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Abstract. We consider a highly idealized model for El

Niño/Southern Oscillation (ENSO) variability, as introduced

in an earlier paper. The model is governed by a delay differ-

ential equation for sea-surface temperatureT in the Tropical

Pacific, and it combines two key mechanisms that participate

in ENSO dynamics: delayed negative feedback and seasonal

forcing. We perform a theoretical and numerical study of

the model in the three-dimensional space of its physically

relevant parameters: propagation periodτ of oceanic waves

across the Tropical Pacific, atmosphere-ocean couplingκ,

and strength of seasonal forcingb. Phase locking of model

solutions to the periodic forcing is prevalent: the local max-

ima and minima of the solutions tend to occur at the same po-

sition within the seasonal cycle. Such phase locking is a key

feature of the observed El Niño (warm) and La Nĩna (cold)

events. The phasing of the extrema within the seasonal cy-

cle depends sensitively on model parameters when forcing is

weak. We also study co-existence of multiple solutions for

fixed model parameters and describe the basins of attraction

of the stable solutions in a one-dimensional space of constant

initial model histories.
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1 Introduction and motivation

1.1 Key ingredients of ENSO theory

The El-Niño/Southern-Oscillation (ENSO) phenomenon is

the most prominent signal of seasonal-to-interannual climate

variability. Its crucial role in climate dynamics and its socio-

economic importance were summarized in the first part of

this study (Ghil et al., 2008b), hereafter Part 1; see also

Philander(1990); Glantz et al.(1991); Diaz and Markgraf

(1992) andCane(2005), among others.

An international ten-year (1985–1994) Tropical-Ocean-

Global-Atmosphere (TOGA) Program greatly improved

the observation (McPhaden et al., 1998), theoretical mod-

elling (Neelin et al., 1994, 1998), and prediction (Latif et al.,

1994) of exceptionally strong El Niño events. It has been

confirmed, in particular, that ENSO’s significance extends

far beyond the Tropical Pacific, where its causes lie.

An important conclusion of this program was that – in

spite of the great complexity of the phenomenon and the dif-

ferences between the spatiotemporal characteristics of any

particular ENSO cycle and other cycles – the state of the

Tropical Pacific’s ocean-atmosphere system could be char-

acterised, mainly, by either one of two highly anti-correlated

scalar indices. These two indices are a sea surface tempera-

ture (SST) index and the Southern Oscillation Index (SOI):

they capture the East-West seesaw in SSTs and that in sea-

level pressures, respectively; see, for instance, Fig. 1 ofSaun-

ders and Ghil(2001).
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Fig. 1. Temporal evolution of the NINO3.4 index that summa-

rizes sea-surface temperature (SST) anomalies in the region be-

tween 170◦,W–120◦ W and 5◦ S–5◦ N. The time series is centred

and normalized, but the horizontal lines do not represent the stan-

dard deviations: instead, they have ordinates 1.5 and−1; see also

Fig. 3.

A typical version of the SST index is the so-called Niño-

3.4 index, which summarizes the mean “anomalies” – i.e.,

the monthly mean deviations from the climatological “nor-

mal” – of the spatially averaged SSTs over the region

(170◦ W–120◦ W, 5◦ S–5◦ N) (Hurrell and Trenberth, 1999;

Reynolds and Smith, 1994; Trenberth, 1997).

The evolution of this index, since 1900, is shown in Fig.1:

it clearly exhibits some degree of regularity, on the one hand,

as well as numerous features characteristic of a determinis-

tically chaotic system, on the other. The regularity mani-

fests itself as the rough superposition of two dominant oscil-

lations – quasi-biennial and quasi-quadrennial (Jiang et al.,

1995; Ghil et al., 2002) – accompanied by a near-symmetry

of the local maxima and minima (i.e., of the positive and neg-

ative peaks). The lack of regularity has been associated with

the presence of a “Devil’s staircase” (Jin et al., 1994, 1996;

Tziperman et al., 1994, 1995) and does not preclude the su-

perposition of stochastic effects as well (Ghil et al., 2008c).

While this study mainly focuses on localextrema(maxima

and minima) in our ENSO model, one must recall that the

major El Niños of 1982–1983 and 1997–1998 (see Fig.1)

are, in fact, genuineextremes, i.e. rare events of unusually

large magnitude. These climatic extremes and the related

hydroclimatological impacts are part of the motivation for

studying ENSO in general and for this study in particular.

At the moment, the observational record contains too few

of these truly extreme events to allow studying them by the

methods of classical, i.e. statistical extreme value theory.

Therefore, we hope that the modelling approach developed

in this study might prove useful in obtaining relevant statisti-

cal data to better understand ENSO-related extreme events.

To simulate, understand and predict such complex phe-

nomena, one needs a full hierarchy of models, from “toy”

via intermediate to fully coupled general circulation mod-

els (GCMs) (Neelin et al., 1998; Ghil and Robertson, 2000;

Dijkstra and Ghil, 2005). We focus here on a “toy” model,

which captures a qualitative, conceptual picture of ENSO dy-

namics that includes a surprisingly broad range of features.

