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Abstract. The Thirulamai-Mountain (TM) metric was first
developed to study ergodicity in fluids and glasses (Thiru-
malai and Mountain, 1993) using the concept of effective
ergodicity, where a large but finite time interval is consid-
ered.Tiampo et al.(2007) employed the TM metric to earth-
quake systems to search for effective ergodic periods, which
are considered to be metastable equilibrium states that are
disrupted by large events. The physical meaning of the TM
metric for seismicity is addressed here in terms of the cluster-
ing of earthquakes in both time and space for different sets of
data. It is shown that the TM metric is highly dependent not
only on spatial/temporal seismicity clustering, but on the past
seismic activity of the region and the time intervals consid-
ered as well, and that saturation occurs over time, resulting in
a lower sensitivity to local clustering. These results confirm
that the TM metric can be used to quantify seismicity clus-
tering from both spatial and temporal perspectives, in which
the disruption of effective ergodic periods are caused by the
agglomeration of events.

1 Introduction

A simple inspection of the distribution of hypocenters of
earthquakes indicates that they do not occur randomly in
space or time. Several attempts have been made in order
to better understand the cause/consequence relationship be-
tween events (Reasenberg, 1985; Dieterich, 1994; Felzer et
al., 2002; Baesi and Paczuski, 2004; Marsan and Lenglińe,
2008; Zaliapin et al., 2008). Clusters of earthquakes are com-
monly addressed in terms of swarms, a set of events with no
single predominant event, or sequences that are highly re-
lated to a mainshock of large magnitude.

Correspondence to:N. F. Cho
(ncho3@uwo.ca)

Mainshocks are often considered as stationary Poisson
processes with a fixed occurrence rate over time (Kagan and
Jackson, 1991) and the remainder of the associated seismic-
ity is classified as foreshocks/aftershocks sequences. The
definition of foreshocks and aftershocks is not absolute and
the studies on seismicity clustering mentioned previously use
different criteria to identify clusters.Kanamori(1981) con-
sidered different seismic patterns that can be used as precur-
sors to large events, in which foreshocks are an important
type, even though their occurrence is not mandatory prior
to mainshocks.Mogi (1985) classified foreshock sequences
into two types: C and D. In the first, the seismic activity
increases gradually towards the mainshock. The opposite
occurs in type D sequences, in which seismicity decreases
towards the mainshock.

Aftershocks are an important source of information about
the mechanism of earthquake triggering and they have been
widely studied over the years.Mendonza and Hartzell(1988)
studied the correlation between the spatial distribution of af-
tershocks and the coseismic slip in faults in California. The
Epidemic Type Aftershock Sequence (ETAS) model (Ogata,
1988; Helmstetter and Sornette, 2002) was proposed to un-
derstand the occurrence of aftershocks as generated by a
mainshock. Utsu (2002) assembled a series of studies on
seismicity, including findings on the spatial distribution of
aftershocks.Shcherbakov et al.(2005) studied the interoc-
currence time interval between aftershocks using a nonho-
mogeneous Poissonian model.

In this work, the TM metric will be interpreted as a sim-
ple measure of clustering. This metric, originally developed
to study liquid systems and glasses (Thirumalai et al., 1989;
Thirumalai and Mountain, 1993), was applied to earthquake
simulations (Ferguson et al., 1999) and to regional seismicity
by Tiampo et al.(2003, 2007). The result was the identifica-
tion of periods of metastable equilibrium in seismic activ-
ity. The relationship between the effective ergodic periods
and certain types of seismicity patterns was also addressed
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in Tiampo et al.(2010). These previous studies indicate that
clustering plays an important role in the results. The inter-
pretation presented here offers a clear understanding of how
seismicity clustering affects the TM metric, especially for
southern California.

This article begins with a demonstration of the framework
in which the TM metric can be considered a measurement of
seismicity clustering. The method is then applied to three dif-
ferent cases: synthetic data, the southern California dataset,
and mining induced seismicity. Remarks and limitations of
the method are considered in the conclusions.

