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Abstract. The multi-scale nature and climate noise proper-
ties of teleconnection indices are examined by using the Em-
pirical Mode Decomposition (EMD) procedure. The EMD
procedure allows for the analysis of non-stationary time se-
ries to extract physically meaningful intrinsic mode func-
tions (IMF) and nonlinear trends. The climatologically rel-
evant monthly mean teleconnection indices of the North At-
lantic Oscillation (NAO), the North Pacific index (NP) and
the Southern Annular Mode (SAM) are analyzed.

The significance of IMFs and trends are tested against the
null hypothesis of climate noise. The analysis of surrogate
monthly mean time series from a red noise process shows
that the EMD procedure is effectively a dyadic filter bank
and the IMFs (except the first IMF) are nearly Gaussian dis-
tributed. The distribution of the variance contained in IMFs
of an ensemble of AR(1) simulations is nearlyχ2 distributed.
To test the statistical significance of the IMFs of the telecon-
nection indices and their nonlinear trends we utilize an en-
semble of corresponding monthly averaged AR(1) processes,
which we refer to as climate noise. Our results indicate that
most of the interannual and decadal variability of the anal-
ysed teleconnection indices cannot be distinguished from cli-
mate noise. The NP and SAM indices have significant non-
linear trends, while the NAO has no significant trend when
tested against a climate noise hypothesis.

1 Introduction

The analysis of climate time series provides insight for un-
derstanding and predicting climate variability. An important
topic in climate research is the existence of dynamically rel-
evant and statistically significant modes of variability and
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trends. Most of the atmospheric mid-latitude variability can
be described by just a few large-scale teleconnection patterns
(e.g.Wallace and Gutzler, 1981) which explain most of the
variance and exert a huge influence on regional surface cli-
mate and seasonal climate conditions. The most pronounced
patterns in the Northern Hemisphere are the North Atlantic
Oscillation (NAO) and the Pacific-North America (PNA) pat-
tern whose surface imprint is also known as the North Pacific
(NP) index. The Southern Hemisphere is dominated by the
Southern Annular Mode (SAM). Therefore, the study of uni-
variate teleconnection indices provides insight into climate
dynamics and global climate change.

Time series from nature are in general nonlinear and non-
stationary. Most traditional time series analysis methods are
only valid when applied to stationary time series. SeeHuang
et al. (1998) for an extensive review of time series analysis
methods. The recently developed Empirical Mode Decom-
position method (Huang et al., 1998; Huang and Wu, 2008) is
able to extract physically meaningful modes from time series
which are both non-stationary and nonlinear. This method
has been widely and successfully applied in climate science
(e.g.Duffy, 2004; McDonald et al., 2007; Wu et al., 2007;
Huang and Wu, 2008).

The climate system is undoubtedly a multi-scale system
where a multitude of vastly different time and space scales
nonlinearly interact with each other. The climate variabil-
ity on long time scales is usually investigated by examining
averaged data (monthly or seasonal means), though the in-
trinsic time scale of most teleconnection patterns is about 10
days (Feldstein, 2000a; Franzke and Feldstein, 2005). Thus,
it is possible that part of the observed climate variability on
monthly and seasonal time scales stems from the fast weather
fluctuations as a result of the averaging. This part of the vari-
ability is called climate noise (Leith, 1973; Madden, 1976,
1981; Feldstein, 2000a,b; Czaja et al., 2003). While this part
can be thought of stemming from processes intrinsic to the at-
mosphere, variability on longer time scales is usually thought
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as being caused by external (not atmospheric) processes like
the sea surface temperature, sea ice and solar insolation. For
this reason it is necessary to identify which part of observed
climate variability most likely stems from intrinsic weather
fluctuations and which part most likely stems from external
processes. One null hypothesis for climate variability on sea-
sonal and longer time scales is that climate variability can be
explained as the integral response to random weather fluctu-
ations which occur on time scales of just a few days (Hassel-
mann, 1976). The paradigmatic model in climate science for
such a process is a first order Markov process (represented by
an autoregressive process of first order AR(1)). The power
spectrum of such a process is red and, thus, has enhanced
variability on long time scales.