This approach allows one to gain a rather comprehensive un-

derstanding of the model’s, and maybe the phenomenon’s,

underlying mechanisms and their interplay, at the cost of not

capturing a full spatiotemporal picture of ENSO evolution.

We consider the following conceptual ingredients that

play a determining role in the dynamics of the ENSO phe-

nomenon: (i) the Bjerknes hypothesis, which suggests a pos-

itive feedback as a mechanism for the growth of an inter-

nal instability that could produce large positive anomalies of

SSTs in the eastern Tropical Pacific (Bjerkness, 1969); (ii)

delayed oceanic wave adjustments, realized in the form of

eastward Kelvin and westward Rossby waves, that compen-

sate for Bjerknes’s positive feedback (Suarez and Schopf,

1998); and (iii) seasonal forcing (Battisti, 1988; Chang et al.,

1994, 1995; Jin et al., 1994, 1996; Tziperman et al., 1994,

1995; Ghil and Robertson, 2000). A more detailed discus-

sion of these ingredients is given byGhil et al. (2008b) and

references therein.

The past 30 years of research has shown that ENSO dy-

namics is governed, by and large, by the interplay of the

above nonlinear mechanisms and that their simplest version

can be studied in periodically forced Boolean delay systems

(Saunders and Ghil, 2001; Ghil et al., 2008a) and delay dif-

ferential equations (DDE) (Suarez and Schopf, 1998; Battisti

and Hirst, 1989; Tziperman et al., 1994). DDE models pro-

vide a convenient paradigm for explaining interannual ENSO

variability and shed new light on its dynamical properties. So

far, though, DDE model studies of ENSO have been limited

to linear stability analysis of steady-state solutions, which are

not typical in forced systems; case studies of particular tra-

jectories; or one-dimensional (1-D) scenarios of transition to

chaos, where one varies a single parameter while the others

are kept fixed. A major obstacle for the complete bifurcation

and sensitivity analysis of DDE models lies in the complex

nature of DDEs, whose analytical and numerical treatment

is considerably harder than that of their ordinary differential

equation (ODE) counterparts.
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Fig. 2. Maximum and period maps for a warm initial history,φ(t) ≡ 1. (a) Maximum map,M = M(κ,τ) at b = 1; (b) maximum map,

M = M(b,τ) atκ = 10; (c) period map,P = P(κ,τ ) atb = 1; (d) period map,P = P(b,τ ) atκ = 10. Reproduced fromGhil et al.(2008b),

with kind permission of Copernicus Publications on behalf of the European Geosciences Union (EGU).

1.2 Part 1 results and their physical interpretation

Ghil et al. (2008b) took several steps toward a comprehen-

sive analysis, numerical as well as theoretical, of a DDE

model relevant for ENSO phenomenology. In doing so, they

also illustrated the complexity of the structures that arise in

its phase-and-parameter space for even such a simple model

of climate dynamics. Specifically, the authors formulated a

highly idealized DDE model for ENSO variability and fo-

cused on the analysis of model solutions in a broad three-

dimensional (3-D) domain of its physically relevant para-

meters. They showed that this model can reproduce many

scenarios relevant to ENSO phenomenology, including pro-

totypes of El Nĩno and La Nĩna events; spontaneous inter-

decadal oscillations and intraseasonal activity reminiscent of

Madden-Julian oscillations or westerly wind bursts (Delcroix

et al., 1993; Gebbie et al., 2007; Harrison and Giese, 1988;

Verbickas, 1998).

This model was also able to provide a good justification

for the observed quasi-biennial oscillation in Tropical Pacific

SSTs and trade winds (Philander, 1990; Diaz and Markgraf,

1992; Jiang et al., 1995; Ghil et al., 2002), with the 2–3-year

period arising naturally as the correct multiple of the sum

of the basin transit times of Kelvin and Rossby waves. An

important finding ofGhil et al. (2008b) was the existence

of regions of stable and unstable solution behaviour in the

model’s parameter space; these regions have a complex and

possibly fractal distribution of solution properties.

Figure 2 illustrates the model’s sensitive dependence on

parameters in a region that roughly corresponds to actual

ENSO dynamics. The figure shows the behaviour of the

global maximumM and periodP of model solutions as a

function of three parameters: the propagation periodτ of

oceanic waves across the Tropical Pacific, the atmosphere-

ocean coupling strengthκ, and the amplitudeb of the sea-

sonal forcing; for aperiodic solutions we setP = 0. Although

the model is sensitive to each of these three parameters, sharp

variations inM andP are mainly associated with changing

the delayτ , which is plotted on the ordinate in all four pan-

els of the figure. In other words, the global maximum, in

panels (a) and (b), as well as the period, in panels (c) and

(d), may change more than twofold in response to a slight

variation ofτ .
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This sensitivity is an important qualitative conclusion

since, in reality, the propagation times of Rossby and Kelvin

waves are affected by numerous phenomena that are not re-

lated directly to ENSO dynamics. Moreover - as soon as

the atmosphere-ocean couplingκ vanishes or the delayτ de-

creases below a critical value - the instabilities disappear and

the dynamics of the system becomes purely periodic, with

period one year; see Fig.2a, b. Finally, the boundary be-

tween the domains of stable and unstable model behaviour is

clearly visible in Fig.2, in the lower-right part of panels (b)

and (d).

