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Abstract. The approach of conditional nonlinear optimal
perturbation (CNOP) was previously proposed to find the op-
timal initial perturbation (CNOP-I) in a given constraint. In
this paper, we extend the CNOP approach to search for the
optimal combined mode of initial perturbations and model
parameter perturbations. This optimal combined mode, also
named CNOP, has two special cases: one is CNOP-I that only
links with initial perturbations and has the largest nonlinear
evolution at a prediction time; while the other is merely re-
lated to the parameter perturbations and is called CNOP-P,
which causes the largest departure from a given reference
state at a prediction time. The CNOP approach allows us to
explore not only the first kind of predictability related to ini-
tial errors, but also the second kind of predictability associ-
ated with model parameter errors, moreover, the predictabil-
ity problems of the coexistence of initial errors and parameter
errors. With the CNOP approach, we study the ENSO pre-
dictability by a theoretical ENSO model. The results demon-
strate that the prediction errors caused by the CNOP errors
are only slightly larger than those yielded by the CNOP-I er-
rors and then the model parameter errors may play a minor
role in producing significant uncertainties for ENSO predic-
tions. Thus, it is clear that the CNOP errors and their resul-
tant prediction errors illustrate the combined effect on pre-
dictability of initial errors and model parameter errors and
can be used to explore the relative importance of initial er-
rors and parameter errors in yielding considerable prediction
errors, which helps identify the dominant source of the errors
that cause prediction uncertainties. It is finally expected that
more realistic models will be adopted to investigate this use
of CNOP.
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1 Introduction

In 1975, Lorenz classified two kinds of predictability prob-
lems (Lorenz, 1975): one is related to initial error with an as-
sumption of a perfect model and referred to as the first kind
of predictability; the other is associated with model errors
with a perfect initial field and consists of the second kind
of predictability. The former has been largely investigated,
and many theories and methods have been proposed or in-
troduced (Lorenz, 1965; Toth and Kalnay, 1997; Mu et al.,
2003; Mu and Zhang, 2006; Riviere et al., 2008), in which
optimal methods are important for estimating the limit of the
predictability of weather and climate events. The applica-
tion of a singular vector (SV; Lorenz, 1965; Farell, 1989)
in meteorology is pioneer in this scenario. Considering the
limitation of the linear theory of SV, Mu et al. (2003) pro-
posed the approach of conditional nonlinear optimal pertur-
bation (CNOP) to search for the optimal initial perturbation
(denoted by “CNOP-I”) in a given constraint; its competing
aspect is that it considers the effect of nonlinearity. CNOP-I
represents the initial error that has the largest negative effect
on predictions and has been applied to the predictability stud-
ies for ENSO (Duan et al., 2004, 2008, 2009; Duan and Mu,
2006; Mu et al., 2007), the sensitivity analysis for thermo-
haline circulation (Mu et al., 2004; Sun et al., 2005; Wu and
Mu, 2009), and the adaptive observation for Typhoon (Mu et
al., 2009). Riviere et al. (2009) showed an extension of the
CNOP approach and used it to estimate the predictability of
atmospheric moist processes. Bred vector (Toth and Kalnay,
1997) is another important nonlinear optimal method, which
has been used to investigate the first kind of predictability of
climate (Cai et al., 2003). All these theories and methods
have played an important role in guiding scientists in devel-
oping and improving numerical model and even to propose
innovative ideas to increase the forecast skill of weather and
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climate (Houtekamer and Deroma, 1995; Xue et al., 1997;
Thompson, 1998; Hamill, 2000; Mu and Zhang, 2006; Mu
and Jiang, 2009).

The existing numerical models cannot yet describe exactly
the atmospheric and oceanic motions and have model errors,
which have caused significant uncertainties in weather and
climate predictions (William, 2005; Orrell, 1999, 2003). The
effect of model errors on predictability is related to the sec-
ond kind of predictability (Lorenz, 1975). One important as-
pect in this field is on the effect of the uncertainties of model
parameters on predictability (Lu and Hsieh, 1998; Mu, 2000;
Mu et al., 2002). Chu et al. (1999) chose a control parameter
and studied the predictability of a numerical model by super-
imposing different perturbations on this control parameter.
Zebiak and Cane (1987), Liu (2002) and Orrell (2003) con-
sidered each model parameter and took different values of
this parameter to investigate the effect of the uncertainties of
the parameters on climate simulation, and to explore the sen-
sitivity of the climate simulation on the parameter perturba-
tions. However, in realistic predictions, the multiple param-
eters of the model may simultaneously have uncertainties;
moreover, there may exist not only model parameter errors
but also initial errors. Then how to estimate the predictability
limit caused by these combined error modes?

