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Abstract. Lower-hybrid (LH) oscillitons reveal one aspect
of geocomplexities. They have been observed by rockets and
satellites in various regions in geospace. They are extraor-
dinary solitary waves the envelop of which has a relatively
longer period, while the amplitude is modulated violently by
embedded oscillations of much shorter periods. We employ
a two-fluid (electron-ion) slab model in a Cartesian geom-
etry to expose the excitation of LH oscillitons. Relying on
a set of self-similar equations, we first produce, as a refer-
ence, the well-known three shapes (sinusoidal, sawtooth, and
spiky or bipolar) of parallel-propagating ion-acoustic (IA)
solitary structures in the absence of electron inertia, along
with their Fast Fourier Transform (FFT) power spectra. The
study is then expanded to illustrate distorted structures of
the IA modes by taking into account all the three compo-
nents of variables. In this case, the ion-cyclotron (IC) mode
comes into play. Furthermore, the electron inertia is incor-
porated in the equations. It is found that the inertia mod-
ulates the coupled IA/IC envelops to produce LH oscilli-
tons. The newly excited structures are characterized by a nor-
mal low-frequency IC solitary envelop embedded by high-
frequency, small-amplitude LH oscillations which are super-
imposed upon by higher-frequency but smaller-amplitude IA
ingredients. The oscillitons are shown to be sensitive to se-
veral input parameters (e.g., the Mach number, the electron-
ion mass/temperature ratios, and the electron thermal speed).
Interestingly, whenever a LH oscilliton is triggered, there oc-
curs a density cavity the depth of which can reach up to 20%
of the background density, along with density humps on both
sides of the cavity. Unexpectedly, a mode at much lower fre-
quencies is also found beyond the IC band. Future studies are
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finally highlighted. The appendices give a general dispersion
relation and specific ones of linear modes relevant to all the
nonlinear modes encountered in the text.

1 Introduction

Nonlinear waves have increasingly drawn much attention in
the study of geocomplexities in last decades. They are ubiq-
uitous in space and laboratories under different plasma con-
ditions. Since the first soliton (also called a solitary wave)
was noticed by John Scott Russell in 1834, the first equation
(i.e., the Korteweg-de Vries, KdV, equation) was derived to
describe weakly dispersive, nonlinear water waves in 1895,
and the first prediction was made about the existence of the
non-wave structures in plasmas (called the Bernstein-Green-
Kruskal, BGK, mode) in 1957, many branches have been
developed to meet the needs of solving different problems
relevant to the construction, maintenance, propagation, and
effects of solitary structures.

A focus is on large-scale, finite-amplitude, solitary en-
velops. The study can be traced far back to 1970s when
Shukla and Yu (1978) offered exact stationary solutions for
ion-acoustic (IA) solitons propagating obliquely in a two-
component (electron and ion), low-β, non-isothermal plasma
system, with an assumption that ions do not have a polar-
ization drift in a constant magnetic field. In this case, the
electron inertia was neglected due to the much smaller mass
than that of ions. Later, the limit of the polarization drift was
relaxed by Yu et al. (1980) and a generalized result was ob-
tained. Meanwhile, Temerin et al. (1979) found three shapes
of electrostatic solitary waves: sinusoidal, sawtooth, and
spiky/bipolar. In a generalized study, Lee and Kan (1981)
obtained nonlinear IA and ion-cyclotron (IC) waves (the au-
thors also mentioned another type, so called “IA solitons”;
however, by reproducing the results, we easily confirmed that
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it is not an independent type but the IA solitary waves with
a longer period). Nakamura and Sugai (1996) studied non-
linear waves in a three-component (warm ion, cold and ener-
getic electrons), unmagnetized plasma system. They pointed
out that a pseudo-potential method (i.e., the “Sagdeev po-
tential”) is more suitable than the KdV approach to produce
results applicable to experiments. In such a system, Chatter-
jee and Roychoudhury (1997) found that, when the ion tem-
perature increases, the amplitude of the IA solitary waves
increases when the corresponding self-similar position (de-
noted byξ=x−V t , wherex is the 1-D coordinate,V is the
phase speed of solitons, andt is the time) shifts to the ori-
gin. For a system containing multi-ionic components but ions
are cold, Das et al. (2000) claimed that a power expansion
technique leads to higher order nonlinear IA wave equations;
these equations yield various solitary waves (such as, spiky
solitons, double layers, etc.) depending on plasma parame-
ters.

More important, Jovanović and Shukla (2000) found
a fully nonlinear coherent solution for solitary structures
(called “electron-holes” in the text) in the magnetosphere.
They took into account a low-frequency (LF) ion dyna-
mics, and exposed a typical cylindrically-symmetric hole
of a Larmor-radius size. The results were used to explain
FAST/POLAR observations of antisymmetric bipolar pulses
in the parallel direction to localized magnetic field lines and
unipolar ones in the perpendicular plane. In addition, Ma-
mun et al. (2002) employed the power expansion technique
to study the properties of obliquely propagating electron-
acoustic (EA) solitary waves in a magnetized plasma sys-
tem of three components: a cold magnetized electron fluid,
hot electrons obeying a non-isothermal vortex-like distribu-
tion, and stationary ions. It was found that the external mag-
netic field and the obliqueness of the solitary waves could
greatly change the amplitude and the width of solitons, and,
positive potential solitons correspond to cold electron den-
sity holes/cavitons (note that these electron holes are “ion
clumps” as defined by Dupree, 1972; and naturally, the po-
tential is positive). Moreover, Reddy et al. (2002) conside-
red a two-component (cold ions and warm electrons), ho-
mogeneous, magnetized system. The authors verified that
parallel-propagating solitary waves have structures of si-
nusoidal, sawtooth, and highly spiky waveforms, and, the
highly spiky waveforms have periods ranging from IC to
IA frequencies. Likewise, Bharuthram et al. (2002) consi-
dered a homogeneous magnetized plasma system consisting
of Boltzmann electrons and warm ions, aiming at the non-
linear solitary structures arising from a coupling between the
IA and IC waves. The authors not only obtained the well-
known three waveforms, but also suggested that a finite ion
temperature suppresses the IC nonlinearity and enhances the
IA nonlinearity. Furthermore, in order to explain the fine
structures in the auroral kilometric radiation, Pottelette et
al. (2003) studied the excitation of IA solitons (called “elec-
trostatic shocks” in the text) in a unmagnetized ion-electron

system. They used the Sagdeev potential to derive the am-
plitude, speed, and width of the localized IA shocks in the
fluid approximation. Such electrostatic nonlinear structures
were considered to be necessary for auroral electron acceler-
ation up to the observed energies of∼10 keV. Recently, Ma
and Hirose (2009a) performed a parameterized study on IA
solitary waves by employing the Sagdeev potential in a mag-
netized plasma system consisting of warm ions, background
electrons, and energetic electrons.

It deserves to mention some other topics in the study of
electrostatic solitary waves, so as to show the robust growth
of this subject in space physics. One of the subdivisions
is for small-scale plasma systems. In these systems, influ-
ences brought about by either the finite radius of a flux tube
(Gradov et al., 1984,1985), or the boundary in slab mod-
els (Vladimirov et al., 1993) cannot be neglected anymore.
Luckily, as indicated by these authors, the effects are gener-
ally limited in the boundary layers and do not have an impact
on bulk solitary wave propagations. Another branch is the
study of EA solitary waves. These type of waves are known
to contribute most of higher-frequency electrostatic noises
than IC/IA waves. Different from the IC case where the elec-
tron inertia is neglected, the study assumes motionless ions.
The first study was done by Dubouloz (1993), followed by
e.g., Mamun et al. (2002), Berthomier et al. (2000, 2003),
Shukla et al. (2004), Singh and Lakhina (2004), Kakad et
al. (2007), Lakhina et al. (2008). Specially, Pottelette and
Berthomier (2009) set up a model which is useful to explain
observations. The third fork lies in the study on the effects
of the centrifugal and Coriolis forces on the propagation of
solitary waves. The work was initiated by Stenflo (1990), and
followed by Yu and Stenflo (1991), Stenflo and Yu (1992,
1995), Shi et al. (2001, 2005, 2008) and Ma (2010).

The packets mentioned above constitute simple nonlin-
ear waves; i.e., the Fast Fourier Transform (FFT) power
spectra of the envelops are featured by a single frequency
only, as well as its harmonics. To our surprise, observations
of high-sensitivity rockets and satellites in last 20 years ex-
posed a new type of more complicated solitary waves. They
are associated with the lower-hybrid (LH) mode, accompa-
nied by density depletions. The MARIE sounding rocket
made the first definitive observations of the LH cavities (La-
Belle et al., 1986), and the waveforms have been exhibited
by many implemented space projects, such as, the FREJA
satellite (Dovner et al., 1994; Eriksson et al., 1994; Pécseli
et al., 1996; Høymork et al., 2001), the Alaska-93 sound-
ing rocket (Delory, 1996), the AMICIST sounding rocket
(Pinçn et al., 1997), the Polar satellite (Cattell et al., 1998,
1999), the FAST satellite (McFadden et al., 1998; Pottelette
et al., 1999), the GEODESIC sounding rocket (Knudsen et
al., 2003; Burchill et al., 2004), and the Viking and Cluster
satellites (Tjulin et al., 2003, 2004). Schuck et al. (2003)
made a detailed review on related observations and simula-
tions.
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The new packets exhibit violent modulations in amplitudes
of relatively slowly-varying, classical solitary structures, per-
formed by embedded quickly-varying, small-amplitude os-
cillations. Such a structure was called “oscillitons” (Sauer et
al., 2001), but there, and in subsequent papers by the same
group of authors (e.g., Sauer et al., 2002, 2003; Dubinin et
al., 2002, 2003a, b, c, 2007; McKenzie et al., 2004; Cat-
taert and Verheest, 2005; Sydora et al., 2007), it was used in
the sense of nonlinear electromagnetic “whistler” structures,
which can exist at parallel and supposedly also at oblique
propagation with respect to the static, background magnetic
field (F. Verheest, personal communication, 2010). The mo-
dulation was present in either a multi-species system (more
than two types of charged particles) responsible for observed
IC oscillitons (e.g., Sauer et al., 2001, 2003), or an electron-
ion system to explain coherent whistler waves and oscillitons
(e.g., Cattaert and Verheest, 2005; Sydora et al., 2007). No-
tice that in this article and following ones, we expand the
intrinsic meaning of the terminology and use it to describe
amplitude-modulated solitary packets, either the waves are
excited electrostatically or electromagnetically, and either in
a non-dusty plasma system or a dusty one. Figure1 gives
an example to show the observed features of “LH-oscilliton”
structures, adapted from Fig. 3 of Cattell et al. (1998). The
measurement was performed by the Polar satellite at the
plasma sheet boundary. The large amplitudes ofEx and
Ey can be up to 40 mV/m. Each of the LH packets after
02:05:25.7 lasts.0.1 s (about 3 ion gyroperiods) appearing
in density cavities. The bursty nature exhibits the modulation
of the LH mode (see details in Cattell et al., 1998).