The region below and to the right of this boundary con-

tains simple period-one solutions that change smoothly with

the values of model parameters. The region above and to

the left is characterised by sensitive dependence on parame-

ters. The range of parameters that corresponds to present-

day ENSO dynamics lies on the border between the model’s

stable and unstable regions. Hence, if the dynamical phe-

nomena found in the model have any relation to reality,

Tropical Pacific SSTs and other fields that are highly corre-

lated with them, inside and outside the Tropics, can be ex-

pected to behave in an intrinsically unstable manner; they

could, in particular, change quite drastically with global

warming.

There are basically two approaches to ENSO dynamics

(Neelin et al., 1994, 1998), both of which may be useful in

extending the results of Part 1 above. The model consid-

ered here and inGhil et al.(2008b) explains the complexities

of ENSO dynamics by the interplay of two oscillators: an

internal, highly nonlinear one, due to a delayed feedback,

and a forced, seasonal one. Our model, thus, falls within the

strongly nonlinear, deterministic approach.

An alternative approach attempts to explain several fea-

tures of ENSO dynamics by the action of fast, “weather”

noise on a linear or very weakly nonlinear “slow” sys-

tem, composed mainly in the upper ocean near the equa-

tor. Boulanger et al.(2004) and Lengaigne et al.(2004),

among others, provide a comprehensive discussion on how

weather noise could be responsible for the complex dynam-

ics of ENSO, and, in particular, whether wind bursts trigger

El Niño events.Saynisch et al.(2006) explore this possibil-

ity in a conceptual toy model.Ghil and Robertson(2000) al-

ready discussed the arguments about a “stochastic paradigm”

for ENSO, with linear or only mildly nonlinear dynamics be-

ing affected decisively by weather noise, vs. a “deterministi-

cally chaotic paradigm”, with decisively nonlinear dynamics.

Ghil et al.(2008c) have recently illustrated a way of combin-

ing these two paradigms to obtain richer and more complete

insight into climate dynamics in general.

The present paper continues the study initiated in Part 1

and focuses on (i) the multiplicity of model solutions for

the same parameter values, and on (ii) the behaviour of lo-

cal extrema in these solutions. In particular, we investigate

the distribution in time of the model solutions’ maxima and

minima; these extrema are directly connected to the strength

and timing of the corresponding El Niño (warm) or La Nĩna

(cold) events. The current analytic theory of DDEs does not

allow one to easily answer many practically relevant ques-

tions about the behaviour of even such apparently simple

equations as our Eq. (1) below. The present study, there-

fore, combines general theoretical results about the existence

and continuous dependence of solutions on parameters with

extensive numerical investigations.

The rest of the paper is organized as follows. In Sect.2,

we summarize the model formulation from Part 1, recall ba-

sic theoretical results concerning this model’s solutions and

briefly review details of the numerical integration method.

Section3 reports on the phase locking of solutions to the

periodic forcing, namely on the tendency for the solutions’

maxima and minima to each occur within a fixed, small in-

terval of the seasonal cycle. Existence of multiple solutions

and the attractor basins of the stable solutions are studied in

Sect.4. In Sect.5 we investigate the behaviour of the model’s

local extrema, considered as a discrete dynamical system. A

discussion of these results in Sect.6 concludes the paper.

2 Model and numerical integration method

2.1 Model formulation and parameters

Following Part 1, we consider a nonlinear DDE with additive,

periodic forcing,

h′(t) = −a tanh[κh(t −τ)] +bcos(2πωt), (1)

whereh′(t) = dh(t)/dt , t ≥ 0, and the parametersa,τ,κ,b,

and ω are all real and positive. Equation (1) is a simpli-

fied one-delay version of the two-delay model considered

by Tziperman et al. (1994). It includes two mechanisms es-

sential for ENSO variability: a delayed, negative feedback

via the function tanh(κ z), and periodic external forcing. As

shown in Part 1, these two mechanisms suffice in generating

Nonlin. Processes Geophys., 17, 123–135, 2010 www.nonlin-processes-geophys.net/17/123/2010/
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very rich behaviour that includes several important features

of more detailed models and of observational datasets.