2 The Thirumalai-Mountain metric

The ergodic hypothesis is an important assumption for clas-
sical statistical mechanics in order to relate micro and macro
states (Farquhar, 1964; de Oliveira and Werlang, 2007). A
classical definition of the ergodic hypothesis states that, for
an ensemble of particles, the time average of a propertyf (t)

of a single particle and the ensemble average of the same
propertyf relate as follow

lim
T→∞

1

T

∫ T

0
f (t)=〈f 〉 (1)

where〈f 〉 is the ensemble average off (t).
The TM metric was first developed to study the effective

ergodicity in liquids and glasses (Thirumalai et al., 1989;
Thirumalai and Mountain, 1993). The same framework will
be used in the present work to study seismicity. For a sys-
tem comprised ofN particles and an observableG, the TM
metric is written as

�G(t)=
1

N

N∑
j=1

[
gj (t)−〈g〉

]2 (2)

wheregj is the time average of the observableG for parti-
cle j until t and〈g〉 is the average ofgj over all particlesj .
Equation (2) is simply the spatial variance of the temporal
mean ofgj . Effective ergodicity arises from the fact that the
relationship between ensemble and particle time averages are
addressed for a long but finite time interval to ensure that all
the phase space is sampled with equal likelihood (Thirumalai
and Mountain, 1993), and it occurs when 1/�G is linear in
time. If the time average ofgj for a particle is the same as
the ensemble average ofgj , the metric is null.

Tiampo et al.(2007) applied Eq. (2) to historic seismicity
to identify periods of effective ergodicity by dividing the re-
gion of interest into a mesh ofN boxes. These are considered
to be the particles of the system and the cumulative number
of events per boxnj was used as a proxy for the observable
G: the seismic energy released. It has been argued that out
of the possible proxies available for the seismic released en-
ergy, the number of events displays the longest correlations
in time (Jimenez et al., 2006).

Different magnitude cutoffs were considered in the search
for effective ergodic periods in southern California and it
was found that the metric changes considerably for each case
(Tiampo et al., 2007). The lack of effective ergodic periods
for smaller events was hypothesized to be due to the stability
of the catalog of southern California for the lower magni-
tude range. The system is stationary during these periods of
effective ergodicity, meaning that the average of the studied
property is constant over the considered period, and can be
considered in a state of metastable equilibrium (Tiampo et
al., 2003). Metastable equilibrium is a state that the system
tends to occupy unless a disturbance is strong enough to pro-
pel the system to a new, but more stable, state.

Equation (2) can be re-written in terms of the variance of
the cumulative number of events in each boxnj (t). For sim-
plicity, a simple translation in time is considered so that the
initial time consideredt0 is set to be zero and1t=tf−t0= t .
The TM metric then becomes

�n(t) =
1

1t2

∑N
j

(
nj (t)

)2
N

−
1

1t2

(∑N
j nj (t)

N

)2

=
1

t2

(〈
nj (t)

2
〉
−
〈
nj (t)

〉2)
. (3)

Periods in which the inverse TM metric is linear with a posi-
tive slope, 1

�n(t)
=

t
De

, are considered to be effective ergodic
and in a state of metastable equilibrium. From the latter and
Eq. (3), it can be seen that the variance ofnj (t) is linear in
time during the effective ergodic periods. This can be inter-
preted as the variance of a normal diffusion processes, and
the parameterDe can be regarded as a diffusion parameter
(Tiampo et al., 2007) related to the rate in which the phase
space is sampled. In this case,De=

1
�n(t0)

wheret0 is the
initial time considered.

Equation (3) can be examined to analyze the effects of
clustering in the TM metric. Its rightmost term is propor-
tional to the square of the sum of cumulative events per box.
It is sensitive to variations in the total number of events in
each time step and thus it can be used to quantify tempo-
ral clustering of events. The same cannot be said for spatial
clustering: different spatial configurations of a fixed num-
ber of hypocenters will yield the same sum of cumulative
events. The left term in the right side of Eq. (3) can be re-
garded as a more complete measurement of clustering (refer
to Appendix A).

