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Abstract. Many volcanic eruptions exhibit periodic behav-
ior. For instance, periodic ground inflations and deflations
in proximity to a volcano are the consequences of periodic
overpressure variations in the magma conduit and periodic
magma flow rate. The period varies from a few hours to
many years, depending on the volcano parameters. On the
other hand, volatile components exsolve from an ascend-
ing magma by forming bubbles. The strong dependence of
the melt viscosity with the volatile concentration generates a
positive feedback on the magma flow. We consider here the
effect of the growth of volatile bubbles on the dynamics of a
magmatic flow in a shallow volcanic system. Various expres-
sions for the bubble growth rate are treated, thus generalizing
previous work. In particular, a growth rate law derived from
a recent many-bubble theory is considered. It is seen that,
for a range of flow rate values at the base of the magma con-
duit, the system undergoes a Hopf bifurcation. Periodic so-
lutions compatible with the observations are generated. This
work shows that measurements of volcanic activity have the
potential to test various bubble growth models in magmatic
systems.

1 Introduction

Volcanic eruptions are the consequences of a succession of
complex processes acting over a wide range of timescales
and understanding their dynamics is an important, but chal-
lenging task. One example of intriguing volcanic eruptions
dynamics consists in the occurrence of an oscillatory behav-
ior. For instance, tilt meters installed on the crater of the
Soufrìere volcano (Montserrat Island) in 1996 and 1997 de-
tected periodic ground inflations that correlated with periodic
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seismic activity and periodic magma flow activity (Voight et
al., 1998, 1999; Wylie et al., 1999). The period was of the
order of 10–20 h. Other volcanic systems also exhibit cyclic
episodes. Examples are found in Mount St. Helens (Wash-
ington State, USA) between 1980 and 1986 (with an aver-
age period of 74 days or 230 days, depending on the cycle)
(Barmin et al., 2002), Santiaguito (Guatemala) from 1922
to the present (with an average period of 10.7 years) (Har-
ris et al., 2003), Mount Unzen (Japan), Karymsky (Russia)
and Merapi (Java) (Nakada et al., 1999; Ozerov et al., 2003;
Voight et al., 2000).

On the other hand, various volatile species are commonly
found in magmatic systems (mainly H2O, CO2 and sulfide
species) and volatile bubble dynamics is an important con-
tributing factor to the understanding of volcanic eruptions
(Sparks, 1978; Bottinga and Javoy, 1990; De Vivo et al.,
2005; Behrens and Gaillard, 2006; Proussevitch and Saha-
gian, 1996, 1998). The object of this contribution is to ex-
amine in details one simple nonlinear dynamical model in
which an oscillatory behavior due to the growth of volatile
bubbles occurs in a shallow volcanic system; the effects of
various bubble growth rate laws are also investigated. The
treatment is limited here to the typically dominant volatile
species, water (De Vivo et al., 2005; Behrens and Gaillard,
2006).

Similar models are available in the literature. In Wylie et
al. (1999) (thereafter referred to as WVW), the authors pre-
sented a constant temperature model that is mostly applicable
to shallow magmatic systems (such as Montserrat). In that
model, the magma flow dynamics is coupled to changes in
melt viscosity induced by variations in the dissolved volatile
content (specifically water). In turn, through the forma-
tion and growth of bubbles, volatile exsolution controls the
volatile concentration dynamics.

Melt viscosity depends not only on the volatile concen-
tration but also on the magma temperature and its chemi-
cal composition (Hess and Dingwell, 1996). In Costa and
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Macedonio (2002), a model is presented in which tempera-
ture variations (rather than volatile content) induce changes
in the melt viscosity, that feedback, in turn, on flow dy-
namics. No dynamics are presented by these authors, but
the possibility of a bursting effect (whereby the flow rate
changes abruptly back and forth between two values) is de-
scribed. Mourtada-Bonnefoi et al. (1999) presents a com-
partment model in which crystal magma content and tem-
perature are coupled through two ordinary differential equa-
tions. Again, bubble bursting effects are described. How-
ever, the model ignores transport processes. In Barmin et
al. (2002) and Melnik and Sparks (1999, 2005), a more de-
tailed transport model is described that takes into account the
viscosity changes induced by variations in temperature and
volatile content in a volcanic conduit of circular cross sec-
tion. A crystal growth factor is also included in that model
as the magma crystal content affects the permeability of the
system and the flow dynamics. This model was further gen-
eralized (Costa et al., 2007) to the situation where the lower
part of the conduit has an elliptical cross section.

Other mechanisms that do not involve directly the pres-
ence of volatile have been proposed to explain oscillatory
eruptive behaviors. Ozerov et al. (2003) considered the
magma as a visco-elastic fluid that undergoes stick-slip tran-
sitions in a boundary layer adjacent to the conduit walls.
They showed that an oscillatory behavior with short periods
(seconds to minutes) may ensue.

In this paper, we generalize the WVW model in four ways:

1. In that model, it was assumed that the volatile concen-
tration field adjusts quickly to its steady state value.
Strictly speaking, this is valid only in the limit where
the magma pressure relaxes very slowly in response to
changes in magma flow rate. This is not true in general
and we will not make this assumption here.

2. WVW introduced an approximation to simplify the
mathematical treatment of their model: it was assumed
that the integral of the viscosity has the same functional
dependence as the integral of the volatile concentration
field. As the relation between viscosity and volatile con-
centration is not linear, this is not a correct assumption
in general. We do not use this simplification here.

3. WVW uses a simple linear bubble growth law without
taking into account the degree of supersaturation. Here,
we consider also more realistic bubble growth laws: the
single bubble growth rate law in the diffusion-limit case
(Navon and Lyakhovsky, 1998) and a recently published
(L’Heureux, 2007) many-bubble growth law that takes
into account (in the mean field sense) the collective ef-
fect of the other bubbles on the growth of a given bub-
ble.

4. Although a linear stability is presented by Nakanishi
and Koyaguchi (2008) for the original Barmin et al.’s

model (2002), no detailed linear stability analysis is
available for the WVW model, generalized to an arbi-
trary bubble growth rate law. Such an analysis and a
dynamical phase diagram in parameter space are pre-
sented here.

The theory presented here is applicable to shallow magmatic
systems (such as Montserrat) as it considers only the effect
of volatile content on the melt viscosity and neglects tem-
perature changes during the magma short ascent. Indeed,
the time scale associated with conducting cooling of a shal-
low ascending magma via heat exchange through the walls
can be estimated from the magma thermal diffusivity (about
10−6 m2/s, Costa and Macedonio, 2002) and the conduit lat-
eral dimension (about 10 m); its value is very large compared
to the relevant period of the oscillations (Voight et al., 1999).
Over the time scales of interest here, we can thus neglect the
cooling effect.