The functionh(t) in Eq. (1) represents the thermocline

depth deviations from the annual mean in the eastern Trop-

ical Pacific; accordingly, it can also be interpreted roughly

as the regional SST, since a deeper thermocline corresponds

to less upwelling of cold waters and, hence higher SST,

and vice versa. The thermocline depth is affected by the

wind-forced, eastward Kelvin and westward Rossby oceanic

waves. The waves’ delayed effects are modelled by the func-

tion tanh[κh(t −τ)]; the delayτ is due to the finite velocity

of these waves and it corresponds roughly to their combined

basin-transit time.

The particular form of the delayed nonlinearity plays an

important role in the behaviour of a DDE model.Munnich

et al. (1991) provided a physical justification for the mono-

tone, sigmoid nonlinearity we adopt here. The parameterκ,

which is the linear slope of tanh(κ z) at the origin, reflects

the strength of the atmosphere-ocean coupling. The forcing

term represents the seasonal cycle in the trade winds, with

the strongest winds occurring in boreal fall.

The DDE model (1) is fully determined by its five parame-

ters: feedback delayτ , atmosphere-ocean coupling strength

κ, feedback amplitudea, forcing frequencyω, and forcing

amplitudeb. By an appropriate rescaling of timet and de-

pendent variableh, we letω = 1 anda = 1. The remaining

three parameters –τ , κ andb – may vary, reflecting different

physical conditions of ENSO evolution. We consider here the

same parameter ranges as in Part 1 of this study: 0≤ τ ≤ 2 yr,

0< κ < ∞, 0≤ b <∞.

To completely specify model (1), we need to prescribe

some initial “history”, i.e. the behaviour ofh(t) on the inter-

val [−τ,0), cf. Hale (1977). In the numerical experiments

of Sect.3 below, we assume, as in Part 1, thath(t) ≡ 1,

−τ ≤ t < 0, i.e. we start with a warm year. But in Sect.4

we turn to a systematic exploration of the effect of the initial

histories on the number and stability of solutions.

2.2 Main theoretical result

Consider the Banach spaceX = C([−τ,0),R) of continuous

functionsh : [−τ,0) → R and define the norm forh ∈ X as

‖ h ‖= sup{|h(t)|, t ∈ [−τ,0)},

where| · | denotes the absolute value inR (Hale, 1977; Nuss-

baum, 1998). For convenience, we reformulate the DDE

initial-value problem (IVP) in its rescaled form:

h′(t) = −tanh[κh(t −τ)] +bcos(2π t), t ≥ 0, (2)

h(t) = φ(t) for t ∈ [−τ,0), φ(t) ∈ X. (3)

Ghil et al. (2008b) proved the following result, which fol-

lows from Hale and Verduyn Lunel(1993) and references

therein.

Proposition 1 (Existence, uniqueness, continuous
dependence)

For any fixed positive triplet(τ,κ,b), the IVP(2)–(3) has

a unique solutionh(t) on [0,∞). This solution depends con-

tinuously on the initial dataφ(t), delayτ and the right-hand

side of(2), considered as a continuous mapf : [0,T )×X →

R, for any finiteT .

From Proposition1 it follows, in particular, that the sys-

tem (2)–(3) has a unique solution for all time, which depends

continuously on the model parameters(τ,κ,b) for any finite

time. This result implies that any discontinuity in the solution

profile, as a function of the model parameters, indicates the

existence of an unstable solution that separates the attractor

basins of two stable solutions. Our numerical experiments

suggest, furthermore, that all stable solutions of (2)–(3) are

bound and have an infinite number of zeros.

2.3 Numerical integration

The results in this Part 2 of our study are based on numeri-

cal integration of the DDE (2)–(3). We emphasize that there

are important differences between the numerical integration

of DDEs and ODEs, and that these differences require devel-

oping special software; often the problem-specific modifica-

tion of such software also becomes necessary. We used here

the Fortran 90/95 DDE solverdde solver of Shampine

and Thompson (2006), available athttp://www.radford.edu/
∼thompson/ffddes/. Technical details ofdde solver , as

well as a brief overview of other available DDE solvers, are

given in Appendix C of Part 1.

3 Seasonal phase locking of extrema

A distinctive feature of the extreme ENSO phases – i.e., of

the El Niño and La Nĩna events – is their occurrence during

a boreal winter. This phenomenon is illustrated in Fig.3,

www.nonlin-processes-geophys.net/17/123/2010/ Nonlin. Processes Geophys., 17, 123–135, 2010
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Fig. 3. Histogram of temporal location of(a) warm and(b) cold

events for the Nĩno–3.4 index. The event thresholds are shown by

the dashed horizontal lines in Fig.1. Notice the preferential occur-

rence of both warm and cold events during the boreal winter.

which shows the histograms of the monthly positions of un-

usually warm and unusually cold events, based on the Niño-

3.4 index of Fig.1. In our classification, El Nĩnos (see

panel a) are those for which NINO3.4> 1.5, while La Nĩnas

(see panel b) have NINO3.4< −1. This asymmetry in the

classification is due to the fact that extreme warm events

are more intense but fewer in number than the extreme cold

events (Hoerling et al., 1997; Burgers and Stephenson, 1999;

Sardeshmukh et al., 2000; Kondrashov et al., 2005). Clearly,

the extreme events, both warm and cold, tend to occur during

boreal winter.