A simpler form of the TM metric can be obtained if
6nj �N or 6nj �6n2

j . Under one of these assumptions,
the TM metric can be written as

�n(t)=
1

t2

〈
nj (t)

2
〉

(4)

and considering the scaling in time of the TM metric for er-
godic periods,

�n(t) ∝ t−1〈
nj (t)

2
〉
∝ t . (5)
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Fig. 1. Plot of the two terms in Eq. (3) for four different cases. Figure1a represents the case with 10000 events randomly distributed in
time and space, Fig.1b obtained from clustering 600 and 1500 out of the 10 000 events att=0.2 and 0.7, respectively, Fig.1c is obtained by
clustering 600 and 1500 out of the 10 000 events spatially with the same latitudes and longitudes and Fig.1d is obtained from the combination
of the latter 2 scenarios.

The imposed linearity in time for the effective ergodic pe-
riods can be regarded as a benchmark to compare the evo-
lution of seismicity clustering in time. It is important to
stress, however, that the values obtained by the metric are
non-unique. This means that different configurations might
yield the same result.

Techniques that identify seismicity pattern changes often
measure variations relative to long-term averages and gen-
erally are more accurate during ergodic periods because the
spatial and temporal averages are stationary and approach the
same value.Tiampo et al.(2010) showed that a better ef-
fectiveness of the Pattern Informatics (Tiampo et al., 2002;
Holliday et al., 2006), a method that quantifies seismicity
changes, was achieved during effective ergodic periods. The
interpretation of effective ergodic periods presented here is
similar to the relationship between the time evolution of the
metric for liquids and systems in thermal equilibrium (Moun-
tain and Thirumalai, 1989). In this analogy, the temperature
of the system is the background seismicity and noise when
dealing with the cumulative number of events and these ef-
fective ergodic periods are disrupted by the aftershock se-
quences from large earthquakes.

3 Results

3.1 Synthetic catalog

The method was initially tested for a simple synthetic cata-
log comprised of 10 000 recordings for different scenarios.
These scenarios are generated by distributing events both
randomly and artificially clustered in space and time. Tempo-
ral and spatial coordinates were distributed in a unity interval
for simplicity. The first case consists in a catalog comprised
of 10 000 events randomly displaced in space and time. A
time clustering scenario was achieved for the second case by
agglomerating 600 and 1500 events of the initial 10 000 for
times t1= 0.2 andt2=0.7, respectively. For the third case,
spatial clustering was obtained by giving the same latitudes
and longitudes to subset of 600 and 1500 events while main-
taining their randomness in time. The last case is obtained
by combining the previous two scenarios into one where
the clustered subsets partially overlap to produce clusters in
space, time, and both.

The initial step is to verify the feasibility of the approx-
imation for the TM metric illustrated in Eq. (5). Figure1
displays both terms used to compute the full form of the TM
metric in Eq. (3) for all scenarios. The random and time
clustered cases are displayed in Fig.1a and b, respectively.
In these cases, Eq. (5) does not approximate the TM metric
since

(
6nj

)2 is not negligible compared to6n2
j . Figure1c

illustrates the scenario with spatial clustering alone and it

www.nonlin-processes-geophys.net/17/293/2010/ Nonlin. Processes Geophys., 17, 293–302, 2010
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Fig. 2. Inverse TM metric for the different scenarios described in Fig. 1. From the uppermost to the lowermost solid line: random catalog,
temporal clustering only, spatial clustering only, and the combination of both temporal and spatial clustering.
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shows that
(
6nj

)2 remains the same compared to the ran-
dom catalog case in Fig.1a, whereas6n2

j increases consid-
erably for allt . This demonstrates that the first term does not
measure spatial clustering, as noted previously, and that the
approximation in Eq. (5) becomes feasible in the presence
of spatial clustering. The same rationale can be applied to
the last scenario illustrated in Fig.1d, in which temporal and
spatial clustering are considered simultaneously, to validate
the applicability of Eq. (5). In this case,

(
6nj

)2 is the same
as in Fig.1b while 6n2

j increases substantially for allt due
to the spatial clustering.