That LH solitary structures are of great importance in the
study of nonlinear processes is by virtue of the fact that they
are the prime candidate for the acceleration of ions and ge-
neration of “ion conics” in the high-latitude ionosphere and
magnetosphere (see comprehensive contributions in 1980–
90s by, e.g., Chang and Coppi, 1981; Retterer et al., 1986;
Kintner et al., 1992; Chang, 1993, and references therein).
However, an effective modulational mechanism of “oscilli-
tons” had not been proposed till Kourakis and Shukla (2005).
The authors provided a complicated methodological formu-
lation to suggest that the modulation may be due to paramet-
ric interactions between different modes or, simply, to the
nonlinear (self-)interaction of some wave itself.

We checked observations after investigating the LH insta-
bilities (Ma and Hirose, 2009b). We found that the modula-
tion may be easily understood by noticing the role played
by the electron inertia. For example, the FAST satellite
showed the modulations of electrons in the excitation of soli-
tary waves (McFadden et al., 1998): in an auroral density
cavity containing ion beams, electrons inside an ion-beam re-
gion are modulated at hydrogen cyclotron frequency 208 Hz,
while the ones outside it are at∼120 Hz, along with an iden-
tified LH frequency at∼450 Hz which was found to merge
to IC waves continuously at the boundary of the ion-beam
region. This indicates that the role played by the electron

Fig. 1. Nonlinear “oscilliton” structures associated with the LH
mode (adapted from Fig. 3 of Cattell et al., 1998). The measurement
was performed by the Polar satellite at the plasma sheet boundary.
The bursty nature after 02:05:25.7 exhibits the modulation of the
LH mode, see, e.g., a detailed discussion by Cattell et al. (1998).

inertia becomes dominant outside the ion-beam region. Be-
sides, the Cluster satellites exposed that the widths of the
cavities lie between the ion gyroradiusri=vTi /�i (wherevTi

is the ion thermal speed and�i is the ion gyro-frequency)
and the electron inertial lengthre=c/ωpe (wherec andωpe
are the speed of light and electron plasma frequency, re-
spectively) (Tjulin et al., 2004). This reveals that the elec-
tron inertia is an important parameter due to the fact that ob-
served LH phenomena are connected, more or less, to inertial
Alfv én waves (Shapiro, 1998), the nonlinear mode of which
was found to modulate spatially the electron density and en-
ergy (Knudsen, 1996).

What is more, in cases where the electron inertia is ne-
glected, in the linear regime, IA/IC modes are excited (e.g.,
Boyd and Sanderson, 2003); while in the nonlinear regime, it
is the IA/IC solitary waves, rather than LH ones, that are initi-
ated with either small amplitudes or large amplitudes, where
electrons are free to response to ion kinetics, satisfying the
charge-nuetrality condition (e.g., Reddy et al., 2002). On the
contrary, if the electron inertia is present, plasma particles
are coupled with each other which prevents electrons from
becoming unbounded. In the linear regime, high-frequency
(ω≥�i) electrostatic LH instabilities are excited (e.g., Hirose
and Alexeff, 1972). By contrast, in the nonlinear regime, on
one hand, the inertia constrains small-amplitude IA solitary
waves (Kuehl and Zhang, 1991); on the other hand, for large-
amplitude ones, the inertia enhances the IC amplitudes (Sen
et al., 2008).

As a matter of fact, the effects of electron inertia have
already been discussed extensively in other fields, such as,
linear tearing mode and nonlinear magnetic islands (Shiv-
amoggi, 1997), magnetic reconnection (Al-Salti and Shiv-
amoggi, 2003), gyrokinetic turbulence (Jones and Parker,
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2003), acoustic instabilities (Merlino and D’Angelo, 2005),
and Alfvén compressional wave of gravitational instabilities
(Uberoi, 2009). Manifestly, there should exists an intrin-
sic interplay via the electron inertia between IA/IC solitary
structures and “LH oscillitons”. Motivated by Kourakis and
Shukla (2005)’s work which provides a generic methodology
applicable to a variety of electrostatic modes, we aim at find-
ing a formulation to explain the influence of the electron in-
ertia on the transition from IA/IC solitary waves to LH oscil-
litons.

Enlightened by Sauer et al. (2003)’s work, we make use of
a fluid description. In order to concentrate on the mechanism
of the modulation played by the electron inertia, and gain
important insights into more complicated situations (such as
a multi-species system), while still being able to illustrate
our approach clearly, we consider a slab model, as described
in Sect. 2, to formulate a collision-free, two-fluid (electron-
ion) system in a Cartesian geometry. We start from introduc-
ing basic parallel-propagating IA solitary waves in Sect. 3,
where the electron inertia is not taken into consideration, and
the FFT spectra are shown. Then, in Sect. 4, we describe
distorted IA/IC solitary waves. On the basis of these studies,
we investigate in Sect. 5 the impact of the electron inertia
on the possible excitation and propagation of nonlinear LH
oscillitons by a parameterized study through a few input pa-
rameters. A simulation is performed. Finally, in Sect. 6, we
summarize the results and have some discussions. The Ap-
pendices give generalized and specific dispersion relations
of linear modes, corresponding to all the nonlinear ones dis-
cussed in the text.

2 Nonlinear, two-fluid equations: a slab model

We consider that an external magnetic field permeates
through regions visited by satellites (e.g., auroral accelera-
tion regions by FAST, bow shock and magnetopause by Clus-
ter). It has three components:

Bext= Bx0êx +By0êy +Bz0êz (1)

in a Cartesian geometry whereBj0 (j=x, y, z) is constant
in the direction ofj along whichêj is the unit vector. In
these regions, the plasma pressure is much smaller than the
magnetic pressure, i.e.,β�1. Plasma waves excited are thus
electrostatic in general, rather than electromagnetic, with
kz�k⊥ due to the parallel magnetization of particles (where
kz andk⊥ denote parallel and transverse wavenumbers, re-
spectively). The Landau damping can be neglected due to
the fact that the phase speedvp of these waves satisfies

vTi � vp � vTe (2)

wherevT α=
√

kBTα/mα is the thermal speed of either elec-
tron or ion species withα={e,i}, respectively, in whichkB is
the Boltzmann constant,Tα andmα are the temperature and
mass, respectively. Thus,λFLR�1 (whereλFLR is the finite

Larmor radius, FLR). However, because the conditionλ�λD
(whereλ is the wave length, andλD is the Debye scale) is not
always valid for the waves, charge separation effects may not
be ignored, though the quasi-neutrality (ne0≈ni0 wherenα0
is the density at equilibrium) can still be applied because the
space-charge densitynsc, as a result of the charge separa-
tion, is still relatively small compared tonα0. In a finite time,
these space-charge density granulations retain their structural
integrity and ballistically propagate along a specific direction
to form “trains” of solitons propagating in space to form soli-
tary waves (Ṕecseli, 1985; Chiueh and Diamond, 1986).

In order to provide the most basic picture for the emer-
gence and propagation of nonlinear solitary waves, and thus
to gain important insights into the effects of electron iner-
tia on the features of solitary structures, while still being
able to illustrate the process clearly, we focus on a system
composed of two components: isothermal electrons and adi-
abatic ions. They are described by two-fluid equations un-
der collision-free conditions in the Cartesian frame(x,y,z),
including conservation equations of mass, momentum, and
energy, plus four Maxwell’s equations. A generalized set of
equations is as follows:

∂ne
∂t

+∇ ·(neue) = 0
∂ni
∂t

+∇ ·(niui) = 0(
∂
∂t

+ue·∇
)
ue= −

1
mene

∇pe−
e

me
(E+ue×B)(

∂
∂t

+ui ·∇
)
ui = −

1
mini

∇pi +
e
mi

(E+ui ×B)

pe= nekBTe0

pi
pi0

=

(
ni
ni0

)γ

∇ ×E = −
∂B
∂t

∇ ×B = µ0j +
1
c2

∂E
∂t

∇ ·E =
ρe
ε0

∇ ·B = 0



(3)

where the coupling of the fluid variables to Maxwell’s
equtaions occurs through the definitions that relate the par-
ticles’ number densities (ne, ni) and flow velocities (ue, ui)
to the current density [j=e(niui −neue)] and charge den-
sity [ρe= e(ni −ne)]. Notice that the conservation equations
of energy are reduced to an equation of state for electrons
and an adiabatic equation for ions, respectively. The basic
unknowns in the model arene, ni , ue, ui , E, andB, while
Te0 is the equilibrium temperature of electrons, andγ is the
adiabatic index. Parametersε0 andµ0 are the absolute per-
mittivity and permeability in free space, respectively, and
c = 1/

√
ε0µ0 is the vacuum speed of light. Hereafter, sub-

script “0” attached to parameters in English indicates “equi-
librium”. Note thatB is different fromBext.

