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1Área de Modelizacíon, Agencia Estatal de Meteorologı́a (AEMET), Madrid, Spain
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Abstract. This article analyzes the possibility of applying a
GOY theoretical model to atmospheric boundary layer data.
Bearing this in mind, relative scaling exponents of velocity
structure functions are used to compare the model with the
data under study. In the model, these exponents are set based
on two parameters (q andδ), which are appropriate to define
the model that better features a certain atmospheric state.

From these scaling exponents, the gap between 2-D and
3-D turbulence is observed in the model, depending on the
fact thatδ is higher or lower than unity, respectively.

Atmospheric data corresponding to very different states of
stratification stability have been analyzed. For convective
or near-neutral situations (usually associated to 3-D turbu-
lence), it is possible to find parametersq andδ to define a
model that fits the measured data. More stable situations can
be featured by GOY models with higher values ofδ. How-
ever, it is clear that it is impossible to represent nocturnal
situations of strong stable stratification (with a more similar
behaviour to 2-D) with this type of model.

1 Introduction

The velocity structure function of orderp, Sp, can be defined
(for a temporal scaleτ ) as:

Sp(τ ) =

〈
|u(t + τ) − u(t)|p

〉〈
|u(t)|p

〉 (1)

In the inertial range, there is a power relation between these
structure functions and the scale, that is to say,Sp∝τ−ζp ,
where the coefficientsζp are the so-called absolute scaling
exponents.

According to Kolmogorov theory K41 (Kolmogorov,
1941), in conditions of homogeneity and isotropy, the scal-
ing exponents,ζp, have a linear dependence with regard to
p order (ζp=p/3).
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In the inertial range there is also a power relationship be-
tween any order structure function (Sp) and order 3 struc-
ture function,S3 (ESS – Extended Self Similarity – method,
Benzi et al., 1993). The exponents of this relationship,ζp,
are called relative exponents, and its connection withζp is:

ζp = ζp/ζ3 (2)

There are several turbulence models (Frisch, 1995) which ex-
press the scaling exponent values according to one or several
parameters. Shell models constitute an especially important
group of models. These models consist of a set of equations
obtained from the Navier-Stokes equations in Fourier space.
For our study, from the many existing shell models, we select
the GOY model, a more recent version of the Gledzer model
(Gledzer, 1973) conceived by Yamada and Ohkitani (1987).
An update information on shell models and in particular on
GOY model can be found in Ditlevsen (2004).

This model uses a set of ordinary differential equations,
each of them representative of a shell in which the Fourier
space is divided, showing the following general form (the
n sub-index refers to the n-th shell):(

d

dt
+νk2

n

)
un=i(anun+1un+2+bnun−1un+1+cnun−1un−2)

∗
+fn (3)

whereν represents kinematic viscosity,un velocity in the n-
th shell (un=0 for n≤0), kn the corresponding wave number
(scale geometrically assumed, that is to say,kn=k0q

n) and
fn, a forcing term (if it is, for example, in the fourth mode,
fn=f δ4,n).

With regard to the other coefficients,

an=a kn=a k0q
n bn=b kn−1=b k0q

n−1 cn=c kn−2=c k0q
n−2 (4)

So, the six parameters that define these models are:k0, q, a,
b, c, andf .

Usual values considered for some of those parameters
(Kadanoff et al., 1995) are the following:

k0=1/16; a=1; q=2; f =5(1+i)10−3 (5)

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.

http://creativecommons.org/licenses/by/3.0/


600 J. M. Vindel and C. Yag̈ue: Application of a GOY model to atmospheric boundary layer data

In the inviscid and the no-forcing case, the GOY model
has two conserved integrals (Ditlevsen and Mogensen, 1996;
Ditlevsen, 2004):

E=
1

2

∑
n

|un|
2 and E2

=
1

2

∑
n

kα
n |un|

2 with qα
= |δ − 1|

−1 (6)

The first invariant corresponding to energy is valid for
a+b+c=0. This condition we shall consider fulfilled from
now on. In case of 3-D turbulence, according to the above
mentioned Kolmogorov theory, energy describes a direct cas-
cade with a –5/3 slope. In the 2-D turbulence case (Kraich-
nan, 1967; 1971), energy describes an inverse cascade with
that same slope, and enstrophy describes a direct cascade
with a –3 slope.