Mu et al. (2002) considered both initial errors and model
parameter errors and classified three predictability problems
according to the demands of realistic predictions, the sec-
ond one of which is to estimate maximum prediction errors
caused by both initial errors and parameter errors that respec-
tively satisfy a constraint condition. In a predictability study,
it is required to know which combined mode of initial er-
ror and parameter error yields the maximum prediction error
and what is the patterns of the multiply parameter errors that
have the largest effect on predictability. For example, in pre-
dictability studies of El Nĩno-Southern Oscillation (ENSO),
it is our desire to know: is it initial error or model error that
has a much larger effect on prediction uncertainties? The
answer to this question will provide insight on improving
ENSO forecast skill (Mu et al., 2007a, b; Duan et al., 2009).
By investigating the optimal combined mode of initial errors
and model parameter errors and its resultant prediction errors
and comparing them with those of the optimal parameter er-
rors, we may answer this question. Thus, we first need to
find these optimal modes. Although the above approaches,
related to parameter perturbations, are simple in operation, it
is very difficult for them to determine these optimal modes. It
is, therefore, needed to develop a new approach to study the
optimal parameter perturbations and the optimal combined
mode of initial perturbation and parameter perturbation, in
an attempt to quantify the predictability limit caused by the
initial error and model error.

As described above, Mu et al. (2003) have proposed the
CNOP approach to find the initial perturbation of the largest
evolution at the prediction time, i.e., the aforementioned
CNOP-I. CNOP-I is obtained by maximizing the nonlinear

evolutions of the initial perturbations in a given constraint
(Mu et al., 2003; Mu and Zhang, 2006). Illuminated by the
CNOP-I, we attempt to extend the CNOP approach to find
the optimal combined mode of initial perturbation and model
parameter perturbation and to disclose the optimal parameter
perturbations in a given constraint.

The paper is organized as follows. In the next section,
the CNOP approach is extended to consist not only of opti-
mal initial perturbation, but also optimal parameter perturba-
tion. The calculation of the extended CNOP is discussed in
Sect. 3. In Sect. 4, the CNOP approach is used to illustrate
the dominant source of the uncertainties that limit ENSO pre-
dictability by a theoretical ENSO model. Finally, the results
obtained in this paper are summarized and the physics of
CNOPs are discussed in Sect. 5.

2 Conditional nonlinear optimal perturbation: initial
perturbation and parameter perturbation

We write the evolution equations for the state vectorU ,
which may represent surface current, thermocline depth and
sea surface temperature, etc., as follows;

∂U

∂t
= F (U ,P ),

U |t=0 = U0,
in �× [0,τ ] (2.1)

whereU(x,t) = (U1(x,t),U2(x,t),...,Un(x,t)), andU0 is
its initial state; (x,t) ∈ � × [0,τ ], � is a domain inRn,
x = (x1,x2,...,xn), t = 0 is the initial time andt = τ with
τ < +∞ is a future time; furthermore,P = (P1,P2,...,Pm)

is model parameters andPi represents one model parameter
that is independent of timet . F is a nonlinear differential op-
erator. Assume that the dynamical system equations Eq. (2.1)
and the initial state are known exactly, the future state can be
determined by integrating Eq. (2.1). The solution to Eq. (2.1)
for the state vectorU at timeτ is given by

U(τ ) = Mτ (P )(U0) . (2.2)

HereMτ (P ) is the propagator of Eq. (2.1) with the parameter
vectorP and, as described by (2.2), “propagates” the initial
valueU0 to the timeτ in the future.

Considering further the solutionU(τ ) + u(τ) of the
Eq. (2.1) with initial valueU0+u0, we have

U(τ )+u(τ) = Mτ (P )(U0+u0) ,

whereu0 is the initial perturbation of a time-dependent state
U(t) (hereafter as reference state), andu(τ) describes the
nonlinear evolution of this initial perturbation. To facilitate
the discussion, we use the denotationu(u0;τ) instead of the
u(τ).
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Assume that a parameter perturbationp′ is superimposed
on a reference parameterP , then

U(τ )+u
(
p′

;τ
)
= Mτ (P +p′)(U0),

whereu(p′
;τ) describes the departure from the reference

stateU(τ ) (see Eq. 2.2) caused byp′.
Now we explore the situation that there exists both initial

perturbation and parameter perturbation in Eq.(2.2). Then
we have

U(τ )+u(u0,p
′
;τ) = Mτ (P +p′)(U0+u0).

u
(
u0,p

′
;τ

)
is the departure from the reference stateU(τ )

caused by the combined error mode
(
u0,p

′
)
.

A nonlinear optimization problem is defined as follows.

J
(
u0;p

′
)
=‖Mτ

(
P +p′

)
(U0+u0)−Mτ (P )(U0)‖, (2.3)

and

J
(
u0δ;p

′
σ

)
= max

u0∈Cδ,p′∈Cσ

J
(
u0;p

′
)
. (2.4)

Here u0 ∈ Cδ and p′
∈ Cσ , respectively, are the constraint

conditions of the initial perturbations and parameter pertur-
bations, whereCδ andCσ are closed andδ andσ distinguish
the constraints of initial perturbations and parameter pertur-
bations. The constraint conditions here can simply be ex-
pressed as belonging to a ball with a chosen norm; obviously,
we can also investigate the situation that the perturbations
satisfy some physical laws or other. In addition, we can con-
sider the parametersp in the Eq. (2.1) to be time-dependent
and to establish the optimization problems similar to the op-
timization problem (2.4). Nevertheless, the corresponding
computation could be more difficult, which will not be dis-
cussed here.