Both terms from Eq. (3) display a non-linear behavior in
Fig. 1a, scaling astβ and tα whereβ, α > 1. Their com-
bination, however, results in the linear trend of the inverse
TM metric along the entire time domain observed for this
case in Fig.2. An examination of Eq. (3) and the linearity
of the inverse TM metric indicate that the cumulative num-
ber of events per boxnj evolves as a normal diffusive pro-
cess during this long effective ergodic period. Based on the
interpretation ofTiampo et al.(2007), the period in which
the inverse TM metric is linear is effective ergodic. The
original work on the TM metric in glasses and liquids re-
lates effective ergodicity and fluids in thermal equilibrium
(Mountain and Thirumalai, 1989). Considering the cumula-
tive number of events per boxnj as a proxy for the seismic
released energy and the latter statement, it can be inferred
that effective ergodic periods result from configurations in
which the number of events are evenly distributed over the
boxes. This suggests that these periods are characterized by
non-clustered seismic activity.

Time clustering is verified from the abrupt vertical shifts
of both

(
6nj

)2 and6n2
j during the instances when the im-

posed agglomerations occur in Fig.1b and c. As discussed
previously, both terms of Eq. (3) respond to the introduced
temporal clustering. Figure2 shows that the effective ergodic
period displayed throughout the whole time domain for the
random catalog in both time and space is disrupted during the
instances when the time clustering is introduced. In between
the instances when the temporal clustering is inserted, the
system is in an effective ergodic state. The imposed tempo-
ral clustering in the given instantst1 andt2 promotes abrupt
changes in the rates of seismic activity which translates to
a sudden increase of the TM metric during these instances.
This may be interpreted as a break in the thermal equilib-
rium of the system while the disruptions in the seismicity
rate lasts, which means changes of the phase space subset
where the system resides.

Figure1c shows that the spatial clustering alone changes
the scaling of6n2

j to tβ
′

while maintaining the sametα

scaling for
(
6nj

)2 observed for the random case, where
β ′ > β > α. This is not a localized effect as observed for
time clustering, but rather a global effect that is spread over
the entire period considered. By assuming the approxima-
tion for the variance ofnj (t) to be

(
6nj

)2 and its scaling
with time shown in Fig.1c, it can be inferred that the cu-
mulative number of events per time step evolves in time as a
super-diffusive process. The latter differs from the normal-
like diffusive behavior observed for effective ergodic periods
and the result is the smooth non-linear trend observed for the
inverse TM metric of the spatially clustered case in Fig.2.
The Coso Geothermal Field in southeastern California is an
example of a region where seismicity occurs in a swarm-like
manner and might display spatial clustering with little-to-no
temporal clustering (Lees, 1998).

A more realistic situation encompasses both time and
space clustering. The previous individual analysis of the ef-
fects of time and space agglomeration allow for the study of
their combination and the results are also illustrated in Figs.1
and2. The vertical shifts observed due to time clustering are
enhanced for6n2

j as t increases due to the spatial cluster-
ing effects. The combination of the super-diffusive nature of
nj (t) due to spatial clustering and the change in the scanned
phase space subset generated by time clustering results in a
system that is locally effectively ergodic. The term “locally”
means that the system is effectively ergodic within the period
during which temporal clustering does not occur: whenever
t 6= t1 and t 6= t2. Once it happens, the system is reset and
a different normal diffusion process takes place. This beha-
viour is illustrated in Fig.2: from the moment when each of
the two time clustering occurs, the inverse TM metric dis-
plays effective ergodic periods with different diffusion coef-
ficients.
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3.2 Southern California

Implementing the method to synthetic catalogs offers a good
foundation to understand the effects of different seismicity
patterns to Eqs. (4) and (5). However, real seismicity offers
a behavior which is intrinsically more complex and a deeper
understanding of the technique is required. The next step is
to apply the method to a well studied dataset: the southern
Californian catalog. The spatial clustering in this data al-
lows for the application of the approximation in Eq. (5) as
discussed previously.

Tiampo et al.(2007) showed that events recorded from
1932 to 2006 in southern California with magnitudeM 4 or
greater display long effective ergodic periods that are dis-
rupted by large events. These periods of effective ergodicity
were disrupted by some large earthquakes, but not all. The
1952 Kern County, the 1979 Imperial Valley and the 1992
Landers earthquakes but not the 1989 Loma Prieta disrupted
the effective ergodic period.