Assuminga to be the value given in Eq. (5),b andc could
be expressed as a function of only one parameter,δ:

b= − δ; c=δ − 1 (7)

Regarding the second invariant, ifδ<1, E2 is not positive
and it can be written as:

E2
=

1

2

∑
n

(−1)n kRe(α)
n |un|

2 (8)

In this case, whenα=1, E2 can be identified with helicity,
which is an inviscid invariant in the case of three-dimensional
turbulence.

If δ>1, E2 is always positive:

E2
=

1

2

∑
n

kα
n |un|

2 (9)

In this case, whenα=2,E2 is identified with enstrophy which
proves to be invariant in 2-D turbulence. Therefore, assum-
ing 3-D turbulence, and assigning the value given in Eq. (5)
to q, δ must be 1/2, and, so:b=−1/2 andc=−1/2. In the
case of 2-D turbulence, and with the sameq value,δ must be
5/4. In more general terms, when the parametera is 1, if δ

exceeds 1, the turbulence is 2-D, asE2 is linked to enstrophy
due to the fact that it is positive definite. On the contrary, if
δ is less than 1,E2 is non-positive definite, the same as the
helicity, and the model refers to 3-D turbulence (Ditlevsen,
1996) (this critical point where the flux of energy changes
sign and the helicity flux diverges, is also identified in Giu-
liani et al., 2002; see Constantin et al., 2007, for a generic
a).

On the other hand, the structure functions for each shell
are calculated using the corresponding velocities:

Sp(n) =
〈
|un|

p
〉

(10)

satisfying the following scaling relation, which follows from
the scaling properties of the governing equations:

Sp(n) ∝ k
−ζp
n (11)

2 Numerical simulations

For our numerical implementations, we shall carry out, like
Pisarenko et al. (1993), a temporal discretization using a
second-order slaved Adams-Bashforth scheme:

un(t+δt)=e−ν k2
n δ tun(t)+

1−e−ν k2
n δ t

νk2
n

(
3

2
gn(t)−

1

2
gn(t−δt)

)
(12)

gn (t) being the right-hand side of Eq. (3).
To solve this equation and ensure stability of integration

and consistent outcomes, the following conditions will be
considered: for the study of atmospheric turbulence, we shall
use a characteristic value of viscosity in this environment:
ν=1.8×10−5 m2 s−1; the total number of time steps will be
4×104, andδt time step will be 10−4 or 10−3, for a better sta-
tistical significance in the results. Also, the number of shells
to be considered is N=22.

For our first simulation, a standard situation in 3-D will be
considered: the values indicated in Eq. (5) andδ=1/2. To deal
with this case, we have used a time step of 10−3.

In Fig. 1, structure functions in logarithmic scale versus
shell index have been represented. The slopes of these graphs
therefore correspond with the scaling exponents. A maxi-
mum is observed towards shell number 4 (where forcing has
been introduced); and, around shell number 15, a noticeable
change occurs in the slopes of all graphs.

Applying the ESS condition, we have represented log(Sp)
vs. log(S3) to determine the relative scaling exponents
(Fig. 2). Least square linear matching proves to be much
more accurate to calculate slopes than in Fig. 1 and, in addi-
tion, there is no need to restrict shell numbers to carry it out.
For that reason, we will implement this procedure instead of
using Eq. (11), and later we shall estimate the dependency of
the relative exponents with the characteristic parameter val-
ues of a GOY model (the ESS method is also used to study
the intermittency in Paret and Tabeling (1998), as this con-
dition provides a better defined and larger scaling range than
the curveSp vs. scale).

We are interested in dealing with the relative scaling expo-
nents reflected by the model whenq andδ values are modi-
fied (Bowman et al., 2006). The rest of the parameters will
remain constant and the above mentioned values will be con-
sidered.δ (with 0.05 intervals) varies in the range [0.2–1.8]
(except forδ=1) andq (with 0.1 intervals) between [1.6–2.3].
Within those ranges, maintaining the above mentioned work-
ing conditions (but using a 10−4 time step), the results have
the necessary stability. In order to limit the uncertainty in
the determination of scaling exponents, we have only cal-
culated up to order 5. The lines of fit to the curvesSp vs.
S3 (in log-log) show, in all cases, a determination coefficient
higher than 0.99 (except for the case ofq=1.6 andδ=0.2,
whereR2=0.9873 is obtained). We should point out that the
matching has been made using, in all cases, only the first
11 shells, as there are situations in which, in higher shells,
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Fig. 1. Structure functions (logarithmic scale) vs. shell index.

structure functions are declared null, making the estimation
of their logarithms impossible.