In discussing extrema, we distinguish between local and

global ones. Recall that for a functionh(t) specified on the

interval[t1,t2], its globalmaximum (minimum) is defined as

the pointt so thath(t) is above (below) all the other values

on that interval:h(t) ≥ h(s), respectivelyh(t) ≤ h(s), for all

s ∈ [t1,t2]. A local maximum (minimum) is a pointt so that

the corresponding valueh(t) is above (below) all the values

in a vicinity of t ; for a sufficiently smooth function, the latter

definitions are equivalent to

(i) h′(t) = 0; and (ii) h′′(t) < 0 or h′′(t) > 0,

whereh′′
= (h′)′ is the second derivative ofh(t).

In this paper, we work with numerical solutions of the

DDE problem (2)-(3) that are available only on a finite time

interval [0,tf ]; in addition, we eliminate the initial transient

interval [0,t0). Thus, we consider the global and local ex-

trema of our solutions only on the interval[t0,tf ]. The global

extrema so defined might differ in certain cases from their

counterparts on the interval[0,∞), for which our DDE is

formally defined. The difference will only be noticeable for

very long-periodic, highly fluctuating solutions that are rela-

tively rare in our model. Hence, the reduced definitions of the

global and local extrema do not affect the main conclusions

of our analysis.

In this section, we study the phaseϕ of the local maxima

and minima of the model solutions that obey (2)–(3). The

main result, as we shall see, is that the model’s extrema occur

exclusively within a particular season.

We start with several examples that illustrate the analysis

in the rest of the section. Figure4a shows a piece of model

solutionh(t) for τ = 0.5, κ = 11 andb = 2. This solution

has periodP = 1, as illustrated in panel (b), which shows the

scatterplot of the pairs(h(ti),h(ti +1)) for i = 0,1,... and

ti+1 = ti +1. Given the 1-periodic character of the solution,

all the points(h(ti),h(ti +1)) coincide. The choice of the

starting pointt0 will only affect the position of a single point

in the panel (not shown).

For each time epocht we define its positionϕ within the

seasonal cycle asϕ = t (mod 1); the origin of the seasonal

cycle in the forcing is taken in October, when the trade winds

are strongest. Panel (c) shows the values of the local maxima

(filled circles) and minima (squares) ofh(t) as a function

of their positionϕ within the seasonal cycle. The six other

panels in Fig.4 show the results of a similar analysis for a

solution with periodP = 7 (panels d–f) and an aperiodic one

(panels g–i).

In all the examples of Fig.4, most of the local maxima

are located within the first half of the annual cycle, i.e. in

boreal winter, while the local minima lie within the second

half, i.e. in boreal summer. Moreover, the global maximum,

as well as local maxima with large amplitudes, are always

located within theϕ-interval (0.15, 0.4), while the global

minimum, as well as large-amplitude local minima, are al-

ways located within the interval (0.7, 0.95). We found this

characteristic property of the model holding for most of its

solutions.

To verify this model property, we analysed the positions of

the local extrema for a large number of individual solutions

of Eq. (2) within the parameter region(0< τ ≤ 2,0< b ≤ 10)

and at several values ofκ. The representative results are

Nonlin. Processes Geophys., 17, 123–135, 2010 www.nonlin-processes-geophys.net/17/123/2010/
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Fig. 4. Seasonal phase locking of local extrema for model trajectories:(a–c)with periodP = 1; (d–f) with periodP = 7; and(g–i) aperiodic.

The model solutions in panels (a, d, g) are shown in the stationary regime, after a sufficiently long transient, and the time axis is shifted

so as to start fromt = 0. The parameter values for these solutions are (a)τ = 0.5, κ = 11, b = 2; (d) τ = 0.56, κ = 11, b = 1.4; and (g)

τ = 0.47,κ = 10,b = 1.0. The scatterplots of the points(h(ti),h(ti +1)) in panels (b, e, h) use the valuesi = 0,1,...,500, which correspond

to t0 = 2500 and the parameter settings in panels (a, d, g), respectively. The phase locking is illustrated in panels (c, f, i), which give the

h-value of the local extrema – maxima shown as red filled circles and minima as blue squares – as a function of their position within the

seasonal cycle,ϕ = t (mod 1).

summarized in Figs.5 and6, where we used 10 000 individ-

ual solutions for each value ofκ. Figure5 shows histograms

of positions of the local extrema within the seasonal cycle,

while Fig. 6 plots the position of the global maximum as a

function of the model parametersτ andb.