Obviously, the optimization problem (2.4) is a constrained
maximization problem. By this optimization problem, one
can obtain the optimal combined mode of initial perturbation
and parameter perturbation,(u0δ;pσ ), which, for the given
constraint, induces the largest departure from the reference
stateU(t) at time τ . It is noticed that, when we consider
only initial perturbation or assume that the constraint of the
parameter perturbation isp′

= 0, the optimization problem
(2.4) becomes

Ju0

(
uI

0δ

)
= max

u0∈Cδ

‖Mτ (P )(U0+u0)−Mτ (P )(U0)‖, (2.5)

and the initial perturbationuI
0δ satisfying (2.5) just is the

CNOP-I, i.e., the CNOP defined by Mu et al. (2003). Thus, it
is clear that the optimal combined mode in (2.4) is an exten-
sion of the CNOP proposed in Mu et al. (2003). For conve-
nience, we still named this extended CNOP as CNOP. That
is to say, the CNOP hereafter consists of the optimal com-
bined mode of initial perturbation and parameter perturba-
tion; and the aforementioned CNOP-I is a special case of the

CNOP. It has been shown that CNOP-I is a natural general-
ization of linear singular vector (LSV) to nonlinear regime
(Mu et al., 2003), which has been applied in stability, sensi-
tivity, and predictability studies (Mu et al., 2007b; Terwiss-
cha van Scheltinga and Dijkstra, 2008; Wu and Mu, 2009).
All these applications demonstrate that CNOP-I is more ap-
plicable than LSV in estimating predictability limit.

Another special case of the CNOP is on model parameter
perturbation. In fact, when only investigating the effect of
model parameter perturbation on a given reference state, it
requires one to explore the departure from the reference state
at the prediction time. In this case, we can derive from (2.4)
the parameter perturbations that cause the largest departure
from the given reference state. In (2.4), we neglect the initial
perturbation, namely, take the constraint of initial perturba-
tion asu0 = 0, and obtain

Jp

(
pp

σ

)
= max

p′∈Cσ

‖Mτ

(
P +p′

)
(U0)−Mτ (P )(U0)‖, (2.6)

in which p
p
σ is just such an optimal parameter perturbation

in the given constraint. Following the CNOP-I, we call such
an optimal parameter perturbation as “CNOP-P”.

Although Lu and Hsieh (1998), Fan and Chou (1999),
Grimstad et al. (2003) and Aanonsen (2005) used the non-
linear optimization method to explore the model parameters,
they devoted their time to solving a minimization problem
and to determining the values of the unknown parameter in
numerical models. In a predictability study, it is also required
to investigate the parameter uncertainties that have the largest
effect on prediction results, but this is related to a maximiza-
tion problem. In essence, this is different from those in the
aforementioned works on parameters and cannot be realized
by their approaches. The CNOP-P can be used to address this
question. In fact, if theU0 in (2.3) is regarded as an initial
observation, the CNOP not only illustrates the optimal com-
bined mode of initial observational error and model parame-
ter error, but also presents an estimation of the upper-bound
maximum prediction errors through its resultant prediction
error (see Mu et al., 2002). Correspondingly, the CNOP-
P (CNOP-I) error shows an estimation of the upper-bound
maximum prediction errors in a perfect initial condition sce-
nario (perfect model scenario) and represents the parameter
errors (the initial observational errors) that has the largest ef-
fect on predictability. These upper bounds of the maximum
prediction errors can be attained. It is the CNOP, CNOP-I
and CNOP-P errors that cause the maximum prediction er-
ror in their respective scenario. To facilitate the discussion,
we hereafter use the term “initial error”, rather than “initial
observational error”, to describe the results obtained in this
paper.

In order to employ the CNOP approach in predictability
studies, CNOP-I or CNOP-P or CNOP should first be ob-
tained. However, it is very difficult to solve them analyti-
cally. One should attempt to compute them numerically. In
the next section, we will discuss this question.
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3 Computations of CNOP, CNOP-I and CNOP-P

CNOP-I has been computed in many studies. In calculat-
ing CNOP-I, some optimization solvers are useful (Powell et
al., 1982; Liu and Nocedal, 1989; Birgin et al., 2000). They
usually search for CNOP-I along the steepest descent in the
direction of the gradient of the corresponding objective func-
tion. It is obvious that the gradient is important for capturing
the maximal value of the objective function. In large-scale
optimization, the gradient of the objective function, with re-
spect to initial perturbations, is often obtained by the adjoint
method (Le Dimet and Talagrand, 1986). In fact, CNOP and
CNOP-P can also be obtained by optimization solvers with
a gradient; moreover, the gradient of the objective function,
with respect to initial perturbations and parameter perturba-
tions, can be transferred to a particular case of the objec-
tive function with respect to augmented initial perturbations.
Then the computation of such a gradient is an elementary ap-
plication of the general adjoint method. Although it is now
very well known in meteorology and oceanography (see Lu
and Hsieh, 1998), we, for the readers’ convenience, still de-
scribe here how to compute CNOP and CNOP-P with a gra-
dient.