In Fig. 3 we have represented the relative scaling expo-
nents as a function of the parameterδ (for different values
of the parameterq). In this figure, a gap between 2-D and
3-D turbulence is observed, depending on the fact thatδ is
higher or lower than unity, respectively. This critical point
coincides, as we pointed out in the introduction, with the
value for which the second inviscid invariant is positive or
not. In the three-dimensional region, the scaling exponents
diminish (forp<3) or increase (forp>3) when we approach
the 2-D area. In the 3-D area, it is even possible to estab-
lish a functional relationship between the scaling exponents
and theδ parameter with a high correlation coefficient. For
instance, forq=1.8, we obtain:

ζ 1 = 0.9586δ4
−2.8408δ3

+3.2006δ2
−1.7048δ+0.7298

ζ 2 = 0.56δ4
−1.6593δ3

+1.8686δ2
−0.9935δ+0.8968

ζ 4 = −0.623δ4
+1.8471δ3

−2.0809δ2
+1.1054δ+1.078

ζ 5 = −1.2776δ4
+3.7892δ3

−4.2701δ2
+2.2684δ+1.143

(13)

with a very high determination coefficient: 0.9999.
Nevertheless, in the 2-D region the scaling exponents de-

pict a figure quite constant and linear.
The shape of the graphs in Fig. 3 confirms the foreseeable

diminution of the intermittency in 2-D turbulence (Smith and
Yakhot, 1993; Paret and Tabeling, 1998). Indeed, due to
Hölder inequality (Frisch, 1995), the relationshipζp vs. p

presents a concave shape. That is to say, forp less than or-
der 3, the smaller the scaling exponent, the higher the prox-
imity of the graph to the linear form and the smaller will thus
be the intermittency (in Fig. 3a and b, when approaching the
2-D turbulence, the scaling exponents decrease, the same as
intermittency). On the other hand, for orders higher than 3,
a smaller intermittency must imply higher values of the scal-
ing exponents (that is to say, when approaching the 2-D, the
scaling exponents increase – Fig. 3c and d). The reason for

Fig. 2. Different orders structure functions (logarithmic scale) vs.
order 3 structure function (logarithmic scale).

the weak intermittency in 2-D could be due to the lack of in-
tense vortex filaments (responsible for intermittent bursts) in
2-D turbulence (Daniel and Rutgers, 2000).

Similarly, theδ parameter being fixed, we can represent
the variation of the scaling exponents with theq parameter.
This is shown in Fig. 4. In this case, forδ<1 it is also possi-
ble to establish a functional relationship between the relative
scaling exponents andq with a high correlation coefficient;
for example, forδ=0.5, we have (with a determination coef-
ficient of 0.9996):

ζ 1 = 0.0657q4
−0.729q3

+2.8711q2
−4.8708q+3.4109

ζ 2 = 0.0759q4
−0.7358q3

+2.6367q2
−4.1659q+3.1454

ζ 4 = −0.1136q4
+1.0586q3

−3.6741q2
+5.65q−1.9455 (14)

ζ 5 = −0.2487q4
+2.3005q3

−7.9325q2
+12.13q−5.3347

In order to have a measurement of the uncertainty existing
in the previous figures, in Fig. 5 we have represented some
cases with the error bars (with a confidence interval of 99%).
Figure 5a shows that uncertainty increases whenδ decreases
(from δ=0.8 approximately). On the other hand, the parame-
terq (Fig. 5b) does not affect very much the degree of uncer-
tainty on scaling exponents. However, the more distant the
orders are fromp=3, the greater the uncertainty presented in
the relative scaling exponents.

3 Data and empirical results

In the previous section, we analyzed the relative scaling ex-
ponents, relating them to the typical parameters of the GOY
model. Next, we shall study the possibility of applying the
previously defined structure to real atmospheric boundary
layer data, through the relative scaling exponents.

A study of anomalous scaling has been done instead to
study just the scaling, although the latter can be more robust
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Fig. 3. Relative scaling exponents for different values of theq parameter vs.δ for: (a) order 1,(b) order 2,(c) order 4 and(d) order 5. A
solid line represents a 4-th order polynomial fit forq=1.8 after Eq. (13) (determination coefficient is shown).