For convenience, we use dimensionless parameters: the
electron and ion densitiesne and ni are normalized
by n0; coordinatesr={x,y,z} by electron Debye length
λDe=vTe/ωpe; velocity uα=

{
uαx,uαy,uαz

}
by the acoustic
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speedcs=
√

kBTe0/mi ; pressurepα by pα0 = n0kBTα0; time
t by ion plasma periodτpi=ω−1

pi (notice thatωpiλDe=cs);
magnetic fieldB by a pseudo-magnetic fieldB0 = meωpi/e;
electric fieldE by a pseudo-electric fieldE0 = csB0; and,
three coefficients are introduced:ξm = mi/me, ξT = Te0/Ti0,
andξv=vTe/c. A dimensionless expression of Eq. (3) is

∂ne
∂t

+∇ ·(neue) = 0
∂ni
∂t

+∇ ·(niui) = 0(
∂
∂t

+ue·∇
)
ue= −ξm∇ ln ne−(E+ue×B)(

∂
∂t

+ui ·∇
)
ui = −

1
ξT

γ
γ−1∇n

γ−1
i +

1
ξm

(E+ui ×B)

∇ ×E = −
∂B
∂t

∇ ×B = ξ2
v (niui −neue)+

ξ2
v

ξm

∂E
∂t

∇ ·E = ξm(ni −ne)

∇ ·B = 0



(4)

To reduce the complexity of math in solving the problem
and pay close attention to the formation of solitary struc-
tures, we employ a slab model where all parameters depend
only on the x-coordinate. In this case,γ =3. By using a sin-
gle independent variableX for a self-similar transformation
X=x−Mt (Lee and Kan, 1981), whereM is the Mach num-
ber independent ofX, along with

∂

∂t
= −M

d

dX
,

∂

∂x
=

d

dX
(5)

we obtain a set of equations as follows:

duex
dX

= −
(
Ex +ueyBz−uezBy

)
/
(
uex−

ξm
uex

)
duey
dX

= −
(
Sy −uexBz+uezBx0

)
/uex

duez
dX

= −
(
Sz+uexBy −ueyBx0

)
/uex

duix
dX

= ξ−1
m

(
Ex +uiyBz−uizBy

)
/

(
uix −

3S2
n

ξTu3
ix

)
duiy
dX

= ξ−1
m

(
Sy −uixBz+uizBx0

)
/uix

duiz
dX

= ξ−1
m

(
Sz+uixBy −uiyBx0

)
/uix

dEx
dX

= −ξmnsc

dBy
dX

= ξ2
v Sn

(
uiz
uix

−
uez
uex

)
/
(
1−

ξ2
v M2

ξm

)
dBz
dX

= −ξ2
v Sn

(
uiy
uix

−
uey
uex

)
/
(
1−

ξ2
v M2

ξm

)



(6)

in which

Sn = uxx0−M

Sy = Ey0−MBz0, Sz = Ez0+MBy0

ne= Sn/uex, ni = Sn/uix

nsc= ne−ni

Ey = Sy +MBz, Ez = Sz−MBy

Bx = Bx0


(7)

by using boundary conditionsne|X=0=n0, ni |X=0=n0,

uxx0 = uex0|X=0 = uix0|X=0 = U0 − M, Ey|X=0 = Ey0,
Ez|X=0 = Ez0, Bx|X=0 = Bx0, By|X=0 = By0, andBz|X=0 =

Bz0. Note that theuαx-origin is shifted from “0” to “M”,
and the density equations and Gauss’s law requireSne=Sni,
written asSn. Note that the charge densityρe in Eq. (3) is
at present expressed by a space-charge densitynsc of solitary
waves.

Equation (6) describes localized, coherent solitary waves
which may be excited in the two-fluid system by the balance
of nonlinearity and the dispersive effect (Davidson, 1972;
Drazin, 1984, and references therein). They transport en-
ergy from nonlinear solitary waves to ambient plasma parti-
cles owing to their retained shape and speed during propaga-
tions (Davydov, 1985; Hasegawa and Kodama, 1995), super-
imposing upon background propagating or non-propagating
plasma oscillations, such as IA and/or IC modes. The clas-
sical dispersion relations of these linear modes have widely
been studied experimentally and theoretically since 1960s,
e.g., Tanaca et al. (1966a, b, 1967; IA mode), Hirose et
al. (1970a, b, c; IC mode). By solving the perturbed equa-
tions of Eq. (3), we present related dispersion relations in
Appendices for use below.

We solve Eq. (6) in three cases by steps. We start from
introducing a basic case of parallel-propagating, electrostatic
IA solitary waves where all variables has only one compo-
nent alongX. Then, we expand the study to a more general-
ized case where they have normal three components. Based
on these studies we focus on the evolving patterns of oscil-
litons to show the modulation of the electron inertia on low-
frequency solitary waves by introducing high-frequency os-
cillations into amplitudes.

3 In the absence of electron inertia:
parallel-propagating IA solitary waves

When the electron inertia is neglected, the simplest nonlinear
solitary wave is in the IA mode. This mode propagates in a
direction parallel to local magnetic field lines, superimpos-
ing upon background linear electrostatic IA oscillations the
dispersion relation of which is given in Appendix A.

The set of equations to describe nonlinear IA solitary
waves propagating alongBext = Bx0êx can be derived from
Eq. (6) as follows:

ne= e8

duix
dX

=
−d8/dX

uix−
3S2

n

ξTu3
ix

d28

dX2 = nsc

 (8)

by usingni = Sn/uix , ne = Sn/uex, andEx/ξm = −d8/dX.
Note that (1) all parameters are dimensionless, and8 is
the normalized electrostatic potential the unit of which is
kBTe0/e; (2) Sy = Sz=0 due to the fact onlyEx component
of E exists.
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Fig. 2. Parallel-propagating IA soliton space-charge densitynscand
the wave-fieldEx underξT=10, andM=1.14 (top panel), 1.16 (bot-
tom left), 1.28 (bottom right), showing three types of shapes (sinu-
soidal, sawtooth, and spiky/bipolar), respectively.

Equation (8) produces a propagating IA mode satisfying
(cf. Eq. 9 in Ma and Hirose, 2009a)

d28

dX2 = e8

−

√
2√√√√(1+

3
ξTM2 −

28

M2

)
+

√[(
1+

3
ξTM2 −

28

M2

)]2

−
12

ξTM2

 (9)

from which, as well as Eq. (8), the space-charge densitynsc
and the wave-fieldEx of solitary waves can be solved numer-
ically.

TakeξT=10. The solitary structures are calculated under
different Mach numbers. Their evolution is exhibited bynsc
andEx. Figure2 illustrates an example of the features of the
soliton trains underM=1.14, 1.16, 1.28, respectively.

The top two panels in the figure illustrate sinusoidal shapes
of bothnsc andEx, respectively. They both have small am-
plitudes atM=1.14:nsc is within 5×10−5 andEx is no larger
than 0.5. By contrast, whenM increases to 1.16, each packet
of the former exposes a tooth shape, while that of the latter
display a sawtooth one, visible in the two bottom left pan-
els. When the Mach number continues to increase to 1.28,
the two bottom right panels disclose spiky shapes, unipolar
for nsc and bipolar forEx, respectively. It deserves to men-
tion again that these three shapes of IAEx structures (i.e.,
sinusoidal, sawtooth, and spiky/bipolar) are well-known in
satellite observations. They were first reported by S3-3 satel-
lite in late 1970s (Temerin et al., 1979) and have thereafter
been detected in various regions in geospace by numerous
satellites (see a detailed review in Ma and Hirose, 2009a).

In order to know the features in the frequency regime, we
make use of a fast Fourier transform (FFT) algorithm to give
the power densities of the threeEx waveforms, as shown

Fig. 3. FFT spectra ofEx in corresponding panels of Fig.2.

in Fig. 3 where the vertical axis has an arbitrary unit. The
top panel is the spectrum atM=1.14, exhibiting a couple of
peaks: one is atω1 = 0.031ωpi, the fundamental frequency
of the imperfect sine wave; the other is atω2 = 0.062ωpi, a
harmonic ofω1. The former corresponds to the IA period
TX = ω−1

= 32.3τpi (note thatωpiτpi = 1 as assumed in nor-
malizations) of the solitary structures alongX, as provided
in the topEx panel of Fig.2. As a double-check, we use
Eq. (A4) to calculate the IA wavelengthkx. In dimensionless
units, the equation becomes

ω2
=

(
1+

γ

ξ2
T

)
k2

x (10)

where the units ofω andkx areωpi andλ−1
De, respectively. In

our calculations, we useξT=10. Thus, we have

ω = 1.015kx , or, λx =
1

kx
=

1.015

ω
= 32.7 (11)

which is the exact IA wavelength shown in Fig.2.
This first study tells us, though very basic, that in the non-

linear system, solitary waves will develop harmonics due to
the fact that the structures do not have pure sine-waveforms.
It is thus predictable that more harmonics will be developed
if the shape of solitons goes farther away from a sine wave.
This case is very similar to that of a piece of real musical
instruments: in addition to the fundamental frequencyf , a
soliton train also has frequencies which are exact multiples
of f : f , 2f , 3f,.... This prediction is confirmed by other
two panels of Fig.3. At M=1.16, for example, the IA fre-
quency spectrum of the sawtooth-likeEx structures have dis-
tinct four harmonics: 0.018, 0.036, 0.054, and 0.072, accom-
panied by a broadband of noises up to 5ωpi. In theM=1.28
panel, bipolar solitons provide more harmonics, and these
harmonics merge into the background noises eventually. No-
tice that in this case, it is not the fundamental frequency but
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the second harmonic that has the maximum power density.
This warns us that, in data analysis to identify in-situ waves,
a frequency with the strongest peak may not represent that
the wave is excited at that frequency. This is important when
determining signatures of, e.g., LH waves.