The existing optimization solvers are often used to com-
pute minimization problems; while CNOPs is related to a
constrained maximization problem. In calculating CNOPs,
we turn the maximization problem into a minimization prob-
lem. In particular, we rewrite the objective function in (2.3)
as follows:

J1
(
u0;p

′
)
= −

1

2

[
J

(
u0;p

′
)]2

=

−
1

2
‖Mτ

(
P +p′

)
(U0+u0)−Mτ (P )(U0)‖

2
=

−
1

2
< u

(
u0,p

′
;τ

)
,u

(
u0,p

′
;τ

)
>, (3.1)

where< · > is the inner product. Then the maximization
problem (2.4) becomes a minimization one. By computing
the minimum of the functionJ1

(
u0;p

′
)
, the CNOPs can be

obtained.
The first-order variational ofJ1

(
u0;p

′
)

is as follows:

−δJ1 =< u(τ),δu(τ) >=<
−∂J1

∂u0
,δu0 > + <

−∂J1

∂p′
,δp′ >,

(3.2)

where, to facilitate the description, we simply useu instead
of u

(
u0,p

′
;τ

)
. Furthermore,δu(t) andδp can be governed

by the following tangent linear model

∂δu

∂t
=

∂F
(
U(t)+u(t);P +p′

)
∂u

δu+
∂F

(
U(t)+u(t);P +p′

)
∂p′

δp,

∂δp

∂t
= 0,

δu|t=0 = δu0,

δp|t=0 = δp′.

(3.3)

By introducing two Lagrangian Multipliersλ1 andλ2, we
obtain that

−δJ1 =< u(τ),δu(τ) >−

∫ τ

0
< λ1(t),

∂δu

∂t
−

∂F
(
U +u;P +p′

)
∂u

δu−
∂F

(
U +u;P +p′

)
∂p′

δp >dt−

∫ τ

0
< λ2(t),

∂δp

∂t
> dt . (3.4)

With an integration by parts, we can get

∫ τ

0
< λ1(t),

∂δu

∂t
> dt =

∫ τ

0

∂

∂t
< λ1(t),δu > dt−

∫ τ

0
<

∂λ1(t)

∂t
,δu> dt =< λ1(τ ),δu(τ) > −

< λ1(0),δu(0) >−

∫ τ

0
<

∂λ1(t)

∂t
,δu> dt

and

∫ τ

0
< λ2(t),

∂δp

∂t
> dt =

∫ τ

0

∂

∂t
< λ2(t),δp > dt−

∫ τ

0
<

∂λ2(t)

∂t
,δp > dt =< λ2(τ ),δp(τ) > −

< λ2(0),δp(0) >−

∫ τ

0
<

∂λ2(t)

∂t
,δp > dt =

< λ2(τ ),δp′ > − < λ2(0),δp′ > −

∫ τ

0
<

∂λ2(t)

∂t
,δp > dt.

Then we deriveδJ as follows:

−δJ1

=

∫ τ

0
<

∂λ1

∂t
,δu > dt+ < u(τ)−λ1(τ ),δu(τ) > + < λ1(0),δu0 >

+

∫ τ

0
< λ1(t),

[
∂F (U(t)+u(t);P +p′)

∂u

]
δu >dt

+

∫ τ

0
< λ1(t),

[
∂F (U(t)+u(t);P +p′)

∂p′

]
δp >dt

+

∫ τ

0
<

∂λ2(t)

∂t
,δp > dt+ < 0−λ2(τ ),δp′ > + < λ2(0),δp′ >

=

∫ τ

0
<

∂λ1

∂t
,δu > dt+ < u(τ)−λ1(τ ),δu(τ) > + < λ1(0),δu0 >
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+

∫ τ

0
<

[
∂F (U(t)+u(t);P +p′)

∂u

]∗

λ1(t),δu> dt

+

∫ τ

0
<

[
∂F (U(t)+u(t);P +p′)

∂p′

]∗

λ1(t),δp > dt

+

∫ τ

0
<

∂λ2(t)

∂t
,δp > dt+ < 0−λ2(τ ),δp′ > + < λ2(0),δp′ >

=

∫ τ

0
<

∂λ1

∂t
+

[
∂F

(
U(t)+u(t);P +p′

)
∂u

]∗

λ1(t),δu > dt

+ < u(τ)−λ1(τ ),δu(τ) > + < λ1(0),δu0 >

+

∫ τ

0
<

∂λ2

∂t
+

[
∂F (U(t)+u(t);P +p′)

∂p′

]∗

λ1(t),δp > dt

+ < 0−λ2(τ ),δp′ > + < λ2(0),δp′ >, (3.5)

where the sign “[·]∗” denotes an adjoint operator. Therefore,
by (3.2) and (3.5), we have

∂J1

∂u0
= −λ1(0), (3.6)

and

∂J1

∂p′
=−λ2(0)=−

∫ τ

0

[
∂F

(
U(t)+u(t);P+p′

)
∂p′

]∗

λ1(t)dt ,

(3.7)

whereλ1(t) andλ2(t) satisfies

∂λ1

∂t
+

[
∂F

(
U(t)+u(t);P +p′

)
∂u

]∗

λ1 = 0,

∂λ2

∂t
+

[
∂F (U(t)+u(t);P +p′)

∂p′

]∗

λ1 = 0,

λ1|t=τ = u(τ),

λ2|t=τ = 0.