For simplicity, we also neglect the viscosity change due
to increase in the magma crystal content. Previous models
(Melnik and Sparks, 2005; Barmin et al., 2002) have param-
eterized the viscosity dependence on crystal volume fraction
in the following way: for a crystal volume fraction smaller
than a critical value of about 0.7, the viscosity is basically
constant; otherwise it increases rapidly with the crystal vol-
ume fraction. For simplicity, we assume here that the crys-
tal volume fraction is limited to a value smaller than 0.7, so
that the viscosity does not depend much on crystallinity. The
same assumption was used by Wylie et al. (1999). A more
complete theory would also include both crystallization ki-
netics and temperature variations (through conduction, heat
exchange at the conduit walls and latent heat production).
However, we feel that investigating the effects of various
volatile bubble growth laws in more details is a necessary
first step in developing an understanding of periodic dynam-
ics in shallow magmatic systems. Indeed, we plan to investi-
gate the effects of parametric random noise driving the model
system through its boundary conditions and a detailed study
of the corresponding deterministic system – as presented in
this contribution – is needed first.

The paper is structured as follows. In Sect. 2, we present
the details of the model and how it generalizes the WVW
model. A linear stability analysis is presented in Sect. 3
for the three bubble growth rate models considered here. In
Sect. 4, we comment on the numerical method used to solve
the model, and we present and discuss some numerical re-
sults. A comparison with the tilt angle measurement data
of Fig. 1 of Wylie et al. (1999) is made using various bub-
ble growth rate expressions. We then make some concluding
statements in Sect. 5. Finally, Appendix A presents a list
of the model variables and their corresponding notation and
Appendix B estimates a limiting value of the cycle period.
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2 Model

As in many previous models of periodic volcanic activity
(Wylie et al., 1999; Barmin et al., 2002; Melnik and Sparks,
1999, 2005), we describe the volcanic system as a thin verti-
cal conduit in which magma flows from a deep magma reser-
voir to the surface. It is in the upper part of the conduit that
the relevant degassing dynamics occurs. It is thus convenient
to divide the conduit into two sections. The lower section of
the conduit connects the deep magma reservoir to the upper
conduit section. No significant degassing occurs in the lower
conduit. The upper conduit is characterized by a lengthL

and a constant radiusr. Observations of the Soufrière shal-
low volcanic conduit are indeed compatible with a simple
cylindrical geometry, as resulting from previous explosive
eruptions (Sparks and Young, 2002).

We call Q(z,t) the magma flow rate (m3/s) in the upper
conduit,p(z,t) the total magma pressure andc(z,t) the dis-
solved volatile concentration (in units of mass of dissolved
volatile reported per melt mass). Herez is the spatial coor-
dinate measured upwards from the base of the upper conduit
(z=0) andt is time. The melt viscosity in the upper conduit is
denotedη(c) and depends on the magma’s dissolved volatile
content.

A few words qualitatively describing the mechanism that
generates oscillatory behavior are in order. The lowest sec-
tion of the conduit connects the deep magma reservoir to the
upper conduit section. No significant degassing occurs in the
lower conduit and the volatile concentration is kept constant
at a valueco. We will assume that the magma flow rate from
the reservoir is constant and has a valueQo. We also define
the magma overpressure in the lower conduitP as the ac-
tual fluid pressure, from which are subtracted the hydrostatic
pressure and the atmospheric pressurepa. It is also assumed
thatP(t) is spatially homogeneous in the lower conduit, al-
though it depends on time in general. Now suppose that the
flow rate in the upper conduit is smaller than the valueQo
at its base. Then, the lower conduit overpressure will in-
crease, which will increase the pressure in the upper conduit
and will increase the upper conduit flow rate. The dissolved
concentration will then increase in the upper conduit through
this enhancement in advective input. At some time however,
bubble growth will occur as a result of the increasing volatile
supersaturation and, as a result of this exsolution, the con-
centration of dissolved volatile will decrease. However, melt
viscosity is a strongly dependent function of the concentra-
tion of dissolved volatile: as the concentration decreases, vis-
cosity increases rapidly. This, in turn, slows down the flow
rate back to its initial value, and the cycle has the potential to
start over again, thus generating repeated cycles.

2.1 Basic equations

The total magma density isρgφ +ρ(1−φ) whereρg is the
volatile gas density,ρ is the melt density (assumed constant)

andφ is the vesicularity (the fraction of the magma volume
occupied by the gas). We also neglect the motion of the gas
bubbles relatively to the ascending melt. The magma conti-
nuity equation in the upper conduit reads:

∂

∂t

[
ρgφ+ρ(1−φ)

]
+

∂

∂z

{
Q

πr2

[
ρgφ+ρ(1−φ)

]}
= 0. (1)

Rapid degassing often leads to magma fractionation
(whereby the magma becomes a foam containing a disper-
sion of crystals and melt drops) and to explosive eruptions,
in which the gaseous mixture can reach supersonic veloci-
ties (Mader, 1998). Here, we assume that degassing is suf-
ficiently slow, so that the magma mixture does not reach the
fragmentation stage and the flow remains subsonic. Thus,
as was done in previous models of periodic volcanic activity
(Wylie et al., 1999; Barmin et al., 2002; Melnik and Sparks,
1999, 2005), the magma can be considered incompressible.
Equation (1) then states that the flow rateQ(t) depends on
time only.

The Navier-Stokes equation for magma in the upper con-
duit can be written for a flow in a cylindrical pipe. The ratio
of the inertial term to the viscous term scales as the Reynolds
number Re∼ ρQ/Lη, which is typically small (∼10−4). The
inertial term can therefore be neglected and one can use
Poiseuille law to describe the magma laminar flow. The pres-
sure gradient can be written in terms of the flow rate as:

∂p

∂z
= −ρg−

8η(c)Q

πr4
(2)

whereg is the acceleration of gravity. The boundary condi-
tions are such that the pressure must match the total pressure
at the bottom of the upper conduit and it must be equal to the
atmospheric pressure at the upper conduit outlet:

p(0,t)= ρgL+pa+P(t), (3)

p(L,t) = pa. (4)

The overpressureP in the lower conduit varies in response to
the difference between the input flow rateQo and the upper
conduit flow rate (Landau and Lifshitz, 1970):

dP

dt
=

Y

2(1+σ)V
(Qo−Q). (5)

Here, Y is the average Young’s modulus of the surround-
ing rock,σ its Poisson ratio andV the volume of the deep
magma reservoir and the lower conduit.