Fig. 4. Relative scaling exponents for different values of theδ parameter vs.q for: (a) order 1,(b) order 2,(c) order 4 and(d) order 5. A
solid line represents a 4-th order polynomial fit forδ=0.5 after Eq. (14) (determination coefficient is shown).
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to determine differences between 2-D and 3-D turbulence.
However, the study of just the scaling is different in both
types of turbulence, and this should be known a priori for
each study situation. Although we can assume that nights
are in general more stable and thus, more similar to 2-D tur-
bulence (neither in the nature nor in the laboratory turbulence
can be 2-D in a strict sense), we cannot use a specific value
of 1T50−0.22 to separate the character of the atmospheric tur-
bulence (2-D or 3-D).

Data from a sonic anemometer (20 Hz sampling rate) at
32 m have been used. This data was collected during the
SABLES98 (Stable Atmospheric Boundary Layer Experi-
ment in Spain) field campaign, which took place in Septem-
ber 1998 at the Research Centre for the Lower Atmosphere
(CIBA, 41◦49′ N, 4◦56′ W, 840 m a.g.l.), located at a flat and
homogeneous terrain in the centre of an extensive plateau
(Montes Torozos). The site is surrounded by fairly level
grass plains, with a surface roughnessz0=10−4 m (San Jośe
et al., 1985). The Duero river flows along the SE border
of the plateau and two small river valleys, which may act as
drainage channels in stable conditions, extend from the lower
SW region of the plateau. The main instrumentation (3 sonic
anemometers, 5 cup anemometers, 14 thermocouples, 3 wind
vanes, a fast humidity sensor, an infrared surface temperature
sensor, a radiometer and a barometer) was installed on the
100 m meteorological tower. This instrumentation was pro-
vided (and calibrated) by the Risø National Laboratory. The
sonic anemometers levels were 5.8 m, 13.5 m and 32 m. The
sampling rate for the sonic anemometers was set up to 20 Hz,
while the thermocouples, wind vanes and cup anemometers
were sampling at 5 Hz. Five-minutes means were used for
evaluating mean and stability parameters. Prior to the calcu-
lation of these means, the raw data from the sonic anemome-
ters was pre-processed to align the sonic axes along the five-
minutes mean flow direction. For further details on the ro-
tation of the sonic axes, Kaimal and Finnigan (1994) can be
consulted. An extensive report on the instrumentation used
and the characteristics of SABLES98 can be found in Cuxart
et al. (2000).

The period of study will be between 10 September at
17:00 GMT and 17 September at 23:30 GMT, with informa-
tion taken at intervals of 30 min (in total, 350 samples to
be studied). These data correspond to very different stabil-
ity situations from diurnal convection to very strong stable
nights and therefore cover a wide scale of turbulent situa-
tions. For each of these samples we shall use intervals of
5 min (6000 items of data), which is an optimal compromise
between using enough data to provide statistics and avoiding
mesoscale motion influences, since we are interested in the
turbulent scales (Stull, 1988).

In Fig. 6, we have represented the difference of temper-
atures between 50 m and 0.22 m levels,1T50−0.22, so as to
show the evolution of stability of stratification throughout
the period of study (to make the daytime cycle, which shows
stratification stability, more visible, we have modulated the

Fig. 5. (a)Relative scaling exponents vs.δ (for different values of
q) with error bars;(b) Relative scaling exponents vs.q (for different
values ofδ) with error bars.

curve using a moving average of order 12, that is to say, of
6 h). The graph shows the typical increase of stability during
the night, with large and positive values of1T50−0.22 which
in this case represents the strength of the surface-based in-
version developed during clear skies and low wind nights.
On the other hand during strong surface heating, taking place
along the diurnal times,1T50−0.22 has large and negative val-
ues, being more negative as the convection is more important.
We have also estimated the relative scaling exponents (or-
ders 1, 2, 4 and 5) corresponding to the different situations of
study (in Fig. 6, 2nd and 5th orders have been represented).
A scaling range of 30 s/20 (1/20 s is the sonic anemometer
resolution) has been used to obtain the scaling exponents and,
in almost all of the cases, the determination coefficient of the
Sp vs. S3 fit, from a power relationship, is higher than 0.99
(the lowestR2 are: 0.9374 forζ 1, 0.982 forζ 2, 0.9744 for
ζ 4, and 0.8867 forζ 5). We have chosen the length of the
scaling range (up to 30) in order to have a minimum number
of points for the fit and to fulfil the ESS condition. The range
extends along the smallest scales, covering the dissipation
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Fig. 6. Temporal evolution of temperature difference between 50 m
and 0.22 m levels,1T50−0.22, (left axis) and relative scaling expo-
nents (right axis) for:(a) order 2,ζ2, (b) order 5,ζ5.