(3.8)

The Eq. (3.8) is the adjoint equation of the Eq. (3.3). By in-
tegrating the Eq. (3.8), we can obtain the gradient∂J1/∂u0
and ∂J1/∂p

′. With this gradient information, the CNOP-
I, CNOP-P and CNOP can be computed by optimization
solvers such as Spectral Projected Gradient 2 (SPG2; Bir-
gin et al., 2000), Sequential Quadratic Programming (SQP;
Powell et al., 1982) and Limited memory Broyden-Fletcher-
Goldfarb-Shanno for bound-constrained optimization (L-
BFGS-B; Liu and Nocedal, 1989; Zhu et al., 1997).

It is easily seen that the Eq. (3.8) is established on the
Eq. (3.9). And the Eq. (3.9) is the adjoint of the tangent linear
model of Eq. (2.1) and can be used to calculate the gradient
∂J1/∂u0 related to CNOP-I.

∂λ1

∂t
+

[
∂F

(
U(t)+u(t);P +p′

)
∂u

]∗

λ1 = 0,

λ1|t=τ = u(τ),

(3.9)

This suggests that, if there are adjoint models Eq. (3.9) re-
lated to initial perturbations, one can easily modify them as
the adjoint models Eq. (3.8) to calculate CNOPs.

In the above, we derive the gradient of the objective func-
tion J1, with respect to initial perturbations and parameter
perturbations, by introducing two Lagrangian Multipliersλ1
andλ2 for an augmented initial perturbation equation. The
approach could clearly present the relationship between the
adjoint model with the initial perturbations and the model
with parameter perturbations. Of course, this gradient can
also be obtained by the usual differentiation of the objec-
tive function, with respect to initial condition and parame-
ters (i.e. using the definition of the derivative of a nonlin-
ear operator) (see Shutyaev et al., 2008). In addition, since
CNOP is related to a constrained optimization problem, the
constraint condition itself is also enforced in optimization.
In different optimization algorithms, the constraints, together
with the objective functions, may show different manners to
determine the new iteration points in the optimization pro-
cesses (see Powell et al., 1982; Birgin et al., 2000). In the
L-BFGS-B solver to be adopted in the next section, the con-
straint defines a feasible region of the initial perturbationsu0
and the feasible direction of the steepest decent is obtained
by the gradient projection method (Rosen, 1960). Given that
u0 is in the feasible region, the gradient∇J1 is computed.
The direct gradient decent givesu0−µ∇J1 (µ is a step size).
But this vector may no longer be in the feasible region. To
keep this feasibility, the new iteration points are obtained by
projectingu0−µ∇J1 onto the feasible region defined by the
constraint. By this, the updated iteration points still lie in the
feasible region, which finally makes the extreme points cor-
respond to minimal value satisfy the constraint condition as
well. This is only a rough description. For more details, the
reader is referred to Zhu et al. (1997).

4 Application of CNOPs to a simple coupled
ocean-atmosphere model for ENSO

The ENSO, a prominent climate phenomenon in the coupled
ocean-atmosphere system of the tropical Pacific, has a great
impact on the global climate. While significant progress has
been made in ENSO theories and predictions over the years
(see the review of Wang and Picaut, 2004), there still exists
considerable uncertainties in realistic ENSO predictions (Jin
et al., 2008; Tang et al., 2008). Many studies explored ENSO
predictability from the view of initial error growth (Moore
and Kleeman, 1996; Samelson and Tziperman, 2001) and
showed that initial error may have a large effect on ENSO
predictions. It is well known that, in realistic predictions of
ENSO, the prediction uncertainties are generally caused by
initial errors and model errors. Furthermore, an increasing
number of studies have indicated that the errors which ex-
isted in some model parameters influence the ENSO forecast
skill at a particular time scale (Liu, 2002; Wu et al., 1993;
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Zebiak and Cane, 1987). Then the question is, in initial er-
rors and model parameter errors; which one plays the major
role in yielding considerable uncertainties of ENSO predic-
tions? In this section, we will try to address this by using the
CNOP approach.

4.1 The coupled ENSO model

The model we used in this paper is the theoretical coupled
ocean-atmosphere model of Wang and Fang (1996) (here-
after referred to as WF96), which has been used to investi-
gate the predictability of ENSO by Duan et al. (2004, 2008)
and Duan and Mu (2006). This model consists of two di-
mensionless equations: one describing the evolutions of the
anomalous SSTT in the equatorial eastern Pacific, and the
other depicting those of the anomalous thermocline depthh.


dT

d t
= a1T −a2h+

√
2

3
T (T −a3h),

dh

d t
= b(2h−T ),

(4.1)

where

a1 = T̄ ′
z + T̄ ′

x −α′
s,

a2 = (µ+δ1)T̄
′
x ,

a3 = µ+δ1

b =
2α

p
(
1−3α2

) .

