shear instabilities
particles (for PIV), yet the core regions in their Figs. 2—7 in interfacial g.rawty waves, J. F.Iu'd MeCh'.’ 644, 61-95, 2010.

. . | S Batchelor, G. K.: On Steady laminar flow with closed streamlines
are f|IIe_d vylth_partlcles (M'. Carr, _pe_rsc_)nal commun_lcatlon, at large Reynolds numbers, J. Fluid Mech., 1, 177-190, 1956.
2010), indicating that amb|ent fluid is mcprporated into the o 3. B. and Marcus, D. L.: A second-order projection method
core. Unfortunately, neither study made direct measurements ¢q, variable-density flows, J. Comp. Phys., 101, 334—348, 1992.
of the densities within the core region and these, along withgrown, D. J. and Christie, D. R.: Fully nonlinear solitary waves in
experimental measurements of the trapped-core properties continuously stratified incompressible Boussinesq fluids, Phys.
over a broad range of parameters, would be valuable. Fluids, 10, 2569-2586, 1998.

Mass transport by large-amplitude internal solitary wavesCarr, M., Fructus, D., Grue, J., Jensen, A. and Davies,
is thought to play an important role in cross-shore larvae P- A1 Convectively induced shear instability in large am-
transport Pineda 1999 Helfrich and Pineda2003. If the pIit.ude internal solitary waves, Phys. Fluids, 20, 126601,
wave amplitude is large enough for trapped-core formation, doi:10.1063/1.3030947, 2008,

the question of core structure and leakiness will be important.Cheung' T.K.and Litte, C. G.. Mgteorologuc_al tower, m'crOb.aro'
graph array and sodar observations of solitary-like waves in the

The streamline pattern in Fig4d implies that larvae near nocturnal boundary layer, J. Atmos. Sci., 47, 2516—-2536, 1990.
the free surface (for waves of depression) may not be iNCoreake. R. H.. Smith. R. K.. and Reid. D. G.: The Morning Glory

porated into the core, while larvae residing slightly below the ¢ the Gulf of Carpenteria: an atmospheric undular bore, Mon.
free surface could be brought into the a leaky core for a finite  weather Rev., 109, 1726-1750, 1981.
period of time and experience significant horizontal trans-Davis, R. E. and Acrivos, A.: Solitary internal waves in deep water,
port during that period at the wave phase speed. Similar con- J. Fluid Mech., 29, 593-607, 1967.
cerns exist for possible transport of fine suspended sedimer®erzho, O. G. and Grimshaw, R.: Solitary waves with a vortex core
by waves of elevation propagating a|0ng the sea floor. The in a shallow Iayer of stratified fluid, PhyS Fluids, 9, 3378—-3385,
trapped-core waves observed Klymak and Moum(2003 1997. o .
show evidence of both acoustic backscatter from biologicalP?Viak: R. J. and Christie, D. R.. Thunderstorm-generated solitary
activity and optical backscatter from fine sediments. waves: awind Shee}r hazard, J. Aircraft, 26, 423431, 1989,
Finally, the time-dependent numerical calculations pre_Dubrell-Jacotln, M. L .Sur la ’determlnatl(.)n' rigoureuse des ondes
. . permanentes periodiques d'amplitude finie, J. Math. Pure Appl.,
sgnted _here are a]l two—d|men3|pnal. Clearly, the three- 13, 217-291, 1934 (in French).
dimensional evolution of the solutions needs to be exploredpyqa, T. F, Lynch, J. F,, Irish, J. D., Beardsley, R. C., Ramp, S. R.,
The effects of the gravitational and Kelvin-Helmholtz insta-  chju, C.-S., Tang, T. Y., and Yang, Y. J.: Internal tide and nonlin-
bilities on the wave evolution and mixing will certainly be  ear internal wave behavior at the continental slope in the northern
different in three dimensions, possibly leading to different South China Sea, IEEE J. Oceanic Eng., 29, 1105-1130, 2004.
core states. Fluid exchanges between the core and the arfructus, D. and Grue, J.: Fully nonlinear solitary waves in a layered
bient will likely be modified from the two-dimensional runs.  stratified fluid, J. Fluid Mech., 505, 323-347, 2004.

Also, waves with recirculating (or stagnant) cores may them-Fructus, D., Carr, M., Grue, J., Jensen, A., and Davis, P. A.: Shear-
selves be unstable to transverse perturbations. induced breaking of large internal solitary waves, J. Fluid Mech.,
620, 1-29, 2009.
Grimshaw, R.: On steady recirculating flows, J. Fluid Mech., 39,
695-704, 1969.
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