The volatile mass conservation equation is now described.
The volatile is present in the upper conduit in two possible
phases: a dissolved phase (of concentrationc) and a bub-
ble phase. LetR denotes a typical bubble radius andN the
bubble number density (per melt volume). The total volatile
concentrationm (volatile mass reported per melt mass) is

m = c+
4πNR3ρg

3ρ
= c+

4πMNR3p

3ρRTo
. (6)
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Here, the ideal gas law has been used to express the volatile
gas density,To being temperature,R the ideal gas constant
andM the volatile molar mass. Surface tension effects be-
tween the bubble and the surrounding fluid have been ne-
glected, so that the gas pressure has been set equal to the
local fluid pressurep. The mass conservation equation for
total volatile takes the form:

∂

∂t
[m(1−φ)]+

∂

∂z

[
Q

πr2
m(1−φ)

]
= 0. (7)

We have neglected here volatile losses through the sides of
the conduit. Combining Eq. (7) with Eq. (1) (withρgφ ne-
glected compared toρ(1−φ)) gives:

∂

∂t
m+

Q

πr2

∂

∂z
m = 0 (8)

Similarly, the continuity equation for the bubble number is:

∂N

∂t
+

Q

πr2

∂N

∂z
= J (9)

whereJ is the bubble nucleation rate reported per melt vol-
ume. For the shallow systems of interest here, we assume
that bubble dynamics is in a post-nucleation regime: growth
of bubbles that have previously been nucleated in the lower
conduit dominates over the formation of new bubbles. We
will thus setJ=0. This can be justified since the surface ten-
sion between water vapor and silicic melt increases substan-
tially as the pressure decreases (Proussevitch et al., 1993), so
that bubble nucleation occurs preferably at lower depths.

Finally, the kinetics of the volatile dissolved phase is de-
scribed by

∂c

∂t
+

Q

πr2

∂c

∂z
= −G (10)

whereG is a term proportional to the bubble growth rate (re-
ported per melt mass), as detailed below. The boundary con-
dition results from matching the concentration of dissolved
volatile with its value in the lower conduit:

c(0,t)= co. (11)

Various bubble growth models lead to different expressions
for G. We will consider here three models:

1. WVW model: In Wylie et al’s model,G is taken as a
linear function of the concentration, for simplicity:

G = kc (12)

wherek is a rate constant (in s−1).

2. Single bubble growth (SBG) model: From the well
known diffusion-limited single bubble growth theory
(Navon and Lyakhovsky, 1998), we learn that the ra-
dial bubble growth ratev (m/s) is proportional to the

volatile diffusion coefficientD and to the supersatura-
tion (c−ceq), whereceq is the value of the concentration
in thermodynamic equilibrium with the fluid:

v =
ρD

ρgR
(c−ceq). (13)

Multiplying this by 4πR2ρg gives the bubble mass in-
crease per unit time. Multiplying again byN /ρ gives
the relative mass change in dissolved volatile per unit
time over theN bubbles per unit volume. Thus

G = 4πNRD(c−ceq). (14)

An expression for the equilibrium concentration is
found from a generalized Henry law:

ceq= (KHp)n (15)

whereKH is the Henry constant andn is an empiri-
cal constant that depends on the identity of the volatile.
For water,n=1/2 to a good approximation (Sparks, 1978;
Burnham, 1975). The fact thatceq is proportional to the
square root of the pressure in the appropriate pressure
range is indicative of the presence of two water species
in a silicate melt: molecular H2O and hydroxyl OH as-
sociated with the silicate framework (Behrens and Gail-
lard, 2006).

3. Multiple-bubble growth (MBG) model: In the single
bubble growth theory, the competitive effects of the
other bubbles are neglected. In L’Heureux (2007), a
model was proposed that approximately relaxes this
constraint. There, the growth of randomly located bub-
bles is treated in the framework of a mean field approx-
imation that generalizes the approach of Marqusee and
Ross (1984) to leading order in the bubble volume frac-
tion. One of the approximate consequences of this treat-
ment in is that the steam bubble growth rate decays ex-
ponentially with time under isobaric conditions:

G = K(c−ceq) (16)

where the rate constantK is given by

K = 4πNR∞D
ceq

ceq,0

[
1+

√
4πNR3

∞

ceq

ceq,0

]
. (17)

Here,ceq,0 is the initial equilibrium concentration at a
given position andR∞is the large-time limit of the bub-
ble radius, which is related tom andp via Eq. (6):

R∞ ≡

[
(m−ceq)

3ρRTo

4πMNp

]1/3

. (18)
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Equations (16), (17) have been derived under constant pres-
sure conditions. In general, the pressure changes in time at a
given position. Nevertheless, for simplicity, we will assume
a pseudo-steady state approximation for the bubble growth,
so that we can use the instantaneous pressure in the growth
rate expression.

Finally, the melt viscosity is needed. Empirical expres-
sions for the melt viscosity as a function of temperature,
water content and magma composition have been used reg-
ularly by igneous petrologists (see for instance Hess and
Dingwell, 1996). These expressions are based on a gener-
alization of the Arrhenius law for viscosity in the form log
η=b1(c)+ b2(c)/(To − b3(c)) whereb1,b2 andb3 are func-
tions of the water contentc. We use here a simple linear ex-
pression for logη (Clemens and Petford, 1999; Shaw, 1972),
which is a good approximation forc between 2% and 5% and
for temperatures around 900◦C:

η(c) = ηoexp[β(1−c/co)]. (19)

Here,β defines a temperature-dependent viscosity response
coefficient andηo is the melt viscosity at the base of the lower
conduit, wherec = co=5%. In fact, the widely used empirical
expression proposed by Hess and Dingwell (1996) reduces to
Eq. (19) whenc is not too far fromco.