The phase locking of the extrema to the seasonal cycle

is present for most combinations of the physically relevant

model parameters. Moreover, the local maxima tend to oc-

cur, depending on the value ofτ , at eitherϕ = 0.23 orϕ =

0.27, while the local minima occur atϕ = 0.73 orϕ = 0.77.

We notice that the cosine-shaped seasonal forcing vanishes

at ϕ = 0.25 andϕ = 0.75; hence, the local maxima occur in

the vicinity of zero forcing when the latter decreases, and

the local mimina occur in the vicinity of zero forcing when

the latter increases. The offset in the position of the extrema

from the point where the external forcing vanishes seems to

be independent of the model parameters.

As the atmosphere-ocean coupling parameterκ increases,

yet another type of sensitive dependence on parameters sets

in. Namely, at low values of the external forcing,b < 1.5,

“reversals” in the location of the local extrema do occur, with

maxima suddenly jumping to boreal summer and minima to

boreal winter. In Fig.7, we zoom into one such reversal re-

gion, marked by a rectangle in Fig.6. The dark and light

blue colours that occupy most of the region indicate that the

global maximum of a model solution occurs in the first half

of the annual cycle, while the red-to-yellow colours that ap-

pear aroundτ = 0.75 indicate that, within this “island”, the

global maximum jumps to the annual cycle’s second half.
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Fig. 5. Seasonal phase locking of local extrema: cumulative results.

Histogram of the phaseϕ of the local maxima (red bars) and minima

(blue bars) of model solutions withκ = 2.0 (top panel) andκ = 11.0

(bottom panel). Each panel uses 10 000 individual solutions with

parameters 0< τ ≤ 2 and 0< b ≤ 10; see also Fig.6.

4 Multiple solutions, stable and unstable

The analysis in the previous section was carried out, as in

Part 1, for the model (2)–(3) with a fixed initial history,

φ(t) ≡ 1. In this section, we study the model’s solutions for

distinct, yet still constant historiesφ(t) ≡ φ0.

Naturally, different initial history valuesφ0 may result in

different model solutions. This is illustrated in Fig.8 for the

parameter valuesτ=0.5, κ=10 andb=1. To produce this fi-

gure, we used 20 distinct initial histories with constant values

that are uniformly distributed betweenφ0=−2 andφ0=2;

hence, at timet=0 there exists 20 distinct solutions. As time

passes, those solutions are attracted by a smaller number of

stable solutions so that, byt=15, there are only four distinct

solutions left, all of which have periodP=2. Furthermore,

we notice that two of the remaining four solutions can be

obtained by shifting the other two by one unit of time.

In general, it is readily seen that – if the system (2)–(3)

has solutionx(t) – thenx(t +k) with any integerk is also a

solution. Hence, ifx(t) is a solution with integer periodP =

k, then there arek−1 other solutions obtained fromx(t) by

an integer time shift. We will focus on solutions that cannot

be obtained from each other by such a shift. Thus, we call

two solutionsx(t) andy(t) distinct if x(t) 6≡ y(t +k) for any

positive integerk 6= P .
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Fig. 6. Seasonal phase locking of global extrema: parameter de-

pendence. The plots show the phaseϕ of the global maxima of

solutions of Eq. (2) for κ = 2.0 (top panel) andκ = 11.0 (bottom

panel); same number of solutions and parameter range as in Fig.5.

The rectangle in the bottom panel highlights the region blown up in

Fig. 7.

Next, we concentrate on the attractor basins of the model’s

stable solutions. Figure9 shows the model’s solution pro-

files, after a suitable transient, for−10≤ φ0 ≤ 10, at two

points in the model’s parameter space: point A= (τ =

0.4,κ = 1,b = 2) in the top panel, and point B= (τ = 0.5,κ =

10,b = 1) in the bottom panel. Model behaviour at point B

was illustrated in Fig.8. At point A, the model has a unique

stable solution that attracts all transient solutions as time

evolves, so that the solution profile becomes constant along

any vertical line, i.e. at anyt = t0 in this type of figure.
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Fig. 7. Reversal in the phase locking of the maxima. The plot

shows the seasonal cycle positionϕ of the global maximum for

250 000 solutions of Eq. (2), for κ = 11.0; it represents a blow-up

of the region marked by a rectangle in the lower panel of Fig.6.

The model has two distinct stable solutions at point B: the

boundary between their attractor basins, as plotted on the real

line of initial-history valuesφ0, corresponds to points of dis-

continuity in the solution profiles. These points line up into

straight horizontal lines in Fig.9: one can see 8 horizontal

lines of discontinuity in the solution profiles and, thus, there

would appear to be 9 attractor basins. These basins corre-

spond, however, as shown in Fig.8, to only two stable solu-

tions that are distinct from each other.

Recall from Sect.2.2 that our solutions lie in the infinite-

dimensional Banach spaceX = C([−τ,0),R), and that the

solutions with constant initial histories do not span this

space. By using such a particularly simple type of initial

histories, we are merely exploring a 1-D manifold of solu-

tions, parametrized by the scalarφ0, in the full spaceX.