Another important topic in climate research is the detec-
tion of trends. It is important to objectively identify trends
which are caused by external forcings and are not due to
sampling variability. The effect of sampling variability can
be understood from the theory of stochastic processes. A
first order Markov process is a stationary process and has
no trends. On the other hand, a time series of finite length
produced by a first order Markov process can have artificial
or local “trends” (Wunsch, 1999; Feldstein, 2002b). Those
‘trends’ are not due to an intrinsic trend of the stochastic pro-
cess but just due to insufficient sample size.

Another issue of trend identification is that in most studies
evidence for a linear trend at the end of a time series is found
by visually looking for the starting point of the trend. This
practice was named “eyeballing” byPercival and Rothrock
(2005). It is important to recognise that the definition of a
trend should always be relative to a time scale; otherwise it is
hard to distinguish between a “real” trend and a trend which
is part of a low-frequency oscillation. An obvious example is
the diurnal cycle of temperature. If one would look only at a
6 h snapshot of a typical day one would surely see a “trend”;
but of course this local “trend” is part of the diurnal variation
of temperature. The climate system has also (quasi)-periodic
oscillations on longer time scales with the El Nino-Southern
Oscillation phenomenon as the most pronounced example.
It is important to associate trends with a certain time scale
and, thus, to define trends over the whole available time se-
ries length. The EMD method provides a systematic way of
identifying nonlinear trends in time series (Wu et al., 2007).

This study is structured as follows: Sect. 2 briefly explains
the EMD method and the algorithm used, Sect. 3 describes
the data used. In Sect. 4 we explain climate noise and inves-
tigate the climate noise characteristics of EMD. In Sect. 5 we
present the results of the EMD analysis of the teleconnection
indices and discuss them in Sect. 6 before we conclude our
study in Sect. 7.

2 Fundamentals of Empirical Mode Decomposition

The Empirical Mode Decomposition (Huang et al., 1998;
Huang and Wu, 2008) is an algorithm to decompose a time
series into a finite number of Intrinsic Mode Functions (IMF)

x(t) =

M∑
j=1

ψj (t)+ R(t) (1)

where the IMFψj can be written in polar coordinates

ψj (t) = rj (t) sin(θj (t)) (2)

whererj is thej -th amplitude,θj thej -th instantaneous fre-
quency andR the residual. Both, the amplitude and fre-
quency are time-dependent. The transformation to Eq. (2)
can be done by the Hilbert-Huang transform (Huang et al.,
1998). As (2) shows, an IMF is different from Fourier modes
where bothrj andθj are time independent.

An IMF is defined by the following two properties (Huang
et al., 1998)

– Each IMFψj has exactly one zero crossing between two
consecutive local extrema.

– The local mean of each IMFψj is zero

The following algorithm estimates IMFs from a given time
series (Huang et al., 1998):

1. Find all maxima and minima of the time series

2. Fit a cubic spline through all maxima (minima); these
splines define the uppereup (lower elo) envelope of the
time series

3. Calculate mean of upper and lower envelope

m(t)=
eup(t)+elo(t)

2 ; the resulting curve represents
the first IMF

4. Subtract IMF from time series and go to1 and repeat
procedure until the residual is not an IMF anymore

In practice, the algorithm has to be refined by a so-called
“sifting” process (e.g.Huang et al., 1998) which amounts to
iterating steps 1 through 3 until this can be considered a zero
mean to some stopping criterion. Once this is achieved the
effective IMF has been determined. In this study we use the
stopping criterion byRilling et al. (2003). First let us define
the mode amplitude

a(t) =
eup(t)− elo(t)

2
(3)

and the evaluation function

σ(t) = |
m(t)

a(t)
| (4)

The sifting procedure is repeated tillσ(t)<θ1 for a pre-
scribed fraction of the time series length(1−α) and while
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Fig. 1. Comparison of the(a) dimensionless daily NAO index and(b) a realisation of the corresponding AR(1) process (dashed lines) for a
representative period of 366 days. The horizontal solid lines indicate monthly mean values derived from daily values.