2.2 Dimensionless formulation

It is convenient to express the model in a dimensionless form.
We scale the position coordinate by the lengthL of the upper
conduit and time by a scalēt , to be determined later. We
now introduce the scaled concentrationsc′ andm′, the scaled
bubble number densityN ′, the scaled viscosityη′, the scaled
flow rateQ′ and the scaled pressuresp′ andP ′ as:

m′
= m/co; c′

= c/co; η′
= η/ηo; N ′

= N/No;

Q′
= Q t̄

πr2L
; p′

= p r2t̄

8ηoL2 ; P ′
= P r2t̄

8ηoL2 .
(20)

Here,No is the value ofN at the base of the upper conduit.
The relevant equations then take the form:

∂p′

∂z′
= −α−η′ Q′

; p′(0,t ′) = α+δ+P ′(t);

p′(1,t ′) = δ ; (21a)

dP ′

dt ′
=

1

ε
(Q′

o−Q′); (21b)

∂m′

∂t ′
+Q′

∂m′

∂z′
=

∂N ′

∂t ′
+Q′

∂N ′

∂z′
= 0; (21c)

∂c′

∂t ′
+Q′

∂c′

∂z′
= −G′

; c′(0,t ′) = 1; (21d)

η′
= exp[β(1−c′)]. (21e)

Here,

α =
ρgr2t̄

8ηoL
; δ = pa

r2t̄

8ηoL2
; ε =

16ηoLV (1+σ)

πr4Y t̄
;

Q′
o = Qo

t̄

πr2L
(22)

are dimensionless parameters representing the melt density,
the atmospheric pressure, the magma reservoir elastic re-
sponse and the reservoir flow rate, respectively. The time
scale t̄ depends on the adopted bubble growth model and
will be selected so as to simplify the scaled bubble growth
rateG′=Gt̄ /co as much as possible. Explicitly, one obtains:

For the WVW model:

WVW : t̄=
co

k
; G′=c′. (23)

For the SBG model (using Eq. 6 to eliminateR):

SBG: t̄ =

(
MηoL

2

6π2D3N2
oρRTocor2

)1/4

;

G′
= (m′

−c′)1/3(c′
−c′

eq)
N

′2/3

p
′1/3

(24)

where

c′
eq= ceq/co = Ap

′n
; A ≡

(
8KHηoL

2

c
1/n
o r2t̄

)n

. (25)

For the MBG model,t̄ has the same value as in the SBG
model. Adoptingn = 1/2 in Henry’s law, the scaled growth
rate becomes:

MBG : G′
= (m′

−c′
eq)

1/3N
′2/3p

′1/6

p
′1/2
0

·

[
1+γ

(m′
−ceq)

′1/2

p
′1/4
0 p′1/4

]
(c′

−c′
eq);

γ ≡

(
coρRTor

2t̄

8MηoL2

)1/2

; p′

0 ≡ (c′

eq,0/A)2. (26)

In summary, the problem is defined by Eq. (21) for the vari-
ablesp′, c′, m′, N ′, P ′ andQ′, with the parametersα, β, γ ,
δ, ε,Qo andA. Unless stated otherwise, we will drop the′

symbols.

2.3 Simplified formulation

It is possible to rewrite the model as an integro-differential
system involving the variablesP , Q andc only and which
will be more amenable to a numerical solution. We now in-
troduce a time-like variableτ as (Barmin et al., 2002):

τ =

t∫
0

Q(t ′)dt ′. (27)
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The equations for the dissolved volatile concentration and for
the overpressure become, respectively:

∂c

∂τ
+

∂c

∂z
= −

G

Q(τ)
; c(0,τ )= 1; (28)

dP

dτ
=

Qo−Q(τ)

εQ(τ)
(29)

The pressure equation can be integrated to

p(z,τ )= α(1−z)+δ+P(τ)−Q(τ)

z∫
0

η[c(z′,τ )]dz′ (30)

in which the boundary condition atz=1 imposes the follow-
ing integral constraint on the overpressure:

P(τ) = Q(τ)

1∫
0

η[c(z′,τ )]dz′. (31)

Finally, a change of variableξ = z − τ , τ ∗
= τ transforms

Eq. (21c) to

∂m

∂τ
+

∂m

∂z
=

∂m

∂τ ∗
= 0;

∂N

∂τ
+

∂N

∂z
=

∂N

∂τ ∗
= 0. (32)

This indicates that the total volatile concentrationm is con-
stant and equal to its initial value. Similarly, the scaled bub-
ble number density can be taken equal to unity.

In their model, WVW introduce two simplifying assump-
tions, besides takingG = c. (i) By integrating Eq. (28) over
z from 0 to 1, the quantityc(1,τ) appears. In order to es-
timate it, WVW assume that the concentration profile ad-
justs itself quickly to its stationary value, so thatc(1,τ ) =

exp(−1/Q(τ)). (ii) Instead of Eq. (19), they make the
approximation

∫ 1
0 η(c(z′,τ ))dz′

= exp[β(1−
∫ 1

0 c(z′,τ )dz′)],
which is correct only for smallβ. EliminatingP , they then
obtain a simple system of two coupled ordinary differential
equations for the variablesQ and

∫ 1
0 c(z′,τ )dz′. We will not

make these simplifications here, but consider the full sys-
tem (21).

3 Linear stability analysis

3.1 General formulation

It is straightforward to solve the system for its steady state
(Qs, cs(z), Ps, ps(z)). Setting the derivatives with respect to
τ equal to zero gives:

Qs = Qo; cs(z) = 1−
1

Qo

z∫
0

G[cs(z
′),ps(z

′)]dz′
;

Ps = Qo

1∫
0

η[cs(z
′)]dz′

;

ps(z) = α(1−z)+δ+Ps−Qo

z∫
0

η[cs(z
′)]dz′. (33)

cs can be solved, at least numerically. For example, for the
WVW growth rate,G = c andcs(z) = exp(−z/Qo).

We now perform a linear stability analysis. For this pur-
pose, we simplify the pressure dependence in the growth rate
by using its hydrostatic value in the argument ofG:

G[cs(z),ps(z)] ∼= G[cs(z),α(1−z)+δ]. (34)

The numerical results performed on the exact formulation
(Sect. 4) confirm that this approximation leaves unchanged
the nature of the dynamical instability and does not change
the stability phase diagram substantially. We then set

c(z,τ ) = cs(z)+δc(z)exp(3τ)

P (τ) = Ps +δP exp(3τ)

Q(τ) = Qo +δQexp(3τ) (35)

whereδc(z), δP and δQ are small perturbations and3 a
complex frequency, to be determined. Also, the bound-
ary conditioncs(0)=1 implies thatδc(0)=0. Substituting in
Eqs. (29) and (31), it is easy to eliminateδP :

δQ = −Qo

1∫
0

∂η
∂cs

δc(z)dz

µ+(εQo3)−1
(36)

where the integrated viscosity is

µ ≡

1∫
0

η[cs(z)]dz. (37)