The intersection of the boundary between the attractor basins

of the two stable solutions with this 1-D manifold gives the

8 lines of discontinuity seen in the bottom panel of Fig.9.

Proposition 1 also implies that a discontinuity in the solu-

tion profile atφ0 suggests that there exists an unstable so-

lution starting fromφ(t) ≡ φ0. Hence, the boundary that

separates the two attractor basins from each other is formed

by unstable model solutions. This boundary is a mani-

fold of codimension one inX, and Fig.9 merely reveals

the intersection of this manifold with the 1-D manifold of

solutions that have constant initial histories. The presence of

8 such intersections suggests, in turn, that the boundary be-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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−1
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1

2

Time, t

h(
t)

Fig. 8. Multiple stable solutions. Twenty trajectories that corre-

spond to different initial historiesφ(t) ≡ φ0 collapse, after a tran-

sient, onto four stable solutions. Two of these solutions aredistinct

and the other two can be obtained from the latter by a time shift.

Model parameters areτ = 0.5, κ = 10 andb = 1; see also Fig.9.

Fig. 9. Solution profiles for multiple constant historiesφ(t) = φ0.

The top panel corresponds to point A= (τ = 0.4,κ = 11,b = 2) in

parameter space, where there exists a unique stable solution. The

bottom panel corresponds to B= (τ = 0.5,κ = 10,b = 1), the same

point as in Fig.8; here there exist two stable solutions and their

attractor basins are bound by horizontal discontinuity lines in the

solution profile. The solutions are shown after a sufficiently long

transient, and the origin of the time is shifted to start from zero;

colour bars indicate solution values, here as well as in Fig.10.

tween the two attractor basins is a highly curved, but still

smooth manifold. It is known for finite-dimensional prob-

lems that such boundaries can become quite complex and

possibly fractal (Grebogi et al., 1987).

Figure 10 shows two slightly more complex situations

along the same lines, namely one with still only two distinct

solutions, having both periodP = 2, but a more intricate pat-

tern of solution profiles (panels a, b), and one with 61 distinct
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Fig. 10. Multiple stable solutions. Solution profile for(a, c) dif-

ferent initial historiesφ(t) ≡ φ0, and(b, d) the corresponding dis-

tinct solutions. For visual convenience, the trajectories are shifted

to have their global maxima att = 0. Panels (a, b): model be-

haviour at point C= (τ = 0.5,κ = 11,b = 1.7842), where there exist

2 distinct solutions; and panels (c, d): model behaviour at point

D= (τ = 1.4579,κ = 11,b = 4), where there exist 61 distinct solu-

tions.

solutions, having allP = 10 (panels c, d). For visual conve-

nience, we shift all the solutions so that their global maxima

occur att = 0.

5 Dynamics of local extrema

Here, we focus on the dynamics of the local extrema in the

model solutions. For each solutionh(t), we consider the se-

quence of its local extrema{ei} := {h(ti),i = 1,2,...}, where

Fig. 11. Local maxima (red) and minima (blue) of model solutions

as a function of delayτ ; the other parameter values are fixed at

κ = 11 andb = 2. Notice the aperiodic regimes between periodic

windows of gradually increasing period.

h′(ti) = 0. The local maxima{Mi,i = 1,2,...} are charac-

terised by the additional condition thath′′(ti) < 0, while at

the local minima{mi,i = 1,2,...} one hash′′(ti) > 0.

Figure 11 shows the position of the local extrema as a

function of delay 0< τ < 2 for fixedκ = 11 andb = 2. The

figure illustrates convincingly the increase in complexity of

model solutions as the delayτ increases. For small delay

values, 0< τ < 0.5, each solution is a periodic sine-like wave

with periodP = 1, which contains a single maximum and a

single mimimum within each cycle.

Within the interval 0.6 < τ < 0.8, the solutions become

more complex: the solution period here isP = 3, and each

cycle has three local maxima and three local minima. In gen-

eral, the time elapsed between a local maximum and the next

is an integer number; this effect is caused by the seasonal

forcing, and the same is true for local minima. Often, the

recurrence interval for extrema of the same kind is just unity

and the number of local maxima (or minima) coincides with

the periodP of a given solution.

The period in Fig.11 increases by jumps of 2, fromP = 1

to P = 3 and so on, asP = 2k+1. The transitions from one

odd-periodic dynamics to the next are associated each time

with a region of aperiodic behaviour, for example, the one

from P = 1 to P = 3 occurs in the interval 0.51< τ < 0.59.