4 In the absence of electron inertia:
generalized IA/IC solitary waves

In reality, variables have three components. We generalize
the case discussed above to see the features of the nonlinear
waves propagating in space. In this case, the background
electrostatic waves contain propagating IA waves, and non-
propagating IC waves which oscillate locally. Appendix B
describes the dispersion relation.

Neglect the electron inertia again. The second and third
equations of Eq. (6) produce

uexBz−Sy = uezBx0

uexBy +Sz = ueyBx0

}
(12)

which gives

ueyBz−uezBy =
Sy
Bx0

By +
Sz
Bx0

Bz (13)

and

uey
uex

=
By
Bx0

+
Sz/uex
Bx0

uez
uex

=
Bz
Bx0

−
Sy/uex
Bx0

 (14)

Substituting above expressions for the terms in Eq. (6) leads
to a new set of equations as follows:

duex
dX

=
Ex+

Sy
Bx0

By+
Sz

Bx0
Bz

ξm
uex

duix
dX

=
1
ξm

Ex+uiyBz−uizBy

uix−
3S2

n

ξTu3
ix

duiy
dX

=
1
ξm

Sy−uixBz+uizBx0
uix

duiz
dX

=
1
ξm

Sz+uixBy−uiyBx0
uix

dEx
dX

= ξmSn

(
1

uix
−

1
uex

)
dBy
dX

= ξ2
v Sn

uiz
uix

−
Bz
Bx0

+
Sy/uex

Bx0

1−
ξ2
v M2

ξm

dBz
dX

= −ξ2
v Sn

uiy
uix

−
By
Bx0

−
Sz/uex

Bx0

1−
ξ2
v M2

ξm



(15)

Note that in the present case, the electron inertia is still
not included, just as the previous case. Electrons thus con-
tinue to provide background conditions for the modulation of
ions driven by space-charge electric fields to excite linear and
nonlinear IA/IC waves. In simulations, five input parameters
are chosen as follows:M=1,mi/mp=16,ξm=1836.2,ξT=10,

ξv=0.1. Various initial conditions are given to produce corre-
sponding solitary structures. Deformed IA/IC solitary struc-
tures (sinusoidal, sawtooth, and spiky/bipolar) are obtained.
An example is exposed in Fig.4.

Figure4 shows a sinusoidal IA/IC soliton train driven un-
der boundary conditions:U0 = {0.3,0,0}, E0 = {0,0,1}, and
B0 = {0.2,0,1}. Note that all the variables are restricted to
the nonlinear evolutions along one self-similar X-coordinate
in the slab model. In the figure, top left panel gives solitons’
electron or ion density (ne or ni), and top right panel reveals
the space-charge density (nsc), inserted by an enlarged curve.
Notice that the difference between the electron and ion den-
sities is so small (nsc∼ 10−5), five orders smaller than either
ne or ni , thatne andni curves are superimposed upon each
other on the top left panel.

The middle three panels show three electric wave-field
components (Ex, Ey, Ez). The Ex-panel demonstrates two
types of oscillations: one is the IC mode in a larger period
of X∼170 with a cyclotron frequency about 0.005–0.01ωpi,
and the other is the IA mode in a much smaller period of
X∼3 with frequencies around 0.3ωpi. Figure5 gives a FFT
spectrum of the Ex-structures. Obviously, the IC mode has
three harmonics atf =0.0055ωpi, 0.011ωpi, and 0.017ωpi,
respectively, while the IA mode shows a narrow-band spec-
trum within 0.3±0.05ωpi. Above 0.6ωpi there occurs a wide
band of noises.

Interestingly enough, the IA mode exist in neitherEy nor
Ez. Both of the components constitute a right (rather than
left) circular polarization wave propagating along with the
Ex wave, as shown in Fig.6. The tip of the electric field
vector perpendicular tôex depicts a circle in the perpendic-
ular plane, and describes a helix along the direction of wave
propagationX. The magnitude of the electric field vector is
constant as it rotates. This circular polarization is possible
due to the fact thatEy andEz are orthogonal with each other
but have a same IC frequency.

Similar toEy andEz, By andBz give a pure IC mode, as
depicted in the two bottom left panels of Fig.4. They pro-
duce a propagating right circular polarization wave, while
Bx keeps constant. The bottom right panel of the figure
gives two total magnetic field strengths, the initial field|B0|,
and the soliton field|B(X)|. No doubt that the magnetic
field strength is enhanced. This tells us that solitons carry a
stronger magnetic field on average and thus store more mag-
netic energy. A direct consequence may attribute to the mag-
netic holes (or decreases, bubbles) in surrounding regions as
observed by numerous satellites/spacecrafts (see, e.g., Tsu-
rutani et al., 2005).

The other two distorted sawtooth and bipolar structures are
exhibited in Figs.7 and8, respectively. The former is under
boundary conditions:U0 = {0.2,0,0}, E0 = {0.5,0.5,1}, and
B0 = {0.2,0.5,3}, while the latter is under boundary condi-
tions: U0 = {0.3,0,0}, E0 = {0,0.4,1}, andB0 = {0.2,0,1},
howeverM is reduced from 1 to 0.85. There are a few sim-
ilarities compared to the sinusoidal case. Firstly,Ey andEz
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Fig. 4. Sinusoidal IA/IC solitary structures driven in a nonlinear system where all variables depend only on thex-coordinate (a slab model).
Shown in panels of the figure are solitons’ density (ne or ni ; top left), space-charge density inserted by an enlarged curve (nsc; top right),
electric wave-field components (Ex, Ey, Ez; middle row), magnetic wave-field componentsBy (lower left) andBz (lower middle), and, total
magnetic field strengths [initial|B0| and soliton|B(X)|; lower right]. Input parameters are as follows:M=1,mi/mp=16,ξm=1836.2,ξT=10,
ξv=0.1.

Fig. 5. FFT spectrum of the deformed sinusoidalEx solitary struc-
tures.

form a right circular polarization wave; secondly,By andBz
still hold a right polarization wave, however the sawtooth
case offers an elliptical one, while the bipolar case is a cir-
cular one. Lastly, the total magnetic fields on average are all
increased from their respective initial ones.

Nevertheless, the space-charge densities evolve very dif-
ferently. Their amplitudes change much more abruptly but
periodically withX. The period is about 500 in the sawtooth

Fig. 6. Non-propagating circular polarization IC wave constituted
by Ey andEz oscillations accompanying the sinusoidalEx solitary
structures.

case, while it is about 250 in the bipolar case. What is more,
the maximum amplitude of the space-charge density does not
retain constant in the latter case. There is a slight increase in
X, while the pulsations have a higher-frequency ingredient:
in the sawtooth case, the IA period inX is several Debye
lengths; in the bipolar case, the period inX is only a few
tenths of a Debye length.
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Fig. 7. Same as Fig.4 but deformed sawtooth IA/IC solitary structures.

Fig. 8. Same as Fig.4 but deformed bipolar IA/IC solitary structures.
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Fig. 9. FFT spectra of the sawtooth (upper panel) and bipolar (lower
panel)Ex solitary structures.

Accordingly, the FFT spectra of the both cases expose dif-
ferent signatures, as shown in Fig.9. In the sawtooth case
(upper panel), the IC mode contains a series of harmonics but
with a narrower IA band than the bipolar case (lower panel);
by contrast, the bipolar case owns fewer IC harmonics, but
with a broader IA band up to severalωpi. This is understand-
able by considering the small wavelength of the IA mode: a
few tenths of a Debye length inX corresponds to severalωpi
in frequency. As a double-check, let’s turn to Eq. (B3). Its
dimensionless expression is as follows:

ω2
= k2

(
γ

ξ2
T

+
1

1+k2

)
(16)

Obviously, whenk is large, the oscillation frequency cannot
be smaller than the ion plasma frequency, i.e.,ω≥1. The
critical wavenumberkcr is

kcr =

√√√√1

2

(√
1+

4

γ
ξ2

T −1

)
(17)

In our case, γ=3 and ξT=10, leading to kcr=2.3 or
λcr=k−1

cr ≈0.4. This means that if the wavelength is shorter
than half of the electron Debye length, it is possible for IA
oscillations to surpass the ion plasma frequency. This is inter-
esting because it is well known that a LH frequency is always
smaller than the ion plasma frequency. It is thus reasonable
to deduce that IA peaks can exist in higher frequency band
of a wave spectrum than LH ones, just as exhibited already
by those observations in solar wind plasmas (see a compre-
hensive review by Briand, 2009).

5 In the presence of electron inertia: LH “oscillitons”

Above two sections discuss cases where the electron inertia
is neglected. We have known that in those cases IA/IC soli-
tary waves are able to be excited. In this section, we take
into account the electron inertia, that is, electrons no longer
response to the space-charge density instantly, but in a style
constrained by both ion and electron kinetics. We must solve
Eq. (6) directly, where both ion and electron masses play an
equally important role. The shapes of solitary structures may
be modulated to unexpected appearances which are different
from the three conventional ones in either IA or IA/IC modes.

In the linear regime, a mega-amount of theoretical and
experimental work were performed in 1960s and 1970s on
plasma instabilities and excited waves in the presence of
electron inertia (see, e.g., Artsimovich, 1964; Alexeff et
al., 1970; Hirose and Alexeff, 1972; Mikhailovskii, 1974).
The important outcome is, instead of linear IC and/or IC/IA
modes as described in Appendices A and B, high-frequency
(ω>�i) LH modes are triggered. In a two-fluid model in
the presence of plasma nonuniformities, the LH dispersion
relation was found to be heavily dependent of the gradi-
ents in, e.g., plasma density (Ma and Hirose, 2009b); if
the plasma is uniform, as described by the generalized set
of equations, Eq. (3), Appendix C provides a generalized
dispersion, Eq. (C16), from which either electron and ion
plasma oscillations, or IC, IA, ion and electron upper-hybrid,
and lower-hybrid modes can be obtained under different di-
rections relative to local magnetic field lines.