σ(t)<θ2 for the remaining fraction. We use the values
α=0.05, θ1=0.05 andθ2=0.5 (Rilling et al., 2003). The re-
sults in this study are robust to the choice of these particular
values.

The above algorithm is repeated until all IMFs are ex-
tracted and the residual is not an IMF anymore; thus, it vi-
olates the above two IMF criteria. The residual can now be
interpreted as the instantaneous mean of the time series. In
case this instantaneous mean is not constant we refer to it as
a trend, which is possibly nonlinear (Wu et al., 2007) on the
time scale of the time series length.

3 Data

In this study we use different indices of atmospheric tele-
connection patterns which explain much of the variance in
their respective hemisphere and influence surface weather
and climate conditions (Wallace and Gutzler, 1981; Feld-
stein, 2000a; Thompson and Wallace, 2000a). Since one of
the main aims of this study is to identify nonlinear trends we
decided to use station-based indices for the NAO and SAM
while the NP index is based on weather charts. These instru-
mental indices cover a longer time period than the currently
available reanalysis data sets.

The NAO index is theJones et al.(1997) monthly mean
instrumental index for the period 1825 through 2007 (avail-
able fromhttp://www.cru.uea.ac.uk/). It is based on the dif-
ference of standardised and homogenised monthly mean sea
level pressure over Gibraltar and Southwest Iceland. It con-
tains all months of the year. The NAO describes a large-scale
see-saw pattern over the North Atlantic and has a strong im-
pact on surface weather and climate conditions in Europe and
the east coast of the US. Due to the normalization of the sea
level pressure the NAO index is dimensionless and the an-

nual cycle of the first two moments is effectively subtracted
(this also applies to the other two used indices below).

The NP index is the normalized and area-weighted sea
level pressure over the region 30◦ N–65◦ N, 160◦ E–140◦ W
(available from http://www.cgd.ucar.edu/cas/jhurrell/
npindex.html) for the period 1899 through 2006 for all
months of the year (Trenberth and Hurrell, 1994). This
index is based on charts of sea level pressure. This pattern
has a center of action which spans the central latitudes of
the western and central North Pacific and centers of action
of opposite and weaker polarity over eastern Siberia and
Alaska and is closely related to the PNA.

The SAM index is defined as the difference of the nor-
malised monthly and zonal mean sea level pressure at 40◦ S
and 65◦ S from stations close to these two latitude bands
(Marshall, 2003) (available fromhttp://www.nerc-bas.ac.uk/
icd/gjma/sam.html) for the period 1957 through 2007. The
SAM has a strong zonally symmetric geographic dipole
structure in the mid- and high-latitudes.

In order to carry out significance tests of the IMFs against
a climate noise hypothesis we need daily indices of the above
teleconnection patterns. The daily data is needed to fit an
AR(1) model, which we use as our paradigmatic climate
noise model. The AR(1) model is a simple linear stochastic
model which produces a red power spectrum which is typi-
cal for teleconnection indices (e.g.Wunsch, 1999). On the
other hand, an AR(1) model will fail in reproducing the sta-
tistical characteristics for systems which are nonlinear and/or
exhibit a trend. Thus, the AR(1) model constitutes a reason-
able choice as a null model in our study.

Currently, the above indices are not available as daily
indices due to missing data. Therefore, we derive daily
teleconnection indices from the daily National Centers
for Prediction-National Center for Atmospheric Research
(NCEP-NCAR) reanalysis sea level pressure data set for the
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Fig. 2. Probability Density Functions of IMFs for a AR(1) process (black line) and fitted theoretical Normal distributions (red line).

period 1948 through 2007. For this purpose we first calculate
the linear regression of the respective monthly mean index
onto monthly mean sea level pressure. Then we use the re-
gression patterns to calculate daily teleconnection indices by
projecting the regression patterns onto daily sea level pres-
sure fields.