Thus, asτ increases, the number of local extrema becomes

larger and each increase in the number of extrema is preceded

by a region of aperiodic, presumably chaotic behaviour.
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Figure 12 zooms in on the distribution of local maxima

within the first aperiodic region of Fig.11, namely 0.51<

τ < 0.59. In this region, theτ -intervals of aperiodic be-

haviour alternate with shorter periodic windows: in the for-

mer the local maxima are distributed continuously within an

interval, while in the latter several distinct local maxima oc-

cur within a comparable range of values. This distribution

of the maxima resembles the behaviour of chaotic dynamical

systems in discrete time – e.g., period doubling for smooth

maps (Feigenbaum, 1978; Kadanoff, 1983) – and suggests

that the model’s aperiodic dynamics are, in fact, chaotic. An

even richer behaviour – with multiple, overlapping cascades

– seems to emerge for 0.545< τ .

6 Concluding remarks

In the present paper, we continued our study of a periodically

forced delay differential equation (DDE) introduced by Ghil

et al. (2008b); the DDE (1) serves as a toy model for ENSO

variability. We studied the model solutions numerically in a

broad 3-D domain of physically relevant parameters: oceanic

wave delayτ , ocean-atmosphere coupling strengthκ, and

seasonal forcing amplitudeb. In Part 2 of our investigation,

we focussed on multiple model solutions as a function of ini-

tial histories, and on the dynamics of local extrema.

We found that the system is characterised byphase locking

of the solutions’ local extrema to the seasonal cycle (Figs.4

and 5): solution maxima – i.e., warm events (El Niños) –

tend to occur in boreal winter, while local minima – i.e., cold

events (La Nĩnas) – tend to occur in boreal summer. The

former model feature is realistic, since observed warm events

do occur by-and-large in boreal winter; in fact, this property

is one of the main features of the observed El Niño events,

this given rise to the name of the phenomenon (Philander,

1990; Glantz et al., 1991; Diaz and Markgraf, 1992).

The phase locking of cold events in the model to boreal

summer is not realistic, since La Niñas also tend to occur in

boreal winter, rather than in phase opposition to the warm

ones; see again Fig.3. It is not clear at this point which one

of the lacking features of our DDE model gives rise to this

unrealistic phase opposition; it might be the lack of a positive

feedback mechanism, present with a separate, distinct delay

in the Tziperman et al.(1994) model. On the other hand,

even GCMs, with many more detailed features, may have

their warm events in entirely the wrong season; seeGhil and

Robertson(2000) for a review.

Fig. 12.Distribution of local maxima as a function of delayτ within

the interval 0.5< τ < 0.59; the other parameters are as in Fig.11.

At the same time, for small-to-intermediate seasonal forc-

ing b, the position of the global maxima and minima depends

sensitively on other parameter values: it may exhibit signif-

icant jumps in response to vanishingly small changes in the

parameter values (Fig.6). In particular, an interesting phe-

nomenon of “phase reversal” of the global extrema may oc-

cur, cf. Fig.7.

We explored a 1-D manifold of solutions for a set of

given, prescribed pointsP = (τ,κ,b) in the model’s param-

eter space. Such a manifold was generated, for eachP , by

solutions with constant initial historiesφ(t) ≡ φ0.

We found multiple solutions coexisting for physically rel-

evant values of the model parameters; see Figs.8–10. Some

of these solutions are generated by shifting a single solution

in time, using integer multiples of the period of the forcing,

taken here to be unity. We have often found a set ofk solu-

tions so obtained from a single solution of periodP = k.

Typically, each stable solution has a bounded, but infinite-

dimensional attractor basin in the solution spaceX described

in Sect.2.2. This attractor basin is separated from that of

another stable solution by a manifold of codimension one,

which is generated by unstable solutions (see Proposition 1

and the following remarks). The intersections of such a man-

ifold with the 1-D manifold of solutions, explored herein,

appear as the straight horizontal lines in the solution-profile

panels of Figs.9 and10.

In Part 1, we found that the solution period generally

increases with the oceanic wave delayτ . Figures11 and12

here provide much more detailed information: the period
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P of model solutions increases in discrete jumps, like

{P = 2k+1,k = 0,1,2,...}, separated by narrow, apparently

chaotic “windows” inτ . This increase inP is associated

with the increase of the number of distinct local extrema,

all of which tend to occur at the same position within the

seasonal cycle. The distribution of the maxima in Fig.12

resembles, in fact, the behaviour of chaotic dynamical

systems in discrete time (Feigenbaum, 1978; Kadanoff,

1983) and suggests that the model’s aperiodic dynamics is,

in fact, chaotic.

It is quite interesting that, for plausible values of the de-

lay τ , the periods lie roughly between 2 and 7 years, a range

that is commonly associated with the recurrence of relatively

strong warm events (Philander, 1990; Glantz et al., 1991;

Diaz and Markgraf, 1992; Neelin et al., 1998). The sensitive

dependence of the period on the model’s external parameters

(τ,κ,b) is consistent with the irregularity of occurrence of

strong El Nĩnos, and can help explain the difficulty in pre-

dicting them (Latif et al., 1994; Ghil and Jiang, 1998).
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