In the nonlinear regime, the structures of solitary waves
can be simulated by employing directly the two-fluid set
of equations, Eq. (6), as well as Eq. (7). We use a
group of reference initial conditions and input parameters
as follows:

{
uxx0,uy0,uz0

}
= {0.3,0,0},

{
Ex0,Ey0,Ez0

}
=

{0,0,1},
{
Bx0,By0,Bz0

}
= {0.2,0,1}. We perform a parame-

terized study with changes inM, mi/mp, ξm, ξT, andξv, to
see modulations of these input parameters on typical struc-
tures of soliton trains in the presence of the electron inertia.

5.1 Solitary structure of reference

The same as the IA/IC case, following five input parameters
are used to perform a typical simulation:M=1, mi/mp=16,
ξm=1836.2,ξT=10,ξv=0.1. The features of the solitary struc-
tures are shown in Figs.10and11.

In Fig. 10, the top left panel exposes density depletions in
eitherne or ni of the soliton train in propagation. The depth
of the cavity structures is on average 1.33%, with a minimum
3.39%, of the background plasma density. There are also two
shoulders for every density holes/dips, which is about 10%
of the depth. The top right panel shows the space-charge
density which is, on average,−2.8×10−8, with a maximum
7.1×10−5 and a minimum−5.3×10−5. Thus, the density
holes has a tiny excess of positive charges as an arithmetic
mean.
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Fig. 10. Typical LH solitary structures. Shown in panels of the figure are solitons’ density (ne or ni ; top left), space-charge density (nsc;
top right), three components of electron velocity (uex, uey, uez; middle row), and that of ion velocity (uix , uiy , uiz; bottom row). Initial
conditions and input parameters as follows:

{
uxx0,uy0,uz0

}
= {0.3,0,0},

{
Ex0,Ey0,Ez0

}
= {0,0,1},

{
Bx0,By0,Bz0

}
= {0.2,0,1}; M=1,

mi/mp=16,ξm=1836.2,ξT=10,ξv=0.1.

Fig. 11. Same as Fig.10, however, shown in panels are the three components of electric wave-field (Ex, Ey, Ez; top row); magnetic wave-
field components (By andBz) and total strengthes (|B0| and|B|) (middle row); and amplitudes of electric and magnetic fields in the plane
perpendicular to the propagation direction (E⊥ andB⊥, lower row), respectively.
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The X-dependent periodicity is also expressed by both
electron and ion velocities. See the panels in the middle and
lower rows. All the velocity components have a same period
as that of the densities. Note that in the propagation direc-
tion, electrons and ions have a same speed (uex= uix), while
the perpendicular components of the ion velocity is much
smaller than those of the electron velocity. This implies we
can neglect the perpendicular motion of ions; equivalently, it
is reasonable to assume that the velocity of ions have only
one component which is in the propagation direction.

Figure11 displays the three components of electric wave-
field (Ex, Ey, Ez; top row); the magnetic wave-field compo-
nents (By andBz) and total strengthes (|B0| and |B|) (mid-
dle row); and amplitudes of electric and magnetic fields in
the plane perpendicular to the propagation direction (E⊥ and
B⊥, lower row), respectively. Similar to the IA/IC case, the
two perpendicular components of both the electric and mag-
netic fields produce right circular polarization IC waves, and
the total magnetic field strength of the solitary structures be-
comes stronger on average than the initial values. It deserves
to mention that although every bipolarEx structure contains
a series of pulses, the averaged amplitude is zero. This means
that along the propagation direction, there is no net potential
drop carried by the soliton train. On the contrary, in the trans-
verse plane, there always exists a pulsative electric fieldE⊥

(lower left panel). Thus, the soliton train drives aE⊥ ×Bx
drift which behaves as a prime mover of transverse ion heat-
ing in the presence of a crossedBx (see details in Ma et al.,
2009). Note that the soliton’s magnetic field also has three
components, andB⊥ 6= 0, as shown in the lower right panel
of Fig. 11. BecauseEx is normal toB⊥, theEx ×B⊥ drift
provides an additional source for transverse ion heating. The
study of this issue is beyond the scope of this article and will
be introduced in another paper.

Figures10 and11 demonstrate two kinds of oscillations:
IC and LH modes. From discussions presented in above
sections in IA/IC cases, we know that the IC mode differ-
entiates one soliton from the other in the train after a soli-
tary wave is excited. The frequency can be easily estimated
from the humps or dips of parameter envelops. In the present
case, the period isX = 154, corresponding to an frequency of
0.0065ωpi. This frequency can be easily trace out from the
perpendicular speedsuiy anduiz (relative to the propagation
direction) of ions in Fig.10, because, relative to electrons,
their mass is so big that it is hard for them to respond im-
mediately to the high-frequency drive. On the contrary, elec-
trons are decoupled from ions in the perpendicular plane and
their uey anduez carry IC envelops which are modulated by
any possible faster oscillations. Look at the related panels in
the figure: there are 6 peaks in every envelop, with a period
of aboutX = 25. This is contributed by the LH mode the
frequency of which can be easily identified fromuex or uix
waveforms which reveal so strong a coupling in the propaga-
tion direction between electrons and ions that both of them
contribute together to a LH mode while experiencing IC os-

cillations. Such packets, manifesting a low-frequency (IC)
solitary structure but with high-frequency (LH) modulation
in amplitudes, are called “LH oscillitons”.

Unexpectedly, by enlarging the coordinates (e.g., changing
the scale ofX from a maximum value of 1000 to 100) we find
two extra phenomena: (1) IA oscillations of much smaller
amplitudes are superimposed upon the LH oscillitons, and
they have a small period, aboutX∼2−5. (2) Both LH and
IA waveforms are deformed sine-styles in both amplitudes
and periods. These factors should contribute IA peaks and/or
noises in the high-frequency side of power spectra. To ver-
ify this point, we plot Fig.12 to give the FFT power spec-
trum (lower panel) of theEx component in Fig.11, along
with those of theEy structures in the IA/IC case (upper left)
and the present case (upper right) to identify frequency sig-
natures. From discussions in the last section, we know that
in the IA/IC mode, ions have only IC oscillations in y. Thus,
the spectrum ofEy displays only a IC peak as shown in the
upper-left panel. The peak is at 0.0065ωpi, corresponding
to a period ofX=154. In the LH-oscilliton case, we know
that the LH mode is excited by taking into account the effect
of electron inertia. This will surely leads to peaks or noises
in the LH band. See the upper-rightEy panel of the figure.
At f =0.032, 0.038, 0.044, there are three peaks, correspond-
ing to periods ofX=23, 26, 31. This indicates that there are
three LH oscillations in̂ey-direction. Notice the dominant
peak which represents a period ofX=26. This is in agree-
ment with the data given in the last paragraph, “a period of
aboutX=25”. However, due to the weak coupling between
electrons and ions in the transverse plane, the LH signature is
not very as strong as that in the parallel direction as revealed
by the lower Ex-FFT panel.

In this panel, there are three bands. The IC band is on
the low-frequency side of the spectrum with three harmonic
peaks: f =0.0065, 0.01325, 0.01975. Note that the last
peak is in the LH band which contains two groups: One
owns higher magnitude but lower frequencies with peaks
at f =0.01825, 0.025, 0.03175, 0.03825, 0.04475, 0.05625,
sharing a same interval between adjacent frequencies, and
the other has lower magnitude but higher frequencies with
peaks atf =0.06325, 0.06975, 0.0765 of the same interval.
On the high-frequency side of the spectrum, there exists a
narrow IA band of∼0.25−0.4. This corresponds to periods
of X from∼2.5−4, the same range as that checked by enlarg-
ing the coordinates. By reviewing the Ex-panel in Fig.11, the
Ex-FFT panel discloses an important message: an oscilliton
may carry a hidden higher-frequency mode which is unable
to be discerned from the obvious two features of its own:
low-frequency solitary envelop and high-frequency oscilla-
tion. In the LH-oscilliton case, for example, without the FFT
analysis, it were impossible to perceive the IA mode.

By reviewing the FFT spectra in last and present sections,
it is worthwhile to stress that it is the electron inertia that
modulates IA/IC solitary waves into LH oscillitons. They
carry low-frequency IC envelops the amplitude of which
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Fig. 12. FFT power spectra of socilliton structures. Upper left:Ey in the IA/IC case (last subsection); upper right:Ey in the oscilliton case
(this subsection); lower panel:Ex in the ocilliton case (this subsection).

is embedded with high-frequency LH oscillations superim-
posed upon by a higher-frequency IA mode. Without the
electron inertia, solitary structures do not have the modulated
shapes (i.e., oscillitons) brought about by the interaction be-
tween LH and IA/IC ingredients, but exhibit only the tradi-
tional three (sinusoidal, sawtooth, and bipolar) IA/IC shapes.

5.2 Parameterized simulation of oscilliton shapes

There are several input parameters in Eqs. (6) and (7): Mach
numberM, mass ratio between ion and electronξm, tempera-
ture ratioξT, and speed ratioξv. Their magnitudes influence
the appearance of oscilliton waves. Under the same initial
conditions as the typical case discussed in the last section,
we change the values of these parameters to expose their ef-
fect on the evolution of oscilliton trains.

Figure13 exhibits the impact ofM on the LH oscillitons
discussed in the last Section withM=1 (lower left 2 panels).
We display four cases together forM=0.85, 0.9, 1, and 1.2
to see the evolution of space-charge densitynsc and electric
wavefield Ex-component. With the increase ofM, the ampli-
tudes of bothnsc andEx are enhanced. So does the number
of solitons, indicating a reduced IC period. However, the
frequency of the oscillations in every oscilliton is decreased.
AboveM=1.2, no oscilliton entities occur, meaning there is a
limit for the Mach number only within which can oscillitons
be driven.