4 Climate noise characteristics of EMD

Climate noise is that part of variability which stems from av-
eraging of time series whose intrinsic time scale is shorter
than the averaging period. Most studies of atmospheric cli-
mate variability use monthly or seasonally averaged data to
study climate variability. However with the typical time
scale associated with major atmospherically relevant pro-
cesses is on the order of 5–10 days, e.g. associated with
synoptic weather systems and teleconnection patterns (Feld-
stein, 2000a, 2002a, 2003; Cash and Lee, 2001; Franzke and
Feldstein, 2005). Hence, averaged time series of finite length
which are produced by a stationary process with an intrin-
sic time scale smaller than the averaging period can exhibit
variability on longer time scales and even trends. Thus, it
is important to examine if observed climate variability and
trends are significantly different from climate noise.

An autoregressive process of first order (AR(1);von
Storch and Zwiers, 1999) can be utilized as a null hypoth-
esis to test for climate noise. The general visual similarity of
such a process to observed data is depicted in Fig.1 where

a representative sequence of a daily NAO index and a reali-
sation of the corresponding AR(1) process are displayed to-
gether with the respective monthly means. Both time series
appear to undergo variations on relatively long time scales.
Thus, it is possible that climate noise contributes to the low-
frequency variability of averaged time series and in the fol-
lowing we want to test if the IMFs can be distinguished
from climate noise. Previously,Wu and Huang(2004) in-
vestigated the EMD characteristics of uniformly distributed
noise and found that EMD is a dyadic filter bank and that
all IMFs of white noise are Gaussian distributed. Because
an AR(1) process constitutes a much better fit to geophysi-
cal data than white noise, we examine first its EMD charac-
teristics. For this purpose we estimate the parameters of an
AR(1) processes from the daily NAO, NP and SAM time se-
ries and then we generate for each AR(1) model of the corre-
sponding teleconnection index an ensemble of 1000 realisa-
tions. These realizations are then averaged to derive the cor-
responding monthly mean surrogate time series. An AR(1)
process is defined as (von Storch and Zwiers, 1999)

xt+1 = αxt + σζt (5)

Its autoregression coefficient is

α =
< xtxt+1 >

Var(x)
(6)

and noise variance

σ 2
=

Var(x)

1 − α2
. (7)
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Fig. 3. Probability Density Functions of the variance spread of IMFs for an averaged AR(1) process (black line) and fitted theoreticalχ2

distributions (red line).

Table 1. Mean period in months of NAO and corresponding AR(1) process.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

NAO 2 6 12 22 44 82 170 366 628 2196
AR(1) 2 6 12 24 50 102 212 456 1152 2196

Both coefficients can be estimated from a given time series
x (with the mean subtracted) and amount to estimating the
variance and the lag-1 autocorrelation function value. The
symbolζ denotes a random variable from a Gaussian distri-
bution with zero mean and unit variance. Because an AR(1)
process is a linear process driven by Gaussian white noise it
has purely Gaussian statistics.

An investigation with EMD of these realisations reveals
that the mean period approximately doubles for consecutive
IMFs (Tables1, 2, 3) and, thus, confirms that EMD is a
dyadic filter bank. An investigation of the Probability Den-
sity Functions (PDF) reveals that all individual IMF com-
ponents (ψj (t)) are Gaussian distributed except for the first
which shows a bimodal distribution (Fig.2). The Gaussian
fits are less good for higher IMFs. This is because the higher
IMF components describe the low-frequency behaviour and,
thus, contain a smaller number of oscillations and the number
of events decreases and the distributions become less smooth.
The fits get better when a longer time series is used (not
shown). From this we can deduce and also numerically verify

that the variance of all individual IMF components (ψ2
j (t))

areχ2 distributed (not shown).
Next we investigate the probability distribution of the vari-

ance contained in IMF components from an ensemble of
1000 AR(1) realisationsp((

∑
t ψ

2
j (t))Ensemble). These dis-

tributions are nearlyχ2 distributed (Fig.3). Figure3 shows
that most PDFs of the variance spread of IMFs are very good
fits to the theoreticalχ2 distributions; though the fit is less
good for IMF1. Following the arguments ofWu and Huang
(2004) for white noise we estimate the number of degrees of
freedom of theχ2 distributions as the mean energy of the
IMF times the time series length. This is verified due to the
good fit of the distribution when compared with the theoret-
ical χ2 distributions (Fig.3). By utilizing the arguments of
Wu and Huang(2004) we can now assign statistical signifi-
cance of the information content for the IMFs from climate
noise. We will use this result to test for the significance of
the IMFs and trends in the teleconnection indices in the next
section.
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Table 2. Mean period in months of NP and corresponding AR(1) process.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