Equation (36) requires the derivative of the viscosity with
respect to the volatile concentration. With the relation (21e),
this is:

∂η

∂cs
= −βη[cs(z)]. (38)

The approximation (34) indicates thatG does not depend on
overpressure but only on the concentration profile and onz,
throughps = α(1− z)+ δ. We letGs be the bubble growth
rate evaluated with the stationary concentration profile. After
linearization, Eq. (28) becomes in turn:

dδc

dz
= −(3+Ms(z)/Qo)δc+

Gs(z)

Q2
o

δQ (39)

where

Ms≡
∂Gs

∂cs
. (40)

The solution of Eq. (39) with the boundary conditionδc(0)=0
reads:

δc(z) =
δQ

Q2
o
e−3zG(z,3) (41)
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where

G(z,3) ≡

z∫
0

Gs(y)exp[3y −

z∫
y

Ms(y
′)dy′/Qo]dy. (42)

It is convenient to simplify the functionG as follows. The
total differential of the stationary growth rateGs is:

dGs =
∂Gs

∂cs
dcs−α

∂Gs

∂ps
dz

=

(
∂Gs

∂cs

dcs

dz
−α

∂Gs

∂ps

)
dz

= −

(
∂Gs

∂cs

Gs

Qo
+α

∂Gs

∂ps

)
dz (43)

where use has been made ofdcs/dz=−Gs/Qo. Thus, in
Eq. (42):

−

z∫
y

Ms(y
′)dy′/Qo = −

1

Qo

z∫
y

∂Gs

∂cs
dy′ (44)

= log(Gs(z)/Gs(y))+α

z∫
y

∂ logGs

∂ps
dy′.

In consequence,

G(z,3) = Gs(z)

z∫
0

dyexp

3y +α

z∫
y

∂ logGs

∂ps
dy′

. (45)

Finally, using Eqs. (41) in Eq. (36), and dividing byδQ, we
obtain the general frequency equation, which reduces the lin-
ear stability problem to solving the following transcendental
equation for3:

ε−1
+Qo3µ−β3

1∫
0

η[cs(z)]exp(−3z)G(z,3)dz = 0. (46)

Sinceε > 0, it is not possible for the stationary solution to
lose its stability (3 = 0) with a real frequency. A Hopf bifur-
cation is characterized by a loss of stability with Re(3)=0,
Im(3) 6= 0 and is the signature of the emergence of a limit
cycle (periodic) solution, which itself could be stable or un-
stable. In order to find the locus of Hopf bifurcations in pa-
rameter space{ε, Qo, β}, we set3 ≡ i� in Eq. (46) with
� real. Separating the real and imaginary parts and using
Eq. (45), one finds

Qoµ−β

1∫
0

dzη(z)Gs(z)

z∫
0

dycos(�(z−y))

exp

α

z∫
y

∂ logGs

∂ps
dy′

= 0; (47)

ε =

{
β�

1∫
0

dzη(z)Gs(z)

z∫
0

dysin(�(z−y))

exp

α

z∫
y

∂ logGs

∂ps
dy′

}−1

. (48)

For a given value ofQo andβ, Eq. (47) is used to solve for
� (which can be done numerically using a Newton-Raphson
solver coupled to an integration code). Then, Eq. (48) gives
directly the Hopf bifurcation curveεH = ε(Qo, β).

3.2 Examples

We now present Hopf bifurcation curves for the WVW, SBG
and MBG growth rate laws. For the simplest case (WVW),
we haveG = c, cs(z) = exp(−z/Qo) and η = exp[β(1−

e−z/Qo)]. The stationary overpressurePs reduces to:

Ps= Qoµ = Q2
oe

β
[Ei(−β)−Ei(−βe−1/Qo)] (49)

where Ei(x) ≡ −
∫

∞

−x
dt e−t/t is the exponential integral.

Figure 1a plotsPs as a function ofQo for two values ofβ.
For sufficiently high value ofβ, Ps exhibits two increasing
branches connected by a decreasing branch. Letβ* be the
critical value ofβ above which these three branches exist.
β* is found from the conditiondPs/dQo = d2Ps/dQ2

o = 0
to beβ*=2.989.

The frequency equation is taken from Eq. (46) with
∂Gs/∂ps= 0. It reads:

ε−1
+Q2

o3eβ
[Ei(−β)−Ei(−βe−1/Qo)]

−Qo{exp[β(1−e−1/Qo)]−1}

−Qoe
ββ−Qo3[0(1+Qo3,β)−0(1+Qo3,βe−1/Qo)] = 0

(50)

where 0(a,x) ≡
∫

∞

x
za−1e−tdt is the incomplete Gamma

function. From this expression, it is straightforward to ob-
tain the Hopf bifurcation curveεH, an example of which
is illustrated in Fig. 1b forβ=5.5. The vertical dotted
lines correspond to the two valuesQo* of Qo for which
dPs/dQo|Qo∗ = 0. In fact, it is easy to show analytically
from Ps = Qoµ and from Eq. (47) (in the limit� → 0) that
the boundaries of the Hopf bifurcation curve are bounded
by Qo*. This is true for an arbitrary growth rateG of the
form (34) and it shows an important property: a necessary
condition for a Hopf bifurcation to exist is to haveβ > β*
and to choose a value ofQo for which the corresponding
Ps(Qo) lies on a decreasing branchdPs/dQo <0. However,
in contrast to what was suggested in Wylie et al. (1999),
this not a sufficient condition:ε must be sufficiently large
(ε > εH) for an instability to occur.

For the two other growth models (SBG and MBG), ex-
pressions forPs(Qo) andεH are not analytically available.
However, a numerical approach is straightforward. Figures 2
and 3 show the stationary overpressure and an example of

www.nonlin-processes-geophys.net/17/221/2010/ Nonlin. Processes Geophys., 17, 221–235, 2010



228 I. L’Heureux: Effect of volatile bubble growth rate on periodic dynamics of shallow volcanic systems

Fig. 1. (a)Steady state overpressurePs as a function of the flow rate
Qo at the base of the conduit for the WVW bubble growth model,
for two values of the viscosity response coefficientβ. As discussed
in Appendix B, the path ABCD describes the oscillatory cycle in
(P , Q) space obtained in the limit whereε → ∞. (b) Steady state
stability phase diagram in parameter space (Qo, ε) for β=5.5 for
the WVW bubble growth model. S=stable node; SF=stable focus;
U=unstable focus. The Hopf bifurcation line (continuous curve)
resides within the region where the steady statePs(Qo) exhibits
two extrema (dashed vertical lines).

a Hopf bifurcation curve for the two growth models, respec-
tively. The choice of parameter values is discussed in the next
section. For this choice, the critical values ofβ* are 2.60 for
the SBG model and 3.75 for the MBG model. Although the
details are quantitatively different from the WVW case, the
topology of the curves is identical.