range and the last part of the inertial range (some character-
istic scales as the Kolmogorov and integral scales can be seen
in Vindel et al., 2008). A moving average of order 12 has also
used for the scaling exponents, similarly to the temperature
difference between 50 m and 0.22 m. There is a clear rela-
tionship between the values of the scaling exponents and the
corresponding situation of stability and it is shown a differ-
ent behaviour forζ 2(p<3) compared toζ 5(p>3). The rea-
son could be due to the relation between the atmospheric sta-
bility and the kind of turbulence: convective to near-neutral
situations, usually associated to 3-D turbulence, and stable
situations (often 2-D). In the above Sect. 3, a further expla-
nation can be found about the relationship shown in Fig. 3
between scaling exponents and 2-D and 3-D turbulence.

In order to show the possible application of the
GOY model to atmospheric data, the relative scaling expo-
nents corresponding to the studied situations have been plot-
ted in Fig. 7. In this figure, we have also included the maxi-
mum and minimum values of the scaling exponents for cer-
tain values of parameterq of the model. Figure 3 showed
that, for orders lower than 3, situations closer to 2-D turbu-
lence (as in cases of stronger stability) have lower scaling
exponents than situations more embedded in the 3-D area (as
is the case with more unstable situations) and that, for orders
higher than 3, the behaviour of the scaling exponents is the

opposite. Figure 7 also exhibits a similar behaviour. Indeed,
the shape of the graphs of orders lower than 3 correspond-
ing to the different situations of study (with minimum values
in more stable situations), is similar to that of the graphs of
orders higher than 3 (but reversed, as shown in the shape
of the graphs of Fig. 3). This Fig. 7 shows that there are
certain atmospheric situations (coinciding with those more
stably-stratified) in which the model is unable to represent
their corresponding scaling exponents (for example those sit-
uations present in the 14–15 night, where very strong stable
stratification was observed – Yagüe et al., 2006 –), due to the
fact that the scaling exponents are too high (for orders higher
than 3) or too low (for orders lower than 3) for the model.
Moreover, the minimum values (for orders lower than 3) or
maximum values (for orders higher than 3) of the scaling ex-
ponents that the model is able to reproduce are very similar
for differentq values (see Fig. 3).

Figure 8 is similar to Fig. 7, apart from the fact that the
maximum and minimum values of the scaling exponents
have been obtained for certain values of parameterδ. It
is interesting to observe that, as the value ofδ increases,
the model is capable of representing more stable situations.
However, we again observe that the model is unable to show
the exponents corresponding to atmospheric situations of
greater stability.

If we wish to obtain the values of the parameters of the
model that provide scaling exponents comparable to those of
a given atmospheric situation, we have to use the relations
(13), (14) and similar. Nevertheless, it should be borne in
mind that each model furnished by a pair of parametersq

andδ, can only represent the scaling exponents of a certain
order.

4 Summary and conclusions

A simulation of a GOY model of 22 shells (using standard at-
mospheric viscosity), was performed to calculate the scaling
exponents of the structure functions from the ESS method,
which proves to be more accurate than the direct use of the
power scaling relationship.

Different simulations using different values of the charac-
teristic parameters of a GOY model were then carried out.
As a result, two areas with different behaviour correspond-
ing to 2-D and 3-D turbulence can be clearly distinguished.
The values of the scaling exponents in one region and in the
other confirm the behaviour of the intermittency in one type
of turbulence and in the other (a decrease of the scaling ex-
ponents of order lower than 3 when we move to 2-D from
3-D, and the reverse behaviour for cases of order higher than
3).

Replacing the relative scaling exponents corresponding to
a certain atmospheric situation with the expressions (13),
(14) and similar, it is possible to estimate a pair of parameters
q, δ, that will define the appropriate model to represent the
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Fig. 7. (a)Temporal evolution of relative scaling exponents of order 1 (left axis) and order 4 (right axis). The horizontal lines represent the
maximum and minimum values ofζ1 (dashed lines) andζ4 (solid lines) for certain values of parameterq of the model;(b) Similar to (a) for
orders 2 and 5.