NP 4 8 14 26 52 86 216 650 866
AR(1) 4 6 14 26 52 108 232 534 1296
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Fig. 4. Statistical significance test for the NAO. The time scale
of the residual trend is set to the length of the time series. The
solid black line is the mean variance of the AR(1) ensemble and the
dashed red lines denote the 2.5% and 97.5% percentiles. The axes
are scaled by the natural logarithm.

Table 3. Mean period in months of SAM and corresponding AR(1)
process.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

SAM 4 6 14 26 56 154 244
AR(1) 4 6 14 30 60 128 318

In summary, the results of the characteristics of averaged
AR(1) processes using the EMD method share many similar-
ities with those of white noise (Wu and Huang, 2004). One
of the main differences is that the relationship between the
logarithm of the variance and the logarithm of the averaged
period differs from that of white noise. This linear relation-
ship is for white noise (Wu and Huang, 2004)

lnEj = − ln Tj (8)

whereE denotes the variance of thej th IMF andT its aver-
aged period. For an averaged AR(1) process this relationship
is

lnEj = −a ln Tj (9)
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Fig. 5. Statistical significance test for the NP. The time scale of the
residual trend is set to the length of the time series. The solid black
line is the mean variance of the AR(1) ensemble and the dashed red
lines denote the 2.5% and 97.5% percentiles. The axes are scaled
by the natural logarithm.

where−a denotes the slope, which is in general different
from −1. The slopes are−1.8 for AR(1) processes fitted
to the NAO and NP indices and−2.1 for the SAM index
(Figs.4, 5 and6). The effect of this difference is that thej -th
IMF component of white noise and averaged AR(1) can have
different variance and this in turn will change the number
of degrees of freedom. The change in number of degrees of
freedom will influence whether a IMF component is signifi-
cant or not. Because most climatic time series are temporally
correlated using an averaged AR(1) model as a climate noise
null hypothesis is much more appropriate in a geophysical
setting. It has to be noted, that depending on the underlying
time scale of the Markov process climate noise can effec-
tively be white noise. This can occur if the time scale of the
Markov process is much shorter than the averaging period.

5 Results

In this section we describe the results of applying the EMD
method to atmospheric teleconnection indices and testing the
significance of the IMFs and trends.
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The IMFs for the NAO, NP and SAM indices are displayed
in Figs.7, 8 and9. For all three teleconnection indices the
first few IMFs explain much more variance than the trailing
IMFs. This suggests that most of the variance is due to in-
traannual processes since these IMFs have mean periods of a
few months (Tables1, 2 and3). In the case of the NAO and
SAM IMF1 captures most of the variance, while the third
IMF explains most of the variance for the NP index. For all
three teleconnection indices the residual shows marked dif-
ferences to a linear least-squares fit, which is usually utilized
to detrend a time series and, thus, can introduce an error.

The statistical significance of the IMFs is tested against
a climate noise null hypothesis represented by an averaged
AR(1) model. For this test we generate 1000 realisations of
the AR(1) model corresponding to the respective teleconnec-
tion index and then calculate monthly averages. Then we ap-
ply EMD to this averaged time series. To display the results
we plot the logarithm of the mean variance and the 2.5% and
97.5% percentiles of the IMF variance distribution against
the logarithm of the mean period (Figs.4, 5 and6). We have
chosen to use a non-parametric approach by using the per-
centiles estimated from the directly measured PDFs of the
variance distribution instead of the theoreticalχ2 distribution
percentiles. Though the differences between both approaches
are very small (not shown). If the variance of an IMF of the
respective teleconnection index lies outside of either of the
two percentiles then the IMF is significantly different from
climate noise. The logarithm of the mean variance of the
IMFs of climate noise shows roughly a linear relationship
with the logarithm of the mean period. But the slope of this
linear relationship is different from that of white noise (Wu
and Huang, 2004). The slope is−1 in the case of white noise
(Wu and Huang, 2004) whereas it is−1.8 for both the NAO
and NP indices and−2.1 for the SAM index. This difference
in the slope has direct implication for the significance test,
since the number of degrees of freedom are proportional to
the the variance. This means that using a white noise instead
of an averaged AR(1) null hypothesis will lead to different
IMF modes being significant or insignificant.