The same set of data is used with this method to better
understand the previous results in terms of seismicity clus-
tering. A mesh of 0.1◦×0.1◦ is considered for the region
between latitudes 32◦ S and 40◦ S and longitudes –115◦ and
–125◦. Figure3 shows the plot of Eq. (4) for the data con-
sidered. The dashed lines identify the large events that dis-
rupt the effective ergodic periods: the 1952 Kern County, the
1979 Imperial Valley, the 1992 Landers, and the 1999 Hec-
tor Mine earthquakes. A vertical jump is observed for the
years in which these events occurred. The exception is the
1979 Imperial Valley event, due to its late occurrence in the
year (October), so that the bulk of the disruption occurs in
the following year. It is important to stress that no premon-
itory pattern can be obtained from Fig.3 due to the scale
of the temporal discretization of the system: the effects of
foreshocks/quiescence/aftershocks are all combined into one
when considering a yearly time-discretization for the system.

Interesting features can be observed in Fig.3. The first is
the constant decrease in the amplitude of the vertical jumps
as the years pass. This is attributed to the saturation of the cu-
mulative number of events per box over time, which makes
the effects of clustering less pronounced over the years due
to the accrual of larger numbers events over the entire region
and the asymptotic behavior of�n→∞ as t→∞. This il-
lustrates importance of the choice oft0: the latert0 is, the
larger the response for the 1992 Landers and 1999 Hector
mine earthquakes. This result also was noted by Tiampo et
al. (2007). Here, this saturation results in the method not be-
ing able to detect the clustering due to the 1989 Loma Prieta
earthquake.

The second important feature observed in Fig.3 is the
change in the slope of the linear regressions obtained with
a Pearson’s correlation coefficient greater than 0.97 between
large events: from 1933 to 1951, from 1955 to 1978, and
from 1980 to 1991. As mentioned previously, these periods
are effective ergodic and they correspond to intervals of time
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in which the system displays a normal diffusive behaviour.
The different slopes indicate that these diffusive processes
sample the different subsets of the phase space at different
rates. Additional work remains to determine whether this ap-
parent rate change is due to a sampling effect from changes
(primarily increases) in the seismic network, local and/or re-
gional effects related to changes in the stress field from the
large events themselves combined with tectonic and geologic
heterogeneities, or some combination thereof.

Figures4 to 6 display the distribution of the cumulative
number of events prior to, along with the number of events
before and after the 1952 Kern County, the 1999 Landers
and the 1989 Loma Prieta Earthquakes. The cumulative ac-
tivity prior to the 1952 Kern County event is not considerably
larger than the activity following the mainshock. As a result,
the computation of Eq. (4) for t=1952 leads to the consid-
erable vertical jump observed in Fig.3. The effects of the
increase in the cumulative number of events per box can be
seen for the 1999 Landers earthquake illustrated in Fig.5:
the seismic activity after this event occurred in a region of
considerable historic activity. The 1989 Loma Prieta earth-
quake, as displayed in Fig.6, occurred in a region where the
cumulative number of events prior to 1989 was considerably
lower than the rest of the map. As a result, the clustering
of seismic activity after this mainshock was not enough to
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Fig. 4. Distribution of events before the 1952 Kern County earthquake before the mainshock (top left), after the mainshock (top right) and
up until the mainshock since 1932 (bottom right). The approximation in Eq. (4) with the time of occurrence of the 1952 Kern County event
as the dashed line are also plotted (bottom left).

promote a large disruption in the evaluation of Eq. (4). The
latter can be attributed to the differences in seismic activity
between the northern and southern California.

3.3 Mining seismicity

Mining induced seismicity (MIS) represents an interesting
source of information due to the range of magnitudes that
are involved: between lab controlled experiments and crustal
seismicity. It can then offer important information on the
scaling laws of seismicity and the nature of earthquake trig-
gering. Economical factors also play an important role and,
as a result, this topic has been extensively studied (Gibowicz
and Kijko, 1994; Richardson and Jordan, 2002).

As a result, this method was also applied to MIS from two
mines in Ontario, Canada. The dataset from Kidd Creek
D Mine was obtained from August 2004 to May 2007 and
it consists of 23 000 event recordings. For Macassa Mine,
over 10 000 events were recorded from December 2004 to
May 2007. A 3-D version of the method was used and dif-
ferent space/time configurations were tested. The outcomes
displayed similar behaviours and, in the present work, only
the results from cubes with an edge length of 10 m and a time
binning of 7 consecutive days are shown for both mines.