Fig. 2. (a) Steady state overpressurePs as a function of the flow
rateQo at the base of the conduit for the SBG model withβ=5.5.
(b) Steady state stability phase diagram in parameter space (Qo,
ε) for β=5.5 for the SBG bubble growth model. S=stable node;
SF=stable focus; U=unstable focus. The Hopf bifurcation line
(continuous curve) resides within the region where the steady state
Ps(Qo) exhibits two extrema (dashed vertical lines).

In summary, the stationary state is stable whenβ < β*.
Forβ >β*, there exists values ofQo for whichPs decreases
as a function ofQo. The stationary state is stable whenQo
is chosen in a range for whichdPs/dQo > 0. Otherwise, it is
stable whenε is sufficiently small. In all case, loss of stability
derives from a Hopf bifurcation.

Nonlin. Processes Geophys., 17, 221–235, 2010 www.nonlin-processes-geophys.net/17/221/2010/



I. L’Heureux: Effect of volatile bubble growth rate on periodic dynamics of shallow volcanic systems 229

Fig. 3. (a) Steady state overpressurePs as a function of the flow
rateQo at the base of the conduit for the MBG model withβ=5.5.
(b) Steady state stability phase diagram in parameter space (Qo, ε)

for β=5.5 for the MBG model. S=stable node; SF=stable focus;
U=unstable focus. The Hopf bifurcation line (continuous curve)
resides within the region where the steady statePs(Qo) exhibits
two extrema (dashed vertical lines).

4 Numerical results and discussion

4.1 Numerical approach

In order to investigate the nature of the attractor in the un-
stable regime, numerical solutions of the system (28, 29, 31)
were generated. The overpressure Eq. (29) is solved by a
second-order finite difference scheme in the time-like vari-
ableτ of step sizeh:

Table 1. Parameter values used in the calculations of Sect. 4.2.
These are typical of the Montserrat system (Wylie et al., 1999). The
value ofβ is estimated from the temperature and from the empirical
relation (19) (Shaw, 1972). The value of Henry constantKH, the
volatile diffusion constantD and the initial bubble radiusR(0) are
taken from Proussevitch et al. (1993). The bubble number density
N is inferred from Proussevitch et al. (1993).

Parameter Units Value

co Mass proportion 0.05
D m2/s 10−11

g m/s2 9.8
k s−1 2.77×10−4

KH Pa−1 1.6×10−11

L m 400
M kg/mol 0.018
n – 1/2

N m−3 2.38×108

pa Pa 101.32×103

r m 10
R(0) m 10−5

To K 1173
β – 5.5
ρ kg/m3 2500

P n+1
= P n

+
Qoh

2ε
(1/Qn

+1/Qn+1)−
h

ε
(51)

whereP n andQn denote respectively the overpressure and
the flow rate atτ = nh with n an integer. The advection equa-
tion (Eq. 28) is solved using an upstream explicit scheme.
The step sizesh in z- and τ -space are chosen to be equal,
so as to minimize numerical dispersion. Letcn

i andpn
i de-

note the concentration and pressure fields at positionz=ih
andτ=nhwherei is an integer. This algorithm gives

cn+1
i = cn

i−1−hG(cn
i ,pn

i )(1/Qn
+1/Qn+1)/2. (52)

1/Qn+1 is chosen in a self-consistent manner (via a Newton-
Raphson algorithm) so as to be consistent with the dis-
cretized version of the integral constraint (31):

P n+1/Qn+1
−h

∑
i

wi exp[β(1−cn+1
i )] = 0 (53)

wherewi are weight constants associated with the particu-
lar numerical integration method used (withh small enough,
a trapezoidal integration method was found to be suffi-
cient).With the fieldc updated, the full pressure field can be
finally found by the numerical integration of Eq. (30). The
algorithm is fast, simple and convergent.

4.2 Numerical solutions

In this section, we have left the parametersQo andε free but
have fixed the other parameter values according to Table 1.
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Fig. 4. Time seriesP(t), Q(t) for the MBG model withβ=5.5. (a) Qo=2, ε=0.02;(b) Qo=2, ε=0.07;(c) Qo=2, ε=1.0. Parameters values
as in Table 1. The initial condition has been chosen asQ(0)=1 with an initial pressure and concentration profiles that have the steady state
form for this value ofQ(0).

With these parameter values, the time scalet̄ is 1 h for the
WVW model and 1.58 h for the SBG and the MBG mod-
els. The scaled parameters areα=29.1,γ =14.2,δ=0.3 and
A=0.046. In the growth rate expressions, we have also used
the approximation of Eq. (34) in order to verify the bifurca-
tion analysis performed in Sect. 3.

Figure 4a illustrates for the MBG model an overpressure
and flow rate time series in a regime wheredPs/dQo < 0 but
for a case where the steady state is stable (ε < εH). Figure 4b
illustrates the corresponding time series whenε is just above
εH. In agreement with the analysis, the steady state is indeed
unstable in the latter case. The solution evolves towards a
stable limit cycle. Figure 4c illustrates a limit cycle obtained
for a larger value ofε > εH. This illustrates that the pressure

cycle approaches a saw-tooth time-behavior and that the flow
rate exhibits bursting. These features are typical and are sim-
ilarly found in the two other growth models, WVW and SBG
(not illustrated).

The cycle periodT (with respect to the time variablet) is
a highly sensitive function ofQo andε. This is illustrated in
Fig. 5 for the MBG growth model where each curve shows
T as a function ofε for various values ofQo. The curves
T (ε) are similar for the two other growth models. In general,
T decreases asQo increases for a fixed value ofε. But for
fixedQo, the period is an increasing function ofε. The lower
limit of each curve corresponds to the period at the Hopf bi-
furcation point 2π /(Qo �) where� is the Hopf frequency
found from Eq. (47). At the other limit (for largeε), it is
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Fig. 5. Cycle periodT as a function ofε for the MBG model with
β=5.5 and for various values ofQo, as indicated on the curves.
Parameters values as in Table 1.

easy to show that the period takes the asymptotic value (see
Appendix B):

T ∼= ε

[
PsB(QC−QB)

(Qo−QB)(QC−Qo)
−

PsA(QD −QA)

(Qo−QA)(QD −Qo)

−

B∫
A

Ps(Q)dQ

(Qo−Q)2
+

C∫
D

Ps(Q)dQ

(Qo−Q)2

 (54)

wherePs(Q) is the steady state overpressure curve and the
labels A, B, C, D correspond to the boundary of the limit cy-
cle in {P , Q} space, as shown, for instance, in Fig. 1a. The
fact that that the period curves obtained from the numerical
solutions go smoothly to its analytical asymptotic expression
is a further indication of the adequacy of the numerical algo-
rithm.