The climate noise test reveals that the significant modes
are IMF 2 through 5 for the NAO, IMF 2 and 3 and the resid-
ual for the NP index and IMF 2, 3, 7 and the residual for the
SAM (Figs.4, 5 and6). Thus, the NAO has no significant
trend over the period 1825–2007 which can be distinguished
from artificial trends expected from a first order Markov pro-
cess, if the residual is interpreted as a trend. The NP index
and SAM have trends which are significantly different from
artificial trends expected from an AR(1) process. The NP in-
dex has a trend towards its negative phase, while the SAM
has a trend towards its positive phase. A comparison of the
trends identified by EMD with straightforward linear least-
squares fits to the respective index time series shows that the
trends are nonlinear in the sense that they are better described
by a higher order polynomial than a straight line and that the
trends of both the NP and SAM indices weaken consider-
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Fig. 6. Statistical significance test for the SAM. The time scale
of the residual trend is set to the length of the time series. The
solid black line is the mean variance of the AR(1) ensemble and the
dashed red lines denote the 2.5% and 97.5% percentiles. The axes
are scaled by the natural logarithm.

ably over the last few decades (Figs.8k and9i). This further
shows that detrending an index time series with a linear least-
squares fit is likely to introduce a sizeable error in any further
analysis of the time series.

Our results also suggest that most of the interannual and
decadal variability of the teleconnection indices cannot be
distinguished from a climate noise process. The significant
IMFs at the 5% level of the NAO have mean periods between
6 and 44 months, the NP 8 and 14 months and the SAM 6,
14 and 244 months. Thus, most of the significant IMFs have
mean periods which are on the intraannual up to annual time
scale and only the NAO has a significant IMF mode with
periods up to 44 months on an interannual time scale. The
SAM is the only index which also shows a significant signal
on a decadal time scale.

The sum of the explained variance of the significant IMFs
gives a rough measure of the signal-to-noise ratio. By this
measure 40.9% of the NAO, 70.5% of the NP and 33.4% of
the SAM variability cannot be accounted for as being climate
noise. Thus, the NP index is the index which contains the
most information content.

6 Discussion

Previous studies have investigated whether atmospheric tele-
connection indices contain significant trends. One of the
most discussed is the NAO index. Many studies used linear
methods to identify trends in the NAO (e.g.Hurrell, 1995;
Thompson et al., 2000b; Feldstein, 2002b). By using the
EMD method and the climate noise test we do not find a
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Fig. 7. Intrinsic Mode Functions and explained variances of the Empirical Mode Decomposition for the monthly NAO index for the years
1825–2007.(a) NAO index, (b–k) IMFs and(l) residual. The residual has the least-squares linear trend of the NAO superimposed (dot-
dashed line).

significant trend. Our results confirm the studies byWunsch
(1999) andPercival and Rothrock(2005) who also did not
find a significant trend in the NAO, whileHurrell (1995) and
Thompson et al.(2000b) found trends by using a linear least-
squares estimator but did not test against a noise model. This
study also finds evidence of a significant trend in the SAM
index towards its positive phase, in agreement with the con-
clusion byMarshall (2003) based on a linear least-squares
fit. However, it has to be noted that the trend identified with
EMD is nonlinear and the trend attenuates during the last few
years (Fig.9i). Thus, a linear least-squares fit provides a less
good fit and might introduce errors in subsequent analysis of

a detrended SAM index. It is interesting to note, that the here
found attenuation of the SAM trend occurs at the same time
that the ozone hole is recovering. Recent studies suggest that
the preference of the positive SAM phase is connected to the
ozone hole and also, but to a lesser extend, to the increas-
ing greenhouse gas concentrations (e.g.Roscoe and Haigh,
2007; Perlwitz et al., 2008). To the authors knowledge this is
the first time that a trend in the NP index is discussed.