(4.2)

The coefficientsa1 anda2 involve basic state parametersT̄ ′
x

andT̄ ′
z , which characterise, respectively, the mean tempera-

ture difference between the eastern and western basins and
between the surface and subsurface water, and reflect the cli-
matological annual cycle of the basic state.δ1 represents
the contribution of the horizontal temperature advection by
anomalous zonal currents to local SST variation. Two es-
sential coupling parameters (nondimensional) are presented
in this model. One is the air-sea coupling coefficient,α =(

L0
Ly

)2
, whereL0 is the oceanic Rossby radius of deforma-

tion andLy is the characteristic meridional length scale of
the coupled ENSO mode. Another coupling parameter is
the thermocline effect coefficientµ =

µ∗H1
θ

, which measures
the degree of coupling between thermocline fluctuation and
SST. These two parameters are often empirically determined
in the model and have uncertainties. In this paper, we choose
α = 0.0212 andµ = 1.525 as the given values of the two pa-
rameters. The nondimensional parameterb is a function ofα
and the model parametersp = (1−H1/H)(L0/Ls)

2, where
H andH1, respectively, are the mean depth of the thermo-
cline and the mixed layer andLs is the Ekman spreading
length. For the values of these parameters, the reader is re-
ferred to Table 1 in WF96.

The steady solutionO(0,0) represents the climatological
annual cycle, in which both SST and the depth of thermo-
cline are normal. In this paper, the model is integrated by
the fourth-order Runge-Kutta scheme withd t = 0.01, which
represents one day.

4.2 Estimation of prediction errors for El Ni ño events
by CNOP, CNOP-I, and CNOP-P

With an initial constraintU0 ∈ {U0|‖U0‖ ≤ ρ0}, where
‖U0‖ = max{|T0|,|h0|}, Duan et al. (2009) studied the
CNOP-I superimposed on the climatological annual cycle
in the WF96 model and demonstrated that the CNOP-I
anomalies(T0,h0) = (−ρ0,ρ0) with different positive val-
ues ofρ0 evolve into different intensities of El Niño events.
These initial anomalies have the robust patterns of nega-
tive SST and positive thermocline depth anomalies, which
agree with the observations qualitatively (Duan et al., 2004),
and act as the optimal precursors of El Niño events. In
this paper, we chooseρ0 = 0.05 and 0.08, then obtain two
initial precursory anomalies(T0,h0) = (−0.05,0.05) and
(−0.08,0.08), which are dimensionless and represents di-
mensional (−0.1◦C, 2.5 m) and (−0.16◦C, 4.0 m) of SSTA
and the thermocline depth anomaly in the equatorial east-
ern Pacific. We consider these initial precursors occurring
in January, April, July, and October, respectively. And for
each initial precursor time, the above two initial anomalies
induce two different intensities of El Niño events. The ini-
tial anomaly (–0.05, 0.05) develops a weak El Niño event,
while (–0.08, 0.08) evolves into a relatively strong El Niño
event (see Mu and Duan, 2003; Duan et al., 2009). For
convenience, we denote the weak (strong) El Niño events
with initial precursor time January, April, July and Octo-
ber asUW

Jan(U
S
Jan), UW

Apr(U
S
Apr), UW

Jul(U
S
Jul) and UW

Oct(U
S
Oct),

respectively. We regard these El Niño events as “observed
El Niño events” to be predicted and then compute their
CNOP, CNOP-I and CNOP-P errors, finally determining the
dominant source of the errors that yield considerable predic-
tion uncertainties.

Using the uncertain initial condition and model param-
eters, we predict the above predetermined El Niño events
with a one year lead time and the respective initial precur-
sory time as the start time of predictions. In the WF96
model, we consider the initial errors ofT and h, denoted
by u0 =

(
T ′

0,h
′

0

)
; and the uncertainties of the parameters

P = (α,µ), signified byp′
=

(
α′,µ′

)
. In this case,U0 and

u0 in the objective function (2.3) related to CNOPs repre-
sents the initial state(T0,h0) of the model El Nĩno events
and its initial error(T ′

0,h
′

0), P andp′ stand for the param-
etersα andµ and their errorsα′ andµ′, and the objective
function J =

√
T ′(τ )2+h′(τ )2 measures the resultant pre-

diction errors by
(
T ′

0,h
′

0

)
and

(
α′,µ′

)
at the prediction time

τ , respectively.
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The norm‖u0‖ = max{|T ′

0|,|h
′

0|} is used to measure the
magnitudes of initial errors. And the constraint

Cδ = {u0|‖u0‖ ≤ δ} (4.3)

with δ ranging from 0.01 to 0.05 is adopted to control the
magnitudes of initial errors. For parameter errorsα′ andµ′,
we determine their constraints according to the basic rules
of numerical simulation of ENSO. In realistic ENSO predic-
tions, the forecast model should first guarantee that it can
simulate the main features of the observed ENSO. As such,
the values of the parameters in the model must be set to sat-
isfy this precondition. Keep this in mind, as we determine
that the parameter errors satisfy the constraint

Cσ =
{(

α′,µ′
)
||α′

|/α ≤ σ1,|µ
′
|/µ ≤ σ2

}
(4.4)

with σ1 = 0.03 andσ2 = 0.08.
With the constraintCδ, Mu and Duan (2003) computed

the CNOP-I superimposed on some El Niño events in the
WF96 model and demonstrated that the CNOP-I errors al-
ways have the patterns of(−δ,δ). In this paper, we obtain the
CNOP-I of the predetermined eight El Niño events, which
are similar to those of Mu and Duan (2003) and have the
common patterns(−δ,δ) with δ ranging from 0.01 to 0.05.
In the perfect model scenario, these CNOP-I errors have the
largest effect on prediction uncertainties of the correspond-
ing El Niño events for the constraintCδ and make the corre-
sponding El Nĩno events to be over-predicted.