4.3 Comparison with observations: the Soufrìere
system

In this section, we present numerical results for the case
where the full pressure expression is kept in the growth rate,
so that the approximation (34) is relaxed. The general fea-
tures of the solution are qualitatively identical as those de-
scribed above. We will use this approach to see how the
model applies to actual observations. For concreteness, we
will consider the tilt angle measurements performed on the
shallow Soufrìere system in August 1997 (top of Fig. 5 in
Voight et al., 1998). When the steady state is unstable, the
asymptotic state of our model is a limit cycle with a well-
defined period and amplitude. However, the observed peri-
ods and oscillation amplitudes are not quite constant. This

Table 2. Values of the parameterε and the time scalēt leading to
a minimum in the error functione of Eq. (55) for various bubble
growth models. Here,Tobs=18 h andaobs=0.6. The dimensionless
reservoir flow rateQ′

o is calculated from Eq. (22) with the knowl-
edge of t̄ and assumingQo=10 m3/s. Also, Tcalc= t̄T ′

calc. The
productV ηo is estimated from Eq. (22) with the knowledge oft̄ and
ε, and assumingY=3×1010Pa andσ=0.2. 1P is the amplitude of
the overpressure drop over one cycle.1Q is the corresponding flow
rate amplitude.χ is defined in Eq. (56).

WVWa SBGb MBGc

t̄ (hours) 7.37 1.44 6.36
ε 0.20 1.30 0.34
Q′

o 2.11 0.41 1.82
Tcalc (hours) 17.70 17.37 17.81
acalc 0.603 0.651 0.596
e (%) 1.73 9.17 1.34
V ηo (×105 km3Pa-s) 6.51 8.26 9.56
1P/ηo (s−1) 1.53 1.80 1.20
1Q (m3/s) 8.9 15.6 10.3
χ 1.3 2.0 1.0

a Wiley-Voight-Whitehead;b Single-Bubble Growth;c Multiple-
Bubble Growth

could be due to a combination of transient effects and/or sys-
tematic slow or random variations in the system parameters
which are not described by our simple model. Nevertheless,
by requesting that the limit cycle solution is close to a typical
measured cycle, our model can be used to obtain reasonable
estimates of two of the parameter values that are not easily
accessible: the time scalēt and the dimensionless magma
chamber elastic parameterε.

For the purpose of illustration, we selected the particu-
larly well-defined cycle from 2 August to 3 August, which
has a periodTobs=18 h and is characterized by a dimen-
sionless asymmetry parameteraobs≡ (tmax− tmin)/Tobs=0.6
wheretmax and tmin are the times at the cycle maximum or
minimum, respectively. BothTobs andaobs do not depend on
the specific (possibly non linear) conversion between tilt an-
gle measurements and overpressure values. We only need to
assume that extrema in tilt angles occur at the same time as
extrema in overpressure. From the limit cycle solutionsP(t),
we have adjusted̄t andε by minimizing the residual relative
errore

e = {[(acalc−aobs)/aobs]
2
+[(t̄T ′

calc−Tobs)/Tobs]
2
}
1/2 (55)

whereT ′

calc is the dimensionless computed period andacalc
the calculated asymmetry parameter. We have taken (Wylie
et al., 1999)Qo=10 m3/s. For the MBG model, the initial
pressure profile was taken as the steady state one. Table 2
gives the values of̄t and ε that minimizee for the three
growth models. As an example, Fig. 6 illustrates the over-
pressure and flow rate cycles for the MBG model for these
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Fig. 6. Limit cycle P(t), Q(t) for the MBG model withβ=5.5 and
for values of the time scalēt andε that minimize the relative error
e (Table 2). The origin of the time axis is arbitrary as the transients
are not illustrated.

values oft̄ andε. The curves are qualitatively similar for the
two other growth models. Nevertheless, the minimal residual
error is about seven times larger for the SBG growth model
than for the two other models.

Taking the estimates (Wylie et al., 1999)Y=3×1010 Pa and
σ=0.2 with L, and r from Table 1, we obtain the product
V ηo from Eq. (22). This estimate is reported in Table 2.
For comparison, the estimateV ηo=2.34×105 km3 Pa-s is in-
ferred from Wylie et al. (1999), with a time scale arbitrarily
chosen as̄t=1 h. Table 2 also gives the ratio (in s−1) of the
overpressure drop over a cycle,1P , by the viscosityηo. For
ηo=106 Pa-s (Voight et al., 1999), the overpressure drop is
of the order of the MPa, consistent with the observations.
The table also gives the flow rate amplitude1Q in m3/s.
Notwithstanding the difference in the values oft̄ (which im-
plies a difference in the pressure and flow rate scales), the
amplitude of the variations1P and1Q are comparable for
all three bubble growth rate models.

Assuming a linear scaling between the overpressureP at
the base of the conduit and tilt angle measurements (Voight
et al., 1999), the following chi-square

χ2
=

1

f

∑
i

(
CPi +B −θi

σi

)2

(56)

can be estimated. Hereθi are measured tilt angles (from the
2–3 August cycle in Fig. 5 of Voight et al., 1998),B and
C are two constants defining the assumed linear relation be-
tween the calculated (dimensionless) overpressurePi and the
tilt angle.σi (estimated to be 10% ofθi) is the error on the tilt
angle measurement andf the number of degrees of freedom.

We have selected the parameterst̄ andε from Table 2. The
values ofχ are reported in Table 2. These values suggest that
the SBG model does not provide a good fit, whereas both the
MBG and WVW growth models lead to a marginally good fit
(with a slightly better fit in favor of the MBG model). Never-
theless, on physical grounds, one expects the bubble growth
expression to have a more complex form than what Eq. (11)
implies. Notwithstanding the large number of simplifying
assumptions, the application of this model to data allows one
to constraint the values of the time scalet̄ and of the elastic
response parameterε, which are not easily available other-
wise.