Blasting activity is the main mechanism that drives the oc-
currence of small earthquakes in mines. As a result, MIS dis-
play a bimodal nature: small events highly clustered in time
or space that are created by the blasts and larger, tectonic-like
seismicity. Different bimodal distributions are constantly
used to describe MIS (Gibowicz and Kijko, 1994). Richard-
son and Jordan(2002) used a set of simple criteria based on
the space/time distance between events to identify the highly
clustered blasting related events.

From the results obtained so far with this method, signif-
icant variability of Eq. (4) is expected. Its plot along with
the seismic activity for Kidd Creek D is illustrated in Fig.7.
Frequent low-magnitude blasting activity generates most of
the clustering observed in the various discontinuities in the
plot. Note the horizontal feature in Fig.7 around the pe-
riod between the 100th and 140th weeks. The drop in the
seismicity rate observed in Fig.7 and the change of blasting
sites are the reasons for the constant values of Eq. (4). The
first automatically decreases the values obtained for Eq. (4)
whereas the second has a more substantial role in the ob-
served feature. As mentioned previously for the 1989 Loma
Prieta earthquake, the method is unable to detect clustering
in areas with a considerably lower seismic activity compared

Nonlin. Processes Geophys., 17, 293–302, 2010 www.nonlin-processes-geophys.net/17/293/2010/



N. F. Cho et al.: A simple metric to quantify seismicity clustering 299

Fig. 5. Distribution of events before the 1992 Landers earthquake before the mainshock (top left), after the mainshock (top right) and up
until the mainshock since 1932 (bottom right). The approximation in Eq. (4) with the time of occurrence of the 1992 Landers event as the
dashed line are also plotted (bottom left).

to the rest of the region. During the instances in which6n2
j

is constant, the blasting activity was shifted to regions with
no or low previous seismic activity.

For Macassa Mine, the result of the method is plotted in
Fig. 8. As indicated for the previous mine, two plateaus in
the values of Eq. (4) are observed and they coincide with
periods of low seismic activity. This mine displayed a com-
pletely different blasting regime compared to Kidd Creek D:
rare high energy blasts. During the first period, around the
80th week, there was a shift in the blasting sites followed
by a stoppage in the blasting activities. The second period
around the 110th week is highlighted by a complete halt in
the blasting process resulting in the sudden drop in seismic
activity, leading to a second plateau. Once again, the his-
toric seismicity played an important role as observed for the
previous mine and southern California.

4 Conclusions

The TM metric is a simple metric that was first applied to
study glass and liquid systems.Tiampo et al.(2007) showed
that this metric can be used to identify periods of effec-
tive ergodicity, in which the system is considered to be in a

metastable equilibrium state as a gas in thermal equilibrium,
and that seismicity clustering seems to play an important role
in this framework. These effective ergodic periods are inter-
preted as periods of time in which the evolution of cumula-
tive number of events per box behave as a normal diffusive
process. It is shown that the metric and the phenomena ob-
served in the previous work can be attributed to seismic clus-
tering and that, under the right assumptions, this metric can
be simplified. Spatial clustering in seismicity allows for an
approximation to the metric in which the effects of clustering
in both time and space are simpler to account for.