In order to explore the dominant source of the errors that
yield considerable prediction uncertainties for ENSO events,
we also include the effect of parameter errors in the model
and investigate the CNOP and CNOP-P errors of the El Niño
events.

To compute the CNOP and CNOP-P, we need the infor-
mation of the gradient of the objective functionJ , similar to
the computation of CNOP-I. According to Eq. (3.3) and the
Eqs. (3.6)–(3.8), we construct the adjoint model of the ENSO
model (4.1) and obtain the gradient of the objective function
J with respect to the initial perturbations and the parameter
perturbations. By using this gradient information, the CNOP
and CNOP-P errors of the eight El Niño events are computed
by the L-BFGS-B solver (Liu and Nocedal, 1989; Zhu et al.,
1997), the algorithm which was also used to obtain CNOP-I
in Mu and Duan (2003) and Duan et al. (2009).

The CNOP errors of the predetermined eight El Niño
events are first investigated. The results demonstrate that
there exists one CNOP error for each El Niño prediction for
each of different magnitudes of constraints; furthermore, the
CNOP errors of different El Niño predictions always corre-
spond to initial perturbations that lie on the boundary of the
domain defined by the constraint and have similar patterns.
For simplicity, we only list the ones, in Table 1, of the predic-
tions of the El Nĩno eventUW

Janfor different constraints. From
the definition of CNOP, it is known that the CNOP errors
cause the largest prediction errors for the combined modes

Table 1. CNOPs for the reference state El Niño eventUW
Jan.

Cδ andCσ T ′
0 h′

0 α′ µ′

δ = 0.01,σ1 = 0.03,σ2 = 0.08 –0.01 0.01 0.0006 –0.1220
δ = 0.02,σ1 = 0.03,σ2 = 0.08 –0.02 0.02 0.0006 –0.1220
δ = 0.03,σ1 = 0.03,σ2 = 0.08 –0.03 0.03 0.0006 –0.1220
δ = 0.04,σ1 = 0.03,σ2 = 0.08 –0.04 0.04 0.0006 –0.1220
δ = 0.05,σ1 = 0.03,σ2 = 0.08 –0.05 0.05 0.0006 –0.1220
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Fig. 1. Magnitudes of prediction errors caused by the CNOP-
I, CNOP-P, CNOP errors, and the combination of CNOP-I and
CNOP-P errors withδ = 0.05 andσ1 = 0.03 andσ2 = 0.08, for the
predetermined eight model El Niño events. The measurement of the
prediction errors isJ (u0;p′) =

√
T ′(τ )2+h′(τ )2. The numbers 1,

2, 3 and 4 in the horizontal axis denote the El Niño eventsUW
Jan

,

UW
Apr, UW

Jul andUW
Oct; and 5, 6, 7 and 8 signify the El Niño events

US
Jan, US

Apr, US
Jul andUS

Oct, respectively.

of initial errors and parameter errors in a constraint. To il-
lustrate them, we plot, in Fig. 1, the prediction errors caused
by CNOP errors withδ = 0.05. By comparing the prediction
errors caused by CNOP errors and CNOP-I errors, we find
that the CNOP errors only lead to a slightly larger predic-
tion error than the CNOP-I errors. This indicates that, even
if the maximum allowable parameter errors are considered
in the WF96 model, they have, at most, trivial effects on the
prediction errors caused by initial errors. It is implied that
initial errors may be the dominant source of the errors that
cause notable uncertainties of ENSO predictions.

Now we study the CNOP-P errors for the eight El Niño
events. In this case, we assume initial states of reference
state El Nĩno events are perfect, then only consider the effect
of parameter errors on ENSO predictability. The optimiza-
tion problem (2.6) in Sect. 2 is related to CNOP-P, whereU0,
P andp′ are the same as those of CNOP, but the objective
functionJ =