5 Conclusion

In this contribution, we have extended the model of Wylie
et al. (1999) describing a simple mechanism for the gener-
ation of an oscillatory behavior in a shallow magmatic sys-
tem. In this model, magma flow is coupled to the magma
water content through the explicit volatile dependence of the
melt viscosity. We have extended the original model by re-
laxing three of its simplifying assumptions: use is made of
an arbitrary volatile bubble growth rate law expression, we
do not assume that the volatile concentration profile has a
steady-state form and the spatial integral of the viscosity in
Eq. (31) is properly evaluated. We have also performed a
linear stability analysis of the system and have established
that the oscillatory behavior occurs via a Hopf bifurcation.
The range of parameter values for which oscillatory behav-
ior exists have been found for three different bubble growth
models: the linear growth model of Wylie et al., the single
bubble diffusion-limited growth model and an approximate
many-bubble growth model that has been recently published
(L’Heureux, 2007). We have found that this modeling ap-
proach can generate oscillatory magma dynamics with a pe-
riod that is compatible with the observations. The quality of
the fit with the observations can be used to constraint some
system parameters that are not easily measured.

Since we assumed that only variations in the volatile con-
centration affect the melt viscosity, the present model is more
suitable to shallow magma reservoirs. But other factors (such
as temperature variations and changes in magma chemical
composition due to mineral growth) may also play an impor-
tant role in changing the viscosity. In addition, crystal pre-
cipitation is expected to modify the porosity of the fluid sys-
tem and to change its flow characteristics. Some previously
published models (Barmin et al., 2002; Melnik and Sparks,
1999; Melnik and Sparks, 2005) have considered these ef-
fects but not with a many-bubble growth model. Such con-
siderations are the object of our continuing research. It will
also be interesting to investigate how random parameter fluc-
tuations influence the oscillatory dynamics of a volcanic sys-
tem (Wiesenfeld, 1985). This is part of our planned work.
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Appendix A

Notation and description of the variables

Notation Units Description

a – Asymmetry parameter (Eq. 55).
A – Scaled Henry constant in

Eq. (25).
B rad Constant in Eq. (56).
c – Dissolved volatile concentra-

tion.
co – Value ofc at the base of the up-

per conduit.
ceq – Equilibrium concentration.
ceq,o – Initial equilibrium concentra-

tion.
C rad Constant in Eq. (56)
D m2/s Volatile diffusion coefficient.
e – Residual relative error in

Eq. (55).
f – Degree of freedom in Eq. (56).
g m/s2 Acceleration of gravity.
G s−1 Exsolution rate.
G – Factor relating δc to δQ in

Eq. (42).
h – τ step in the numerical imple-

mentation.
J m−3 s−1 Nucleation rate.
k s−1 Rate constant in WVW model.
K s−1 Rate constant in MBG model.
KH Pa−1 Henry constant.
L m Length of upper conduit.
m – Total volatile concentration.
M kg/mol Volatile molar mass.
N m−3 Bubble number density.
p Pa Total pressure.
pa Pa Atmospheric pressure.
po – Scaled initial pressure (Eq. 26).
P Pa Overpressure.
Q m3/s Magma flow rate.
Qo m3/s Input magma flow rate.
r m Radius of upper conduit.
R m Bubble radius.

R∞ m Large-time limit of the bubble
radius (Eq. 18).

R J/K-mol Molar gas constant.
t s Time.
t̄ s Time scale.
To K Temperature.
T s Cycle period.
v m/s Radial bubble growth rate.
V m3 Volume of magma reservoir and

lower conduit.

Notation Units Description

wi – Weights in the numerical inte-
gration of Eq. (31).

Y Pa Young’s modulus.
z m Vertical coordinate with respect

to the base of the upper conduit.
α – Scaled melt density (Eq. 22).
β – Viscosity response coefficient.
δ – Scaled atmospheric pressure

(Eq. 22).
δc,δP,δQ – Variations ofc, P , Q about their

steady state.
ε – Scaled reservoir elastic response

(Eq. 22).
εH – Value of ε at the Hopf bifurca-

tion point.
φ – Vesicularity.
γ – Constant in Eq. (26).
3 – Frequency of the perturbations

of (c, P , Q) about their steady
state.

η Pa-s Melt viscosity.
ηo Pa-s Melt viscosity at the base of the

upper conduit.
µ – Integrated scaled viscosity

(Eq. 37).
θi rad Tilt angle.
ρ kg/m3 Melt density.
ρg kg/m3 Volatile density in the bubble

phase.
σ – Poisson coefficient of the rock

surrounding the system.
σi rad Error on tilt angle.
τ – Time-like variable (Eq. 27).
� – Frequency of the cycle at the

Hopf bifurcation point.

Appendix B

Cycle period in the largeε limit

In this Appendix, we show that the period of the oscillatory
solution in the limit of largeε is given by Eq. (54). Perform-
ing a change of time scaleτ → ετ ′ in Eq. (28) and taking the
limit ε → ∞ indicate that the concentration profile relaxes
quickly to a pseudo-steady state form similar to Eq. (33),
except thatQo is replaced by the slowly varying flow rate
Q(τ ′). One recalls that the overpressure at the base of the
magma conduit is given by Eq. (31) (P(τ ′) = Q(τ ′)µ(τ ′))

where the integrated viscosityµ defined in Eq. (37) has the
steady-state formµs. Thus, forQ(τ ′) sufficiently different
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from Qo, the pressure cycle is described by a slow motion
along the ascending branches of steady state diagrams such
as those of Figs. 1a, 2a or 3a. The overpressure slow dynam-
ics is described by Eq. (29):

dP

dτ ′
=

Qo−Q(τ ′)

Q(τ ′)
. (B1)

Thus it is seen that the pressure can not assume values on
the decreasing branch of the steady state diagram(where
dPs/dQo < 0). Rather, the motions along the two ascend-
ing branches are connected by horizontal lines joining B to
C and D to A in Fig. 1a, resulting in very fast variations in
Q(τ ′). To calculate the cycle periodT , we rewrite Eq. (B1)
as εdP/dt = Qo −Q where we useddτ /dt = Q (Eq. 27).
The period is then:

T = ε

∮
dP

Qo−Q
= ε

B∫
A

dP

Qo−Q
+ε

D∫
C

dP

Qo−Q
(B2)

where we neglected the time used to run along the horizontal
paths BC and DA. Integrating by parts with respect toQ with
P = Ps= Qµs finally gives Eq. (54).
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