Figure14 exposes the impact ofξm=mi/me on the LH-
oscilliton wave discussed in the last section withmi/mp=16
(mp is the proton mass; lower right 2 panels). We show four
cases together formi/mp=3, 4, 8, and 16. When the ratio
becomes larger, the amplitudes of bothnsc andEx tend to
smaller, while the solitaryEx structures change more from
bipolar shapes to oscillitons, along with higher-frequency os-
cillations within every envelop. It is thus predictable that
small mass ratios seem to restrain the electron inertia from
exciting the LH mode in solitary waves. Different from the
previous case,ξm does not affect the IC-period of the solitary
waves.

Figure 15 demonstrates the influence ofξT = Te/Ti on
the LH-oscilliton wave discussed in the last section with
Te/Ti=10 (upper right 2 panels). We show four cases to-
gether forTe/Ti=6.5, 10, 15, and 20. The larger the ratio,
the higher the amplitudes of the two parameters in roughly
linear relations, respectively:nsc|max= 3.6ξT −0.08ξ2

T −18,
andEx|max= 2.2ξT −0.04ξ2

T −10. We are concerned most
about these relations because of the fact that the temperature
ratio changes violently in space plasmas both spatially and
temporally. Luckily, the plots simulated here expose that,
except the amplitudes, the ratio changes neither the envelops
nor the IC and LH periods.

Figure 16 illustrates the control of the electron thermal
speedVTe over oscillitons. When the speed is below 0.03c,
no oscillitons are driven but only LH waves carrying IA fluc-
tuations. With the increase of the speed, features of solitary
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Fig. 13. Impact of the Mach numberM on LH-oscilliton waves.
Only space-charge densitync and electric wavefieldEx-component
are shown. Notice that the panels ofM=1 is the typical case dis-
cussed in the last section.

Fig. 14. Same as Fig.13 but the impact ofξm = mi/me on LH-
oscilliton waves. Notice that the panels ofmi/me=16 is the typical
case discussed in the last section.

trains become evident gradually. However, afterVTe=0.13,
only bipolar waveforms manifest. During the development,
the LH-IA signature is dominant at first, but suppressed in-
creasingly with weaker oscillation and more obvious IC fea-
tures, even out of sight at last.

Figures13–16 exhibit the variation of the oscilliton struc-
tures with the four input parameters in the X-space. Ac-
cordingly, this change can also be expressed in the frequency
regime. Figure17 gives two such examples for Figs.13–16
by illustrating the features of the FFT power spectra. The up-
per two panels is the spectra ofEx in Fig. 13underM=0.85
and 1, respectively; the lower two ones is that in Fig.16under
VTe/c=0.04 and 0.1, respectively. The different IC/LH/IA

Fig. 15. Same as Fig.13 but the impact ofξT = Te/Ti on LH-
oscilliton waves. Notice that the panels ofTe/Ti=10 is the typical
case discussed in the last section.

Fig. 16. Same as Fig.13 but the impact ofξv = VTe/c on LH-
oscilliton waves. Notice that the panels ofVTe/c=0.1 is the typical
case discussed in the last section.

bands are identified by vertical dash lines in all panels. Ev-
idently, on one hand, the two upper panels tell us that, at a
larger Mach number, the IC band shifts to the right, indi-
cating a decrease in frequency, while the LH band shifts to
the left, meaning an increase in frequency. This is in agree-
ment with what we have seen in Fig.13. Unexpectedly, we
can see a much weaker IA band ingredients appear atM=1,
which is hard to be identified in Fig.13. In the two lower
panels, on the other hand, only the LH and IA bands exist
at a smaller electron thermal speed; by contrast, if the speed
becomes larger, the IC band is apparent, while the original
LH/IA features are suppressed, with lower power densities
and narrower bands.

Nonlin. Processes Geophys., 17, 245–268, 2010 www.nonlin-processes-geophys.net/17/245/2010/



J. Z. G. Ma and A. Hirose: LH oscillitons evolved from IA/IC solitary waves 259

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
1 0 - 3

1 0 0

1 0 3

1 0 6

1 0 9

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
1 0 - 3

1 0 0

1 0 3

1 0 6

1 0 9

E x po
we

r d
en

sity
I C  b a n d L H  b a n d I A  b a n d

M = 1

F r e q u e n c y

M = 0 . 8 5

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
1 0 - 3

1 0 0

1 0 3

1 0 6

1 0 9

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0
1 0 - 3

1 0 0

1 0 3

1 0 6

1 0 9

v T e /  c  =  0 . 1  

v T e /  c  =  0 . 0 4 I C  b a n d L H  b a n d I A  b a n d

E x po
we

r d
en

sity

F r e q u e n c y

Fig. 17. FFT power spectra ofEx under two input parameters
M=0.85 and 1 in Fig.13 (left panels) andVTe/c = 0.04 and 0.1
in Fig. 16, respectively, as two examples to illustrate the the varia-
tion of frequency with input parameters as exposed from Figs.13to
16. The different bands (IC/LH/IA) are labeled in all panels.

5.3 A preliminary simulation to observations

Though the excitation of oscillitons is known to be con-
tributed by the electron inertia, and the modulation of the
solitary structures by several input parameters is discussed,
observations recorded much more complicated waveforms of
oscilliton data. This attracts us to perform a preliminary data-
fit simulation.

Let’s see the typical modulated waves measured by the Po-
lar satellite (Cattell et al., 1998), as shown in Fig.1. After
02:05:25.7, the slowly-oscillating envelop has a frequency
ωs∼1/3 ion gyrofrequency, while its amplitude was modu-
lated violently by a quickly-oscillating ingredient with a fre-
quencyωq ∼8ωs. The authors showed that the envelop of
the modulated amplitude in each packet increases, reaching
a maximum, and finally decreases with the period 1/ωs, and
the carried wave frequencyωq is close to the LH frequency.

Fig. 18. A preliminary simulation to observed LH oscillitons under
U0 = (0.2,0,0), E0 = (0.5,0.5,1), andB0 = (0.2,0.5,3) with M=1,
mi/mp=16,Te/Ti=10, andvTe/c=0.05. See Fig.1 for a reference.

However, we would like to point out that higher-frequency
oscillations should be measured if the payload resolution is
high enough due to their modulations to the amplitude of LH
packets.

Under initial conditionsU0 = (0.2,0,0), E0 = (0.5,0.5,1),
andB0 = (0.2,0.5,3), along with following input parameters
M=1, mi/mp=16, Te/Ti=10, andvTe/c=0.05, we calculate
the LH-oscilliton wavefroms, as given by Fig.18 where the
electric wavefield componentEx (upper panel) and its spec-
trum (lower panel) are provided. TheEx panel conveys fol-
lowing messages about the oscillitons. Firstly, the series of
packets has a dominant IC period of about 500λDe, provi-
ding a frequency peak at∼0.002ωpi. Secondly, the envelop
is modulated by LH oscillations of a period about 30λDe, of-
fering a frequency of∼0.03ωpi. Lastly, superimposed upon
the LH mode, there are higher-frequency IA oscillations of
periods about severalλDe, contributing to a frequency band
of tenths ofωpi. These results are in agreement with the FFT
spectrum: in the IC band, there are a series of IC harmonics
with a fundamental peak of 0.0019ωpi; in the LH band, there
are LH peaks the dominant one of which is at 0.0315ωpi; In
the IA band, there is a narrow band up to 0.3ωpi the low-
frequency end of extends into the LH band. Above the IA
band, the high-frequency noises are obvious in the HF re-
gion.

Though from Fig.1, it is hard to identify the periodic fea-
ture of waves before 02:05:25.7, the upper panel in Fig.18
reveals the seemingly periodic nature beforeX=30×103. It
is not hard to see two packets fromX=0 to X=25×103,
each of which contains 5 small oscillitons with a period of
X=3000. The period is aboutX=12.5×103, the same as that
of the three big oscillitons afterX=30×103. This very long
period (X=12.5×103), along with the period ofX=3000,
should provide low-frequency (LF) harmonic peaks at about
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8×10−5 and 3.3×10−4, respectively, in the FFT panel. For-
tunately, we can discern a peak corresponding to the second
one in the LF region, though it gives only a tiny hump in
power. Unfortunately, the first one is unable to be trace out.
This is understandable by realizing that there are 12 envelops
of X=3000 fromX=0 to X=30×103, however only 3–5
(X=12 500)-ones fromX=0 toX=60×103. The two lower-
frequency modulations than that of the IC mode may be
aroused by some other mechanism irrelevant of the Landau
damping effect (or, the kinetic resonance). (This is because
in the present model, this effect is negligible (λFLR�1) for
any species, and the electromagnetic perturbation approach
due to the resonance does not fit the present study; Kourakis
and Shukla, 2004; Hirose, 2005, 2007.)

6 Summary and discussion

Kourakis and Shukla (2005) provided a generic methodolog-
ical formulation for observed oscillitons which are featured
by quickly-varying oscillations superimposed upon slowly-
varying solitary waves. Inspired by Sauer et al. (2003)’s
study in a dusty plasma case where an addition of a sec-
ond ion population in a single-ion plasma leads to significant
modifications of solitary waves, we specialize Kourakis and
Shukla (2005) model to explain the formation of abundantly
observed LH-oscillitons in space plasmas.

Owing to the fact that the Landau damping is negligible
(λFLR�1) for any species, we employed a collision-free,
two-fluid model to perform parameterized simulations. We
started from exhibiting the excitation of the IA/IC solitary
waves, and investigated the modulation of the IC/IA envelops
by the electron inertia. The inertia triggers LH oscillitons
characterized by a normal IC-period solitary envelop embed-
ded by LH oscillations which contain higher-frequency but
smaller-amplitude IA constituents. We exhibited the impact
of the electron inertia on oscilliton packets via several in-
put parameters like the Mach number, the electron-ion mass
ratio, temperature ratio, etc. Unexpectedly, there exists a
lower-frequency mode beyond the IC band. It is hard to be
explained by the present hydrodynamic model. We will pay
attention to it in our future work.