While the determination of effective ergodic periods
which ensure that spatial and temporal averages are station-
ary and confident is important for seismic hazard analysis,
here we investigated the insight gained into seismicity clus-
tering from the behaviour of the metric under various spatial
and temporal end members clustering models. This interpre-
tation was tested for three sets of data: synthetic, the southern
California dataset and mining induced seismicity. From the
synthetic data, it was observed that the effects of spatial and
temporal clustering are of a different nature. The first can
be seen as a change in the rate that the subset of the phase
space is being browsed whereas the second is a change in the
subset itself.
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Fig. 6. Distribution of events around the 1989 Loma Prieta earthquake: before the mainshock (top left), after the mainshock (top right) and
up until the mainshock since 1932 (bottom right). The approximation in Eq. (4) with the time of occurrence of the 1989 Loma Prieta event
as the dashed line are also plotted (bottom left).
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Fig. 7. Plot of Eq. (4) for Kidd Creek D (solid line) and the number
of events recorded per time bint (dashed lines).
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Fig. 8. Plot of Eq. (4) for Macassa mine (solid line) and the number
of events recorded per time bint (dashed lines).
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The implementation of this method to the southern Cal-
ifornia dataset showed that the disruptions in the effective
ergodic periods observed inTiampo et al.(2007) were due
to the aftershock sequences following large earthquakes. It
was noticed that these disruptions were highly dependent on
the distribution of past seismicity across the region. Large
earthquakes such as the 1989 Loma Prieta did not disturb the
metric due to the generally lower seismic activity in the re-
gion.

Mining seismicity from Kidd Creek D and Macassa mines
in Canada were also tested under this interpretation of the
TM metric. These mines displayed very different blasting
patterns in the periods considered: the first with frequent
low-magnitude blasts and the second with rarer larger ones.
Regardless of these differences, the same dependence on past
seismicity in the analysis was verified in the datasets from
both mines. Changes in locations and rates of blasting ac-
tivity induced changes in seismicity rates in locations with
previously low activity, resulting in the constant metric dur-
ing these periods. It is the same as that which appeared to
occur for the 1989 Loma Prieta event and the low seismicity
rate in the surrounding local region.

Past studies concerning the application of the TM met-
ric to seismicity have shown that it can be used to highlight
well-behaved statistical features of seismicity (Tiampo et al.,
2007, 2010). Here another interesting feature of the TM met-
ric is examined and it is shown that the metric provides a
simple way to quantify seismicity clustering, and can differ-
entiate between spatial and temporal clustering, given that
the region space is chosen carefully. We also demonstrate
that its simplicity comes at a cost: the non-uniqueness of
the values of the metric, in which different distributions of
the cumulative number of events in each box might yield the
same score means that various spatial patterns can produce
the same value over different time periods. Finally, ongoing
studies using simple models of earthquake fault systems sug-
gest that there is a link between the TM results for seismicity
that are both unique and more complicated than originally
anticipated. Future work will attempt to link the clustering
results for both historic data and models of earthquake pro-
cesses.

Appendix A

Consider a positive integerA written in terms ofn numbers
so that

A=

n∑
i

ai (A1)

whereai are non-negative real numbers.

From (A1),

A2
=

(
n∑
i

ai

)2

=

n∑
i

a2
i +

≥0︷ ︸︸ ︷
2

n∑
i;i 6=j

ai

(
n∑

j>i

aj

)
∑

i

a2
i = A2

−2
n∑

i;i 6=j

ai

(
n∑

j>i

aj

)
(A2)

The extreme values of Eq. (A2) depend on

f (ai)=

n∑
i

(
ai

n∑
j 6=i

aj

)
(A3)

The maximum value of Eq. (A2) is obtained when
Eq. (A3) is null. Sinceai are non-negative integers andA

is a positive integer,f (ai)=0←→ ai = δij , whereδij is the
Kronecker delta. This means that one value ofai =A and the
others are null, i.e. one box contains all events and the others
have no events.

The maximum of (A3) can be obtained by using the La-
grange multiplier method using Eq. (A1) as a constraint
g(ai)=

∑N
i ai−A≡0

∇ai (f (ai)−λg(ai)) = 0

∇ai

 n∑
j ;j 6=i

aj

(
n∑
i

ai

)−λ∇ai

[
N∑
i

ai−A

]
= 0 (A4)

whereλ is a Lagrange multiplier.
The evaluation of Eq. (A4) leads to a system ofn-

equations∑
j 6=i

aj = λ,∀i ∈ [1,n] (A5)

which results in

aj =
A

n
. (A6)

so that
∑

j aj =A.
The result obtained in Eq. (A6) means that Eq. (A3) is

maximized when the values ofaj are the same, i.e. for the
case in which the events are evenly distributed in the non-
empty boxes. The same procedure can be used to one of the
ai numbers. It is important to stress that different sets ofai

may yield the same
∑

i a
2
i .
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