Fig. 8. (a)Temporal evolution of relative scaling exponents of order 2. The horizontal lines represent the maximum (solid) and minimum
(dashed) values ofζ2 for certain values of parameterδ of the model;(b) Similar to (a) for order 5. Note that the black dashed line overlapped
the red solid line.

scaling exponent of a certain order for that situation. Overall,
all of them enable the representation of the given atmospheric
situation. Greater values of the parameterδ produce a model
which is able to represent increasingly stable situations. But
the model is of no use in situations of stronger stability of
stratification.
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J., Ferńandez, A., Soler, M. R., Infante, C., Buenestado, P., Es-
pinalt, A., Joergensen, H. E., Rees, J. M., Vila, J., Redondo, J.
M., Cantalapiedra, I. R., and Conangla, L.: Stable Atmospheric
Boundary-Layer Experiment in Spain (SABLES 98): A Report,
Bound.-Lay. Meteorol., 96(3), 337–370, 2000.

Daniel, W. B. and Rutgers, M. A.: Intermittency in forced two-
dimensional turbulence, arXiv:nlin/0005008v1 [nlin.CD], 3 May
2000.

Ditlevsen, P. D.: Temporal intermittency and cascades in shell mod-
els of turbulence, Phys. Rev. E, 54(1), 985–988, 1996.

Ditlevsen, P. D. and Mogensen, I. A.: Cascades and statistical equi-
librium in shell models of turbulence, Phys. Rev. E, 53(5), 4785–
4793, 1996.

Ditlevsen, P. D.: Turbulence and climate dynamics, Print J&R Fry-
denberg A/S, Copenhagen, 349 pp., 2004.

Frisch, U.: Turbulence, England: Cambridge University Press,
296 pp., 1995.

Giuliani, P., Jensen, M. H., and Yakhot, V.: Critical “dimen-
sion” in shell model turbulence, Phys. Rev. E, 65(3), 036305,
doi:10.1103/PhysRevE.65.036305, 2002.

Gledzer, E. B.: System of hydrodynamic type admitting two
quadratic integrals of motion, Soviet Physics Doklady, 18, 216–
217, 1973.

Kadanoff, L., Lohse, D., Wang, J., and Benzi, R.: Scaling and dis-
sipation in the GOY shell model, Phys. Fluids, 7(3), 617–629,
1995.

Kaimal, J. C. and Finnigan, J. J.: Atmospheric Boundary Layer
Flows: Their Structure and Measurements, Oxford University
Press, New York, 289 pp., 1994.

Kolmogorov, A. N.: Dissipation of energy in locally isotropic tur-
bulence, C. R. Acad. Sci. USSR, 32, 16–18, 1941.

Kraichnan, R. H.: Inertial ranges in two-dimensional turbulence,
Phys. Fluids, 10(7), 1417–1423, 1967.

Kraichnan, R. H.: Inertial-range transfer in two- and three-
dimensional turbulence, J. Fluid Mech., 47(3), 525–535, 1971.

Paret, J. and Tabeling, P.: Intermittency in the two-dimensional in-
verse cascade of energy: experimental observations, Phys. Flu-
ids, 10, 3126–3136, 1998.

Pisarenko, D., Biferale, L., Courvoisier, D., Frisch, U., and Vergas-
sola, M.: Further results on multifractality in shell models, Phys.
Fluids A-Fluid, 5(10), 2533–2538, 1993.

San Jose, R., Casanova, J. L., Viloria, R. E., and Casanova, J.:
Evaluation of the Turbulent Parameters of the Unstable Surface
Boundary Layer outside Businger’s Range, Atmos. Environ., 19,
1555–1461, 1985.

Smith, L. M. and Yakhot, V.: Condensation and small-scale struc-
ture generation in a random force driven 2D turbulence, Phys.
Rev. Lett., 71, 352–355, 1993.

Stull, R. B.: An Introduction to Boundary Layer Meteorology,
Atmospheric Sciences Library, Kluwer Academic Publishers,
666 pp., 1988.

Vindel, J. M., Yag̈ue, C., and Redondo, J. M.: Structure function
analysis and intermittency in the atmospheric boundary layer,
Nonlin. Processes Geophys., 15, 915–929, 2008,
http://www.nonlin-processes-geophys.net/15/915/2008/.
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