Another interesting result is that most of the variability
which is different from climate noise is intraannual variabil-
ity. This is consistent with the climate noise paradigm by
Leith (1973), Madden(1981), Feldstein(2000a) andCzaja
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Fig. 8. Intrinsic Mode Functions and explained variances of the Empirical Mode Decomposition for the monthly NP index for the years
1899–2006.(a) NP index,(b–j) IMFs and(k) residual. The residual has the least-squares linear trend of the NP superimposed (dot-dashed
line).

et al. (2003). This paradigm suggests that apparent interan-
nual and longer time scale fluctuations of the teleconnection
indices can arise due to energetic atmospheric fluctuations
on time scales of days to a few weeks. This is also consis-
tent with the findings ofFeldstein(2000a, 2002a, 2003) and
Franzke and Feldstein(2005) that Northern Hemisphere tele-
connection patterns have an intrinsic time scale of about 10
days and are a largely atmospheric phenomenon. This sug-
gests that rather short time scale processes associated with
synoptic scale waves are able to produce apparent variability
on a much longer time scale, thus producing the multi-scale
appearance of teleconnection indices. Furthermore, this re-

sult has possible implications for predictability. It suggests
that for the NP only intraannual variability has predictive
skill beyond that expected of climate noise. While our re-
sults suggest that the NAO might have predictive skill for up
to 44 months and the SAM for 244 months beyond that of cli-
mate noise. The climate noise paradigm does not rule out that
interactions with other climate subsystems like the ocean or
nonlinear atmospheric processes cause the variability of the
teleconnection indices on longer time scales. It only means
that a simple stochastic process is sufficient to describe this
variability and, thus might limit the predictability.
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Fig. 9. Intrinsic Mode Functions and explained variances of the Empirical Mode Decomposition for the monthly SAM index for the years
1957–2007.(a) SAM index, (b–h) IMFs and(i) residual. The residual has the least-squares linear trend of the SAM superimposed (dot-
dashed line).

The ability to identify nonlinear trends should prove use-
ful in low-order stochastic modeling of climate indices (e.g.
Crommelin and Vanden-Eijnden, 2006; Majda et al., 2008),
since subtracting a linear least-squares trend might change
the characteristics of important quantities like the decay
of the autocorrelation function and the PDF’s. The EMD
method could be also used as a pre-filter where only the sig-
nificant IMF’s are used for fitting of low-order dynamics and
the insignificant IMF’s are treated as a red noise stochastic
forcing.

7 Conclusions

In this study we used the EMD method to investigate the cli-
mate noise properties and the existence of nonlinear trends
of three important teleconnection indices: the NAO, NP and
SAM. For this purpose we first examined the climate noise

characteristics of the EMD method. We used a simple red
noise model as a null hypothesis to test the statistical signif-
icance of IMFs of the three atmospheric teleconnection in-
dices. Our results are

– EMD acts effectively as a dyadic filter bank and the
IMFs of climate noise are nearly Gaussian distributed
(except for IMF1)

– The spread of the variances of climate noise IMFs are
nearlyχ2 distributed

– Most of the significant variability of the analysed tele-
connection indices occurs on intraannual and annual
time scales, while most of the interannual and decadal
variability cannot be distinguished from climate noise

– The SAM is the only index with a significant signal on
a decadal time scale
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– The NP and SAM teleconnection indices have signifi-
cant nonlinear trends

– The NAO has no significant trend

Our results show that the EMD method together with the cli-
mate noise test presents a powerful tool to investigate climate
variability and to objectively detect nonlinear trends. Our re-
sults also suggest that detrending a time series by subtracting
a linear least-squares fit is not necessarily appropriate.
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