√
T ′(τ )2+h′(τ )2 only measures the prediction
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error of the El Nĩno events caused by the parameter errors
(α′,µ′) in the constraintCσ in (4.3). With the gradient ofJ ,
with respect to(α′,µ′), the CNOP-P for the eight El Niño
events are calculated. The results show that, for the con-
straint Cσ with σ1 = 0.03 andσ2 = 0.08, the CNOP-P er-
rors for eight El Nĩno events are coherently of the pattern
(0.03α,0.08µ) with α = 0.0212 andµ = 1.525 and corre-
spond to the parameter perturbations that lie on the boundary
of the domain defined by the constraintCσ . Furthermore, we
find that these CNOP-P errors are not the same as the param-
eter perturbation component in the CNOP patterns obtained
above. We note that the CNOP-P errors cause the corre-
sponding El Nĩno events to be under-predicted; while the pa-
rameter error component(0.03α,−0.08µ) in the CNOP er-
rors cause the El Niño events to be over-predicted (figures are
omitted). This indicates that CNOP in the WF96 model could
not be a simple combination of CNOP-I and CNOP-P, which
then may imply that CNOP errors consider the effect of non-
linear interaction between initial errors and model parameter
errors. In addition, the CNOP-I errors, as described above,
cause the model El Niño events to be over-predicted; further-
more, the initial error component in the CNOP errors is the
same as the CNOP-I errors and also cause the corresponding
El Niño events to be over-predicted. It is conceivable that,
if the model parameter error components in the CNOP errors
are the same as the CNOP-P patterns, they will offset the pre-
diction errors caused by the initial error components of the
CNOP errors. This fact illustrates physically why the CNOP
error, rather than the combination of CNOP-I and CNOP-P, is
the optimal one in the WF96 model and has the largest effect
on prediction uncertainties for El Niño events. Furthermore,
we note that the differences between the prediction errors
caused by the CNOP errors and those caused by the com-
bination of CNOP-I and CNOP-P errors reflect the effect of
nonlinearity, due to the nonlinear response of initial errors
to the parameter errors. Of course, the nonlinearities shown
in CNOP errors, similar to those in CNOP-I errors (see Mu
et al., 2007a), can also be extracted from the difference be-
tween the prediction errors in nonlinear model and those in
its corresponding linearized one. Therefore, although we
have demonstrated that the model parameter errors play a
minor role in yielding significant uncertainties of ENSO pre-
dictions in the WF96 model, the differences among CNOP,
CNOP-I and CNOP-P errors suggest that, to better estimate
the predictability limit and reveal the nonlinear effect, the
optimal combined mode of initial error and model parameter
errors should be investigated.

5 Summary and discussion

This study presents an extension of the CNOP approach,
which has renewed the CNOP as the optimal combined mode
of initial perturbation and parameter perturbation, i.e. the one
that causes the largest departure from the reference state. The

renewed CNOP has two special cases: one is CNOP-I that
is only related to initial perturbation and induces the largest
nonlinear evolution at prediction time; the other is CNOP-
P, which is proposed in this paper and merely associated
with the parameter perturbation, causing the largest depar-
ture from the reference state.

CNOP-I acts as the initial error that has the largest ef-
fect on prediction uncertainties in a perfect model scenario;
while the CNOP can represent the optimal combined mode
of initial errors and model parameter errors, which causes the
maximum prediction error; and CNOP-P can stand for the
parameter error that yields the maximum prediction errors
in perfect initial condition scenario. This physics of CNOPs
allows us to investigate, not only the first kind of predictabil-
ity problems but also the second kind of ones; furthermore,
the predictability problems of the coexistence of initial er-
rors and model parameter errors. In this paper, we use such
physics of the CNOPs to study the ENSO predictability by
a theoretical coupled ocean-atmosphere model. It is demon-
strated that the CNOP errors only cause a slightly larger pre-
diction error than the CNOP-I errors. This indicates that
initial errors, rather than model parameter errors, may play
the major role in yielding notable prediction uncertainties for
ENSO events. It is clear that the CNOP errors consider the
combined effect of initial errors and model parameter errors
and enable itself to investigate the relative effect of initial er-
rors and model parameter errors on prediction uncertainties
and to identify the dominant source of the uncertainties that
yield a big effect on predictability. In addition, we show that
the CNOP errors are not a simple combination of CNOP-I
and CNOP-P errors, but a particular combined pattern of ini-
tial errors and model parameter errors. Furthermore, this par-
ticular error pattern and its resultant prediction error consider
sufficiently an effect of nonlinearity. Therefore, to better es-
timate the predictability limit and reveal nonlinear effect, we
should explore the CNOP errors, i.e. the optimal combined
mode of initial errors and model parameter errors.

CNOP-I also manifested its physics as the optimal precur-
sor of a weather or a climate event, and the most sensitive
(or most unstable) initial pattern in sensitivity analysis (Duan
et al., 2004; Mu et al., 2004). It is expected that CNOP-P
could illuminate the most sensitive parameter perturbation,
and provide information on determining the sequence of sen-
sitivity of model parameters. It is known that there are many
parameters in numerical models and most of these parame-
ters are determined by observations. The CNOP-P may help
determine the parameters that should be better fixed by ob-
servations. For the CNOP, it could be used to find the opti-
mal precursor of a weather or a climate event under the opti-
mal parameter condition, in an attempt to study the effect of
model parameters’ sensitivity on the precursors. CNOP may
also be applied to investigate the most unstable (sensitive)
initial modes with the most sensitive parameter perturbations
in sensitivity analysis. Of course, these physics of CNOP
should be realized by applying them to physical problems of
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interest. Nevertheless, what should be pointed out is that the
CNOP-P here is only related to model parameter errors and
cannot consider other kinds of model errors. Despite this,
it is expected that CNOP will play an important role in the
studies of atmospheric and oceanic sciences.
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