Though it has already been illustrated that the electron in-
ertia behaves as one key to trigger LH oscillitons which are
influenced by input parameters, we realize that initial condi-
tions should also have impacts on the existence of oscillitons.
Recall the first study of solitary waves by John Scott Russell:
the speed of a ship triggers water solitary waves (e.g., Craik,
2004). Naturally, we are going to report in another paper
the roles played by the initial conditions. Besides, we are
very interested in the new Cluster observations on coherent
whistler emissions in the magnetosphere (e.g., Dubinin et al.,
2007). The measurements provided clear evidence that the
magnetic field components are so perturbed as to form a se-
quence of oscilliton packets while the periodic structure was

also revealed from the wavelet analysis (see Fig. 6 of that ar-
ticle). This will energize us to generalize Sauer et al. (2002)’s
oblique-whistler model to warm-plasma cases in which parti-
cles are coupled with each other more closely via the pressure
term.

Last but not least, we will try to find a link between the
solitary waves and the two important categories of obser-
vations: transverse ion heating and broadband noise excita-
tion. This subject is important. On one hand, it will pro-
vide a mechanism for the transverse ion heating via the non-
Maxwellian velocity distributions brought about by space
charges in geospace. On the other hand, it will serve as a ref-
erence in studying the relationship among nonlinear Alfvén
waves, discontinuities, proton perpendicular acceleration,
and magnetic holes/decreases in interplanetary space and the
planetary magnetospheres (see new theories and observa-
tions by, e.g., Tsurutani et al., 2002a, b, 2005). The study
will be dominantly based on two facts: (1) soliton trains
carry electric fields contributed by space charges the density
of which is periodic in both space and time for a single os-
cilliton train, as depicted in this paper; (2) the spatial extent
of a single train perpendicular to the propagation direction
is in scales of 2–20 ion Larmor radii (see e.g. Ergun, 1999)
and there appears existing sets of trains propagating in back-
ground magnetic fields. A simple picture is as follows: ions
(not those constituting solitary waves but surrounding ones
in the vicinity, at least in the boundary layer, of the waves)
are accelerated by a stochastic space-charge electric field, in
both amplitude and time, contributed by all solitary trains
in the perpendicular plane of the propagation direction. At
any moment, If the field can be considered as proportional to
the radius in a cylindrical geometry if the total space charges
offered by solitary waves are uniform instantly, theE×B

drift can drive ambient Maxwellian ions to non-Maxwellians
transversely with observable orders of upgraded magnitude
in temperature (Ma et al., 2009).

Luckily, this picture appears to be valid in view of obser-
vations (e.g., Ergun et al., 1998; Ergun, 1999; Pickett et al.,
2005): magnetic flux tubes are always teeming with a dense
cluster of soliton trains. Though solitary packets in each of
the trains can be considered identical, different trains carry
different packets with respective amplitudes, lifetimes, and
scales. These divergences are originated from the saturated
growths of linearization constrained by the input parameters
and boundary conditions at specific positions and time. Un-
doubtedly, at any time, the collective behavior of the cluster
of these solitary waves differs from that of a single solitary
train: both the amplitude and the lifetime of space-charge
densitynsc is random. In view of the measurements that soli-
tary trains fill up all spaces in a magnetic flux tube, the whole
tube cylinder has a space-charge density,ñc, which is instan-
taneously uniform in space, at least to the leading order for
simplicity, but stochastic in time. Here, the “uniform” de-
notes an average of space-charge densities carried by pack-
ets on different trains with differentnsc, while “stochastic”
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expresses the random features ofnsc in both amplitude and
lifetime. By employing such a physical model, a compan-
ion paper will introduce the study on the frequency sweep-
ing of IC oscillations, an important subdivision of broadband
noises.

It deserves to verify an essential condition in discussing
electrostatic waves in this paper: the negligence of the Lan-
dau damping effect. This effect is very important for ion
acoustic waves (see, e.g., Gary, 1993). It can only be ne-
glected in cases, as mentioned in the beginning of Sect. 2,
where the phase speed (vp) of the waves is very large com-
pared to the ion thermal speed (vTi ), and very small com-
pared to the electron thermal speed (vTe), as expressed by
Eq. (2). We show that this condition is satisfied automati-
cally in employing the two-fluid model (e.g., Chapter 4, Bel-
lan, 2008): by recasting the generalized dispersion relation,
Eq. (B3), we have

ω2
=

k2c2
s

1+λ2
Dek

2
+γ k2v2

Ti
(18)

which reproduces Eq. (4.38) in Bellan (2008). Because the
wavelength 1/k is tens ofλDe (see, e.g., Fig.4), we have
λ2

Dek
2
�1. Thus, Eq. (18) provides

vTi � vp ∼

√
c2

s +γ v2
Ti

� vTe (19)

due to the fact thatmi�me andcs�0.

Notice that this requirement is not only applicable to re-
gions whereξT = Te0/Ti0 > 1 (or, equivalently,Te0 > Ti0),
but also to those whereTe0< Ti0. Table 1 lists some plasma
parameters in auroral regions whereTe0 > Ti0, calculated
from measurements by the GEODESIC rocket (Burchill et
al., 2004), the Freja satellite (Eriksson et al., 1994), and the
FAST satellite (Ergun, 1999), respectively. By contrast, in
most magnetosphic plasmas (especially encountering some
extreme situations like, e.g., substorms),ξT lies between 1/12
and 1/3, as reported by, e.g., AMPTE/IRM and Cluster obser-
vations in the Earth’s central plasma sheet, the sheet bound-
ary layers, and magnetosheath (Baumjohann, 1993; Phan et
al., 1994; Lavraud, 2009). It is another interesting topic on
the excitation of oscillitons under the condition ofξT < 1,
besides the case introduced in this paper withξT > 1.

To finalize this paper, we would like to point out that the
descriptions of nonlinear plasma physics often suffer from
a lack of a coherent nomenclature for the phenomena: one
author’s “electrostatic shock” is another authors “soliton”.
This fact was highlighted in the introduction to Ma and Hi-
rose (2009a) where the authors gave a thorough discussion of
prior literature in this field, and showed that there are often
differences in nomenclature used by different authors.

Table 1. Some typical plasma parameters in auroral plasmas mea-
sured by the Geodesic rocket (Burchill et al., 2004), the Freja satel-
lite (Eriksson et al., 1994), and the FAST satellite (Ergun, 1999).

Vehicle Geodesic Freja FAST

mi/mp 16 16/1 1
B (mG) 500 250 100
n0 (cm−3) 106 103 10
�i (krad/s) 0.3 0.15/2.4 1
�e (krad/s) 8800 4400 1840
ωLH (krad/s) 50 9/37 4.14
Ti (eV) 0.1 0.2 300
Te (eV) 0.2 0.3 700
vTi (km/s) 0.77 1.10/4.38 170
vTe (km/s) 187 230 1.1×104

cs (km/s) 1 1.3/5.5 260
csB (mV/m) 50 33/140 2600
ξT 2 1.5 2.3
ξv 6.2×10−4 7.7×10−4 0.04
λDe (m) 0.003 0.13/0.14 62

Appendix A

Dispersion relation of electrostatic IA waves

ChoosingBext=Bx0êx, u1 = ux1êx, E1 = E1xêx, B1=0, and
k = kxêx, while other components of perturbed parameters
are neglected, the linearized set of Eq. (3) is as follows:
ne1
n0

= i �e
B0

kxE1x

(kxvTe)
2

ni1
n0

= i
�i
B0

kxE1x

ω2−
(
γ kxvTi

)2
kxE1x = −i

en0
ε0

(
ni1
n0

−
ne1
n0

)


(A1)

by neglecting the electron inertia due to its small mass rela-
tive to that of ions. LetE1x = −ikxϕ. We have
ne1
n0

=
�e
B0

ϕ

v2
Te

ni1
n0

= k2
x

�i
B0

ϕ

ω2−γ v2
Ti

k2
x

ϕ =
en0
ε0k

2
x

(
ni1
n0

−
ne1
n0

)
 (A2)

which leads a dispersion relation of the IA waves:

ω2
= γ v2

Ti
k2

x +

ω2
pi

1+

(
kDe
kx

)2
(A3)

wherekDe=λ−1
De=ωpe/vTe is the Debye wavelength. Because

kDe� kx, the dispersion relation becomes

ω2
= (γ v2

Ti
+c2

s)k
2
x . (A4)
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Appendix B

Dispersion relation of electrostatic IA/IC waves

Usingb=Bext/|Bext|, the linearized set of Eq. (3) is as fol-
lows:

ne1
n0

= −i �e
ω2−v2

Te
k2

[
k·E1
B0

+ue1·(b×k)
]

ni1
n0

= i
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[
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+ui1 ·(b×k)
]

k×E1 = ωB1

ik×B1 = µ0n0e(ui1 −ue1)

k ·E1 = −i
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)
k ·B1 = 0



(B1)

Neglecting electron inertia under electrostatic case,B1=0,
we have

ni1
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Ti
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UsingE1=−ikϕ, andne1/n0≈eϕ/(kBTe), we have

ω2
= γ v2

Ti
k2

+

ω2
pi

1+

(
kDe
k

)2
(B3)

which produces

ω2
= (γ v2

Ti
+c2

s)k
2 (B4)

for kDe�k. Clearly, Eq. (B3) is the generalization of the
specialized IA dispersion relation, Eq. (A4).

In addition to the propagating IA waves, there are local
non-propagating IC oscillations in the plane perpendicular
to the propagating direction of the IA modes. In the slab-
model case as introduced in Sect. 2 where parameters are
only dependent ofx, we obtain the linearized equations of
Eq. (3) for ui1⊥=

{
ui1y,ui1z

}
of ions as follows:

iωui1y = −�iui1z

iωui1z = �iui1y

 (B5)

which leads to

ω = �i (B6)

Clearly, this is an ion cyclotron oscillation in the plane per-
pendicular toêx. Note that the oscillation frequency is not
an invariable if the strength of the external magnetic field
changes in space and/or time which is excited by nonlinear
waves.

Appendix C

Dispersion relation of generalized LH waves

For convenience, we temporally transform coordinates{
êx,êy,êz

}
to

{
ê
′

x,ê
′

y,b
}

in which b=Bext/|Bext| with

|Bext|=

√
B2

x0+B2
y0+B2

z0 = B ′

z0. By usingω andk to rep-

resent the wave frequency and the amplitude of the wave
vector k=kxê

′

x + kyê
′

y + kzb (with k2
= k2

⊥
+ k2

z in which

k2
⊥

= k2
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y), respectively, we obtain a linearized set of
equations from Eq. (3) as follows:
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where a homogeneous plasma is assumed withu0=0. The
two momentum equations give
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which leads to
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by employing the two density equations in Eq. (C1). To-
gether with the electromagnetic equations, this equation pro-
duces

µ0n0e
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)(
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ω
= k2B1 ·b

(C4)

in which ne1, ni1, andEx, Ey can be obtained by solving
the two momentum equations in Eq. (C1). For electrons, we
have

a11 a12 a13

a21 a22 a23

a31 a32 a33
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in which
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The solution is:
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Thus,
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Then,
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) (C13)

whereωB1 ·b = (k×E1) ·b is used.

Similarly,

ni1
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=−i

�i
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) (C14)

Equation (C4, C13, andC14), together with Poisson equa-
tion, produce

k2
⊥

[
1−

ω2
piω

2

(ω2−�2
i )
(
ω2− 5

3k2
zv2

Ti

)
−

5
3ω2k2

⊥
v2

Ti

−
ω2

peω
2

(ω2−�2
e)
(
ω2−k2

zv2
Te

)
−ω2k2

⊥
v2

Te

]

+k2
z

[
1−

ω2
pi

(
ω2

−�2
i −

5
3k2

⊥
v2

Ti

)
(
ω2−�2

i

)(
ω2− 5

3k2
zv2

Ti

)
−

5
3ω2k2

⊥
v2

Ti

−
ω2

pe

(
ω2

−�2
e−k2

⊥
v2

Te

)
(ω2−�2

e)
(
ω2−k2

zv2
Te

)
−ω2k2

⊥
v2

Te

]
= 0



(C15)
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or, alternatively,
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(C16)

in the electrostatic case whereB1=0, where cosθ=kz/k,

sinθ = k⊥/k, ωe=

√
�2

e+k2v2
Te

, andωi=

√
�2

i +γ k2v2
Ti

are

the pseudo-Bohm-Gross frequencies of electrons and ions,
respectively. Notice that the electric displacement term is
neglected due tov2

p�c2 wherevp=ω/k is the phase speed.

C1 Modes alongb

In this case,θ=0◦. Equation (C16) becomes

1=

ω2
pi

ω2−γ k2v2
Ti

−
ω2

pe

k2v2
Te

−ω2
(C17)

which exhibits several propagating modes under different
cases related tovT α within respective ranges ofvp.

C1.1 Both electron and ion inertia involved

In this case,vTi �vp�vTe. Equation (C17) gives

ω2
=

(
kλDeωpi

)2
(kλDe)

2
+1

(C18)

which leads to, on one hand,

ω2
= γe

(
kvTe

)2 (C19)

if k�λ−1
De; on the other hand,

ω = ωpi (C20)

if k�λ−1
De.

C1.2 Electron inertia neglected

In this case,vp∼vTi . Equation (C17) gives

ω2
= γ k2v2

Ti
+ω2

pi (C21)

C1.3 Ion inertia neglected

In this case,vp∼vTe. Equation (C17) gives

ω2
= k2v2

Te
+ω2

pe (C22)

C2 Modes in the plane perpendicular to b

In this case,θ=90◦. Equation (C16) reduces to

1=

ω2
pi

ω2−ω2
i

−
ω2

pe

ω2
e −ω2

(C23)

which exhibits more complicated propagating modes through
ωα under different conditions.

C2.1 Both electron and ion inertia involved

In this case,ωi�ω�ωe. Equation (C23) gives the Lower-
hybrid (LH) mode (ωLH):

ω2
=

ω2
pi

1+ω2
pe/ω

2
e

= ω2
LH(k) (C24)

which leads to, on one hand,

ωLH(k) =
√

ωiωe (C25)

in a weak magnetic field (ωe�ωpe in, e.g., ionospheric plas-
mas); on the other hand,

ωLH = ωpi (C26)

in a strong magnetic field (ωe�ωpe in, e.g., pulsar or black-
hole plasmas).

C2.2 Electron inertia neglected

In this case,ω∼ωi�ωe. Equation (C23) gives the ion upper-
hybrid (iUH) mode (ωiUH):

ω2
= ω2

i +ω2
pi = ω2

iUH(k) (C27)

which leads to the ion gyro-oscillation mode (�i) if B ′

z0 is
strong enough.

C2.3 Ion inertia neglected

In this case,ω∼ωe�ωi . Equation (C23) gives the Electron
upper hybrid eUH mode (ωeUH):

ω2
= ω2

e +ω2
pe= ω2

eUH(k) (C28)

which leads to the ion gyro-oscillation mode (�e) if B ′

z0 is
strong enough.
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C2.4 Extreme cases

The pseudo-Bohm-Gross frequencyωα(k) reveals that
if the scale of the wavelengths is large (i.e.,k is
small) compared to the thermal background gyrora-
diusρα=vTα/�α=

√
mαkBTα/

(
eB ′

z0

)
, Debye length, above

propagations are only weakly modified by the temperatures
of particles. In the extreme case wherek=0, no propagations
exist and particles are only oscillating locally with pure LH
frequency, i.e.,

ω2
LH =

ω2
pi

1+

(
ωpe
�e

)2
, or

ωLH

ωpi
=

1√
1+

(
ωpe
�e

)2
(C29)

and UH freqiencies, i.e.,

ω2
iUH = �2

i +ω2
pi, or

ωiUH

ωpi
=

√(
�i

ωpi

)2

+1 (C30)

and

ω2
eUH= �2

e+ω2
pe, or

ωeUH

ωpi
=

√(
�e

ωpi

)2

+

(
ωpe

ωpi

)2

(C31)

in above respective modes. Notice that this extreme case is
equivalent to cold plasma conditions where particle pressures
have no effects.

On the contrary, for extreme small-scale wavelengths (i.e.,
k is large), the dispersion relations of above modes become

ω2
=

ω2
pi

1+ω2
pe/
(
kvTe

)2 (C32)

ω2
=
(√

γ kvTi

)2
+ω2

pi (C33)

and

ω2
=
(√

γ kvTe

)2
+ω2

pe (C34)

respectively, irrelevant of gyro-frequencies of particles. Un-
der cold plasma conditions, it is easy to see that there exist
two non-propagating modes, one of which oscillates in the
electron plasma frequencyωpe, and the other is in the ion
plasma frequencyωpi.
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Høymork, S. H., Ṕecseli, H. L., Lybekk, B., Trusen, J., and Eriks-
son, A.: The shape and evolution of lower hybrid density cavities
observed by FREJA, 26, 213–217, 2001.

Jones, S. T. and Parker, S. E.: Including electron inertia without
advancing electron flow, J. Comput. Phys., 191, 322–327, 2003.

Jovanovíc, D. and Shukla, P. K.: Nonlinear model for coherent
electric-field structures in the magnetosphere, Phys. Rev. Lett.,
84, 4373–4376, 2000.

Kakad, A. P., Singh, S. V., Reddy, R. V., Lakhina, G. S., Tagare, S.
G., and Verheest, F.: Generation mechanism for electron acoustic
solitary waves, Phys. Plasmas, 14, 052305–9, 2007.

Kintner, P. M., Vago, J., Chesney, S., Arnoldy, R. L., Lynch, K.
A., Pollock, C. J., and Moore, T. E.: Localized lower hybrid
acceleration of ionospheric plasma, Phys. Rev. Lett., 68, 2448–
2451, 1992.

Knudsen, D. J.: Spatial modulation of electron energy and density
by nonlinear stationary inertial Alfvn waves, J. Geophys. Res.,
101, 10761-10772, 1996.

Knudsen, D. J., Bock, B. J. J., Bounds, S. R., Burchill, J. K., Clem-
mons, J. H., Curtis, J. D., Eriksson, A. I., Koepke, M. E., Pfaff,
R. F., Wallis, D. D., and Whaley, N.: Lower-hybrid cavity den-
sity depletions as a result of transverse ion acceleration local-
ized on the gyroradius scale, J. Geophys. Res., 109, A04212,
doi:10.1029/2003JA010089, 2003.

Kourakis, I. and Shukla, P. K.: Electron-acoustic plasma waves:
oblique modulation and envelope solitons, Phys. Rev. E, 69,
p. 036411, 2004.

Kourakis, I. and Shukla, P. K.: Exact theory for localized envelope
modulated electrostatic wavepackets in space and dusty plasmas,
Nonlin. Processes Geophys., 12, 407–423, 2005,
http://www.nonlin-processes-geophys.net/12/407/2005/.

Kuehl, H. H. and Zhang, C. Y.: Effects of ion drift on small-
amplitude ion-acoustic solitons, Phys. Fluids B-Plasma, 3, 26–
28, 1991.

LaBelle, J., Kintner, P. M., Yau, A. W., and Whalen, B. A.:
Large amplitude wave packets observed in the ionosphere in

Nonlin. Processes Geophys., 17, 245–268, 2010 www.nonlin-processes-geophys.net/17/245/2010/

http://www.ann-geophys.net/25/303/2007/
http://www.nonlin-processes-geophys.net/12/407/2005/


J. Z. G. Ma and A. Hirose: LH oscillitons evolved from IA/IC solitary waves 267

association with transverse ion acceleration, J. Geophys. Res.,
91, 7113–7118, 1986.

Lakhina, G. S., Kakad, A. P., Singh, S. V., and Verhest, F.: Io-
nand electron-acoustic solitons in two temperature space plas-
mas, Phys. Plasmas, 15, p. 062903, 2008.
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